- 8 1. Determine whether each of the following statements is true or false. Provide justification.
 - (a) True/False. $\frac{d}{dx} \int_0^{\pi/2} x^3 \cos(t) dt = 0.$

Solution: The statement is true only if x = 0. If $x \neq 0$, $\frac{d}{dx} \int_0^{\pi/2} x^3 \cos(t) dt = \frac{d}{dx} x^3 \int_0^{\pi/2} \cos(t) dt = 3x^2 \int_0^{\pi/2} \cos(t) dt \neq 0$. Thus, in general the statement is false.

(b) True/False. Let $F(x) = \int_1^{x^2} e^{-t^2} dt$. Then F(x) is increasing for all x.

Solution: To determine whether F is increasing or decreasing we need F'(x). By the Fundamental Theorem of Calculus, after applying the Chain rule, we have $F'(x) = \frac{d}{dx} \int_1^{x^2} e^{-t^2} dt = e^{-(x^2)^2}(2x) = 2xe^{-x^4}$. We observe F'(x) > 0 only for x > 0. Thus the statement is false.

(c) True/False. $\int_{-\pi}^{\pi} |\sin(x)| dx = 2 \int_{0}^{\pi} \sin(x) dx$.

Solution: The statement is true by symmetry of $|\sin(x)|$. In fact, $|\sin(x)|$ is periodic with period π , that is

$$\int_{-\pi}^{\pi} |\sin(x)| \, dx = \int_{-\pi}^{0} |\sin(x)| \, dx + \int_{0}^{\pi} |\sin(x)| \, dx = 2 \int_{0}^{\pi} \sin(x) \, dx.$$

Alternatively,

$$\int_{-\pi}^{\pi} |\sin(x)| \, dx = \int_{-\pi}^{0} -\sin(x) \, dx + \int_{0}^{\pi} \sin(x) \, dx =$$

using the symmetry of the sine function, $\sin(-x) = -\sin(x)$, we have

$$\int_{-\pi}^{0} -\sin(x) \, dx = \int_{-\pi}^{0} \sin(-x) \, dx = \int_{\pi}^{0} -\sin(u) \, du = \int_{0}^{\pi} \sin(u) \, du$$

Thus,

$$\int_{-\pi}^{\pi} |\sin(x)| \, dx = \int_{0}^{\pi} \sin(u) \, du + \int_{0}^{\pi} \sin(x) \, dx = 2 \int_{0}^{\pi} \sin(x) \, dx.$$

(d) True/False If f is continuous for all x, then $\int_0^{\pi/2} f(\sin x) dx = \int_0^1 f(u) \cos u du$.

Solution: The statement is false. By making the substitution $u = \sin x$, we have $du = \cos x dx$ so $dx = \frac{du}{\sqrt{1-u^2}}$ and $\int_0^{\pi/2} f(\sin x) dx = \int_0^1 \frac{f(u)}{\sqrt{1-u^2}}$.

6 2. Consider the region R enclosed by the parabolas $y = -x^2 + x$ and $y = ax^2$, for a > 0. Find a value of a such that the area of R is 1/24.

Solution: We need to find the points of intersection of the two parabola and then set up an integral representing the area between the parabolas. The intersection is found by solving $ax^2 = -x^2 + x$ which yields $x = \frac{1}{a+1}$. The area between the parabolas is given by $\int_0^{1/(a+1)} (-x^2 + x - ax^2) dx = (\frac{1}{2}x^2 - \frac{1}{3}(1+a)x^3)|_0^{1/(a+1)} = \frac{1}{6}\frac{1}{(a+1)^2},$

thus

$$\frac{1}{6}\frac{1}{(a+1)^2} = \frac{1}{24}$$

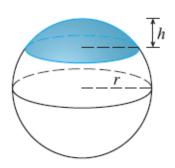
which yields $(a+1)^2 = 4$ or a = 1.

20 3. Evaluate any **four** integrals of your choice from the list below. Remember to include integration constants whenever appropriate. Continue your work on the next page if you need more space.

(a)
$$\int \frac{1}{x(x^2-1)} dx$$
 (b) $\int \sin^2(x) \cos^3(x) dx$ (c) $\int \sin(\ln(x)) dx$
(d) $\int \frac{x}{x^2+2x+10} dx$ (e) $\int x^2 \ln(1+x^2) dx$

Solution:

6 4. Find the volume of the cap formed when a horizontal slice is made at a distance h from the top of a ball of radius r (h < r).



Solution: A horizontal cross section of the cap at a distance z from top is a disk of radius $\sqrt{r^2 - (r-z)^2}$, so the cross-sectional area is $A(z) = \pi(\sqrt{r^2 - (r-z)^2})^2 = \pi(2rz - z^2)$. It follows that the volume of the cap is given by

$$V = \int_0^h A(z)dz = \pi \int_0^h (2rz - z^2)dz = \pi (rz^2 - \frac{1}{3}z^3)|_0^h = \pi (rh^2 - \frac{1}{3}h^3).$$

8 5. Determine whether each of the improper integrals is convergent or divergent, and if convergent find its value:

(a)
$$\int_0^\infty x e^{-x^2} dx$$

Solution:
$$\int_0^\infty x e^{-x^2} dx = \lim_{t \to \infty} \int_0^t x e^{-x^2} dx = \lim_{t \to \infty} -\frac{1}{2} e^{-x^2} |_0^t = \lim_{t \to \infty} \frac{1}{2} (1 - e^{-t^2}) = \frac{1}{2}$$

(b)
$$\int_0^2 \frac{dx}{x^2 - 1}$$

Solution:

$$\int_0^2 \frac{dx}{x^2 - 1} = \int_0^1 \frac{dx}{x^2 - 1} + \int_1^2 \frac{dx}{x^2 - 1}$$

Let's look at the first integral.

$$\int_0^1 \frac{dx}{x^2 - 1} = \lim_{t \to 1^-} \int_0^t \frac{dx}{(x - 1)(x + 1)} = \lim_{t \to 1^-} \int_0^t \frac{1}{2} \left(\frac{1}{x - 1} - \frac{1}{x + 1} \right) dx =$$
$$= \lim_{t \to 1^-} \frac{1}{2} \ln|t - 1| - \ln|t + 1| - \frac{1}{2} \cdot 0 = \lim_{t \to 1^-} \frac{1}{2} \ln\left|\frac{t - 1}{t + 1}\right| = -\infty$$

(c)
$$\int_0^{\pi/4} \frac{\cos(x)}{x} dx.$$

Solution: For $0 \le x \le \frac{\pi}{4}$, $\cos(x) \ge \cos(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}$. Then $\frac{\cos(x)}{x} \ge \frac{1}{\sqrt{x}} \frac{1}{x} > 0$

so since $\int_0^{\pi/4} \frac{1}{x} dx$ diverges, so does $\int_0^{\pi/4} \frac{\cos(x)}{x} dx$.

6 6. Consider

$$\ln(x) = \int_1^x \frac{1}{t} dt.$$

(a) Use the definition of area as a definite integral to prove that $\frac{1}{2} < \ln(2) < 1$.

Solution: We observe that $\ln(2) = \int_1^2 \frac{1}{t} dt$, which is the area under the graph of 1/t for $1 \le t \le 2$. If we build a left Riemann sum S_{LH} with $\Delta x = 1$ (i.e., one subinterval), we have $S_{LH} = \frac{1}{1} \cdot 1 = 1$. Similarly, we can build a right Riemann sum S_{RH} with $\Delta x = 1$, $S_{RH} = \frac{1}{2} \cdot 1 = \frac{1}{2}$. Because 1/t is a decreasing function, any left Riemann sum gives an overestimate and any right Riemann sum gives an underestimate of the area. So $\frac{1}{2} < \ln(2) < 1$.

(b) Using the above definition of $\ln(x)$, prove that

$$\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < \ln(n) < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1}$$

for n > 0.

Solution:

We observe that $\ln(n) = \int_1^n \frac{1}{t} dt$, so $\ln(n)$ is the area under the graph of 1/t from 1 to n. If we build a left Riemann sum S_{LH} with $\Delta x = 1$ and n-1 subintervals, we have

$$S_{LH} = \frac{1}{1} \cdot 1 + \frac{1}{2} \cdot 1 + \frac{1}{3} \cdot 1 + \dots + \frac{1}{n-1} \cdot 1$$

If we build a right Riemann sum $S_{RH} \Delta x = 1$ and n-1 subintervals, we have

$$R_{RH} = \frac{1}{2} \cdot 1 + \frac{1}{3} \cdot 1 + \dots + \frac{1}{n} \cdot 1$$

Because 1/t is a decreasing function, we have

$$\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < \ln(n) < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1}$$