A Business Problem

MATH 104 and MATH 184
Week 1: 13 September to 17 September 2010
Opple Inc. is the only manufacturer of the popular oPad. Opple estimates that when the price of the oPad is $\$ 200$, then the weekly demand for it is 5000 units. For every $\$ 1$ increase in the price, the weekly demand decreases by 50 units. Assume that the fixed costs of production on a weekly basis are $\$ 100000$, and the variable costs of production are $\$ 75$ per unit.
(a) Find the linear demand equation for the oPad. Use the notation p for the unit price and q for the weekly demand.
(b) Find the weekly cost function, $C=C(q)$, for producing q oPads per week. Note that $C(q)$ is a linear function.
(c) Find the weekly revenue function, $R=R(q)$. Note that $R(q)$ is a quadratic function.
(d) The break-even points are where Cost equals Revenue; that is, where $C(q)=$ $R(q)$. Find the break-even points for the oPad.
(e) On the same set of axes, sketch graphs of $C=C(q)$ and $R=R(q)$ and use these graphs to help you explain why there are two break-even points.
(f) Profit is defined as Revenue minus Cost: $P(q)=R(q)-C(q)$. Find the profit function $P(q)$. Note that it is a quadratic function.
(g) Graph $P=P(q)$ on the same axes as you sketched the graphs of $C(q)$ and $R(q)$. On this graph, indicate the regions of profit $(P(q)>0)$ and loss $(P(q)<0)$.
(h) How should Opple Inc. operate in order to maximize the weekly profit $P=$ $P(q)$? Use mathematics in your explanation.

