Science One Mathematics - Midterm Exam, February 9th, 2016 This midterm has 6 questions on 11 pages, for a total of 70 points.

Duration: 80 minutes

- Read all the questions carefully before starting to work.
- Give complete arguments and explanations for all your calculations; for changes of variables state how the variables are related. For integration by parts, state what the parts are. Answers without justifications will not be accepted.
- Continue on blank pages if you run out of space.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)

First name:	Last name:
Student #:	Bamfield #:
Signature:	

Question:	1	2	3	4	5	6	Total
Points:	15	25	8	9	7	6	70
Score:							

15 marks 1. Answer the questions below. Show all your work and provide justifications. ℓ^4

(a) If
$$f(2) = 12$$
, f' is continuous and $\int_2 f'(t)dt = 17$, find $f(4)$.

(b) A function f is defined by $f(x) = \int_0^x (1-t^2)e^{t^2}dt$. On what interval(s) is f increasing?

(c) Find the limit as
$$n \to \infty$$
 of the sum $\sum_{i=1}^{n} \frac{2}{n} \cos(1 + i/n)$.

25 marks 2. Evaluate any **five** integrals of your choice from the list below. Remember to include integration constants whenever appropriate. Continue your work on the next page if you need more space.

(a)
$$\int \frac{x^2 + 1}{x^3 - x} dx$$
 (c) $\int \ln \sqrt[3]{x} dx$ (e) $\int_0^1 \frac{x^2}{(4 - x^2)^{3/2}} dx$
(b) $\int x \tan^2 x dx$ (d) $\int \arctan(1/x) dx$ (f) $\int_0^4 x e^{x^2} dx$

8 marks 3. Find the area between the graphs of $\sin x$ and $\cos x$, between two consecutive points of intersection.

9 marks
4. Consider the following solid S. The base of S is the region in the x-y plane with boundary curve x² + y² = 4; Cross-sections perpendicular to the x-axis are squares, with lower edge in the base. Write down an integral that represents the volume of the solid S. You do not need to evaluate the integral.

 $\boxed{7 \text{ marks}}$ 5. Find the value(s) of *a* for which the following improper integral converges:

$$\int_{1}^{\infty} \left(\frac{ax}{x^2 + 1} - \frac{1}{2x} \right) dx.$$

Evaluate the corresponding integral(s).

6. If a, b, c are constants such that $\int \frac{ax^2 + bx + c}{x^2(x+1)^3} dx$ is a rational function, and c = 1, find the value of b.