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Overarching Goals

After completing this course, students should be able to:

• recognize the three basic 2nd order linear Partial Differential Equations: Heat (parabolic), wave (hy-
perbolic), and Laplace (Elliptic) equation, and associate these model equations to their characteristic
physical processes;

• exploit the linearity of the equation in order to come up with series solutions by superposition;

• apply specific solution techniques (separation of variables, eigenfunctions expansions, Fourier series,
using linearity to solve problems with inhomogeneous boundary conditions);

• write down an appropriate finite difference scheme for one of the three fundamental equations and
approximate boundary conditions with a prescribed truncation error and implement it in Excel
Spreadsheets.

Topic-Level Learning Goals

1. Introduction to Partial differential equations

• Recognize the classic types (parabolic, elliptic, hyperbolic equations) of second order linear
PDEs.

• Identify the form of the heat equation, the wave equation, and Laplace’s equation, and recognize
their occurrence in physical examples, such as transient heat conduction, vibrating strings,
steady heat conduction etc.

2. Preliminaries: This is a review section at the end of which you should be able to

• Derive Taylor series of common functions.

• Find solutions to first order separable and linear ODEs.

• Find solutions to second order homogeneous constant coefficient linear ODEs.

• Find solutions to homogeneous Euler/equidimensional equations.

• Solve inhomogeneous second order equations using undetermined coefficients.
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3. Series Solutions of Differential Equations

• For a given ODE classify a given point in the domain as ordinary or singular and be able to
distinguish regular from irregular singular points.

• Find series solutions to ODEs about a specified point: Identify the appropriate series expan-
sion to use about the point, develop Frobenius or Taylor series expansions depending on the
classification of the expansion point.

• Calculate as many non-zero terms in the series solution as is necessary.

• Find the radius of convergence of a given series solution.

4. Fourier Series and Separation of Variables

• Expand a given function as a full range or half range Fourier series.

• Identify the relationship between the smoothness of a given function and the rate of conver-
gence of its Fourier series. Identify the non-uniform convergence of the Fourier series in the
neighbourhood of points of discontinuity and recognize the Gibbs phenomenon.

5. Boundary Value Problems and separation of variables

• Categorize initial boundary value problems based on the type of boundary conditions: Dirichlet
or Neumann or mixed boundary conditions; homogeneous or inhomogeneous boundary condi-
tions; constant or time dependent boundary conditions.

• Apply the method of separation of variables to solve initial-boundary value problems for the
heat equation with homogeneous boundary conditions. For a given boundary value heat con-
duction problem with homogeneous boundary conditions identify the appropriate eigenvalues
and eigenfunctions, and find the general solution as a superposition of these eigenfunctions in
the form of an infinite series.

• Solve initial-boundary value heat conduction problems with inhomogeneous boundary conditions
and/or forcing terms by reducing the problem to one with homogeneous boundary conditions
where separation of variables applies; by exploiting the linearity of the problem decompose the
solution into a linear combination of a convenient function that satisfies the inhomogeneous
boundary conditions (typically the steady state solution or some other particular solution) and
a solution to the PDE that satisifies the homogeneous boundary conditions; treat forcing by
means of eigenfunction expansions.

• Determine D’Alembert’s solution to the second order wave equation for an infinite domain. Use
the method of separation of variables to solve the wave equation on a finite domain with homo-
geneous boundary conditions. In particular, use the series solution to identify the appropriate
periodic extension of the initial displacement and velocity fields to be able to express the solution
to the wave equation on a finite domain in the form of D’Alembert’s solution. As with the heat
conduction problem, exploit the linearity of the problem to solve problems with inhomogeneous
boundary conditions and forcing terms.

• Find steady state solutions of the 2D heat or wave equations that do not vary with time by
solving the 2D Laplace equation. In particular, by separation of variables find a solution to
Laplace’s equation on various domains (rectangular, circular, wedge shaped, annular, interior
and exterior circular openings). When appropriate, perform a change of coordinates (polar
coordinates) and apply separation of variables on the transformed equation.

2



6. Numerical solutions of PDEs using Finite Difference Methods

• Identify the appropriate first and second order finite difference approximations to the first and
second derivatives of a function using Taylor’s Theorem.

• Using a first order approximation to the time derivative and a second order approximation to
the spatial derivative, derive an explicit finite difference approximation to the heat equation.
Implement the finite difference scheme in a spread sheet to solve the heat equation with various
boundary conditions and compare the numerical solution to a Fourier series solution obtained
by separation of variables. Introduce ghost mesh points in order to approximate derivative
boundary conditions. Use Fourier analysis to derive a restriction on the time step to guarantee
stability for a given spatial discretization.

• Using second order approximations to the space and time derivatives derive a finite difference
approximation to the wave equation. Use an array of ghost mesh points in order to implement
the time derivative initial conditions. Use Fourier analysis to derive a restriction on the time
step to guarantee stability for a given spatial discretization.

• Use second order finite difference approximations to the partial derivatives in Laplace’s equation
to obtain a system of finite difference equations. Use the iteration feature in EXCEL to relax
the solution to the steady state. Use rows and columns of ghost points to implement derivative
boundary conditions.

7. Sturm-Liouville Theory

• Identify eigenvalues and eigenfunctions for variable coefficient problems in the Sturm-Liouville
form.

• Reduce non constant coefficient second ordinary linear equations to Sturm-Liouville form.

• Determine the weight function for orthogonality.

• Separate variables for variable coefficient PDEs.
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