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UBC’s courses MATH 100/180 and MATH 101 introduce students to the
ideas of Taylor polynomials and Taylor series in a fairly limited way. In these
notes, we present these ideas in a condensed format. For students who wish
to gain a deeper understanding of these concepts, we encourage a thorough
reading of the chapter on Infinite Sequences and Series in the accompanying
text by James Stewart.

1 Taylor Polynomials

We have considered a wide range of functions as we have explored calculus. The
most basic functions have been the polynomial functions like

p(x) = x3 + 9x2 − 3x + 2,

which have particularly easy rules for computing their derivatives. As well,
polynomials are evaluated using the simple operations of multiplication and
addition, so it is relatively easy to compute their exact values given x. On the
other hand, the transcendental functions (e.g., sinx or lnx) are more difficult to
compute. (Though it seems trivial to evaluate ln(1.75), say, by pressing a few
buttons on your calculator, what really happens when you push the ln button
is a bit more involved.)

Question: Is it possible to approximate a given function by a poly-
nomial? That is, can we find a polynomial of a given degree n that can be
substituted in place of a more complex function without too much error?

We have already considered this question in the specific case of linear ap-
proximation. There we took a specific function, f , and a specific point on the
graph of that function, (a, f(a)), and approximated the function near x = a by
its tangent line at x = a. Explicitly, we approximated the curve

y = f(x)

by the straight line

y = L(x) = f(a) + f ′(a)(x− a).
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In doing this, we used two pieces of data about the function f at x = a to
construct this line: the function value, f(a), and the function’s derivative at
x = a, f ′(a). Thus, this approximating linear function agrees exactly with f at
x = a in that L(a) = f(a) and L′(a) = f ′(a). Of course, as we move away from
x = a, in general the graph y = f(x) deviates from the tangent line, so there
is some error in replacing f(x) by its linear approximant L(x). We will discuss
this error quantitatively in the next section.

Now, consider how we might construct a polynomial that is a good approx-
imation to y = f(x) near x = a. Straight lines, graphs of polynomials of degree
one, do not curve, but we know that the graphs of quadratics (the familiar
parabolas), cubics, and other higher degree polynomials have graphs that do
curve. So, the question becomes: How do we find the coefficients of a polyno-
mial of degree n so that it well approximates a given function f near a point
given by x = a?

Let us start with an example. Consider the exponential function, f(x) = ex,
near x = 0. We have already found that

ex ≈ 1 + x

by considering its linear approximation at x = 0. From the graphs of these two
function, we know that the tangent line y = 1+x lies below the curve y = ex as
we look to both sides of the point of tangency x = 0. Suppose we wish to add a
quadratic term to this linear approximation to make the resulting graph curve
upwards a bit so that it is closer to the graph of y = ex, at least near x = 0:

T2(x) = 1 + x + cx2.

What should the coefficient c be? Well, we expect c > 0 since we want the
graph of T2(x) to curve upwards; but what value should we choose for c?

There are two clues to finding a reasonable value for c in what we have
studied in this course so far:

1. c should have something to do with f , and in keeping with the way we
constructed the linear approximation, we expect to use some piece of data
about f at x = 0; and

2. we know that the second derivative, f ′′, tells us about the way y = f(x)
curves; that is, f ′′ tells us about the concavity of f .

So, with these two things in mind, let us ask of our approximant T2(x)
something very basic: T2(x) should have the same second derivative at x = 0 as
f(x) does. (It already has the same function value and first derivative as f(x)
at x = 0, a fact you should verify if you don’t see it right away.) Thus, we ask
that

T ′′2 (0) = f ′′(0). (1)
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Now, T ′′2 (x) = 2c and so T ′′2 (0) = 2c. Also, f ′′(x) = ex, so f ′′(0) = e0 = 1.
Hence, substituting these into (1), we find that

2c = 1,

which gives us

c =
1
2
.

Hence, T2(x) = 1 + x + 1
2x2 is a second degree polynomial that agrees with

f(x) = ex by having T2(0) = f(0), T ′2(0) = f ′(0), and T ′′2 (0) = f ′′(0). We
call T2(x) the second degree Taylor polynomial for ex about x = 0. Taylor
polynomials generated by looking at data at x = 0 are called also Maclaurin
polynomials.

There is nothing that says we need to stop the process of constructing a
Taylor (or Maclaurin) polynomial after the quadratic term. For f(x) = ex, for
example, we know that we can continue to take derivatives of f at x = 0 as
many times as we like (we say ex is infinitely differentiable in this case), and,
indeed, its kth derivative is

f (k)(x) = ex,

and so f (k)(0) = e0 = 1 for k = 0, 1, 2, . . ..
So, if we construct an nth degree polynomial

Tn(x) = c0 + c1x + c2x
2 + · · ·+ cnxn

as an approximation to f(x) = ex by requiring that p(k)(0) = f (k)(0) for k =
0, 1, 2, ..., n, then we find that

ex ≈ Tn(x) = 1 + x +
1
2
x2 +

1
6
x3 +

1
24

x4 + · · ·+ 1
n!

xn.

You can derive Taylor’s formula for the coefficients ck by using the fact that

T (k)
n (x) = k! ck + terms of higher degree in x

to show that

ck =
f (k)(0)

k!
. (2)

Note that the k! arises since (xk)′ = kxk−1 and so taking k successive derivatives
of xk gives you k · (k − 1) · (k − 2) · · · 3 · 2 · 1 ≡ k!.

Example: Let us construct the fifth degree Maclaurin polynomial for the func-
tion f(x) = sin x. That is, we wish to find the coefficients of

T5(x) = c0 + c1x + c2x
2 + c3x

5 + c4x
4 + c5x

5.

First, we need the derivatives

dk

dxk
sinx

∣∣∣
x=0
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for k = 0, 1, 2, ..., 5:

k = 0 : sin(0) = 0, k = 3 :− cos(0) = −1,

k = 1 : cos(0) = 1, k = 4 : sin(0) = 0,

k = 2 :− sin(0) = 0, k = 5 : cos(0) = 1.

Using Taylor’s formula (2) for the coefficients, we find that

T5(x) = x− x3

3!
+

x5

5!
.

Note that because sin(0) = 0 and every even order derivative of sinx is ± sinx,
we have only odd powers appearing with non-zero coefficients in T5(x). This is
not surprising since sinx is an odd function; that is, sin(−x) = − sinx.

In general, we wish to use information about a function f at points other
than x = 0 to construct an approximating polynomial of degree n. If we look
at a function around the point given by x = a, Taylor polynomials look like

Tn(x) = c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n,

where

ck =
f (k)(a)

k!
. (3)

This form of the polynomial may look a little strange at first since you are
likely used to writing your polynomials in simple powers of x, but it is very useful
to write this polynomial in this form. In particular, if we follow Taylor’s program
to construct the coefficients ck by making the derivatives T

(k)
n (a) = f (k)(a), then

the calculation becomes trivial since

T (k)
n (x) = k! ck + higher order terms in powers of (x− a),

so that plugging in x = a makes all the high-order terms vanish.

Example: Suppose we are asked to find the Taylor polynomial of degree 5 for
sinx about x = π

2 . This time, we lose the symmetry about the origin that gave
us the expectation that we would only see odd terms. The derivatives at x = π

2
are

k = 0 : sin(π
2 ) = 1, k = 3 :− cos(π

2 ) = 0,

k = 1 : cos(π
2 ) = 0, k = 4 : sin(π

2 ) = 1,

k = 2 :− sin(π
2 ) = −1, k = 5 : cos(π

2 ) = 0.

In fact, we are only left with even-order terms and the required polynomial has
no x5 term:

T5(x) = 1− 1
2!

(x− π
2 )2 +

1
4!

(x− π
2 )4.

Many of the basic functions you know have useful Maclaurin polynomial
approximations. If you wish an approximation of degree n, then
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1. ex ≈ 1 + x +
x2

2!
+ · · ·+ xn

n!
;

2. sinx ≈ x− x3

3!
+

x5

5!
+ · · ·+ (−1)kx2k+1

(2k + 1)!
, where 2k +1 is the greatest odd

integer less than or equal to n;

3. cos x ≈ 1− x2

2!
+

x4

4!
+ · · ·+ (−1)kx2k

(2k)!
, where 2k is the greatest even in-

teger less than or equal to n;

4. ln(1− x) ≈ −x− x2

2
− · · · − xn

n
;

5. tan−1 x ≈ x− x3

3
+

x5

5
+ · · ·+ (−1)kx2k+1

2k + 1
, where 2k + 1 is the greatest

odd integer less than or equal to n;

6.
1

1− x
≈ 1 + x + x2 + · · ·+ xn.

Exercises:

1. Find the third degree Maclaurin polynomial for f(x) =
√

1 + x.

2. Find the Taylor polynomials of degree 3 for f(x) = 5x2−3x+2 (a) about
x = −1 and (b) about x = 2. What do you notice about them? If you
expand each of these polynomials and collect powers of x, what do you
notice?

3. If f(x) = (1 + ex)2, show that f (k)(0) = 2 + 2k for any k. Write the
Maclaurin polynomial of degree n for this function.

4. Find the Maclaurin polynomial of degree 5 for f(x) = tanx.

5. Find the Maclaurin polynomial of degree 3 for f(x) = esin x.

2 Taylor’s Formula with Remainder

We constructed the Taylor polynomials hoping to approximate functions f by
using information about the given function f at exactly one point x = a. How
well does the Taylor polynomial of degree n approximate the function
f?

One way of looking at this question is to ask for each value x, what is the
difference between f(x) and Tn(x)? If we call this difference the remainder,
Rn(x), we can write

f(x) = f(a) + f ′(a)(x− a) + · · ·+ f (n)(a)
n!

(x− a)n + Rn(x). (4)
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The first thing we notice if we look at (4) is that by taking this as the
definition of Rn(x), Taylor’s formula (the rest of the right-hand side of (4))
is automatically correct. (This might take you a little thought to appreciate.)
Of course, we would like to be able to deal with this remainder, Rn(x), quan-
titatively. It turns out that we can use the Mean Value Theorem to find an
expression for this remainder. The proof of this formula is a bit of a diversion
from where we wish to go, so we will state the result without proof.

The Lagrange Remainder Formula: Suppose that f has derivatives of at
least order n + 1 on some interval [b, d]. Then if x and a are any two numbers
in (b, d), the remainder Rn(x) in Taylor’s formula can be written as

Rn(x) =
f (n+1)(c)
(n + 1)!

(x− a)n+1, (5)

where c is some number between x and a.

(Remark: The n = 0 case is the Mean Value Theorem itself.)

First, note that c depends on both x and a. Now, if we could actually find
this number c, we could know the remainder exactly for any given value of x.
However, if you were to look at the proof of this formula, you would see that
this number c comes into the formula because of the Mean Value Theorem. The
Mean Value Theorem is very powerful, but all it tells us is that such a c exists,
and not what its exact value is. Hence, we must figure out a way to use this
Remainder Formula given our limited knowledge of c.

One approach is to ask ourselves: What is the worst error we could
make in approximating f(x) using a Taylor polynomial of degree n
about x = a?

To answer this question, we will focus our attention on |Rn(x)|, the absolute
value of the remainder. If we look at (5), we notice that we know everything
except f (n+1)(c), and so, if our goal is to find a bound on the magnitude of the
error, then we will need to find a bound on |f (n+1)(t)| that works for all values
of t in the interval containing x and a. That is, we seek a positive number M
such that

|f (n+1)(t)| ≤ M.

If we can find such an M , then we are able to bound the remainder, knowing x
and a, as

|Rn(x)| ≤ M

(n + 1)!
|x− a|n+1. (6)

Example: Suppose we wish to compute
√

10 using a Taylor polynomial of
degree n = 1 (the linear approximation) for a = 9 and give an estimate on the
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size of the error |R1(10)|. First, we note that Taylor’s formula for f(x) =
√

x
at a = 9 is given by

f(x) = f(9) + f ′(9)(x− 9) + R1(x),

and so √
x = 3 +

1
6
(x− 9) + R1(x).

Thus,
√

10 ≈ 3 1
6 .

We now estimate |R1(10)|. We first find M so that |f ′′(t)| ≤ M for all t in
[9, 10]. Now,

|f ′′(t)| =

∣∣∣∣∣ −1
4t3/2

∣∣∣∣∣ =
1

4t3/2
.

So, we want to make this function as big as possible on the interval [9, 10]. As
t gets larger, 1/4t3/2 gets smaller, so it is largest at the left-hand endpoint, at
t = 9. Hence, any value of M such that

M ≥ 1
4 · 93/2

=
1

108

will work. We might as well choose M = 1/108 (though if you don’t have a
calculator, choosing M = 1/100 would make the computations easier if you
wished to use decimal notation) and substitute this into (6) with a = 9 and
x = 10 to get

|R1(10)| ≤ 1/108
2!

|10− 9|2 =
1

216
.

Hence, we know that
√

10 = 3 1
6 ±

1
216 .

In fact, we can make a slightly stronger statement by noticing that the value
of the second derivative, f ′′(t), is always negative for t in the interval [9, 10]
and so we know that this tangent line always lies above the curve y =

√
x, and

hence we are overestimating the value of
√

10 by using this linear approximation.
Thus,

3
1
6
− 1

216
≤
√

10 ≤ 3
1
6
.

Example: We approximate sin(0.5) by using a Maclaurin polynomial of degree
3. Recall that

sinx = x− x3

3!
+ R3(x),

so

sin(0.5) ≈ 0.5− 0.53

3!
=

1
2
− 1

48
=

23
48

.

To estimate the error in this approximation, we look for M > 0 such that∣∣∣∣ d4

dt4
sin(t)

∣∣∣∣ = | sin(t)| ≤ M
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for t in [0, 0.5]. The easiest choice for M is 1 since we know that sin(t) never gets
larger than 1. However, we can do a bit better since we know that the tangent
to sin(t) at t = 0 is y = t, which lies above the graph of sin(t) on [0, 0.5]. Thus,
if we choose M ≥ 0.5 we will get an appropriate bound. In this case,

|R3(0.5)| ≤ 0.5
4!
|0.5|4 =

1
2 · 24 · 16

=
1

768
.

Exercises:

1. Find the second degree Taylor polynomial about a = 10 for f(x) = 1/x
and use it to compute 1/10.05 to as many decimal places as is justified by
this approximation.

2. What degree Maclaurin polynomial do you need to approximate cos(0.25)
to 5 decimal places of accuracy?

3. Show that the approximation

e = 1 + 1 +
1
2!

+ · · ·+ 1
7!

gives the value of e to within an error of 8× 10−5.

4. ** If f(x) =
√

1 + x, show that R2(x), the remainder term associated to
the second degree Maclaurin polynomial for f(x), satisfies

|x|3

16(1 + x)5/2
≤ |R2(x)| ≤ |x3|

16

for x > 0.

3 Taylor Series

We can use the Lagrange Remainder Formula to see how many functions can
actually be represented completely by something called a Taylor Series. Stewart
gives a fairly complete discussion of series, but we will make use of a simplified
approach that is somewhat formal in nature since it suits our limited purposes.

We begin by considering something we will call a power series in (x− a):

c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n + · · · , (7)

where we choose the coefficients ck to be real numbers. Of course, we are
particularly interested in the case where we choose these coefficients to be those
given by the Taylor formula, but there are also more general power series.

At first glance, the formula (7) looks very much like the polynomial formulae
we have considered in the previous sections. However, the final · · · indicate that
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we want to think about what happens if we keep adding more and more terms
(i.e. we let n go to infinity). The question is whether or not we can make sense
of this potentially troublesome situation.

To make things as easy as possible, we will focus completely on the case
where we generate the coefficients of the series (7) using Taylor’s formula.

Suppose that you have a function f which is infinitely differentiable, which
means you can take derivatives of all possible orders. (Examples of such func-
tions are f(x) = ex and f(x) = sin x.) Then consider the Taylor polynomial for
f about the point x = a with the remainder term:

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
+ Rn(x).

In a naive way, we can think of the Taylor series that corresponds to this as
the object that results when we let n →∞. That is, we keep adding more and
more terms to generate polynomials of higher and higher degrees. (We can do
this since we have assumed we can take derivatives to as high an order as we
need.) Now, in order for this process to produce a finite value for a given value
of x, it must be that Rn(x) → 0 as n →∞.

Example: Consider the degree n Maclaurin polynomial, with remainder, for
f(x) = ex:

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ Rn(x),

Now, we would like to show that limn→∞Rn(x) = 0 for any real x. The re-
mainder formula says

Rn(x) = ec xn+1

(n + 1)!
,

for some c between 0 and x. Since ec ≤ e|x|, we can say

|Rn(x)| ≤ e|x|
|x|n+1

(n + 1)!
.

Does this last expression go to zero as n goes to infinity? First, since x a fixed
real number, e|x| is constant. Moreover, |x|n+1 is the product of n + 1 |x|’s,
whereas (n+1)! is the product of 1, 2, 3, . . . , n+1. Since |x| is fixed, in the limit
(n + 1)! grows faster than |x|n+1. (This may be surprising if you look just at
the first few values of n for, say, x = 10). So, |x|n+1/(n + 1)! does indeed go to
0 as n is made arbitrarily large.

Now, because of the way we have constructed these Taylor series, we are
guaranteed to have Rn(a) = 0 and so the Taylor series always represents the
function at x = a. It is more interesting to think about the question: For
what values of x does the Taylor series represent the value of f(x)?
(Mathematicians usually say the series converges to f(x) for such values of x.)
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In general, there is a symmetric interval of values around the centre x = a
of the Taylor series for which the series converges and hence where it is a valid
representation of the function. We call this interval the interval of convergence
for the Taylor series centred at x = a. There are various techniques used to
find out where series converge. These are discussed in Stewart, but we will not
delve into these technicalities in this course. We will simply make use of the
fact that Taylor series can be used in place of the functions that gave rise to
them wherever they converge.

The basic functions we considered in section 1 have the following intervals
of convergence:

1. ex = 1 + x +
x2

2!
+ · · ·+ xn

n!
+ · · · for x in (−∞,∞);

2. sinx = x− x3

3!
+

x5

5!
+ · · ·+ (−1)kx2k+1

(2k + 1)!
+ · · · for x in (−∞,∞);

3. cos x = 1− x2

2!
+

x4

4!
+ · · ·+ (−1)kx2k

(2k)!
+ · · · for x in (−∞,∞);

4. ln(1− x) = −x− x2

2
− · · · − xn

n
+ · · · for x in [−1, 1);

5. tan−1 x = x− x3

3
+

x5

5
+ · · ·+ (−1)kx2k+1

2k + 1
+ · · · for x in [−1, 1];

6.
1

1− x
= 1 + x + x2 + · · ·+ xn + · · · for x in (−1, 1).

Note that ex, sinx, and cos x can all be defined by their Maclaurin series
everywhere, a fact which is sometimes useful.

It is also useful to know that when a function is equal to its power series
(7) in some interval centred at x = a, then this is the only such power series
formula for f(x) on this interval. In particular, the coefficients are uniquely
determined. This can be useful to know since it sometimes makes it possible
to find the Taylor series coefficients using some computational trick rather than
computing them directly.

It is also possible to get the derivative for a function f(x) from its power
series whenever the series converges. In this case, you simply differentiate the
power series term-by-term to compute f ′(x): If

f(x) = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · ·

then
f ′(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + · · · .

We can use this to generate new series from ones we know. (There are actually
a few subtleties to what happens with convergence in this, but they won’t affect
our limited use of series. You can consult Stewart’s more detailed discussion if
you wish to learn more about these.)
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Besides differentiating power series, it is possible to multiply or divide them,
to substitute functions into them and, as we shall see in the next section, to
integrate them. Effectively, once we understand how power series represent the
functions that generate them, the series can be manipulated in place of using
the original functions.

Example: If we wish to find the Maclaurin series for xex, then we use the fact
that ex = 1 + x + x2/2 + · · ·+ xn/n! + · · · to find that

xex = x ·
(

1 + x +
x2

2
+ · · ·+ xn

n!
+ · · ·

)
= x + x2 +

x3

2
+ · · ·+ xn+1

n!
· · · .

Example: We can find the Maclaurin series for esin x by using the series for ex

and the series for sinx:

esin(x) = 1 + sinx +
sin2 x

2
+

sin3 x

6
+ · · ·

= 1 +
(

x− x3

6
+ · · ·

)
+

1
2

(
x− x3

6
+ · · ·

)2

+ · · ·

= 1 + x +
1
2
x2 − 1

8
x4 − 1

15
x5 + · · · .

Taylor series can also be useful for computing limits.

Example: We wish to evaluate

lim
x→0

ex − cos x

sinx
.

We substitute the Maclaurin series for each of ex, cos x, and sinx to get

lim
x→0

(1 + x + x2

2 + · · · )− (1− x2

2 + x4

24 + · · · )
(x− x3

6 + · · · )
= lim

x→0

(x + x2 + x3

6 + · · · )
(x− x3

6 + · · · )

= lim
x→0

(1 + x + x2

6 + · · · )
(1− x2

6 + · · · )
= 1.

Exercises:
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1. By squaring the Maclaurin series for cos x, show that

cos2 x = 1− x2 +
1
3
x4 − · · · .

2. Evaluate lim
x→0

x cos x− sinx

x2 tanx
.

3. Evaluate lim
x→0

√
1 + x2 + cos x− 2

x4
.

4. Use term-by-term differentiation of the Maclaurin series for sin(x) to show
that its derivative is cos x.

5. Differentiate the series for
1

1− x
to find a series for

1
(1− x)2

.

6. **Find the first 3 terms of the Maclaurin series for tanx by using the
series for sin x and cos x.

4 Taylor Series and Integration

If we have a power series representation of a function, we may integrate the series
term-by-term to generate a new series, which converges in the same interval as
the original series (though interesting things may happen at the endpoints of
this interval). This can be useful for two things: (1) generating the series of a
function by using the series of its derivative, and (2) approximating the value
of a definite integral.

Example: We start with a situation where we know what the result should be.
We know that sinx is the antiderivative of cos x, and we also know the Maclaurin
series for each of these functions. So, we compute, using the Fundamental
Theorem of Calculus,∫ x

0

cos t dt =
∫ x

0

(
1− t2

2!
+

t4

4!
+ · · ·

)
dt

=
[
t− t3

3 · 2!
+

t5

5 · 4!
+ · · ·

]x

0

= x− x3

3!
+

x5

5!
+ · · ·

= sinx.

Here, x is allowed to be any real number since these series converge for all values
of x.

Example: We know that

ln(1 + x) =
∫ x

0

1
1 + t

dt. (8)
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Now,

1
1 + x

=
1

1− (−x)
= 1 + (−x) + (−x)2 + (−x)3 + · · ·
= 1− x + x2 − x3 + x4 − · · · .

Substituting this into (8) gives

ln(1 + x) =
∫ x

0

(1− t + t2 − t3 + t4 + · · · ) dt

=
[
t− t2

2
+

t3

3
− t4

4
+

t5

5
+ · · ·

]x

0

= x− x2

2
+

x3

3
− · · ·+ (−1)n−1xn

n
+ · · · .

Example: Consider the function f(x) = e−x2
. Suppose we wish to find an

antiderivative of f . It turns out that there is no elementary way to write down
this antiderivative in terms of basic functions like polynomials, exponentials,
logarithms, or trignometric functions. However, we can represent f(x) by sub-
stituting −x2 into the Maclaurin series for ex:

e−x2
= 1 + (−x2) +

(−x2)2

2!
+

(−x2)3

3!
+ · · ·+ (−x2)n

n!
+ · · ·

= 1− x2 +
x4

2!
− x6

3!
+ · · ·+ (−1)nx2n

n!
+ · · · .

Thus,∫ x

0

e−t2 dt =
∫ x

0

(
1− t2 +

t4

2!
− t6

3!
+ · · ·+ (−1)nt2n

n!
+ · · ·

)
dt

= x− x3

3
+

x5

5 · 2!
− x7

7 · 3!
+ · · ·+ (−1)nx2n+1

(2n + 1) · n!
+ · · ·

The series we have considered in this section are all examples of alternating
series, which have successive terms with alternating plus and minus signs. It is
particularly easy to estimate the error involved if we approximate the functions
represented by these series by using the polynomials we get when we truncate
them after a finite number of terms. In his chapter on Infinite Sequences and
Series, Stewart presents the Alternating Series Estimation Theorem. We use
it here for power series in the situation where we plug in a specific value for
x to generate a series of real numbers. While we have not dealt with how to
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make sense of general series, it is possible to define what it means for them to
converge to a finite number. It will suffice for our purposes for you to simply
accept that such a series can represent a finite number.

Alternating Series Estimation Theorem: Let

b1 − b2 + b3 − b4 + · · ·+ (−1)n−1bn + (−1)nbn+1 + · · ·

be an alternating series that satisfies the conditions (a) 0 ≤ bn+1 ≤ bn and (b)
limn→∞ bn = 0. Then this series converges to a finite number, S. Moreover, if
we write

S = b1 − b2 + b3 − b4 + · · ·+ (−1)n−1bn + Rn,

then we have that
|Rn| ≤ bn+1.

Example: We can use the Alternating Series Estimation Theorem to decide
how many terms of the series we need to approximate ln(1.5) to within 10−4.
First, we know that

ln(1.5) =
∫ 0.5

0

1
1 + x

dx

= 0.5− (0.5)2

2
+

(0.5)3

3
− · · ·+ (−1)n−1(0.5)n

n
+ · · · ,

and so we want to find n so that |Rn(0.5)| < 10−4. Well, we know that

|Rn(0.5)| ≤
∣∣∣∣ (−1)n(0.5)n+1

n + 1

∣∣∣∣
from the Alternating Series Estimation Theorem. Thus, we want n so that∣∣∣∣ (−1)n(0.5)n+1

n + 1

∣∣∣∣ < 10−4.

The easiest method for solving this inequality is to “guess-and-check.” This gives
us n = 10.

Exercises:

1. Find an approximation for
∫ 0.5

0

1
1 + x4

dx good to 20 decimal places.

2. Evaluate
∫ 1

0

cos(x2) dx to 6 decimal places using series.
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3. We know that
tan−1(1) =

π

4
.

Thus,

π = 4
∫ 1

0

1
1 + x2

dx.

Is the series method of computing this integral a good way to evaluate π
to 1 million decimal places?
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