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1. Overview of the Course 

There is a special section of Math 256 at UBC offered in the first term that is part of a combined course Mech 221 that involves five subjects in second year Engineering. Math 256 covers differential equations (DE) with some additional material on numerical methods (interpolation, numerical differentiation and integration as well as numerical methods for DE). The other subjects in Mech 221 are Dynamics, Solid Mechanics, Metals and Materials, and Electrical Engineering. Math 256 (Mech 221) is taught in the first term to about 120 students in a single section. A standard text is used, augmented by notes written by the instructor (covering material on numerical methods, non-dimensionalization, and linearization of scalar DE autonomous problems at equilibrium points).

Math 256 has seven two-hour computer labs that involve the use of MATLAB. These are held every week in the middle of Mech 221. Students in the class are grouped into four different lab sections of about 30 students each. A single lab TA from Mathematics supervises and marks all sections. The labs are done in a room equipped and maintained by Mechanical Engineering. 

There are weekly tests in Mech 221 that have questions on the mathematics material. Some questions are posed jointly with the Dynamics or the Electrical Engineering instructors to test the overlap of these subjects. These joint questions are also found on the final exams. In addition to tests, exams, and computer labs the students are also evaluated with weekly online questions (vista). Additional, longer suggested problems are posted with solutions but not marked.   

2. Course-level Learning Goals

After completing this course, students should be able to
· Solve scalar first order linear and separable differential equations and initial value problems; second order scalar and vector first order problems with constant coefficients and simple forcing terms that can be handled with the method of undetermined coefficients. 
· Relate these solutions to the engineering problems they came from.

· Use graphical methods, scaling and linearization to gain insight into the solutions to these problems.
· Do numerical approximation of integrals, derivatives, function values and the solution of differential equations to a specified accuracy. 
After completing the computer labs, students should be able to

· Interpret, modify, and write MATLAB code to implement algorithms for numerical integration and the solution of differential equations.
· Write MATLAB code in scripts and function files using logical and loop blocks. 
3. Topics and Learning Goals by Lecture  

1) Numerical Integration: Review of integration applications and graphical interpretation as area; use of left and right Riemann sums, Trapezoidal Rule and Simpson’s Rule as approximations; numerical examination of their convergence to exact solutions. Students should be able to use these rules to approximate integrals for a given number of subintervals.
2) Numerical Integration (cont.): Error estimates for integration rules presented; convergence order defined and its significance discussed in practical computations; ways to handle piecewise smooth integrands are presented. This material should be covered before computer lab #1. Students should be able to determine the accuracy of a given method for a given integral with a given number of subintervals; also able to determine when an approximation is accurate enough for a given application. 
3) Taylor Polynomials and Interpolation: Extension of tangent line approximation idea to Taylor Polynomials and linear interpolation; error estimates for these approximations; higher order interpolation. Students should be able to do Taylor approximation and Linear Interpolation given data and determine their accuracy; also able to make a polynomial fit to given function value and derivative information. 
4) Numerical Differentiation: One sided and centred differencing approximations for first derivatives; centred difference approximations of second derivatives. Students should be able to do these approximations using given data and determine their accuracy; also be aware that numerical differentiation is subject to round-off and experimental error. 
5) Introduction to Differential Equations: First order scalar differential equations and initial value problems (IVP) presented; graphical intuition from direction fields; finite time blow-up is possible for nonlinear problems. Students should be able to determine whether a given function solves a given IVP; match equations to direction fields; sketch solutions of IVPs given a direction field. 
6) Euler’s Method: Approximation of first order scalar equations by Euler’s Method. This material should precede computer lab #2. Begin lecture 7 material. 
7) Constant Coefficient, First Order, Linear Equations: Linearity corresponds to superposition; linear equations have solutions that are the sum of a homogeneous and particular part; exponential solutions for homogeneous part; method of undetermined coefficients for particular solutions; problems with discontinuous coefficients or forcing terms. Students should be able to solve these problems with simple right hand sides that may also have discontinuities. 
8) Linear First Order Equations: Finish Lecture 7 material; derive the integrating factor method for first order scalar linear equations; recognize the solutions from the technique as homogeneous plus particular. Students should be able to apply the integrating factor solution technique. 
9) Separable and Autonomous Equations: Separation of variables technique to solve separable and autonomous IVPs; use of Newton’s method to approximate solutions from the implicit form. This material should be covered before computer lab #3.
10)  Critical Points, Stability and Linearization for Autonomous Equations: Connection of the graph of the right hand side (RHS) function for scalar autonomous equations to the behaviour of solutions; critical points for these problems and their stability. Students should be able sketch solutions and approximate critical points and determine their stability from the graph of the RHS function; also be able to determine the stability and time constant near critical points from the value of the derivative of the RHS function.  
11)  Scaling and Non-dimensionalization: Scaling dependent and independent variables in scalar first order differential equations; identification of dominant terms and generic forms with dimensionless parameters.
12)  Scaling and Non-dimensionalization (cont.): Examples. 
13)  Converting a Higher Order Equation to a First Order System: also then applying Euler’s Method to these systems. This material should be covered before computer lab #4. Students should be able to convert any differential equation system of any order to a first order system suitable for numerical approximation. 

14)  Second Order Linear Differential Equations: Introduction to second order linear differential equations; examples from applications; initial value problems; superposition principle; solutions are composed of a homogeneous plus a particular part. 
15)  Characteristic Equation – Real Roots: Exponential solutions lead to the characteristic equation; form of solution for real roots, distinct and repeated; these solutions satisfy any IVP.
16)  Characteristic Equation – Complex Roots: complex exponentials; real form of the solutions. 
17)  Method of Undetermined Coefficients: forms to try for particular solutions for given forcing terms; reminder of superposition; reminder of techniques for discontinuous coefficients or forcing terms. This material should precede computer lab #5. 
18)  Method of Undetermined Coefficients (cont): resonant case. At the end of lectures 14-18, students should be able to solve any second order linear, constant coefficient IVP with forcing terms that fit into the method of undetermined coefficients. 
19)  Resonance and Beats: application of lecture 14-18 material to spring mass systems. 
20)  First Order Systems of Differential Equations: Introduction with physical examples; phase plane picture for systems with two components; reminder that higher order problems can be converted to this form; reminder that numerical methods can be applied to this form; reminder of superposition for linear problems, and that solutions in this case are homogeneous plus particular. 
21)  Linear, Constant Coefficient Systems with Real Eigenvalues: Looking for exponential solutions leads to an eigenvalue problem; for the real, distinct eigenvalue case these solutions can match any initial conditions; degenerate eigenvalue case; phase plane graphs and stability of the origin for systems with 2 components.  
22)  Linear, Constant Coefficient Systems with Complex Eigenvalues: real form of solutions; phase plane graphs and stability of the origin for systems with 2 components. This lecture should precede computer lab #6. After lectures 21-22, students should be able to write general solutions to any first order, constant coefficient, linear, homogeneous system; also be able to identify the behaviour and sketch solutions in the 2 component case.
23)  Method of Undetermined Coefficients: finding particular solutions for given, simple forms of forcing terms; reminder of superposition. 
24)  Method of Undetermined Coefficients (cont): resonance. After lectures 23-24, students should be able to solve any constant coefficient linear differential system of any order with forcing that fits into the method of undetermined coefficients framework.  
25)  Variation of Parameters: derivation for first order linear systems; similarity to integrating factor method (as review); application to second order scalar problems. Students should see how homogenous solutions of linear systems also determine how the system responds to forcing. 
26)  Systems of Autonomous Differential Equations: introduction; physical examples; phase field portraits. Students should be able to sketch solutions to IVPs given phase field diagrams. 
27)  Critical Points, Stability and Linearization: linear behaviour near critical points of autonomous first order systems; simple 2 component examples including nonlinear spring-mass systems. Students should see some techniques and ideas beyond the course. 
28)  Review

4. Topics and Learning Goals by Computer Lab

1) Recognize the correct syntax of and describe the output of some MATLAB commands used to create and access parts of a vector; plot graphs of functions; perform numerical integration to a given accuracy; use comparison to an exact solution to assist in debugging and to assess the accuracy of the approximation.
2) Include for loops into a MATLAB code; write a MATLAB code to implement the Forward Euler time-stepping method to find an approximate solution to a specific differential equation.
3) Include while loops into a MATLAB code; use function calls in MATLAB; find roots using Newton’s method in MATLAB; find solution values to separable differential equations using Newton’s method in MATLAB.
4) Learn to access elements of matrix in MATLAB: individual entries, rows and columns; use the MATLAB routine “ode45” to approximate solutions of first order systems of differential equations; transform second and higher order ODEs into first-order systems of equations which can be approximately solved with ode45.
5) Include if...else...end blocks into a MATLAB code; use ode45 to approximate solutions of differential equations that have forcing terms or coefficients that depend discontinuously on time and the solution; diagnose the loss of efficiency of ode45 on these problems. 
6) Rewrite two coupled second order equations that describe a damped mass-spring system with two degrees of freedom as a first order system with four unknowns; find the matrix that corresponds to this system and understand the behaviour of the system from the eigenvalues of this matrix; use the MATLAB “eig” command to find the eigenvalues of matrices that describe coupled mass-spring systems; use the ode45 command to compute approximate solutions to these systems.
7) Apply the computational skills developed in the labs so far to a “real world” example. Students computationally approximate the behaviour of an electric motor based on the manufacturer’s specs.
