Science One Mathematics - Midterm Exam, February 14th, 2017 This midterm has 6 questions on 11 pages, for a total of 54 points.

Duration: 80 minutes

- Read all the questions carefully before starting to work.
- Give complete arguments and explanations for all your calculations; for changes of variables state how the variables are related. For integration by parts, state what the parts are. Answers without justifications will not be accepted.
- Continue on blank pages if you run out of space.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)

First name:	Last name:
Student #:	Bamfield #:
Signature:	

Question:	1	2	3	4	5	6	Total
Points:	8	6	20	6	8	6	54
Score:							

8 marks 1. Determine whether each of the following statements is true or false. Provide justification.

(a) True/False. If f is continuous on
$$[a, b]$$
 then $\frac{d}{dx} \int_{a}^{b} f(t)dt = f(x)$.

(b) True/False. Suppose f(x) is a continuous function for all x and such that f(0) = 0. Let $g(x) = \int_{-1}^{x} f(t) dt$. Then the graph of g is tangent to the x-axis at x = 0.

(c) True/False. If f has a discontinuity at x = 0, then $\int_{-1}^{1} f(x) dx$ does not exist.

(d) True/False If f is continuous and $\int_0^9 f(x)dx = 4$, then $\int_0^3 x f(x^2)dx = 2$.

6 marks 2. Happy Valentine's Day.

Compute the area of the region enclosed by the heart-shaped curve shown above. The curve is described by the following equations,

$$\begin{array}{ll} y = |x| - 4 & \text{if } -4 \leq x \leq 4 \\ y = 0.3x(4 - x) + 2 & \text{if } 0 \leq x \leq 4 \\ y = -0.3x(4 + x) + 2 & \text{if } -4 \leq x \leq 0 \\ x = -0.3y^2 + 0.6y + 4 & \text{if } 0 \leq y \leq 2 \\ x = 0.3y^2 - 0.6y - 4 & \text{if } 0 \leq y \leq 2. \end{array}$$

20 marks 3. Evaluate any **four** integrals of your choice from the list below. Remember to include integration constants whenever appropriate. Continue your work on the next page if you need more space.

(a)
$$\int \frac{1}{(x-1)(x^2+1)} dx$$
 (b) $\int \frac{\sin^3(x)}{\cos^2(x)} dx$ (c) $\int_0^3 (x+1)\sqrt{9-x^2} dx$
(d) $\int \frac{2x-1}{x^2-2x+5} dx$ (e) $\int_0^4 \log(1+x^2) dx$

6 marks 4. Consider the solid whose base in the xy-plane is the region bounded by the curves $y = x^2$ and $y = 8 - x^2$, and whose cross-sections perpendicular to the x-axis are squares (with one side in the xy-plane). Find its volume.

8 marks 5. Determine whether each of the improper integrals is convergent or divergent, and if convergent find its value:

(a)
$$\int_0^\infty x e^{-x} dx$$

(b)
$$\int_0^2 \frac{dx}{(x-1)^{2/3}}$$

6 marks 6. (a) Find a Riemann Sum S_n that approximates the integral

$$I = \int_0^1 \sqrt{x} dx$$

and such that $S_n > I$. Construct S_n using n intervals, where n is a positive integer.

(b) Prove that the sum of the square roots of the first n positive integers can be approximated as

$$\sqrt{1} + \sqrt{2} + \dots + \sqrt{n} \approx \frac{2}{3}n^{3/2}$$

for large n.