Solutions to
 Lines and Planes
 Practice Problems

Find the parametric form $\overrightarrow{\mathbf{x}}(t)=\overrightarrow{\mathbf{p}}+t \overrightarrow{\mathbf{d}}$ of a line given the following information:

1. Two points $\overrightarrow{\mathbf{p}}_{1}$ and $\overrightarrow{\mathbf{p}}_{2}$ on the line, say $\overrightarrow{\mathbf{p}}_{1}=[1,-1,3]$ and $\overrightarrow{\mathbf{p}}_{2}=[2,3,-1]$:

Answer

Let $\overrightarrow{\mathbf{p}}_{2}-\overrightarrow{\mathbf{p}}_{1}=[1,4,-4]$ be the direction vector $\overrightarrow{\mathbf{d}}$ and let $\overrightarrow{\mathbf{p}}_{1}$ be a point on the line, then the line can be represented by $\overrightarrow{\mathbf{x}}(t)=[1,-1,3]+t[1,4,-4]$.
2. One point $\overrightarrow{\mathbf{p}}$ on the line and a direction vector $\overrightarrow{\mathbf{d}}$, say $\overrightarrow{\mathbf{p}}=[1,2,3]$ and $\overrightarrow{\mathbf{d}}=[6,5,4]$.

Answer

$$
\overrightarrow{\mathbf{x}}(t)=[1,2,3]+t[6,5,4]
$$

3. One point $\overrightarrow{\mathbf{p}}$ on the line and parallel $(\|)$ to another line $\overrightarrow{\mathbf{a}}+t \overrightarrow{\mathbf{b}}$, say $\overrightarrow{\mathbf{p}}=[1,0,2], \overrightarrow{\mathbf{a}}=[2,2,-2]$, and $\overrightarrow{\mathbf{b}}=[1,4,5]$.

Answer

Let the direction vector be $\overrightarrow{\mathbf{b}}=[1,4,5]$ and $\overrightarrow{\mathbf{p}}=[1,0,2]$, thus $\overrightarrow{\mathbf{x}}(t)=[1,0,2]+t[1,4,5]$.
4. One point $\overrightarrow{\mathbf{p}}$ on the line and \perp to another line $\overrightarrow{\mathbf{a}}+t \overrightarrow{\mathbf{b}}$, say $\overrightarrow{\mathbf{p}}=[1,0,2], \overrightarrow{\mathbf{a}}=[2,2,-2]$, and $\overrightarrow{\mathbf{b}}=[1,4,5]$.

Answer

Let the direction vector be any nonzero vector $\overrightarrow{\mathbf{d}}=\left[d_{1}, d_{2}, d_{3}\right]$ such than $\overrightarrow{\mathbf{d}} \cdot \overrightarrow{\mathbf{b}}=0$, i.e. $d_{1}+4 d_{2}+5 d_{3}=0$. The choice $\overrightarrow{\mathbf{d}}=[1,1,-1]$ works so $\overrightarrow{\mathbf{x}}(t)=[1,0,2]+t[1,1,-1]$. Alternatively, $\overrightarrow{\mathbf{d}}$ could be taken to be $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$, where $\overrightarrow{\mathbf{c}}$ is any vector not $\|$ to $\overrightarrow{\mathbf{b}}$.
5. One point $\overrightarrow{\mathbf{p}}$ on the line and \perp to a plane $a x+b y+c z+d=0$, say $\overrightarrow{\mathbf{p}}=[1,0,2], a=2, b=-4$, $c=5$, and $d=1$.

Answer

Let the direction vector be $\overrightarrow{\mathbf{b}}=[a, b, c]=[2,-4,5]$, then $\overrightarrow{\mathbf{x}}(t)=[1,0,2]+t[2,-4,5]$.
6. One point $\overrightarrow{\mathbf{p}}$ on the line and $\|$ to a plane $a x+b y+c z+d=0$, say $\overrightarrow{\mathbf{p}}=[1,0,2], a=2, b=-4$, $c=5$, and $d=1$.

Answer
Let $\overrightarrow{\mathbf{b}}=[a, b, c]$ be the normal vector to the plane, and let the direction vector of the line to be any nonzero vector $\overrightarrow{\mathbf{d}}=\left[d_{1}, d_{2}, d_{3}\right]$ such than $\overrightarrow{\mathbf{d}} \cdot \overrightarrow{\mathbf{b}}=0$, i.e. $2 d_{1}-4 d_{2}+5 d_{3}=0$. The choice $\overrightarrow{\mathbf{d}}=[1,-2,-2]$ works so $\overrightarrow{\mathbf{x}}(t)=[1,0,2]+t[1,-2,-2]$. Alternatively, $\overrightarrow{\mathbf{d}}$ could be taken to be $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}$, where $\overrightarrow{\mathbf{c}}$ is any vector not $\|$ to $\overrightarrow{\mathbf{b}}$.
7. The line is the intersection of the two planes: $a_{1} x+b_{1} y+c_{1} z+d_{1}=0$ and $a_{2} x+b_{2} y+c_{2} z+d_{2}=$ 0 , where $a_{1}=2, b_{1}=-4, c_{1}=5, d_{1}=1, a_{2}=1, b_{2}=-7, c_{2}=1$, and $d_{2}=4$.

Answer

Let the direction vector be $\overrightarrow{\mathbf{b}}_{1} \times \overrightarrow{\mathbf{b}}_{2}=[2,-4,5] \times[1,-7,1]=[31,3,-10]$. The point $\overrightarrow{\mathbf{p}}$ must lie on both planes, therefore $\overrightarrow{\mathbf{p}}=[x, y, z]$ must satisfy both the equations:
(1) $2 x-4 y+5 z+1=0$
(2) $x-7 y+z+4=0$

This system has infinitely many solutions, but we just need any one for our point $\overrightarrow{\mathbf{p}}$. (1) $-2(2) \Rightarrow 10 y+3 z-7=0$, so take $y=1, z=-1$ and substitute this into (2) to get $x=4$. Thus $\overrightarrow{\mathbf{x}}(t)=[4,1,-1]+t[31,3,-10]$.
8. One point $\overrightarrow{\mathbf{p}}$ on the line and \perp to each of two given lines: $\overrightarrow{\mathbf{a}}_{1}+t \overrightarrow{\mathbf{b}}_{1}$ and $\overrightarrow{\mathbf{a}}_{2}+t \overrightarrow{\mathbf{b}}_{2}$, where $\overrightarrow{\mathbf{p}}=[1,0,2], \overrightarrow{\mathbf{a}}_{1}=[2,2,-2], \overrightarrow{\mathbf{b}}_{1}=[1,4,5], \overrightarrow{\mathbf{a}}_{2}=[2,4,-2]$, and $\overrightarrow{\mathbf{b}}_{2}=[4,2,-3]$.

Answer

Let the direction vector be $\overrightarrow{\mathbf{b}}_{1} \times \overrightarrow{\mathbf{b}}_{2}=[1,4,5] \times[4,2,-3]=[-22,23,-14]$, then $\overrightarrow{\mathbf{x}}(t)=$ $[1,0,2]+t[-22,23,-14]$.
9. One point $\overrightarrow{\mathbf{p}}$ on the line and $\|$ to each of two given planes: $a_{1} x+b_{1} y+c_{1} z+d_{1}=0$ and $a_{2} x+b_{2} y+c_{2} z+d_{2}=0$, where $\overrightarrow{\mathbf{p}}=[1,0,2], a_{1}=2, b_{1}=-4, c_{1}=5, d_{1}=1, a_{2}=1, b_{2}=-7$, $c_{2}=1$, and $d_{2}=4$.

Answer

Let the direction vector be $\overrightarrow{\mathbf{b}}_{1} \times \overrightarrow{\mathbf{b}}_{2}=[2,-4,5] \times[1,-7,1]=[31,3,-10]$. Thus $\overrightarrow{\mathbf{x}}(t)=$ $[1,0,2]+t[31,3,-10]$.
10. Equidistant to two given planes (here we mean that each point on the line is equidistant to the two planes): $a_{1} x+b_{1} y+c_{1} z+d_{1}=0$ and $a_{2} x+b_{2} y+c_{2} z+d_{2}=0$, where
a) $a_{1}=2, b_{1}=-4, c_{1}=5, d_{1}=1, a_{2}=1, b_{2}=-7, c_{2}=1$, and $d_{2}=4$.

Answer

The planes are not parallel because the normal vectors $\overrightarrow{\mathbf{b}}_{1}$ and $\overrightarrow{\mathbf{b}}_{2}$ are not multiples of each other. The point $\overrightarrow{\mathbf{p}}=[x, y, z]$ can be taken to be a point on both planes as shown in question $\# 7$, i.e. $\overrightarrow{\mathbf{p}}=[4,1,-1]$. The direction vector $\overrightarrow{\mathbf{d}}$ can be taken to be the bisector of the 2 normal vectors:

$$
\overrightarrow{\mathbf{d}}=\frac{\overrightarrow{\mathbf{b}}_{1}}{\left\|\overrightarrow{\mathbf{b}}_{1}\right\|}+\frac{\overrightarrow{\mathbf{b}}_{2}}{\left\|\overrightarrow{\mathbf{b}}_{2}\right\|}=\frac{[2,-4,5]}{\sqrt{45}}+\frac{[1,-7,1]}{\sqrt{50}}
$$

Thus $\overrightarrow{\mathbf{x}}(t)=[4,1,-1]+t\left(\frac{2}{\sqrt{45}}+\frac{1}{\sqrt{50}},-\frac{4}{\sqrt{45}}-\frac{7}{\sqrt{50}}, \frac{5}{\sqrt{45}}+\frac{1}{\sqrt{50}}\right)$.
b) $a_{1}=-2, b_{1}=14, c_{1}=-2, d_{1}=1, a_{2}=1, b_{2}=-7, c_{2}=1$, and $d_{2}=4$.

Answer

First note that the normal vector $\overrightarrow{\mathbf{b}}_{1}$ is a multiple of $\overrightarrow{\mathbf{b}}_{2}\left(\overrightarrow{\mathbf{b}}_{1}=-2 \overrightarrow{\mathbf{b}}_{2}\right)$, hence the planes are $\|$. The point $\overrightarrow{\mathbf{p}}$ must be equidistant to the 2 planes so can be taken to be midway between any two points $\overrightarrow{\mathbf{p}}_{1}$ and $\overrightarrow{\mathbf{p}}_{2}$ each lying on one of the planes. Choose
the point $\overrightarrow{\mathbf{p}}_{1}$ satisfying $-2 x+14 y-2 z=1$, say $\overrightarrow{\mathbf{p}}_{1}=\left(-\frac{1}{2}, 0,0\right)$ and choose $\overrightarrow{\mathbf{p}}_{2}$ satisfying $x-7 y+z=4$, say $[4,0,0]$. The midpoint $\overrightarrow{\mathbf{p}}$ is:

$$
\overrightarrow{\mathbf{p}}=\frac{1}{2}\left(\overrightarrow{\mathbf{p}}_{1}+\overrightarrow{\mathbf{p}}_{2}\right)=\left(\frac{7}{4}, 0,0\right)
$$

The direction vector can be any nonzero vector $\overrightarrow{\mathbf{d}}=\left[d_{1}, d_{2}, d_{3}\right]$ such than $\overrightarrow{\mathbf{d}} \cdot \overrightarrow{\mathbf{b}}_{1}=0$, i.e. $-2 d_{1}+14 d_{2}-2 d_{3}=0$. The choice $\overrightarrow{\mathbf{d}}=[1,0,-1]$ works so $\overrightarrow{\mathbf{x}}(t)=\left(\frac{7}{4}, 0,0\right)+$ $t[1,0,-1]$. Alternatively, $\overrightarrow{\mathbf{d}}$ could be taken to be $\overrightarrow{\mathbf{b}}_{1} \times \overrightarrow{\mathbf{c}}$, where $\overrightarrow{\mathbf{c}}$ is any vector not $\|$ to $\overrightarrow{\mathbf{b}}_{1}$.
11. Equidistant to two given lines (here we mean that each point on the line is equidistant to the two given lines): $\overrightarrow{\mathbf{a}}_{1}+t \overrightarrow{\mathbf{b}}_{1}$ and $\overrightarrow{\mathbf{a}}_{2}+s \overrightarrow{\mathbf{b}}_{2}$.
a) $\overrightarrow{\mathbf{a}}_{1}=[2,2,-2], \overrightarrow{\mathbf{b}}_{1}=[1,4,5], \overrightarrow{\mathbf{a}}_{2}=[2,2,-2]$, and $\overrightarrow{\mathbf{b}}_{2}=[4,2,-3]$.
b) $\overrightarrow{\mathbf{a}}_{1}=[2,2,-2], \overrightarrow{\mathbf{b}}_{1}=[1,4,5], \overrightarrow{\mathbf{a}}_{2}=[2,4,-2]$, and $\overrightarrow{\mathbf{b}}_{2}=[3,12,15]$.
c) $\overrightarrow{\mathbf{a}}_{1}=[2,2,-2], \overrightarrow{\mathbf{b}}_{1}=[1,4,5], \overrightarrow{\mathbf{a}}_{2}=[2,4,-2]$, and $\overrightarrow{\mathbf{b}}_{2}=[4,2,-3]$.

Answer

The direction vector $\overrightarrow{\mathbf{d}}$ in a), b), and c) can be found in the same way as the previous questions: the bisector between $\overrightarrow{\mathbf{b}}_{1}$ and $\overrightarrow{\mathbf{b}}_{2}$, i.e. $\overrightarrow{\mathbf{d}}=\frac{\overrightarrow{\mathbf{b}}_{1}}{\left\|\overrightarrow{\mathbf{b}}_{1}\right\|}+\frac{\overrightarrow{\mathbf{b}}_{2}}{\left\|\overrightarrow{\mathbf{b}}_{2}\right\|}$. It remains to find the point $\overrightarrow{\mathbf{p}}$ on the line which can be taken as the intersection point if the 2 given lines intersect.
a) Since $\overrightarrow{\mathbf{a}}_{1}=\overrightarrow{\mathbf{a}}_{2}, \overrightarrow{\mathbf{p}}$ is clearly $[2,2,-2]$.
b) Since the 2 lines are parallel we can take $\overrightarrow{\mathbf{p}}$ to be the midpoint between $\overrightarrow{\mathbf{a}}_{1}=[2,2,-2]$ and $\overrightarrow{\mathbf{a}}_{2}=[2,4,-2]$, i.e. $\overrightarrow{\mathbf{p}}=\frac{1}{2}\left(\overrightarrow{\mathbf{a}}_{1}+\overrightarrow{\mathbf{a}}_{2}\right)=[2,3,-2]$.
c) We can take $\overrightarrow{\mathbf{p}}$ to be the intersection point of the 2 lines given by $\left[x_{1}, y_{1}, z_{1}\right]=$ $[2+t, 2+4 t,-2+5 t]$ and $\left[x_{2}, y_{2}, z_{2}\right]=[2+4 s, 4+2 s,-2-3 s]$. Setting

$$
x_{1}=x_{2} \Rightarrow 2+t=2+4 s \Rightarrow t=4 s
$$

Now, set $y_{1}=y_{2}$ and substitute $t=4 s$ to get

$$
2+16 s=4+2 s \Rightarrow s=\frac{1}{7}
$$

Substituting $s=\frac{1}{7}$ in $\left[x_{2}, y_{2}, z_{2}\right]$ gives:

$$
\overrightarrow{\mathbf{p}}=\left(\frac{18}{7}, \frac{30}{7},-\frac{17}{7}\right)
$$

Find an equation of a plane (if possible) given the following information:

1. One point $\overrightarrow{\mathbf{p}}$ on the plane and a normal vector $\overrightarrow{\mathbf{b}}$ to the plane, say $\overrightarrow{\mathbf{p}}=[1,2,3]$ and $\overrightarrow{\mathbf{b}}=[6,5,4]$.

Answer

$$
\begin{aligned}
& \overrightarrow{\mathbf{p}}=[1,2,3] \text { and } \overrightarrow{\mathbf{b}}=[6,5,4], \text { therefore the equation of the plane is } 6(x-1)+5(y-2)+ \\
& 4(z-3)=0 .
\end{aligned}
$$

2. One point $\overrightarrow{\mathbf{p}}$ on the plane and \perp to a line $\overrightarrow{\mathbf{a}}+t \overrightarrow{\mathbf{d}}$, say $\overrightarrow{\mathbf{p}}=[1,0,2], \overrightarrow{\mathbf{a}}=[2,4,-2]$, and $\overrightarrow{\mathbf{d}}=[4,2,-3]$.

Answer

Let the normal vector $\overrightarrow{\mathbf{b}}$ to the plane be $\overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{d}}=[4,2,-3]$, then the equation is $4(x-1)+2(y-0)-3(z-2)=0$.
3. One point $\overrightarrow{\mathbf{p}}$ on the plane and $\|$ to another plane $a x+b y+c z+d=0$, say $\overrightarrow{\mathbf{p}}=[1,0,2], a=2$, $b=-4, c=5$, and $d=1$.

Answer

Let the normal vector be $\overrightarrow{\mathbf{b}}=[a, b, c]=[2,-4,5]$, then the plane is given by $2(x-1)-$ $4(y-0)+5(z-2)=0$.
4. One point $\overrightarrow{\mathbf{p}}$ on the plane and \perp to another plane $a x+b y+c z+d=0$, say $\overrightarrow{\mathbf{p}}=[1,0,2], a=2$, $b=-4, c=5$, and $d=1$.

Answer

The normal vector $\overrightarrow{\mathbf{b}}$ must be \perp to the given normal vector $\overrightarrow{\mathbf{b}}_{2}=[a, b, c]=[2,-4,5]$. So let $\overrightarrow{\mathbf{b}}$ be any nonzero vector $\overrightarrow{\mathbf{b}}=\left[b_{1}, b_{2}, b_{3}\right]$ such than $\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{b}}_{2}=0$, i.e. $2 b_{1}-4 b_{2}+5 b_{3}=0$. The choice $\overrightarrow{\mathbf{b}}=[1,-2,-2]$ works so the plane is given by $(x-1)-2(y-0)-2(z-2)=0$. Alternatively, $\overrightarrow{\mathbf{b}}$ could be taken to be $\overrightarrow{\mathbf{b}}_{2} \times \overrightarrow{\mathbf{c}}$, where $\overrightarrow{\mathbf{c}}$ is any vector not $\|$ to $\overrightarrow{\mathbf{b}}_{2}$.
5. One point $\overrightarrow{\mathbf{p}}$ on the plane and \perp to two given planes: $a_{1} x+b_{1} y+c_{1} z+d_{1}=0$ and $a_{2} x+$ $b_{2} y+c_{2} z+d_{2}=0$, where
a) $\overrightarrow{\mathbf{p}}=[1,0,2], a_{1}=2, b_{1}=-4, c_{1}=5, d_{1}=1, a_{2}=1, b_{2}=-7, c_{2}=1$, and $d_{2}=4$.

Answer

The normal vector $\overrightarrow{\mathbf{b}}$ must be \perp to both the given normal vectors $\overrightarrow{\mathbf{b}}_{1}=[1,-4,5]$ and $\overrightarrow{\mathbf{b}}_{2}=[1,-7,1]$. So let $\overrightarrow{\mathbf{b}}$ be $\overrightarrow{\mathbf{b}}_{1} \times \overrightarrow{\mathbf{b}}_{2}=[31,4,-3]$, then the plane is given by $31(x-1)+4(y-0)-3(z-2)=0$.
b) $\overrightarrow{\mathbf{p}}=[1,0,2], a_{1}=-2, b_{1}=14, c_{1}=-2, d_{1}=1, a_{2}=1, b_{2}=-7, c_{2}=1$, and $d_{2}=4$.

Answer

Notice that the two given normal vectors $\overrightarrow{\mathbf{b}}_{1}=[-2,14,-2]$ and $\overrightarrow{\mathbf{b}}_{2}=[1,-7,1]$ are \| so we can't use the method in a) because the cross product $\overrightarrow{\mathbf{b}}_{1} \times \overrightarrow{\mathbf{b}}_{2}$ would give us zero. The normal vector $\overrightarrow{\mathbf{b}}$ must be \perp to the normal vector $\overrightarrow{\mathbf{b}}_{2}=[1,-7,1]$. So let $\overrightarrow{\mathbf{b}}$ be any nonzero vector $\overrightarrow{\mathbf{b}}=\left[b_{1}, b_{2}, b_{3}\right]$ such than $\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{b}}_{2}=0$, i.e. $b_{1}-7 b_{2}+b_{3}=0$. The choice $\overrightarrow{\mathbf{b}}=[1,0,-1]$ works so the plane is given by $(x-1)-(z-2)=0$. Alternatively, $\overrightarrow{\mathbf{b}}$ could be taken to be $\overrightarrow{\mathbf{b}}_{2} \times \overrightarrow{\mathbf{c}}$, where $\overrightarrow{\mathbf{c}}$ is any vector not $\|$ to $\overrightarrow{\mathbf{b}}_{2}$.
6. Three points $\overrightarrow{\mathbf{p}}_{1}, \overrightarrow{\mathbf{p}}_{2}$ and $\overrightarrow{\mathbf{p}}_{3}$ on the plane, say $\overrightarrow{\mathbf{p}}_{1}=[2,-1,3], \overrightarrow{\mathbf{p}}_{2}=[3,-1,3]$ and $\overrightarrow{\mathbf{p}}_{3}=[2,-1,0]$.

Answer

Let $\overrightarrow{\mathbf{p}}_{1}=[2,-1,3]$ be the point on the plane. Two vectors that lie in the plane (\| to plane) are $\overrightarrow{\mathbf{p}}_{2}-\overrightarrow{\mathbf{p}}_{1}=[1,0,0]$ and $\overrightarrow{\mathbf{p}}_{3}-\overrightarrow{\mathbf{p}}_{1}=[0,0,-3]$, so take the normal vector $\overrightarrow{\mathbf{b}}$ to be:

$$
\overrightarrow{\mathbf{b}}=\left(\overrightarrow{\mathbf{p}}_{2}-\overrightarrow{\mathbf{p}}_{1}\right) \times\left(\overrightarrow{\mathbf{p}}_{3}-\overrightarrow{\mathbf{p}}_{1}\right)=[0,3,0]
$$

Therefore the equation of the plane is: $0(x-2)+3(y-(-1))+0(z-3)=0 \Rightarrow 3(y+1)=0$.
7. One point $\overrightarrow{\mathbf{p}}$ on the plane and a line $\overrightarrow{\mathbf{a}}+t \overrightarrow{\mathbf{d}}$ on the plane, say $\overrightarrow{\mathbf{p}}=[1,0,2], \overrightarrow{\mathbf{a}}=[2,4,-2]$, and $\overrightarrow{\mathbf{d}}=[4,2,-3]$.

Answer

Two points on the plane are $[1,0,2]$ and $[2,4,-2]$, thus $\mathbf{c}=[1,0,2]-[2,4,-2]=$ $[-1,-4,4]$ is a vector that lies on the plane. Since $\overrightarrow{\mathbf{d}}$ is another vector that lies on the plane, the normal vector $\overrightarrow{\mathbf{b}}$ must be \perp to both $\overrightarrow{\mathbf{d}}=[4,2,-3]$ and $\overrightarrow{\mathbf{c}}=[-1,-4,4]$. So let $\overrightarrow{\mathbf{b}}$ be $\overrightarrow{\mathbf{d}} \times \overrightarrow{\mathbf{c}}=[-4,-13,-14]$, then the plane is given by $-4(x-1)-13(y-0)-14(z-2)=0$.
8. Both of the lines: $\overrightarrow{\mathbf{a}}_{1}+t \overrightarrow{\mathbf{b}}_{1}$ and $\overrightarrow{\mathbf{a}}_{2}+t \overrightarrow{\mathbf{b}}_{2}$, are on the plane, where $\overrightarrow{\mathbf{a}}_{1}=[2,2,-2], \overrightarrow{\mathbf{b}}_{1}=[1,4,5]$, $\overrightarrow{\mathbf{a}}_{2}=[3,6,3]$, and $\overrightarrow{\mathbf{b}}_{2}=[4,2,-3]$.

Answer

Two vectors lying in the plane are $\overrightarrow{\mathbf{b}}_{1}$ and $\overrightarrow{\mathbf{b}}_{2}$, thus the normal vector $\overrightarrow{\mathbf{b}}$ must be \perp to both $\overrightarrow{\mathbf{b}}_{1}=[1,4,5]$ and $\overrightarrow{\mathbf{b}}_{2}=[4,2,-3]$. So let $\overrightarrow{\mathbf{b}}$ be $\overrightarrow{\mathbf{b}}_{1} \times \overrightarrow{\mathbf{b}}_{2}=[-22,23,-14]$. We can take either $\overrightarrow{\mathbf{a}}_{1}=[2,2,-2]$ or $\overrightarrow{\mathbf{a}}_{2}=[3,6,3]$ to be a point on the plane, say $\overrightarrow{\mathbf{a}}_{1}=[2,2,-2]$. Therefore the plane is given by $-22(x-2)+23(y-2)-14(z+2)=0$.
9. One point $\overrightarrow{\mathbf{p}}$ on the line and \perp to each of two given lines: $\overrightarrow{\mathbf{a}}_{1}+t \overrightarrow{\mathbf{d}}_{1}$ and $\overrightarrow{\mathbf{a}}_{2}+t \overrightarrow{\mathbf{d}}_{2}$, where $\overrightarrow{\mathbf{p}}=[1,0,2], \overrightarrow{\mathbf{a}}_{1}=[2,2,-2], \overrightarrow{\mathbf{d}}_{1}=[1,4,5], \overrightarrow{\mathbf{a}}_{2}=[2,4,-2]$, and $\overrightarrow{\mathbf{d}}_{2}=[4,2,-3]$.

Answer

The normal vector $\overrightarrow{\mathbf{b}}$ must $\|$ to both direction vectors $\overrightarrow{\mathbf{d}}_{1}$ and $\overrightarrow{\mathbf{d}}_{2}$. Since the two direction vectors are not $\|$ themselves, we cannot find a normal vector. Therefore, there is no plane that can be \perp to both lines. If the lines were $\|$ then then it would be possible to find a plane \perp to both lines (just take $\overrightarrow{\mathbf{b}}$ to be the direction vector of one of the lines.)
10. Equidistant to two given planes (here we mean that each point on the plane is equidistant to the two given planes): $a_{1} x+b_{1} y+c_{1} z+d_{1}=0$ and $a_{2} x+b_{2} y+c_{2} z+d_{2}=0$, where
a) $a_{1}=2, b_{1}=-4, c_{1}=5, d_{1}=1, a_{2}=1, b_{2}=-7, c_{2}=1$, and $d_{2}=4$.

Answer

The point $\overrightarrow{\mathbf{p}}=[x, y, z]$ can be taken to be a point on both planes, as was shown in question $\# 7$ in the previous section (equations of lines), where it was found that $\overrightarrow{\mathbf{p}}=[4,1,-1]$. The normal vector $\overrightarrow{\mathbf{b}}$ can be taken to be the bisector of the 2 normal vectors:

$$
\overrightarrow{\mathbf{b}}=\frac{\overrightarrow{\mathbf{b}}_{1}}{\left\|\overrightarrow{\mathbf{b}}_{1}\right\|}+\frac{\overrightarrow{\mathbf{b}}_{2}}{\left\|\overrightarrow{\mathbf{b}}_{2}\right\|}=\frac{[2,-4,5]}{\sqrt{45}}+\frac{[1,-7,1]}{\sqrt{50}}
$$

Thus the equation of the plane is:

$$
\left(\frac{2}{\sqrt{45}}+\frac{1}{\sqrt{50}}\right)(x-4)-\left(\frac{4}{\sqrt{45}}+\frac{7}{\sqrt{50}}\right)(y-1)+\left(\frac{5}{\sqrt{45}}+\frac{1}{\sqrt{50}}\right)(z+1)=0
$$

b) $a_{1}=-2, b_{1}=14, c_{1}=-2, d_{1}=1, a_{2}=1, b_{2}=-7, c_{2}=1$, and $d_{2}=4$.

Answer

First note that the normal vector $\overrightarrow{\mathbf{b}}_{1}$ is a multiple of $\overrightarrow{\mathbf{b}}_{2}\left(\overrightarrow{\mathbf{b}}_{1}=-2 \overrightarrow{\mathbf{b}}_{2}\right)$, hence the planes are $\|$. The point $\overrightarrow{\mathbf{p}}$ must be equidistant to the 2 planes so can be found in exactly the same way as in question $\# 10 \mathrm{~b}$) of the previous section, where it was found that

$$
\overrightarrow{\mathbf{p}}=\left(\frac{7}{4}, 0,0\right)
$$

The normal vector can be taken to be either of the 2 given normal vectors, say $\overrightarrow{\mathbf{b}}_{2}=\left[a_{2}, b_{2}, c_{2}\right]=[1,-7,1]$, so the equation of the plane is:

$$
\left(x-\frac{7}{4}\right)-7(x-0)+(z-0)=0
$$

11. Equidistant to two given lines: $\overrightarrow{\mathbf{a}}_{1}+t \overrightarrow{\mathbf{d}}_{1}$ and $\overrightarrow{\mathbf{a}}_{2}+t \overrightarrow{\mathbf{d}}_{2}$ (here we mean that each point on the plane is equidistant to the two lines), where
a) $\overrightarrow{\mathbf{a}}_{1}=[2,2,-2], \overrightarrow{\mathbf{d}}_{1}=[1,4,5], \overrightarrow{\mathbf{a}}_{2}=[2,2,-2]$, and $\overrightarrow{\mathbf{d}}_{2}=[4,2,-3]$.
b) $\overrightarrow{\mathbf{a}}_{1}=[2,2,-2], \overrightarrow{\mathbf{d}}_{1}=[1,4,5], \overrightarrow{\mathbf{a}}_{2}=[2,4,-2]$, and $\overrightarrow{\mathbf{d}}_{2}=[3,12,15]$.
c) $\overrightarrow{\mathbf{a}}_{1}=[2,2,-2], \overrightarrow{\mathbf{d}}_{1}=[1,4,5], \overrightarrow{\mathbf{a}}_{2}=[2,4,-2]$, and $\overrightarrow{\mathbf{d}}_{2}=[4,2,-3]$.

Answer

We can give the equation of a plane (there could be more than one!) if we have a point $\overrightarrow{\mathbf{p}}$ on the plane and 2 vectors $\overrightarrow{\mathbf{c}}_{1}$ and $\overrightarrow{\mathbf{c}}_{2}$ parallel to the plane (because then the normal vector is $\overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{c}}_{1} \times \overrightarrow{\mathbf{c}}_{2}$.) The vector $\overrightarrow{\mathbf{c}}_{1}$ can be found in the same way in each part a), b), and c) as the bisector between $\overrightarrow{\mathbf{d}}_{1}$ and $\overrightarrow{\mathbf{d}}_{2}$, i.e. $\overrightarrow{\mathbf{c}}_{1}=\frac{\overrightarrow{\mathbf{d}}_{1}}{\left\|\overrightarrow{\mathbf{d}}_{1}\right\|}+\frac{\overrightarrow{\mathbf{d}}_{2}}{\left\|\overrightarrow{\mathbf{d}}_{2}\right\|}$. The vector $\overrightarrow{\mathbf{c}}_{2}$ can also be found in the same way in a), b), and c) since the cross product $\overrightarrow{\mathbf{c}}_{2}=\overrightarrow{\mathbf{d}}_{1} \times \overrightarrow{\mathbf{d}}_{2}$. It remains to find the point $\overrightarrow{\mathbf{p}}$ on the plane which can be taken to be the intersection point between the 2 given lines if they intersect (as in \#11 of the equation of lines exercises):
a) Since $\overrightarrow{\mathbf{a}}_{1}=\overrightarrow{\mathbf{a}}_{2}, \overrightarrow{\mathbf{p}}$ is clearly $[2,2,-2]$.
b) Since the 2 lines are parallel we can take $\overrightarrow{\mathbf{p}}$ to be the midpoint between $\overrightarrow{\mathbf{p}}_{1}=[2,2,-2]$ and $\overrightarrow{\mathbf{p}}_{2}=[2,4,-2]$, i.e. $\overrightarrow{\mathbf{p}}=\frac{1}{2}\left(\overrightarrow{\mathbf{a}}_{1}+\overrightarrow{\mathbf{a}}_{2}\right)=[2,3,-2]$.
c) We can take $\overrightarrow{\mathbf{p}}$ to be the intersection point of the 2 lines given by $\left[x_{1}, y_{1}, z_{1}\right]=$ $[2+t, 2+4 t,-2+5 t]$ and $\left[x_{2}, y_{2}, z_{2}\right]=[2+4 s, 4+2 s,-2-3 s]$. Setting

$$
x_{1}=x_{2} \Rightarrow 2+t=2+4 s \Rightarrow t=4 s
$$

Now, set $y_{1}=y_{2}$ and substitute $t=4 s$ to get

$$
2+16 s=4+2 s \Rightarrow s=\frac{1}{7}
$$

Substituting $s=\frac{1}{7}$ in $\left[x_{2}, y_{2}, z_{2}\right]$ gives:

$$
\overrightarrow{\mathbf{p}}=\left(\frac{18}{7}, \frac{30}{7},-\frac{17}{7}\right)
$$

