
CRAMER’S RULE AND LOOP ENSEMBLES

A. ABDESSELAM AND D. C. BRYDGES

Abstract. We review a 1986 result of G.X Viennot that expresses
a ratio of generating functions for disjoint oriented loops in a finite
graph in terms of the generating function of a single path in the
graph weighted according to loops in the path, defined by loop
erasure. The result is a generalisation of Cramer’s formula for
the inverse of a matrix. We show that it arises from the Mayer
expansion.

1. Introduction

The result reviewed here was noted by G.X. Viennot as an immediate
corollary of his theory of heaps and pieces in [Vie86, Proposition 6.3],
but perhaps not many people in statistical mechanics have realised
that his result is an interesting statement about correlations for loop
ensembles such as one encounters in the contour expansion of the Ising
model.

It is also a generalisation of Cramer’s formula for the inverse of a
matrix; indeed we rediscovered it in this context by the methods of
statistical mechanics, notably the Mayer expansion. In conversations
with combinatorialists we have since learned of another proof based on
the involution used in [Str83], which is also nicely explained in [Zei85].
The original proof and the one based on [Str83] are much neater than
the one we present here, so readers who are not interested in the Mayer
expansion will not find anything of interest after this section. In a
later draft we hope to add more about the combinatorial proofs and to
improve the sometimes sketchy parts of the proof we give here.

For motivation we begin with a combinatorial interpretation of Cramer’s
formula. Let A = (Axy, x, y ∈ S) be a matrix. A path ω from a to b is
any finite sequence

(

ω1, ω2, · · · , ωn

)

∈
⋃

n∈N∗

Sn
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with ω1 = a and ωn = b. The sites ω1, ω2, · · · , ωn need not be distinct;
if they are we say that the path is self-avoiding. The set of distinct
sites in the sequence ω is called the support of ω. If a = b then the
only self-avoiding path is (a).

The resolvent expansion in powers of A represents (I −A)−1 by the
formal power series

(I − A)−1
ab =

∑

ω:a→b

Aω

where

Aω =

{

∏n−1
i=1 Aωiωi+1

if n ≥ 2

1 if n = 1.

We call c ⊂ S × S a self-avoiding loop if for some n ∈ N
∗,

c =

{

{(x1, x2), (x2, x3), . . . , (xn, x1)} if n ≥ 2

{(x1, x1)} if n = 1,

where x1, . . . , xn are distinct. The support of a loop is the set {x1, . . . , xn} ⊂
S.

By writing det(I − A) in terms of permutations and decomposing
the permutations into cycles, one has

det(I − A) =

∞
∑

r=0

∑

{c1,...,cr}

(−Ac1) · · · (−Acr) (1)

where the r = 0 term equals 1 by definition and c1, . . . , cr are self-
avoiding loops with disjoint supports and

Ac =
∏

(x,y)∈c

Axy.

There is a similar expansion for the ab cofactor,

det(I − A)(b,a) =

∞
∑

r=0

∑

ω̄,{c1,...,cr}

Aω̄(−Ac1) · · · (−Acr), (2)

where ω̄, c1, .., cr have disjoint supports, c1, .., cr are cycles and ω̄ is a
self avoiding path from a to b. If a = b then ω̄ = (a) and Aω̄ = 1.

By Cramer’s formula

det(I −A)(b,a)

det(I −A)
= (I −A)−1

ab , (3)

so, as elements in the ring of power series in A with rational coefficients,
∑∞

r=0

∑

ω̄,{c1,...,cr}
Aω̄(−Ac1) · · · (−Acr)

∑∞
r=0

∑

{c1,...,cr}
(−Ac1) · · · (−Acr)

=
∑

ω:a→b

Aω. (4)
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Our route towards the result of Viennot began when we asked ourselves
how the standard theory of the Mayer expansion [Sei82, Bry86], which
can be applied to the left hand side, could yield so simple a right hand
side.

The result of Viennot generalises this formula to the case where the
weights on the self-avoiding loops and the weight on the self-avoiding
path are arbitrary. Let C be the finite set of all self-avoiding loops in S.
For each c ∈ C we require a formal variable λc and let λ = {λc : c ∈ C}.
Likewise let C(a, b) be the set of all self-avoiding paths from a to b. For
each ω̄ ∈ C(a, b) there is a formal variable αω̄ and α = {αω̄ : ω̄ ∈
C(a, b)}. Let R be the ring of power series with rational coefficients in
λ, α. Define an element of this ring by

〈a, b〉 =

∑∞
r=0

∑

ω̄,{c1,...,cr}
αω̄λc1 · · ·λcr

∑∞
r=0

∑

{c1,...,cr}
λc1 · · ·λcr

. (5)

By traveling along the path ω starting at a and ending at b, recur-
sively erasing self-avoiding loops in the order in which they appear, one
obtains a possibly empty list E(ω) of erased self-avoiding loops and a
self-avoiding path ω̄(ω) from a to b.

E(ω) =

{

(c1, c2, . . . , cr) if r ≥ 1

() if r = 0

where c1, c2, . . . , cr are self-avoiding loops. In the case where a = b,
ω̄(ω) = (a).

Theorem 1.1. [Vie86]. For a, b ∈ S, as an identity in the ring of
power series R,

〈a, b〉 =
∑

ω:a→b

(−λ)E(ω)αω̄(ω)

where

(−λ)E(ω) =

r
∏

i=1

(−λci
).

Cramer’s formula is the particular case where the formal variables
are specialised according to

λc = −Ac, αω̄ = Aω̄.

The rest of the paper is a proof of a generalisation of this theorem.
We use the Mayer expansion, especially the versions [Sei82, Bry86]
based on trees, to perform the division in (5). Readers familiar with
this approach will know that the Mayer expansion expresses 〈a, b〉 as
a sum over a loop ensemble and one self-avoiding path connected by
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edges of a tree graph. Our proof is an elaboration of the remark that
the edges of the tree graph taken in the right order describe how to
insert all the loops into the self-avoiding path to obtain a single path.
Loop erasure is the inverse operation, which, when applied to a path,
recreates the ensemble of loops and the self-avoiding path and the tree.

It is hard to convert these words into a careful argument with-
out combinatoric ambiguities, which is why the proof that follows
is lengthy. We have found that the theory of combinatorial species
[Joy81, BLL98, Abd04] is helpful to this end and use it throughout our
proof.

2. Preliminaries

We will need some standard facts and notations from elementary set
theory and graph theory. Let E be a finite set. We denote by P(E)
the power set of E, or the set of subsets of E. The cardinality of a
finite set A is denoted by #(A). For any k ∈ N, we let

Pk(E)
def
= {A ∈ P(E)|#(A) = k} (6)

An unoriented graph on E is any subset of P2(E). An element of
this graph is called an edge. An oriented graph is any subset G of the
Cartesian product E×E. An element (a, b) ∈ G, also called an edge, is
said to go from a to b. Given an oriented graph G on E one associates
to it an unoriented graph Gu by

Gu def
= {A ∈ P2(E)|∃(a, b) ∈ G, A = {a, b}} (7)

Note that such a and b are then necessarily distinct. To an unoriented
graph G corresponds a set theoretic partition Π(G) of E, the set of
connected components, i.e., maximal subsets A of E such that for any
a, b ∈ A there exists a sequence e0 = a, e1, . . . , ek = b in E with k ≥ 0
and {ei, ei+1} ∈ G for any i, 0 ≤ i < k. Given two elements a, b of E
one can define their distance d(a, b) by letting it equal ∞ if there is no
such sequence (e0, . . . , ek), and letting d(a, b) = k if such a sequence
exists and k is minimal for this property.

An unoriented graph T is called a spanning tree on E iff Π(T ) = {E}
and there is no sequence (e1, . . . , ek) of distinct elements in E, with
k ≥ 3, and all of {e1, e2}, {e2, e3},. . . , {ek−1, ek}, {ek, e1} in T . If
e∗ is a privileged element in E, called the root, one can canonically
associate to T an oriented graph T o by letting (a, b) ∈ T o iff {a, b} ∈ T
and d(e∗, a) < d(e∗, b), i.e., the chosen orientation is away from the
root.
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An order relation on E is viewed as a subset of E×E. Given another
finite set F , the set of maps from E to F is denoted by Maps(E,F).

We now proceed with the definitions that are specific to our subject
matter; these are the notions of canvas and precanvas on a finite set E,
and are examples of combinatorial species in the sense of Joyal [Joy81,
BLL98, Abd04]. Throughout we let S, called the state space be a
fixed finite set one can think of as a subset of a lattice Z

d. Given a
finite set E, a precanvas on E is any element P = (ein, eout,G, φ) of
E ×E ×P(E ×E) × Maps(E,S), satisfying the following axiom.
(PC) :

• ∀e ∈ E, (e, ein) /∈ G and (eout, e) /∈ G.
• ∀e ∈ E\{ein}, ∃!e′ ∈ E, (e′, e) ∈ G.
• ∀e ∈ E\{eout}, ∃!e′ ∈ E, (e, e′) ∈ G.

The set of precanvases on E is denoted by Precanvas(E). The
correspondence E → Precanvas(E) is a covariant endofunctor of the
groupoid category of finite sets with morphisms given by bijections.
Indeed if σ : E → F is a bijection and P = (ein, eout,G, φ) is a precanvas
on E, one can transport the latter via σ in order to obtain a precanvas
on F denoted by Precanvas(σ)(P ) and equal to (σ(ein), σ(eout),G

σ, φ◦
σ−1) where

Gσ def
=

{

(σ(a), σ(b)) ∈ F 2|(a, b) ∈ G
}

(8)

One has the following trivial lemma.

Lemma 2.1. There is a unique component Ech ∈ Π(Gu) containing
both ein and eout.

The component Ech is called the chain of P and the other components
are called the loops of P .

We can move on to the notion of canvas on E. This is any element
C = (P,M,O) of

Precanvas(E) × P (P2(E)) ×P (P2(E) × P2(E))

satisfying axioms C1-C4 to be stated below. The Mayer tree M is
required to satisfy
(C1) :

• ∀A ∈ Π(Gu), ∀a, b ∈ A, {a, b} /∈ M.
• ∀A1, A2 ∈ Π(Gu), with A1 6= A2, there is at most one l ∈ M

with l ∩A1 6= ∅ and l ∩ A2 6= ∅.

Define the graph M̄ induced by M on Π(Gu) by letting {A1, A2} ∈
M̄ iff A1, A2 are distinct elements of Π(Gu) for which there exists a1 ∈
A1 and a2 ∈ A2 such that {a1, a2} ∈ M.

We also require the axiom
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(C2) :

• M̄ is a spanning tree on Π(Gu).

We let the chain Ech be the root of the tree M̄; and once again orient
the edges away from it. This allows to also orient the underlying graph
M, i.e., one defines Mo to be the set of pairs (a, b) ∈ E ×E such that
{a, b} ∈ M and (A,B) ∈ (M̄)o where A is the connected component
of a and B is that of b with respect to the graph Gu. We now require
the next axiom.
(C3) :

• One cannot have two edges l1 = {a, b} and l2 = {b, c} in M
with l1 oriented from a to b and l2 oriented from b to c.

Now one defines a binary relation denoted by ∼ on the Mayer tree
M. Two edges l1, l2 in M are said to be adjacent, i.e., satisfy l1 ∼ l2,
iff l1 ∩ l2 6= ∅. It is easy to deduce from (C2) and (C3) the following.

Lemma 2.2. The adjacency relation ∼ is an equivalence relation on
M.

Denote the set of equivalence classes for ∼ by Ad(M). The remain-
ing item O is a partial order on M denoted by �O. The last axiom
needed in the definition of a canvas is the following.
(C4) :

• If two edges l1, l2 ∈ M belong to different equivalence classes
in Ad(M), l1 and l2 are not comparable with respect to the
partial order O.

• Within each class in Ad(M), O is a total order.

Given a finite set E, the set of canvases on E which by definition
satisfy C1–C4, is denoted by Canvas(E). Again this produces an
endofunctor E → Canvas(E) for the category of finite sets with bijec-
tions. The definition of the canvas Canvas(σ)(C) on F obtained from
a canvas C on E via the bijection σ : E → F is straightforward and
left to the reader. As customary in the theory of combinatorial species,
given two pairs (E, P ) and (E ′, P ′) made of a finite set and a precanvas
on the latter, one says that such pairs are equivalent iff there exists a
bijection σ : E → E ′ for which P ′ = Precanvas(σ)(P ). Besides, one
has the notion of automorphism group of a pair (E, P ). It is the group
Aut(E, P ) of bijections σ : E → E such that Precanvas(σ)(P ) = P .
One also has the analogous definitions for canvases.

At this point it is appropriate to use a planar representation for
canvases. An edge (a, b) ∈ G is represented by a solid straight arrow
joining the nodes corresponding to the elements a and b of E. An edge
{a, b} ∈ M is represented by a squiggly line
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a b

Figure 1

a b

Figure 2

on which one can put a directional arrow

a b

Figure 3

pointing away from the root Ech in Π(Gu). Now axiom C3 means that
a situation such as

Figure 4

is forbidden. The only way some squiggly lines can share a common
node is if they are all oriented away from it. The collection of such lines
pointing away from some node corresponds to an equivalence class in
Ad(M). The total ordering within this class, due to O, is indicated by
a clockwise rotating arrow

An example of canvas on the finite set

E = {a, b, c, d, e, f, g, h, 1, 2, 3, 4, 5, 6, 7, 8, 9,♠,♥,♣,∆,∇}

with #(E) = 22, is (apart from the map φ which needs to be specified
separately) faithfully described by the next picture.

The conventions of planar representation we use are such that the
chain Ech is drawn at the bottom going from left to right; the loops
are drawn above it and oriented clockwise; and the squiggly lines are
oriented upwards away from the root Ech. In this example, ein = c,
eout = ♠, the oriented graph is given by

G = {(c, b), (b, 5), (5, a), (a, 3), (3,♠), (♥,♥),

(d, 1), (1, d), (2, e), (e, 4), (4,♣), (♣, 2), (9, 9),

(∇,∇), (6, g), (g,∆), (∆, 7), (7, 6), (f, 8), (8, h), (h, f)}

The Mayer tree is

M = {{5,♥}, {d, 3}, {6,♠}, {♠, f}, {1, 2}, {9, 4}, {∇, 4}}
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ab
c

d

e

f

g

h

♥

♣

∇

∆

♠

Figure 6

which has three trivial adjacency classes in Ad(M) and two nontrivial
ones:

A1 = {{6,♠}, {♠, f}} and A2 = {{9, 4}, {∇, 4}}

The ordering O corresponds to the total ordering of A1 by {6,♠} ≺O

{♠, f}, and of A2 by {9, 4} ≺O {∇, 4}.
We can now define a canonical total order on E which is associated

to a canvas C ∈ Canvas(E). One starts with ein, as a smallest element,
and turns around the tree and counts vertices x ∈ E as encountered
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in this order provided one reaches them by following a straight arrow
of G rather than a squiggly line of M. On the previous example the
canonical total order corresponds to the succession:

c, b, 5,♥, a, 3, 1, e, 4, 9,∇,♣, 2, d,♠, g,∆, 7, 6, 8, h, f

Remark 2.3. One always starts with ein; but does not necessarily finish
with eout. This depends on wherther or not squiggly lines are attached
to eout.

3. Loop-erasure Combinatorial Coefficients

The previous considerations did not involve the map φ from the
finite set E, also called the label set, to the state space S. This map
will now play an important role in the definition of some combinatorial
coefficients associated to canvases and precanvases. Let E be a finite
set of cardinality N and C be a canvas on E. We will use the notations

of the previous section. We will firstly classify the N(N−1)
2

unordered
pairs l ∈ P2(E) into four disjoint categories.

(1) Intralinks : These are the pairs l ∈ P2(E) for which there
exists A ∈ Π(Gu) such that l ⊂ A.

(2) Mayer interlinks : These are the elements of M.
(3) Hard interlinks : These are the pairs l ∈ P2(E)\M, which

can be written l = {a, b}, with a preceding b in the canonical
total order of E given by the canvas C and satisfying the fol-
lowing property. Let A,B ∈ Π(Gu) be the components of a and
b respectively. We impose that A 6= B (so as to rule out in-
tralinks) and that B be a descendant of A in the tree M̄ rooted
at Ech.

(4) Void interlinks : These are the pairs l ∈ P2(E) which do not
fall in any of the three previous categories.

As an illustration of these definitions, let us consider the example of
Figure 6, for which the following hold.

• The pairs {c, a}, {e,♣}, {6, g} are examples of intralinks.
• The pairs {9, 4}, {∇, 4} are examples of Mayer interlinks (the

squiggly lines).
• The pairs {e, 9}, {c,∇}, {5, g}, {1,∇} are examples of hard

interlinks.
• The pairs {9,♣}, {♥, a}, {1, g}, {∇, f} are examples of void

interlinks.
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Now let δ : S × S → N be the delta function on the state space
defined by

δ(s, s′)
def
=

{

1 if s = s′

0 otherwise

For any l ∈ P2(E) we define the quantity ω(C, l) by the following rule.
Let l = {a, b} for some distinct elements a, b of E. We impose

ω(C, l)
def
=















1 − δ(φ(a), φ(b)) if l is an intralink
−δ(φ(a), φ(b)) if l is a Mayer interlink
1 − δ(φ(a), φ(b)) if l is a hard interlink
1 if l is a void interlink

(9)

Now we definte the loop-erasure coefficient of a canvas C on a finite set
E by

ψ̃LE(E,C)
def
=

∏

l∈P2(E)

ω(C, l) (10)

This trivially only depends on the equivalence class of the pair (E,C).
Now given a precanvas P on E we also define its loop-erasure coefficient
by

ψLE(E, P )
def
=

∑

C over P

ψ̃LE(E,C) (11)

where the sum is over canvases C = (P,M,O) where the precanvas P
is the given one. Therefore the summation is only on the Mayer tree
M and the ordering O. Once again ψLE(E, P ) only depends on the
equivalence class of the pair with respect to transport of structure.

4. Mayer combinatorial coefficients

Let P be a precanvas on a finite set E; this defines a partition
Π(Gu) = {Ech, L1, . . . , Lr} of E. We now define the Mayer coefficient
ψM(E, P ) of the precanvas P as follows.

If there is two elements a 6= b in the same component of Π(Gu) with

φ(a) = φ(b), we let ψM(E, P )
def
= 0.

Otherwise, the map φ restricts to an injection into S, within each
component of Π(Gu). In this case consider the images by φ of these
components Y0 = φ(Ech), Y1 = φ(L1),. . .Yr = φ(Lr), which we call
polymers in the state space S. We then let

ψM(E, P )
def
= ψ(Y0, Y1, . . . , Yr) (12)
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the standard Mayer expansion coefficient of the collection of polymers
(Y0, Y1, . . . , Yr) (see e.g. [Bry86, Riv91, Abd97]). One has the well-
known expression

ψ(Y0, Y1, . . . , Yr) =
∑

G

∏

{i,j}∈G

(

−1l{Yi∩Yj 6=∅}

)

(13)

Here the sum is over all unoriented graphs G on the finite set of polymer
indices {0, 1, . . . , r} which entirely connect the latter, i.e., such that
Π(G) = {{0, 1, . . . , r}}. The product is over all unordered pairs {i, j}
in G, and 1l{··· } denotes the characteristic function of the condition
between braces. One can readily rewrite the Mayer coefficient as a
sum of unoriented graphs on the underlying set E. Indeed, if one
writes A0 = Ech, A1 = L1,. . . , Ar = Lr, so that Yi = φ(Ai) for all i,
1 ≤ i ≤ r; one has

1l{Yi∩Yj 6=∅} = 1 − 1l{Yi∩Yj=∅} (14)

= 1 −
∏

a∈Yi

∏

b∈Yj

(1 − δ(φ(a), φ(b))) (15)

By replacing the characteristic functions in (13) by the last expression
and expanding all the products one easily obtains

ψM(E, P ) =
∑

H

∏

{a,b}∈H

(−δ(φ(a), φ(b))) (16)

where the sum is over all unoriented graphs H on E, only made of
interlinks (i.e., no edge of H is contained in a block of Π(Gu)), and
such that H and Gu together connect E, i.e., Π(H ∪ Gu) = {E}.

In order to have a formula which is valid in all cases, including the
previously considered one when there are elements a 6= b in the same
component of Π(Gu) with φ(a) = φ(b), we rewrite (16) as

ψM(E, P ) =
∏

{a,b}
intralink

(1 − δ(φ(a), φ(b))) ×
∑

H

∏

{a,b}∈H

(−δ(φ(a), φ(b)))

(17)
where the nomenclature of intralink is the same as in Section 3.

5. The key theorem and the loop-insertion recursion

We can now state the key theorem of this article

Theorem 5.1. For any precanvas P on a finite set E

ψLE(E, P ) = ψM(E, P ) (18)
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The proof is by induction on the number of loops and proceeds by
showing that both coefficients satisfy the same loop-insertion recursion.
The start of the induction, or the equality when no loops are present
is trivial. Indeed, in this case E = Ech and the only possible canvas is
such that M = ∅ and O = ∅. All l ∈ P2(E) are the intralinks and

ψLE(E, P ) =
∏

{a,b}∈P2(E)

(1 − δ(φ(a), φ(b)))

Likewise,

ψM(E, P ) =
∏

{a,b}∈P2(E)

(1 − δ(φ(a), φ(b)))

since the graph H has to be empty. As a result one has the following.

Lemma 5.2. If there are no loops in the precanvas P on E

ψLE(E, P ) = ψM(E, P ) (19)

Now let us return to the general case and let us consider a precanvas
P on a finite set E. Given a subset A of E we let

ρ(A)
def
=

∏

{a,a′}∈P2(A)

(1 − δ(φ(a), φ(a′)))

Given another subset B such that A ∩ B = ∅ we denote

ρ(A,B)
def
=

∏

a∈A

∏

b∈B

(1 − δ(φ(a), φ(b)))

Now let e1, e2, . . . , ep, with p ≥ 1, be a numbering of the chain Ech in
the precanvas P in such a way that e1 = ein, ep = eout and (ei, ei+1) ∈ G
for any i, 1 ≤ i < p.

If x is an element of Ech; then x = ei for a unique i, 1 ≤ i ≤ p, and
we can therefore define the subsets

E≤x
ch

def
= {e1, e2, . . . , ei}

and

E>x
ch

def
= {ei+1, ei+2, . . . , ep}

If y is an element of E\Ech; then there is a unique loop L ∈ Π(Gu)
containing y. The elements of this loop can be numbered as f1, f2, . . . , fq,
with q ≥ 1, in such a way that f1 = y, and (f1, f2), (f2, f3),. . . ,(fq−1, fq),
(fq, f1) belong to the graph G (the list reduces to (f1, f1) if q = 1).

The points x and y allow one to canonically define a new finite set
Ẽx,y and a new precanvas P̃x,y on it by a loop-insertion procedure. We
let

Ẽx,y
def
= E\ ({y} ∪E>x

ch ) (20)
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and P̃x,y
def
= (ẽin, ẽout, G̃, φ̃) where ẽin

def
= ein,

ẽout
def
=

{

x if q = 1
fq if q > 1

(21)

and

G̃
def
=

{

G ∩ (Ẽx,y × Ẽx,y) if q = 1

{(x, f2)} ∪
(

G ∩ (Ẽx,y × Ẽx,y)
)

if q > 1
(22)

and φ̃
def
= φ|Ẽx,y

. It is visually obvious, although a bit tedious to formally

check in both cases q = 1 and q > 1, that PC holds for P̃x,y; so it is

indeed a precanvas on Ẽx,y.
Suppose ψ(E, P ) is a quantity associated to finite sets equiped with

a precanvas. The focus of the next sections is the following identity.
Loop-insertion recursion :

ψ(E, P ) =
∑

x∈Ech

∑

y∈E\Ech

[−δ(φ(x), φ(y))] ρ(E>x
ch )ρ(E≤x

ch , E
>x
ch )ψ(Ẽx,y, P̃x,y)

(23)
We will show in Section 6 that the loop-erasure coefficients ψLE sat-

isfy this recursion; and we will do the same for the Mayer coefficient
ψM in Section 7. Since the precanvas P̃x,y clearly has one loop less than
P ; an easy induction on the number of loops, together with Lemma 5.2
will finally establish Theorem 5.1.

6. The loop-insertion recursion for the loop-erasure

coefficients

Let C be a canvas with a nonzero number of loops then one can
uniquely define an element x(C) of Ech and an element y(C) of E\Ech

in the following manner. Let again e1, e2, . . . , ep, with p ≥ 1, be a
numbering of the chain Ech in the precanvas P in such a way that
e1 = ein, ep = eout and (ei, ei+1) ∈ G for any i, 1 ≤ i < p. By axiom
C2, there must exist an i, 1 ≤ i ≤ p, such that ei belongs to some
edge l ∈ M. If imax is the largest index with this property we let

x(C)
def
= eimax. Now let Amax ∈ Ad(M) be the adjacency class of edges

in M emanating from x(C); and let lmax be the greatest element in
this class for the ordering O. By definition, y(C) is the element of lmax

other than x(C).
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We will organize the sum in (11) according to the values of x(C) and
y(C) :

ψLE(E, P ) =
∑

x∈Ech

∑

y∈E\Ech

∑

C∈Cx,y

ψ̃LE(E,C) (24)

where Cx,y is the set of canvases C on E, built on the fixed precanvas
P , and such that x(C) = x and y(C) = y. We need to carefully analyse

the product ψ̃LE(E,C) in order to factor it into different pieces, one of
which should be an analogous product for a canvas C̃x,y on Ẽx,y built

on P̃x,y. By definition, C̃x,y = (P̃x,y,M̃, Õ) where

M̃
def
= M\{{x, y}} (25)

and Õ is the partial order

Õ
def
= O ∩ (M×M) (26)

Although a bit tedious, checking the axioms C1-C4 for C̃x,y offers
no difficulty. It might be worth mentioning that the requirement
M ∈ P(P2(Ẽx,y)) rests on the definition of x = x(C) which implies
that no edge of M touches E>x

ch , and on the axiom C3 for the canvas

C. Likewise, the connectedness requirement in C2 for C̃x,y needs the
statement C3 for C. The latter ensures that if L(y) is the loop of C
containing y; no other loop is attached to L(y) by a Mayer link hooked

precisely at y. In the end, one gets C̃x,y ∈ Canvas(Ẽx,y). We now have
the following.

Lemma 6.1. For every C ∈ Cx,y one has the identity

ψ̃LE(E,C) = [−δ(φ(x), φ(y))]ρ(E>x
ch )ρ(E≤x

ch , E
>x
ch )ψ̃LE(Ẽx,y, P̃x,y) (27)

Proof. We need to consider many cases for the pairs l ∈ P2(E). In
order to adequately transform some of the factors involved we will also
need the trivial identities

δ(φ(a), φ(b)) (1 − δ(φ(a), φ(c))) = δ(φ(a), φ(b)) (1 − δ(φ(b), φ(c)))
(28)

and
(1 − δ(φ(a), φ(b)))2 = (1 − δ(φ(a), φ(b))) (29)

We need some more notation. Recall that the loop of C (or rather P )

containing y is denoted by L(y). We let U
def
= L(y)\{y}. We let V be

the union of loops, in C, which branch off L(y). Note that by axiom
C3, V = ∅ if q = 1, i.e. if U = ∅. Finally we let W be the union of
loops, in C, which branch off E≤x

ch . Note that E is the disjoint union
of E<x

ch , {x}, E>x
ch , {y}, U , V , W . The cases to be considered are as

follows.
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(1) l = {x, y} : By construction l is a Mayer interlink of C; therefore

ω(C, l) = −δ(φ(x), φ(y))

which is the first factor in the right hand side of (27). Note that
this factor play an important role, somewhat as a catalyst, in
order to transform other factors ω(C, l) via (28).

(2) l ⊂ E>x
ch : Then l is an intralink of C. If l = {a, b} then

ω(C, l) = 1 − δ(φ(a), φ(b))

The collection of such factors make up ρ(E>x
ch ) in the right hand

side of (27).
(3) l between E≤x

ch and E>x
ch : Then l is an intralink of C, and if

l = {a, b},

ω(C, l) = 1 − δ(φ(a), φ(b))

The collection of such factors make up ρ(E≤x
ch , E

>x
ch ) in the right

hand side of (27).

(4) l between Ẽx,y\E
≤x
ch and E>x

ch : It is easy to see that such l’s are

void interlinks of C; because the elements of E>x
ch come after

those of Ẽx,y in the canonical total order of E associated to

C. Besides, any element of Ẽx,y\E
≤x
ch belongs to a loop which

automatically is a descendent of the root Ech which contains
E>x

ch . The ω(C, l)’s in this case are all equal to 1.
(5) l between y and E>x

ch : These are all void interlinks of C, for the

same reasons as for the previous case. They contribute a factor
of 1.

(6) l is between y and V ∪W : Let l = {y, a}, with a ∈ V ∪ W .
If a ∈ W then neither of the components of a and y descends
from the other, and therefore l cannot be a hard intralink of C.
It cannot be an intralink because L(y) ∩W = ∅ and neither a
Mayer link because of the absence of descendence relation be-
tween the relevant components. As a result l is a void interlink
of C. Now if a ∈ V then the component of a descends from
that of y (i.e., the loop L(y)); but y follows a in the canonical
order so l cannot be a hard interlink of C. It cannot be an in-
tralink because L(y)∩ V = ∅ and neither a Mayer link because
of axiom C3 for C. As a result l is a void interlink of C. In
sum the factors in this case are all equal to 1.

(7) l between y and U : If l = {y, a} with a ∈ L(y)\{y}; l is an
intralink of C and

ω(C, l) = 1 − δ(φ(y), φ(a))
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This is rewritten thanks to the factor δ(φ(x), φ(y)) from case
1), using identity (28), as

1 − δ(φ(x), φ(a))

to be later absorbed by identity (29) in case 9) below.
(8) l between y and E<x

ch : If l = {y, a} with a ∈ E<x
ch then clearly

a precedes y in the canonical order, and the component L(y) of
y descends from the component Ech of a. Therefore l is a hard
interlink of C. It contributes a factor

ω(C, l) = 1 − δ(φ(y), φ(a))

which is rewritten as 1−δ(φ(x), φ(a)) via (28) before absorption
via (29) in case 9) below.

(9) l ⊂ Ẽx,y and intralink for C̃x,y : Then l = {a, b} is also an in-

tralink for C except when l is between E≤x
ch and U in which

case l is a hard interlink of C. In both situations

ω(C, l) = ω(C̃x,y, l) = 1 − δ(φ(a), φ(b))

If l is between x and a ∈ U one gets the factor 1− δ(φ(x), φ(a))
twice. Once is from the present case, and once is from case
7); both are combined into one such factor equal to ω(C̃x,y, l)
using (29). If l is between x and a ∈ E<x

ch one does the same
to combine the present factor 1 − δ(φ(x), φ(a)) with the one
produced by case 8) in order to end up with a single factor

ω(C̃x,y, l).

(10) l ⊂ Ẽx,y and Mayer interlink for C̃x,y : Then l is also a Mayer

interlink for C and ω(C, l) = ω(C̃x,y, l).

(11) l ⊂ Ẽx,y and hard interlink for C̃x,y : Then l is also a hard in-

terlink of C and ω(C, l) = ω(C̃x,y, l). This follows from two

easily checked facts. The canonical total order on Ẽx,y asso-

ciated to C̃x,y is the restriction of that on E associated to C.
Descendence is preserved when going from the Mayer tree of C
to that of C̃x,y.

(12) l ⊂ Ẽx,y and void interlink for C̃x,y : Then l is also a void inter-

link of C for the same reasons as in the previous case.

In the end, the collected factors over all l ∈ P2(E) reproduce the
right hand side of (27). �

Now one has
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Lemma 6.2.
∑

C∈Cx,y

ψ̃LE(Ẽx,y, C̃x,y) = ψLE(Ẽx,y, P̃x,y) (30)

Proof. This is because the map C 7→ C̃x,y is a bijection from Cx,y onto

the set of canvases on Ẽx,y built over P̃x,y. The injectivity follows easily

from the definitions of M̃ and Õ. For the surjectivity, given a canvas
C̃ = (P̃x,y,M̃, Õ) one lets

M
def
= M̃ ∪ {{x, y}}

and

O
def
= Õ ∪ (∪l{(l, {x, y})})

where the union is over l’s in the adjacency class of Mayer links ema-
nating from x in the canvas C̃. The verification of the canvas axioms
for C = (P,M,O), as well as x(C) = x, and y(C) = y, although
tedious offers no difficulty. �

We have finally proved

Proposition 6.3. The loop-erasure coefficients ψLE satisfies the loop-
insertion recursion.

7. The loop-insertion recursion for the Mayer

coefficients

(Sketch) One organizes the sum in (17), as follows. First release the
condition that H is made of interlinks; which is made possible by the
prefactor

∏

{a,b}
intralink

(1 − δ(φ(a), φ(b)))

When loops are present, there must be links l ∈ H attached to a point

ei of the chain Ech. We take x(H)
def
= eimax the point with the highest

index i, for this property. Then one considers the connected component

K(H)
def
= {x, y1, . . . , ys} of the point x in Π(H), i.e., one only takes into

account the edges of H , not those of Gu. Then H is the disjoint union
of HK and HKc where HK is the set of edges of H contained in K and

HKc
def
= H\HK. One then rewrites (17) as

ψM =
∑

x∈Ech

∑

K

∑

H

∏

{a,b}
intralink

(1 − δ(φ(a), φ(b)))

×
∏

{a,b}∈HK

(−δ(φ(a), φ(b)))
∏

{a,b}∈HKc

(−δ(φ(a), φ(b)))
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where the sum over K is over subsets of P2(E) containing x such that
K\{x} is nonempty and contained in E\Ech; the sum over H is over
unoriented graphs on E such that H ∪ Gu connects E and x(H) = x
and K(H) = K. One can rewrite the last sum as

∑

x∈Ech

∑

K

∑

HKc

∏

{a,b}
intralink

(1 − δ(φ(a), φ(b)))

×
∏

{a,b}∈HKc

(−δ(φ(a), φ(b)))
∑

HK

∏

{a,b}∈HK

(−δ(φ(a), φ(b)))

where the last sum is over unoriented graphs HK contained in K and
connecting it; and where the sum over HKc is over graphs on E with
edges not entirely in K and which together with the tree, made of the
links from x to the remaining elements of K, connect E. Now

Γ(K)
def
=

∑

HK

∏

{a,b}∈HK

(−δ(φ(a), φ(b)))

= (−1)ss!1l {all φ(a) with a ∈ K are equal} (31)

by a classical Mayer coefficient calculation (the expansion of log(1+ t))
This can be written by interpreting the s factor in (31) as a sum over
K\{x} = {y1, . . . , ys}, as

∑

HK

∏

{a,b}∈HK

(−δ(φ(a), φ(b))) =
∑

y∈K\{x}

[−δ(φ(x), φ(y))]Γ(K\{y})

then reexpand Γ(K\{y}) (some details missing here).

8. The single-loop-erasure morphism of functors

Let C = (P,M,O) be a canvas on a finite set E built on the precan-
vas P = (ein, eout,G, φ). One can canonically associate to it a new can-

vas ρE(C)
def
= (P ′,M′,O′) on the same set E with P ′ def

= (e′in, e
′
out,G

′, φ′),
as follows. As in Section 5 let e1 = ein, e2, . . . , ep = eout be the number-
ing of the chain Ech following the arrows of G. If φ(e1), . . . , φ(ep) are

all distinct we let ρE(C)
def
= C. Else, one considers j the minimal index

1 < j ≤ p for which there exists an index i, 1 ≤ i < j (necessarily

unique) such that φ(ei) = φ(ej). We then let e′in
def
= ein. We define e′out

as equal to eout if j < p and to ei if j = p. Then if j = p we let

G′ def
= (G\{(ei, ei+1)}) ∪ {(ej , ei+1)} (32)

whereas if j < p we let

G′ def
= (G\{(ei, ei+1), (ej, ej+1)}) ∪ {(ei, ej+1), (ej, ei+1)} (33)
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Next, one always lets φ′ def
= φ. Furthermore, if no edge of M contains

ej we let

M′ def
= M∪ {{ei, ej}} (34)

and define the ordering O′ by putting the extra link {ei, ej} after those
of the adjacency class of links leaving ei in M. Otherwise, if the ad-
jacency class of Mayer links emanating from ej is nonempty and given
by

{ej, a1} ≺O . . . ≺O {ej, ar}

one lets

M′ def
= (M\{{ej, a1}, . . . , {ej, ar}})∪{{ei, ej}}∪{{ei, a1}, . . . , {ei, ar}}

(35)
and defines O′ by specifying the ordering of the adjacency class of links
emanating from ei in M′ as follows:

• First, we put the links that were already present in M with
their O order.

• Then we put {ei, ej}.
• Last, we put the links {ei, a1}, . . . , {ei, ar} in this order.

The point of this construction is that it is functorial. Indeed if σ :
E → F is a bijection of finite sets one has the commutation

ρF ◦ Canvas(σ) = Canvas(σ) ◦ ρE (36)

i.e. the single-loop-erasure ρ is morphism of functors from the Canvas
functor to itself.

A precanvas, or a canvas, is said to be linear iff E = Ech.

9. The main theorem

We define a few more combinatorial species. The state or site space
S is again fixed.

We define the specie of self-avoiding loops emmbedded in S given by
a functor E → SAL(E) where the elements of the set SAL(E) are all
pairs L = (G, φ) made of an oriented graph G on E which is the graph
of a cyclic permutation of E, and an injective map φ : E → S. If E is
empty one lets SAL(E) = ∅ as well. Transport of structure is defined
in the obvious manner. The equivalence class of a pair (E,L) where
L ∈ SAL(E) is denoted by [E,L]. The set of such classes is finite since
S is finite by assumption. We suppose that a formal variable λ[E,L] is
associated to each class [E,L].

We now let sin and sout be two elements of S chosen once and for all.
These elements are not necessarily distinct. We now define the specie
of self-avoiding walks from sin to sout in S as a functor E → SAW (E).
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The set SAW (E) is the subset of Precanvas(E) made of fourtuples
W = (ein, eout,G, φ) such that G is linear (i.e. E = Ech), φ(ein) = sin,
φ(eout) = sout, and φ : E → S is injective. Note that if sin = sout then
by the injectivity of φ one also has ein = eout; and by the linearity of
the graph G the set E has to be a singleton. We now suppose that a
formal variable α[E,W ] is associated to each equivalence class [E,W ] for
this new specie.

The main theorem will be an identity in the ring R of formal power
series with rational coefficents in the variables α[E,W ] and λ[E,L].

Given a precanvas P = (ein, eout,G, φ) on a set E, we define the
amplitude B−(E, P ) in the ring R as follows. Let Π = {Ech, E1, . . . , Er}
be the partition of E corresponding to the connected components of
the unoriented graph Gu; with Ech corresponding to the chain and

E1, . . . , Er to the loops. We let B−(E, P )
def
= 0 unless φ(ein) = sin,

φ(eout) = sout and the restrictions of φ to the blocks of the partition Π
are injective. If this condition is fulfilled then

W
def
= (ein, eout,G ∩ (Ech × Ech), φ|Ech

) ∈ SAW (Ech) (37)

and likewise for any i, 1 ≤ i ≤ r,

Li
def
= (G ∩ (Ei ×Ei), φ|Ei

) ∈ SAL(Ei) . (38)

We then let

B−(E, P )
def
= α[Ech,W ]

r
∏

i=1

(

−λ[Ei,Li]

)

. (39)

We also define the analogous expression B+(E, P ) without the minus
signs.

If C is a canvas on E we denote by P (C) the underlying precanvas.
Let ρ∞ correspond to the infinite iteration of the single-loop-erasure
morphism of functors ρ∞. Note that the result stabilizes after a finite
number of iterations depending on the canvas C on which these are
applied.

The main identity concerns the quantity

∆
def
=

∑

[E,C]

A(E,C)

#Aut(E,C)
(40)

where the sum is over equivalence classes of pairs made of a finite set E
of labels and a canvas C on E. The amplitude A(E,C) is the product

1l{φ(ein) = sin}1l{φ(eout) = sout}1l{C linear} × B− (E,P(ρ∞E (C)))

One now has the following lemmata.

Lemma 9.1. If C is a canvas on a set E then #Aut(E,C) = 1.
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Lemma 9.2. A canvas C on E is fixed by ρE if and only if the restric-
tion of φ to Ech is injective.

Lemma 9.3. Let C be a linear canvas on E with φ(ein) = sin and
φ(eout) = sout. Denote by C ′ the canvas ρ∞E (C) and by P ′ the corre-
sponding precanvas P (C ′). Let {E ′

ch, E
′
1, . . . , E

′
r} be the partition of E

given by the chain and the loops of P ′. Then the embedding map φ of
P ′ (which is the same as that of C) has injective restrictions to E ′

ch

and the E ′
i. Therefore

B− (E, P (ρ∞E (C))) 6= 0

in the ring R.

We now apply Theorem 8 from [Abd04] for the natural transforma-
tion ρ∞ in order to get

∆ =
∑

[E,C′]

1

#Aut(E,C ′)

∑

C∈Canvas(E)

ρ∞
E

(C)=C′

A(E,C) (41)

We now have

Lemma 9.4. A canvas C ′ on E is the image by ρ∞E of a linear canvas
C with φ(ein) = sin and φ(eout) = sout if and only if

1l{φ(ein) = sin}1l{φ(eout) = sout}ψ̃LE(E,C ′) 6= 0

Besides, if this condition is satisfied, then one can uniquely recover the
linear canvas C from C ′.

Therefore

∆ =
∑

[E,C′]

1

#Aut(E,C ′)

∑

C∈Canvas(E)

ρ∞
E

(C)=C′

1l{φ(ein) = sin}1l{φ(eout) = sout}1l{C linear}B− (E,P(C′)) (42)

=
∑

[E,C′]

1l{φ(ein) = sin}1l{φ(eout) = sout}ψ̃LE(E,C ′)B+ (E, P (C ′))

#Aut(E,C ′)

(43)
Note that the signs in B− have been absorbed in the Mayer interlinks
of ψ̃LE(E,C ′).

We now again apply Theorem 8 of [Abd04] to the last expression us-
ing the morphism of functors C 7→ P (C). The result is, after changing
the dummy variable C ′ to C,

∆ =
∑

[E,P ]

1

#Aut(E, P )

∑

C∈Canvas(E)
P (C)=P
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1l{φ(ein) = sin}1l{φ(eout) = sout}ψ̃LE(E,C)B+ (E, P (C)) (44)

where the last sum is over precanvas classes. Now

∆ =
∑

[E,P ]

1l{φ(ein) = sin}1l{φ(eout) = sout}B+ (E, P )

#Aut(E, P )

×
∑

C∈Canvas(E)
P (C)=P

ψ̃LE(E,C) (45)

By definition of the ψLE coefficient and Theorem 5.1 this becomes

∆ =
∑

[E,P ]

D(E, P )

#Aut(E, P )
(46)

where

D(E, P )
def
= 1l{φ(ein) = sin}1l{φ(eout) = sout}ψM(E, P )B+(E, P ) (47)

Now, we once more define a new specie of enriched precanvases E →
EnP (E). An element Q ∈ EnP (E) consists of a precanvas P together
with a total ordering or numbering E1, . . . , Er of the loops which appear
in the partition {Ech, E1, . . . , Er} of E into connected components for

P . We define the amplitude E(E,Q)
def
= 1

r!
D(E, P ) where P is the

underlying precanvas of Q and r is the number of loops. By Theorem
8 of [Abd04] again one has

∑

[E,Q]

E(E,Q)

#Aut(E,Q)
=

∑

[E,P ]

1

#Aut(E, P )

∑

Q∈EnP (E)
Q over P

D(E, P )

r!
(48)

=
∑

[E,P ]

D(E, P )

#Aut(E, P )
= ∆ (49)

Now one can introduce a specific model for the classes [E,Q]. Let
r ≥ 0, k ≥ 1, l1, . . . , lr ≥ 1 be some integers. Let E = {1, 2, . . . , N}
with N = k + l1 + · · · + lr. Let

• Ech = {1, 2, . . . , k},
• E1 = {k + 1, . . . , k + l1},
• E2 = {k + l1 + 1, . . . , k + l1 + l2},

...
• Er = {k + l1 + · · · + lr−1 + 1, . . . , k + l1 + · · ·+ lr},

Let ein = 1 and eout = k in Ech. We define the oriented graph G by
listing its edges:

• (1, 2), . . . , (k − 1, k) in Ech,
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• (k + 1, k + 2), . . . , (k + l1 − 1, k + l1), (k + l1, k + 1) in E1,
...

• (k + l1 + · · ·+ lr−1 + 1, k + l1 + · · ·+ lr−1 + 2),. . . ,
(k + l1 + · · ·+ lr − 1, k + l1 + · · ·+ lr),
(k + l1 + · · ·+ lr, k + l1 + · · ·+ lr−1 + 1) in Er.

The maps φ : E → S is allowed to be arbitrary. Finally the num-
bering of the loops is the one given by the ordering E1, . . . , Er.

It is easy to see that ∆ can now be rewritten

∆ =
∑

r≥0

∑

k≥1

∑

l1,...,lr≥1

∑

φ

1

#Aut(E,Q)

1

r!

1l{φ(ein) = sin}1l{φ(eout) = sout}ψM(E, P )B+(E, P ) (50)

where the pair (E,Q) is the one contructed by the previous process,
and P is the underlying precanvas. Note that if B+(E, P ) 6= 0 the map
φ has to be an injection in each component. This together with the
ordering on the loops forces #Aut(E,Q) = 1. Let, as in Section 4,
Y0 = φ(Ech), Y1 = φ(E1),. . . ,Yr = φ(Er). Recalling the definition of
Mayer coefficients in Section 4 and summing independently over the
restrictions of φ within each component one readily obtains

∆ =
∑

r≥0

∑

(Y0,...,Yr)

1

r!
ψ(Y0, . . . , Yr)B(Y0)A(Y1) . . . A(Yr) (51)

where (Y0, . . . , Yr) is a sequence of polymers or subsets of the site space
S, and where the polymer amplitudes A and B are defined as follows.

One lets

A(Y )
def
=

∑

[E,L]
φ(E)=Y

λ[E,L] (52)

where the sum is over classes of pairs (E,L) with L ∈ SAL(E), and φ
is the embedding map coming with L. One also lets

B(Y )
def
=

∑

[E,W ]
φ(E)=Y

α[E,W ] (53)

where the sum is over classes of pairs (E,W ) with W ∈ SAW (E), and
φ is the corresponding embedding map. The conditions φ(ein) = sin,
φ(eout) = sout are implicitly assumed. Note that because of the forced
injectivity of the corresponding maps φ the automorphism groups of
these classes are trivial. Therefore one does not need to normalize by
their cardinality.
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Now by the fundamental theorem of Mayer expansion theory one can
rewrite (51) as

∆ =

∑

r≥0

∑

Y0,{Y1,...,Yr}
disjoint

B(Y0)A(Y1) . . .A(Yr)

∑

r≥0

∑

{Y1,...,Yr}
disjoint

A(Y1) . . . A(Yr)
(54)

i.e. ∆ is the correlation function < sinsout > of a loop ensemble.
In these sums the collection {Y1, . . . , Yr} is unordered. The polymers
(Y0), Y1, . . . , Yr are all assumed to be disjoint subsets of S.

We have proven the following, which is the main result of this article.

Theorem 9.5. In the power series ring R, one has the identity
∑

[E,C]

1l{φ(ein) = sin}1l{φ(eout) = sout}1l{C linear}B− (E,P(ρ∞E (C)))

=

∑

r≥0

∑

Y0,{Y1,...,Yr}
disjoint

B(Y0)A(Y1) . . . A(Yr)

∑

r≥0

∑

{Y1,...,Yr}
disjoint

A(Y1) . . .A(Yr)
(55)

10. Cramer’s rule

Let A = (Axy)x,y∈S be a matrix of formal variables. For a and b
some fixed points in S, which are not necessarily distinct, we consider
Cramer’s rule for the matrix I −A i.e.

det[(I − A)(b,a)]

det[I − A]
= (I − A)−1

ab (56)

The determinants are with respect to an arbitrary ordering of S which
is the same for lines and columns, and therefore need not be specified.
The minor determinant is that of a matrix of the same size as I − A
using the trick of defining the matrix (I − A)(b,a) on S with entries

(I − A)(b,a)
xy

def
= 1l{x 6= b}(I − A)xy1l{y 6= a} + 1l{x = b}1l{y = a} (57)

If one takes sin = a, sout = b, in the previous section and specializes
the variables α and λ to:

• α[E,W ] is the product of the A entries along the steps of the
self-avoiding walk W . If a = b this walk makes zero step and
the corresponding α is equal to 1.

• λ[E,L] is minus the product of the A entries along the steps of
the self-avoiding loop L. Note that E = ∅ is forbidden since
SAL(∅) = ∅ by definition, and L ∈ SAL(E) is assumed to
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exist. If E is a singleton {e}, then the oriented graph has to be
G = {(e, e)}. If x is the image by φ of e then

λ[E,L] = −Ax,x (58)

Although it is a void one, the loop actually makes a step!

With these definitions, and regardless whether a is equal to b or not,
the statement of Theorem 9.5 is exactly Cramer’s rule (56). Note that
with the definition of the functor ρ, in case a = b the chain that remains
is always trivial. Also in this situation the loops in the numerator are
simply forbidden to touch the site a = b in S.
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