More business problems.

1. Until recently, hamburgers at the city sports arena cost $\$ 4$ each. The food concessionaire sold an average of 10,000 hamburgers on a game night. When the price was raised to $\$ 4.40$, hamburger sales dropped off to an average of 8000 per night.
a. Assuming a linear demand curve, find the price of a hamburger that will maximize the nightly hamburger revenue.
b. If the concessionaire has fixed costs of $\$ 1000$ per night and the variable cost is $\$ 0.60$ per hamburger, find the price of a hamburger that will maximize the nightly hamburger profit.
2. The revenue function for a particular product is $R(q)=q(400-q)$, where q is the quantity sold. Find the largest possible revenue.
3. Suppose that the demand equation for my paperclip business is $p=100-0.01 q$
and the cost function is $C(q)=50 q+10,000$. Graph the revenue and the cost as a function of quantity together on the same plot, and indicate on the q-axis where the break-even points occur.
4. The demand equation for a certain type of candy is $p=2-0.01 q$. Find the value of q and the corresponding price p that maximize the revenue.
