Linear Approximation - Quiz Solutions

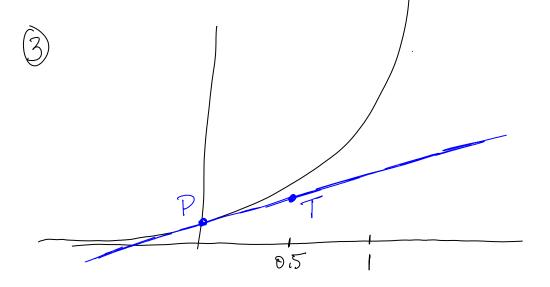
Tuesday, November 29, 2011

15.22
$$f(x) \approx L_a(x) = f(a) + f'(a)(x-a)$$

 $f(x) = e^x$ $a = 0$
 $f'(x) = e^x$ $f(a) = e^0 = 1$
 $f'(a) = e^0 = 1$
 $L_o(x) = 1 + 1(x-0)$
 $f'(0.5) = e^{0.5} \approx L_o(0.5) = 1 + 0.5$

(2) b) underestimate.

The graph is concave up everywhere in particular at a=0. So the tangent line will be below the graph at any point of approximation!



(4)
$$|emor| \leq \frac{M}{2} (x-a)^2$$

we take
$$M = \max |f''|$$
 on an appropriate interval that contains both $a = 0$ and $x = 0.5$
 $f(x) = e^x$

There are different M values that work (we show a few possibilities here).

Attempt 1 : Try interval $[0, 1]$.

Since e^x is increasing its $e^x = e^x$

So $|f(e)| \le e^x$ for all e^x in $[0, 1]$ e^x
 $|f(e)| \le e^x$ for all e^x interpret:

 $|e^x| \le e^x$

Attempt e^x

Try interval e^x
 e^x

max of
$$f''$$
 on $[0,0.5]$ is $e^{0.5}$ lervor $| \leq e^{0.5} (0.5-0)^2 = e^{0.5}$ also true and easier to interpret; $| error | \leq e^{0.5} < \frac{2}{8} = 0.25$

Conclusion:

We can combine the error estimate from Attempt 2 with the fact that the approximation must be an **underestimate** to conclude that:

$$1.5 \le e^{0.5} \le 1.5 + 0.25$$

 $1.5 \le e^{0.5} \le 1.75$