Critical exponents for the homotopy of Fortuin-Kasteleyn clusters on a torus

Yvan Saint-Aubin, Université de Montréal

We study the critical behavior of statistical lattice models in 2d using the homotopy of their Fortuin-Kasteleyn (FK) cluster. A FK cluster on a torus is said to be of type $\{a,b\}$, $a,b\in\mathbb{Z}$, if it possible to draw a curve belonging to the cluster that winds a times around the first cycle of the torus as it winds -b times around the second. Even though the Q-Potts models make sense only for Q integers, they can be included into a family of models parametrized by $\beta=\sqrt{Q}$ for which the FK clusters can be defined for any real $\beta\in(0,2]$. For this family, we study the probability $\pi(\{a,b\})$ of a given type of clusters as a function of the torus modular parameter $\tau=\tau_r+i\tau_i$. We compute the asymptotic behavior of some of these probabilities as the torus becomes infinitely thin. Exponents describing these behaviors are defined and related to weights $h_{\tau,s}$ of the extended Kac table for r,s integers, but also half-integers. Numerical simulations are also presented. Joint work with Alexi Morin-Duchesne.