Equations of Lines and Planes Practice Problems

Find the parametric form $\vec{\mathbf{x}}(t) = \vec{\mathbf{p}} + t\vec{\mathbf{d}}$ of a line given the following information:

- 1. Two points $\vec{\mathbf{p}}_1$ and $\vec{\mathbf{p}}_2$ on the line, say $\vec{\mathbf{p}}_1 = [1, -1, 3]$ and $\vec{\mathbf{p}}_2 = [2, 3, -1]$:
- 2. One point $\vec{\mathbf{p}}$ on the line and a direction vector $\vec{\mathbf{d}}$, say $\vec{\mathbf{p}} = [1, 2, 3]$ and $\vec{\mathbf{d}} = [6, 5, 4]$.
- 3. One point $\vec{\mathbf{p}}$ on the line and parallel (||) to another line $\vec{\mathbf{a}} + t\vec{\mathbf{b}}$, say $\vec{\mathbf{p}} = [1, 0, 2]$, $\vec{\mathbf{a}} = [2, 2, -2]$, and $\vec{\mathbf{b}} = [1, 4, 5]$.
- 4. One point $\vec{\mathbf{p}}$ on the line and \perp to another line $\vec{\mathbf{a}} + t\vec{\mathbf{b}}$, say $\vec{\mathbf{p}} = [1, 0, 2]$, $\vec{\mathbf{a}} = [2, 2, -2]$, and $\vec{\mathbf{b}} = [1, 4, 5]$.
- 5. One point $\vec{\mathbf{p}}$ on the line and \perp to a plane ax + by + cz + d = 0, say $\vec{\mathbf{p}} = [1, 0, 2]$, a = 2, b = -4, c = 5, and d = 1.
- 6. One point $\vec{\mathbf{p}}$ on the line and \parallel to a plane ax + by + cz + d = 0, say $\vec{\mathbf{p}} = [1, 0, 2]$, a = 2, b = -4, c = 5, and d = 1.
- 7. The line is the intersection of the two planes: $a_1x+b_1y+c_1z+d_1=0$ and $a_2x+b_2y+c_2z+d_2=0$, where $a_1=2$, $b_1=-4$, $c_1=5$, $d_1=1$, $d_2=1$, $d_2=1$, $d_2=1$, and $d_2=4$.
- 8. One point $\vec{\mathbf{p}}$ on the line and \perp to each of two given lines: $\vec{\mathbf{a}}_1 + t\vec{\mathbf{b}}_1$ and $\vec{\mathbf{a}}_2 + t\vec{\mathbf{b}}_2$, where $\vec{\mathbf{p}} = [1, 0, 2]$, $\vec{\mathbf{a}}_1 = [2, 2, -2]$, $\vec{\mathbf{b}}_1 = [1, 4, 5]$, $\vec{\mathbf{a}}_2 = [2, 4, -2]$, and $\vec{\mathbf{b}}_2 = [4, 2, -3]$.
- 9. One point $\vec{\mathbf{p}}$ on the line and \parallel to each of two given planes: $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d_2 = 0$, where $\vec{\mathbf{p}} = [1, 0, 2]$, $a_1 = 2$, $b_1 = -4$, $c_1 = 5$, $d_1 = 1$, $a_2 = 1$, $b_2 = -7$, $c_2 = 1$, and $d_2 = 4$.
- 10. Equidistant to two given planes (here we mean that each point on the line is equidistant to the two planes): $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d_2 = 0$, where
 - a) $a_1 = 2$, $b_1 = -4$, $c_1 = 5$, $d_1 = 1$, $a_2 = 1$, $b_2 = -7$, $c_2 = 1$, and $d_2 = 4$.
 - b) $a_1 = -2$, $b_1 = 14$, $c_1 = -2$, $d_1 = 1$, $a_2 = 1$, $b_2 = -7$, $c_2 = 1$, and $d_2 = 4$.
- 11. Equidistant to two given lines (here we mean that each point on the line is equidistant to the two given lines): $\vec{\mathbf{a}}_1 + t\vec{\mathbf{b}}_1$ and $\vec{\mathbf{a}}_2 + s\vec{\mathbf{b}}_2$.
 - a) $\vec{\mathbf{a}}_1 = [2, 2, -2], \ \vec{\mathbf{b}}_1 = [1, 4, 5], \ \vec{\mathbf{a}}_2 = [2, 2, -2], \ \text{and} \ \vec{\mathbf{b}}_2 = [4, 2, -3].$
 - b) $\vec{\mathbf{a}}_1 = [2, 2, -2], \ \vec{\mathbf{b}}_1 = [1, 4, 5], \ \vec{\mathbf{a}}_2 = [2, 4, -2], \ \text{and} \ \vec{\mathbf{b}}_2 = [3, 12, 15].$
 - c) $\vec{\mathbf{a}}_1 = [2, 2, -2], \ \vec{\mathbf{b}}_1 = [1, 4, 5], \ \vec{\mathbf{a}}_2 = [2, 4, -2], \ \text{and} \ \vec{\mathbf{b}}_2 = [4, 2, -3].$

Find an equation of a plane (if possible) given the following information:

- 1. One point $\vec{\mathbf{p}}$ on the plane and a normal vector $\vec{\mathbf{b}}$ to the plane, say $\vec{\mathbf{p}} = [1, 2, 3]$ and $\vec{\mathbf{b}} = [6, 5, 4]$.
- 2. One point $\vec{\mathbf{p}}$ on the plane and \perp to a line $\vec{\mathbf{a}} + t\vec{\mathbf{d}}$, say $\vec{\mathbf{p}} = [1,0,2]$, $\vec{\mathbf{a}} = [2,4,-2]$, and $\vec{\mathbf{d}} = [4,2,-3]$.
- 3. One point $\vec{\mathbf{p}}$ on the plane and \parallel to another plane ax + by + cz + d = 0, say $\vec{\mathbf{p}} = [1, 0, 2]$, a = 2, b = -4, c = 5, and d = 1.
- 4. One point $\vec{\mathbf{p}}$ on the plane and \perp to another plane ax + by + cz + d = 0, say $\vec{\mathbf{p}} = [1, 0, 2]$, a = 2, b = -4, c = 5, and d = 1.
- 5. One point $\vec{\mathbf{p}}$ on the plane and \perp to two given planes: $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d_2 = 0$, where
 - a) $\vec{\mathbf{p}} = [1, 0, 2], a_1 = 2, b_1 = -4, c_1 = 5, d_1 = 1, a_2 = 1, b_2 = -7, c_2 = 1, and d_2 = 4.$
 - b) $\vec{\mathbf{p}} = [1, 0, 2], a_1 = -2, b_1 = 14, c_1 = -2, d_1 = 1, a_2 = 1, b_2 = -7, c_2 = 1, \text{ and } d_2 = 4.$
- 6. Three points $\vec{\mathbf{p}}_1$, $\vec{\mathbf{p}}_2$ and $\vec{\mathbf{p}}_3$ on the plane, say $\vec{\mathbf{p}}_1 = [2, -1, 3]$, $\vec{\mathbf{p}}_2 = [3, -1, 3]$ and $\vec{\mathbf{p}}_3 = [2, -1, 0]$.
- 7. One point $\vec{\mathbf{p}}$ on the plane and a line $\vec{\mathbf{a}} + t\vec{\mathbf{d}}$ on the plane, say $\vec{\mathbf{p}} = [1, 0, 2]$, $\vec{\mathbf{a}} = [2, 4, -2]$, and $\vec{\mathbf{d}} = [4, 2, -3]$.
- 8. Both of the lines: $\vec{\mathbf{a}}_1 + t\vec{\mathbf{b}}_1$ and $\vec{\mathbf{a}}_2 + t\vec{\mathbf{b}}_2$, are on the plane, where $\vec{\mathbf{a}}_1 = [2, 2, -2]$, $\vec{\mathbf{b}}_1 = [1, 4, 5]$, $\vec{\mathbf{a}}_2 = [3, 6, 3]$, and $\vec{\mathbf{b}}_2 = [4, 2, -3]$.
- 9. One point $\vec{\mathbf{p}}$ on the line and \perp to each of two given lines: $\vec{\mathbf{a}}_1 + t\vec{\mathbf{d}}_1$ and $\vec{\mathbf{a}}_2 + t\vec{\mathbf{d}}_2$, where $\vec{\mathbf{p}} = [1, 0, 2]$, $\vec{\mathbf{a}}_1 = [2, 2, -2]$, $\vec{\mathbf{d}}_1 = [1, 4, 5]$, $\vec{\mathbf{a}}_2 = [2, 4, -2]$, and $\vec{\mathbf{d}}_2 = [4, 2, -3]$.
- 10. Equidistant to two given planes (here we mean that each point on the plane is equidistant to the two given planes): $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d_2 = 0$, where
 - a) $a_1 = 2$, $b_1 = -4$, $c_1 = 5$, $d_1 = 1$, $a_2 = 1$, $b_2 = -7$, $c_2 = 1$, and $d_2 = 4$.
 - b) $a_1 = -2$, $b_1 = 14$, $c_1 = -2$, $d_1 = 1$, $a_2 = 1$, $b_2 = -7$, $c_2 = 1$, and $d_2 = 4$.
- 11. Equidistant to two given lines: $\vec{\mathbf{a}}_1 + t\vec{\mathbf{d}}_1$ and $\vec{\mathbf{a}}_2 + t\vec{\mathbf{d}}_2$ (here we mean that each point on the plane is equidistant to the two lines), where
 - a) $\vec{\mathbf{a}}_1 = [2, 2, -2], \vec{\mathbf{d}}_1 = [1, 4, 5], \vec{\mathbf{a}}_2 = [2, 2, -2], \text{ and } \vec{\mathbf{d}}_2 = [4, 2, -3].$
 - b) $\vec{\mathbf{a}}_1 = [2, 2, -2], \vec{\mathbf{d}}_1 = [1, 4, 5], \vec{\mathbf{a}}_2 = [2, 4, -2], \text{ and } \vec{\mathbf{d}}_2 = [3, 12, 15].$
 - c) $\vec{\mathbf{a}}_1 = [2, 2, -2], \vec{\mathbf{d}}_1 = [1, 4, 5], \vec{\mathbf{a}}_2 = [2, 4, -2], \text{ and } \vec{\mathbf{d}}_2 = [4, 2, -3].$