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Abstract

These lectures are directed at analysts who are interested in learning some of the
standard tools of theoretical physics, including functional integrals, the Feynman expan-
sion, supersymmetry and the Renormalization Group. The lectures are centered on the
problem of determining the asymptotics of the end-to-end distance of a self-avoiding
walk on a D-dimensional simple cubic lattice as the number of steps grows. When
D = 4, the end-to-end distance has been conjectured to grow as Const. n1/2 log1/8 n,
where n is the number of steps. We include a theorem, obtained in joint work with
John Imbrie, that validates the D = 4 conjecture in the simplified setting known as the
”Hierarchical Lattice”.
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1 Self Avoiding Walk and Differential Forms

Self-avoiding walk can be defined in more than one way. A single self-avoiding walk is usually
a sequence of n distinct nearest neighbor sites beginning with the origin in an infinite D-
dimensional lattice such as ZD, but there are different ways to put a probability measure on
the space of all such self-avoiding walks. To begin with, in these lectures, one should have
in mind the case where n is fixed and each self-avoiding walk has equal probability. What
is the typical end-to-end distance of such walks when n is very large?

This question is a canonical member of a family of problems that are simple to state but
difficult to answer. One has a chain of objects in space with some forces or constraints and
one wants to learn about the typical configurations. Our colleagues in biology and physical
chemistry, who are trying to predict the conformation of proteins, are contending with the
big cousins in this family, but as mathematicians we have the right and even an obligation
to consider simplest cases first. However, in low dimensions, such as two and three, this is
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already a considerable challenge in need of truly new ideas. In higher dimensions it becomes
easier because the constraint of no self-intersection has less effect. In these lectures we
concentrate on four dimensions, make further simplifications, which include using a rather
artificial lattice, and finally reach a tractable problem. We shall use the term “self repelling”
to signal a simplification in which walks with self-intersections have reduced probability, as
opposed to zero probability.

Our basic strategy has come from the work of theoretical physicists, especially Luttinger,
who emphasized an isomorphism between self-interacting walks and some very special (super-
symmetric) classes of perturbations of Gaussian random fields. The analysis of perturbations
of Gaussian processes is one of the achievements of the Glimm-Jaffe school of Constructive
Quantum Field Theory. By this isomorphism those methods become relevant for this family
of problems. Our goal in these notes is to describe this program and to oppose a commonly
held opinion that it is impossible to do analysis with the functional integrals that appear in
theoretical physics.

We begin with a review of continuous time simple random walk on a lattice such as
ZD. Any such walk defines a collection of local times τx — the times spent at lattice sites
x. Provided the walk is confined to a finite subset of the lattice there is an isomorphism
relating these local times to finite dimensional integrals involving differential forms φφ̄ +
dφdφ̄. In principle self-repelling walk problems can be solved by approximately evaluating
such integrals, provided the approximation is uniform in the dimension of the integral.

The need for uniformity arises because the restriction of the walk to a finite lattice will
affect the statistics of the walk unless the size of the finite lattice is large compared with the
typical size of the walk. The dimension of the integral is (twice) the number of sites in the
finite lattice.

Laplace discovered an approximate method for evaluating integrals which has a wonderful
stability as the number of dimensions of the integral is increased. This is because it applies to
integrals which are approximately Gaussian and Gaussian integration has a natural extension
to spaces of infinite dimension. There is an asymptotic expansion to all orders whose leading
term is the Laplace approximation. The famous Feynman graphs are an algorithm that
generates the formulas for the coefficients in this expansion.

Such an expansion is not uniformly asymptotic for the integrals that arise from self-
avoiding walk, but if it is applied in a different way guided by the Renormalization Group
then it is expected to be uniformly asymptotic. The second lecture describes this idea in a
general way without reference to the self-repelling walk problem.

In the third lecture we return to the self-repelling walk problem but it is greatly simplified
by changing the topology of the lattice to the hierarchical lattice. The fourth lecture is a
brief introduction to the corresponding analysis on the simple cubic lattice.

1.1 Self-Repelling Walk

Fix an integer T ≥ 0. A self-avoiding walk with T steps is a sequence

X = X0, X1, . . . , XT

of distinct nearest neighbor sites on the simple cubic lattice ZD, starting with X0 = 0. We
define an expectation 〈·〉T using normalized counting measure on the space of all X. The
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mean squared end-to-end distance is 〈X2
T 〉. In five or more dimensions, Hara and Slade

[HS92] have proved that
〈X2

T 〉 ∼ const T. (1.1)

Here f(T ) ∼ g(T ) means that f(T )/g(T ) → 1 as T → ∞. The linear growth in T would
also hold without the self-avoiding constraint. The effect of the self-avoiding constraint is
only to change the constant. However for four dimensions it is conjectured in [BLGZJ73]
that there are logarithmic corrections

〈X2
T 〉 ∼ const T ln1/4 T . (1.2)

The lower dimension makes it more likely that the walk will find its past and be affected by
it and this is reflected in a logarithmic increase in the size of the walk. To emphasize how
little this problem is understood we mention that there is not yet a general proof that 〈X2

T 〉
exceeds the corresponding expectation for simple random walk (without the self-avoiding
constraint).

We will be concentrating on four dimensions, but the reader may be interested to learn
that in two dimensions there is a conjecture that the exponent is exactly 8/5; in three there
is no precise conjecture but numerical experiments suggest that there is an exponent and it
is approximately 1.23. The book [MS93] is a good reference on self-avoiding walk.

The conjecture (1.2) is based on arguments that predict the same logarithmic correction
for walks that are allowed to intersect themselves but are punished by a factor exp(−λ) < 1
for every pair of times s, t such that Xs = Xt

1. This new problem with parameter λ is called
the Domb-Joyce model. The Domb Joyce model is easier to analyze because one can assume
λ is small. We will pass to this new problem but with one further change, namely walks
will be parametrized by a continuous time instead of discrete time. This makes it possible
to use the isomorphism between local times and Gaussian processes which will be described
later.

Finite State Markov Process. Consider a finite subset of lattice points labeled

Λ = {0, 1, . . . , N}.

Let a, b, i, j be any points in Λ. Xt is the position in Λ at time t ∈ [0, T ]. a is the starting
point for the walk, X0 = a. But, now t is a continuous time. The position Xt is a random
variable whose law is determined as follows: given that Xt = j at time t, the probability
that it is at a different position k an infinitesimally short time dt later is −Ajkdt, where
A is a matrix which is non-positive off-diagonal and positive on the diagonal. By working
with a general matrix A we avoid making any assumption on the topology of the lattice.
We include the outcome that there is no change in position by writing

P{Xt+ dt = k|Xt = j} = δjk −Ajk dt, (1.3)

where δjk is the Kronecker delta. From this differential law one finds that the probability
of transition from a to b in time T is given by the exponential of A:

Pa{XT = b} = (e−TA)a,b. (1.4)

1As λ → 0 the time of onset of the log correction will become larger and larger in such a way as to restore
the linear growth law in the limit.
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The probabilities add to one if
∑

k Ajk = 0, but we will assume instead that δ :=
∑

k Ajk ≥
0. Then there is some missing probability which is interpreted as the process Xt exiting
the state space Λ to go to an additional state called the graveyard where it remains forever.
Thus in time dt there is a probability of δdt of passing to the graveyard. This is called killing
on first exit. A is called the generator of the process Xt.

We define the local time spent at j by

τj =
∫ T

0

δjXs ds.

Examples of functions of τ that will interest us are

∑
j

V (j)τj =
∫ T

0

V (Xs) ds, (1.5)

I(τ) =
∑

j

τjτj =
∫∫ T

0

δXsXt ds dt.

The function I = I(τ) measures the time the process spends intersecting itself up to time
T and so the factor exp(−λI(τ)) is the continuous time analogue of “punishing the random
walk by exp(−λ)” for each self intersection, as mentioned above in the context of the Domb-
Joyce model.

Continuous Time Self-Repelling Walk. Let E[0,T ]
a be the expectation for the Markov

process we have defined. We will be studying

E[0,T ]
a

(
e−λI

)
and E[0,T ]

a

(
e−λIX2

T

)
.

The ratio

〈X2
T 〉 ≡

E[0,T ]
a

(
e−λIX2

T

)
E[0,T ]

a (e−λI)

as T →∞ is the expected squared end-to-end distance of a Continuous Time Self-Repelling
Walk. The calculation of this ratio is our ultimate goal. We will assume that λ is a small
but positive number, so that the self-repulsion is weak.

One reason why this problem is hard is that the numerator and denominator of 〈X2
T 〉

are exponential in T . This very rapidly changing exponential must be canceled very exactly
before one can hope to show that the ratio is linear with logarithmic corrections.

The self-avoiding walk should be the result of taking a limit λ → ∞, but no one has
studied this limit. Taking λ large has the side effect of killing the walk while it rests at a
lattice site, which will alter the relation between the number of jumps and T as λ →∞.

1.2 Differential Forms and Self-Normalizing integrals

In this subsection we prepare for a reformulation of the problem which will involve differential
forms. Let φ = u + iv so that

dφ = du + i dv, dφ̄ = du− i dv.
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We multiply forms by the wedge product (suppressed in notation). Forms anticommute:

du dv = −dv du

and du du = 0, so

dφ dφ̄ = (du + i dv)(du− i dv) = −2i du dv. (1.6)

If F is a smooth function and ω a differential form on Cn, we define the form F (ω) by the
Taylor expansion around the degree 0 part of ω. Note that the expansion always terminates,
since the degree of a form cannot exceed 2n.

For example, if A > 0, and ωA = φAφ̄ + dφAdφ̄, we have

exp{−ωA} = exp{−φA φ̄− dφ A dφ̄} = exp{−φA φ̄}(1− dφ A dφ̄).

When integrating forms we adopt the convention that only forms of the same degree as the
dimension of the integration contribute. Then we have∫

exp{−ωA} = −
∫

exp{−φAφ̄} dφ A dφ̄

= 2i

∫
exp{−A(u2 + v2)}A du dv

= 2πi.

(1.7)

The factor 2πi is put out of sight by setting Ã = A/(2πi). Let SA = φA φ̄ + dφ Ã dφ̄. Then
the integral of the form exp(−SA) equals one.

By similar arguments, ∫
e−SAφφ̄ =

1
A

This generalizes to higher dimensions. Let

φ = (φ1, . . . , φN ) A = (Ajk)

and
φAφ̄ =

∑
jk

φjAjkφ̄k.

Assume that A has positive real part: Re φAφ̄ > 0 for φ 6= 0. Then:∫
CN

e−SA = 1 (1.8)∫
CN

e−SAφaφ̄b = Cab,

where C = A−1. We prove the first of these claims at the end of this section and explain
the connection with supersymmetry.
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1.3 Feynman-Kac Formula and the τ Isomorphism

Assume that A is the generator for the Markov process introduced in (1.3). Equation (1.4)
can be paraphrased as

(e−TA)a,b = E[0,T ]
a (δbXT

) .

Suppose that V is a diagonal matrix with entries V (i) on the diagonal and we want to
represent exp(−T [A + V ]) in a similar way. This is achieved by the Feynman-Kac formula,
which says

(e−T [A+V ])a,b = E[0,T ]
a (F (τ)δbXT

) (1.9)

where
F (t1, . . . , tN ) = e−

P
V (j)tj .

A proof for Brownian motion is given in [Sim79, p49] and the same proof also applies to
Markov processes with finite state spaces. In comparing the statement of the Feynman-Kac
formula in the literature with ours, note that F can be rewritten in terms of an integral over
time using (1.5).

If Re φAφ̄ > 0 for φ 6= 0 and V (i) is imaginary, we can integrate both sides from 0 to ∞
with respect to T to get

(A + V )−1
a,b =

∫ ∞

0

dT E[0,T ]
a (F (τ)δbXT

) , (1.10)

and this brings us to the main result of this section,

Theorem 1. (τ isomorphism) Let F = F (t1, . . . , tN ) be any smooth function with compact
support. Then ∫ ∞

0

dT E[0,T ]
a (F (τ)δbXT

) =
∫

e−SAF (τ)φaφ̄b,

where, in the right hand side,

τj = φj φ̄j + dφj
1

2πi
dφ̄j .

Proof. First consider the case where A has positive real part. Replacing A by A + iV in
A−1

jk =
∫

e−SAφj φ̄k gives, for V real,

(A + iV )−1
rs =

∫
e−SAe−

P
iV (l)τlφrφ̄s.

By combining this with (1.10) we obtain a special case of the theorem in which F has the
form

F (t) = ei
P

kltl .

To pass to the general case where F is smooth with compact support, write

F (t) =
∫

dNk F̂ (k1, . . . , kN )eik·t.
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By the positive real part assumption on A, integrals are absolutely convergent so we can
interchange integrals∫ ∞

0

dT E[0,T ]
a (FδbXT

) =
∫

dNk F̂ (k)
∫ ∞

0

dT E[0,T ]
a

(
eik·τδbXT

)
=

∫
dNk F̂ (k)

∫
e−SAeik·τφaφ̄b =

∫
e−SAF (τ)φaφ̄b.

The assumption that A has positive real part is no loss of generality because both sides of
the theorem are unchanged if we replace A by A + κI and F (t) by F (t) exp(κ

∑
ti). For

κ � 1, A + κI has positive real part.

The τ isomorphism was clearly contained in a 1983 paper [Lut83] by the theoretical
physicist Luttinger who argued that it could be used to derive corrections to all orders in
powers of 1

T to the large deviation theory of Donsker and Varadhan. In Luttinger’s paper the
differential forms were not yet recognized as such and instead were formal anticommuting
generators of a Grassman algebra. He credits McKane [McK80] and independently Parisi-
Sourlas [PS80] for the invention of anticommuting numbers in this context. LeJan [LJ87,
LJ88] pointed out to me that the anticommuting numbers are differential forms. Luttinger’s
idea was not taken very seriously by mathematicians because some of his manipulations
could not cross the cultural divide. Accordingly in [BMM91] we thought it would be useful
to verify that Luttinger’s idea was correct in the simplest case of finite state Markov processes
(with A symmetric). There remains the very interesting open problem to take Luttinger’s
idea beyond this finite state case.

1.4 The Self-Repelling Walk and the τ isomorphism

Let β ∈ C and apply the τ isomorphism to

F (t) = e−λ
P

t2j−β
P

j tj ,

This is not a function of compact support but Theorem 1 is still applicable because one can
enlarge the class of allowed F by taking limits. The left hand side is an integral and we
can take a limit for any sequence Fn of compactly supported functions which are integrably
dominated. The right hand side is a finite sum of integrals whose integrands are linear in
Fn or in a derivative of Fn, because the definition of a function of a form is a finite Taylor
series. Therefore we can take limits under the integrals on the right hand side provided Fn

and a finite number of derivatives of Fn are appropriately bounded.
On the left hand side of the τ isomorphism we find

G(β, b) =
∫ ∞

0

dT e−βT E[0,T ]
a

(
e−λIδb,XT

)
.

The program now is to study∑
b

∫
e−Sφaφ̄b and

∑
b

b2

∫
e−Sφaφ̄b (1.11)
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with

S = φAφ̄ + dφ Ã dφ̄ +
∑

j

(λτ2
j + βτj) (1.12)

τj = φj φ̄j + dφj
1

2πi
dφ̄j ⇒ τ2

j = |φj |4 + 2|φj |2dφj
1

2πi
dφ̄j . (1.13)

By the τ isomorphism (1.11) is equal to
∑

b G(β, b) and
∑

b G(β, b)b2. From these we obtain

E[0,T ]
a (exp(−λI)) and E[0,T ]

a

(
exp(−λI)X2

T

)
by inverting the Laplace transform in T . Recall that the desired 〈X2

T 〉 is the ratio. All of
this must be carried out uniformly in the number N of sites in Λ. The big chip on our side
of the table is that S is almost Gaussian, because we assume 0 < λ � 1.

1.5 Laplace Approximation

The discussion in this section motivates but is not directly used in the remaining arguments
so we are going to concentrate on the main ideas and omit many details. The objective is
to explain the Feynman expansion.

We make the inessential simplification of only writing formulas for the case φ real. Let

I(α) =
∫

U

dNφ e−αS(φ)

Laplace gave the following result for the asymptotic evaluation of I(α). Suppose S(φ) is
a smooth function of real variables φ = (φ1, . . . , φN ) which has a non-degenerate global
minimum at φ = 0. Let U be a bounded open set containing 0, then

I(α) ∼ e−αS(0)

∫
RN

dNφ e−
1
2 α φAφ

where A = S(2)(0) is the matrix of second derivatives of S at 0 and I(α)∼f(α) means that
I(α)/f(α) = 1 + O(α−1) as α→∞.

The proof is based on the Taylor approximation

S(φ) ≈ S(0) +
1
2

φAφ,

noting that there is no linear term because φ = 0 is the minimum. This approximation is ac-
curate near φ = 0. Away from φ = 0 it becomes inaccurate but this does not matter because
then exp(−αS(φ)) and exp(−αS(0)− α/2φAφ) are both small relative to exp(−αS(0)), in
fact exponentially small in α. For the same reason, we can allow U to be unbounded or be
all of RN if S(φ) grows mildly as |φ| → ∞.

Much more is true: one can prove that the above asymptotic evaluation is merely a first
term in a systematic asymptotic expansion in powers of α−1. Let p be any positive integer.
Then

I(α) ∼ e−αS(0)

[∫
dφ e−

1
2 α φAφ

]
e

Pp
l=1 cl α−l

,
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where ∼ now means

I(α)
Right Hand Side

= 1 + O(α−p−1) as α →∞.

For reasons explained in the next subsection we are going to refer to this as the Feynman ex-
pansion, even though it predates Feynman. For more information on asymptotic expansions
for integrals see [Erd55] and [Hör83, Vol II].

1.6 Graphical Formula for cl

Feynman revolutionized calculations in Quantum Electrodynamics (QED) when he intro-
duced graphical representations. The effect in theoretical physics was not unlike the accel-
eration in progress after the introduction, in the Middle Ages, of symbols, such as “x”, in
place of words. Later it was realized that calculations in QED are combinatorially similar
to evaluation of moments of Gaussian integrals. Finite dimensional Gaussian integrals are
the simplest context for Feynman’s idea, but one of the many virtues of the graphical repre-
sentation is that it facilitates the analysis of dependence on dimension. Results classifying
dependence on dimension are called Power Counting theorems.

In this same finite dimensional context one can also obtain asymptotic expansions for
the case where α is imaginary and the integral is oscillatory. But even when the coefficients
are uniform in N , there is no satisfying theory for N = ∞ oscillatory integrals. Oscillatory
integrals in finite dimensions are analyzed using integration by parts to prove that contri-
butions from ranges of integration that do not include critical points are negligible (O(α−p)
for all p). The problem is a lack of understanding of the N dependence in this procedure.

Write the exponent in I(α) as −αS(0)− αφAφ− αr(φ), where A = 1
2S′′(0). Then

I(α) = e−αS(0)Ω
1
Ω

∫
dφ e−

α
2 φAφe−αr(φ),

where Ω−1 normalizes the Gaussian density to have total mass 1. Let C = A−1. For any
polynomial P (φ),

1
Ω

∫
dφ e−

α
2 φAφP (φ) = e

1
2 α−1∆C P

∣∣∣
φ=0

,

where
∆C =

∑
i,j

∂

∂φi
Cij

∂

∂φj

and the exponential is defined by its power series, which terminates after finitely many
terms when applied to the polynomial. This formula has a natural graphical representation
illustrated by the following example.

Example. Set α = 1 and P = (1/2)(φ2
a/2)(φ2

b/2), then exp(1
2∆C)P at φ = 0 is

1
2!

1
2

∆C
1
2

∆CP =
1
8
Caa Cbb +

1
4
Cab Cab

which is represented by
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= • •&%
'$

&%
'$

1
8Caa Cbb

+ • •

1
4 Cab Cab

Thus to each index a and b in the polynomial is associated a vertex and to each Laplacian
is associated a line. Each graph records how the Laplacians acted according to the product
rule of differentiation. If one does not put labels on the lines to record which Laplacian
is associated to which line then one must instead have combinatoric coefficients because a
single graph is representing more than one term from the product rule of differentiation.
These coefficients can be read off from the automorphism group of the graph, see below.

Although exp(−αr(φ)) is not a polynomial, if it is regarded as a formal power series in
φ, and exp( 1

2α−1∆C) is applied to each term, then it is still true that

e
1
2 α−1∆C

(
e−αr(φ)

) ∣∣∣
φ=0

is a correct asymptotic expansion in powers of α−1. As a partial justification of this claim,
note that if we change variables by replacing φ by α−1/2φ in I(α), then, since αr(α−1/2φ)
is αO(α−3/2φ3), only powers of α−1/2 can appear and since exp(−φAφ/2) is even in φ, only
even powers survive.

We have

e−αr(φ) =
∞∑

n=0

1
n!

(−αr(φ))n

r(φ)n =
∑

k1,...,kn≥3

1
k1! · · · kn!

n∏
j=1

S(kj)(0)φkj .

In order to evaluate

e
1
2 α−1∆C

 n∏
j=1

S(kj)φkj

 ∣∣∣∣∣
φ=0

we expand the exponential, and observe that the only term that contributes is the one
containing the right number of derivatives, that is, the one with ∆m

C , where 2m = k1+· · ·+kn.
We apply the Leibnitz rule for the product over j. We can keep track of which derivative
acts on which factor by drawing a graph whose vertices — labeled {1, . . . , n} — represent
the n factors, and edges — labeled {1, . . . ,m} — represent the Laplacians. Vertex j has
degree kj . We define the weight of a graph by letting each edge have weight −α−1A−1, and
a vertex of degree d have weight αS(d). We can see that graphs with weight of order α−l

are the ones for which
#edges−#vertices = l.
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The weight of a graph is independent of the labeling of vertices and edges, so we can in fact
sum over unlabeled graphs, and it turns out that the combinatorial factor for an unlabeled
graph G is 1/|Aut(G)|, where Aut(G) is the automorphism group of G.

We get an asymptotic expansion∫
dφ e−αS(φ) ∼ e−αS(0)Ω

∑
l≥0

dlα
−l,

where the coefficient dl is a sum over weights of all graphs with #edges−#vertices = l, and
each vertex having degree at least 3.

As a startling example of the way in which algebraic properties can be coded by graphs
we remark that ∑

dlα
−l = exp

∑
l≥1

clα
−l

 ,

where cl is determined in exactly the same way as dl, but summing only over connected
graphs. The equality of the two sides is in the sense of formal power series in α−1.

Studying the problem of when these expansions are asymptotic uniformly in N leads to
the realm of the Glimm-Jaffe-Spencer cluster expansions. Some of the important original
contributions are in [VW73, GJS74, GJS76a, GJS76b] and these are reviewed in the book
[GJ87]. To a large extent these references are written for people who know or want to learn
about Constructive Field Theory, but the scope of the cluster expansion is wider. Cluster
expansions are a natural representation for an important class of near-Gaussian integrals so
that one can analyze the dependence on N and find sufficient conditions for the Feynman
expansion to be a valid asymptotic expansion when N = ∞.

In these papers on cluster expansions there is an emphasis on integrals whose non-
Gaussian part r(φ) is additive. This means that it has the form

r(φ) =
∑

i

v(φi)

Our self-repelling case (1.12) has this form, but it fails another important sufficient condition,
which is that the spectrum of A should be a subset of the non-negative reals that is bounded
away from zero uniformly in N . For the simple cubic lattice A is the lattice Laplace operator.
For the infinite lattice the spectrum of this operator is not bounded away from zero because
it is diagonalized by the Fourier transform to multiplication by a function of k that resembles
k2 for k small. Although these are only “sufficient” conditions, the failure of the spectral
condition reflects a genuine problem which will be discussed further in Section 2.

Some more details on the Feynman expansion will be included in [Bry01]. The chapter on
perturbation theory in the theoretical physics text [ID89] may be useful for more background.

1.7 Supersymmetry and Proof of (1.8)

Following ideas in [AB84] we give a proof that
∫

CN e−SA = 1. There is a flow acting on CN

by
φj 7−→ e−2πiθφj

12



The flow is generated by a vector field X, such that X(φj) = −2πiφj , and X(φ̄j) = 2πiφ̄j .
The action by pullback of the flow on forms is

dφj 7−→ d(e−2πiθφj) = e−2πiθ dφj and dφ̄j 7−→ e2πiθ dφ̄j .

The infinitesimal flow L = LX , the Lie derivative, is obtained by differentiating with respect
to the flow at θ = 0. E.g.,

L dφj =
d

dθ
d(e−2πiθφj)

∣∣
θ=0

= −2πi dφj .

A form ω is invariant iff Lω = 0. The interior product i = i X with the vector field X is an
antiderivation that acts on forms and

i dφj = −2πiφj and i dφ̄j = 2πiφ̄j .

By Cartan’s formula, L = d i + i d, L has a square root called the supersymmetry
generator :

Q = d + i .

We have L = (d + i )(d + i ) because d2 = 0 and i 2 = 0. A form ω that satisfies Qω = 0 is
called supersymmetric or closed. For any smooth form u which decays appropriately at ∞
we have

∫
Qu = 0, because we have defined integration to project out all but the form of

top degree 2N and the degree of i u is at most 2N − 1. Furthermore
∫

du = 0 by Stoke’s
theorem.

Using 2πi φj φ̄k + dφj dφ̄k = Q φj dφ̄k one finds that SA is exact and then it follows that
it is closed because Q2 = L and SA is invariant. From the derivation property of Q, if ω is
even and supersymmetric, so is eω.

Let u be an odd invariant form, then∫
e−SA+tQu =

∫
e−SA ,

provided the deformation preserves integrability. This is because

d

dt

∫
e−SA+tQu =

∫
e−SA+tQuQu =

∫
Q

(
e−SA+tQuu

)
= 0.

The second step follows from the fact that exp(−SA + tQu) is supersymmetric. Also we can
differentiate the exponential with respect to t in the usual way because Qu and SA are even
and therefore commute.

We can choose u so that Qu cancels the off-diagonal parts of SA. For 0 ≤ t ≤ 1 this
deformation preserves integrability because the exponent comes from a convex combination
of A and the diagonal part of A. By setting t = 0 we deform away the off-diagonal part of
A so that proving ∫

e−SA = 1

is reduced to a product of the one complex dimensional cases which we have already estab-
lished.
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There are simpler ways to prove this particular result but supersymmetry records spe-
cial features of self-interacting random walk that are also important in other places in our
analysis. The reader might like to prove by similar methods that∫

e−SAF (τ1, . . . , τn) = F (0, . . . , 0) (1.14)

provided the integral is comfortably convergent.

2 Mehler’s formula and the Renormalization
Group

At the end of Section 1.6 we mentioned that the principle tool for proving that the Feynman
expansion is uniformly asymptotic — the cluster expansion — fails when the Hessian at
the minimum has eigenvalues that creep down towards zero as the dimension of integration
increases. Consider, for example, the functional of real φ,

S(φ) =
1
2

∑
x,y∈ZD

nearest neighbors

[φx − φy]2 +
∑

x∈ZD

φ4
x (2.1)

with the boundary condition φx = 0 for all x outside some bounded set Λ ⊂ ZD. The
minimum is at φ = 0 and the Hessian is the finite difference Laplacian with zero boundary
conditions at ∂Λ. As Λ is enlarged and the boundary ∂Λ recedes, the configurations where
φx is almost constant in x and tends slowly to zero near ∂Λ could become less Gaussian
because the quadratic part of S(φ) is almost zero on these configurations. The Feynman
expansion, being based on approximation by the Gaussian part, is not uniformly asymptotic.
Actions such as (2.1) which have no uniform spectral gap in the Hessian are called massless.

Instead of approximately evaluating the whole integral by a single application of the
Feynman expansion, one holds fixed the slowly varying part of the configuration φx and ap-
plies the Feynman expansion to approximately integrate out the fluctuations on the smaller
length scales. This procedure is iterated until eventually the whole integral has been evalu-
ated. This idea was proposed by K. Wilson.

“Integrating out” corresponds in probability to the notion of conditional expectation
with respect to a sigma algebra, so Wilson’s idea is to calculate a conditional expectation
approximately by the Feynman expansion and eventually to achieve a complete expectation
by repeating this operation. He chooses the successive sigma algebras to be related by scaling
so that the combined operation of conditional expectation followed by rescaling turns out
to be a semigroup or at least very close to being a semigroup. The combined operation is
called an RG Transformation, where RG stands for Renormalization Group. However it is
at best only a semigroup.

In the example above the lattice breaks the scale invariance. The rescaling after a
conditional expectation will map ZD to a finer lattice (εZ)D with ε < 1. It is easier to
formulate the RG for a continuum field φx with x ∈ RD because scaling preserves RD. After
many applications of the RG transformation the lattice starts to look like the continuum so
our emphasis on a continuum formulation is not misleading.
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In the simple cases, which are called “Gaussian Fixed Points”, this continuum RG is
closely connected to the Hermite semigroup and Mehler’s formula. Since these are familiar
topics to many mathematicians we use them as the entrance to the Wilson Renormalization
Group.

The results of this section are a general introduction and are not immediately applicable
to the self-repelling walk problem because of the lattice. In Section 3 we return to the
self-avoiding walk.

2.1 Gaussian measures

A probability measure µ on RN is Gaussian if it has the form

µ(dφ) = const. e−
1
2 φAφ dφ1 . . . dφN (2.2)

for some real positive-definite symmetric matrix A. A continuum of random variables φx

labeled by x ∈ RD is said to be Gaussian if the joint probability of every finite subset of the
variables is Gaussian. Such a continuum of variables φx is called a Gaussian Random Field.
As usual the restriction to real valued φ is an inessential simplification.

The covariance C is defined by ∫
µ(dφ) φjφk = Cjk.

For a Gaussian random field C is a function on RD ×RD given by
∫

µ(dφ) φxφy = C(x, y).

• The joint distribution of any finite subset {φx1 , . . . , φxn} of the continuum Gaussian
random field is determined by the covariance C because the Aij in (2.2) is the inverse
of C(xi, xj). Therefore we write µC . Any continuous positive-definite function C(x, y)
defines all the finite joint probabilities of some Gaussian random field.

• Gaussian measures are closed under convolution:

µC ∗ µC′ = µC+C′ .

• µC defines a Laplacian ∆C on a domain of bounded C2 functions by

µtC ∗ f = f +
t

2
∆C f + O(t2). (2.3)

In other words, 1
2∆C is the infinitesimal generator of the convolution semigroup {µtC}.

When f is a smooth function of only finitely many of the variables φx, say φx with
x ∈ {x1, . . . , xN}, then this definition implies that ∆C reduces to

∆C =
∑
j,k

∂jC(xj , xk)∂k.

with ∂j being the ordinary partial derivative with respect to φxj . For example ∆Cφ4
x =

12C(x, x)φ2
x.
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• When f is a polynomial
µC ∗ f = e

1
2∆C f, (2.4)

and the right hand side can be computed by expanding the exponential in a power
series, in which only finitely many terms contribute. This is called Wick’s Theorem.

• If C[0,T )(x, y) with 0 < T ≤ ∞ is smooth in x, y then φx can be realized in Cp for any
p = 0, 1, . . . . See [RW00, Pages 55 – 71].

[Sim79] and [RW00, Pages 55 – 71] are useful references for random Gaussian fields.

2.2 The Hermite Semigroup

We start with the simple example N = 1. Consider the Gaussian measure on R whose
(co)variance is the number defined by

C = C[a,b) =
∫

[a,b)

e−2s ds,

so that C[a,b) +C[b,c) = C[a,c). By the convolution property µ[a,b) ∗µ[b,c) = µ[a,c). Define the
scaling operator

Stf(φ) = f(e−tφ).

Then, using e−2tC[a,b) = C[a+t,b+t), we prove that µ[a,b) ∗ St = Stµ[a+t,b+t)∗ by

µ[a,b) ∗ Stf(x) =
1√

2πC[a,b)

∫
dφ e

− φ2

2C[a,b) f(e−tx− e−tφ)

=
1√

2πC[a+t,b+t)

∫
dφ e

− φ2

2C[a+t,b+t) f(e−tx− φ)

= Stµ[a+t,b+t) ∗ f(x).

This implies that the family of operators Tt defined on bounded continuous functions by

Ttf = Stµ[0,t) ∗ f (2.5)

is a semigroup:

TsTtf = Ssµ[0,s) ∗ Stµ[0,t) ∗ f = SsStµ[t,s+t) ∗ µ[0,t) ∗ f

= Ss+tµ[0,s+t) ∗ f

= Ts+tf.

The generator L of the semigroup is defined on a domain of twice differentiable functions
by differentiating Tt with respect to t at t = 0:

lim
t→0

1
t
(Stµ[0,t) ∗ f − f) = lim

t→0
St

1
t
(µ[0,t) ∗ f − f) + lim

t→0

1
t
(Stf − f).

Since C[0,t) = t + o(t), the first limit is f ′′(φ)/2, while the second one is −φf ′(φ). Therefore

L =
1
2

d2

dφ2
− φ

d

dφ
, (2.6)
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and from the semigroup property one shows that the partial differential equation

∂tf =
(

1
2

∂2

∂φ2
− φ

∂

∂φ

)
f

with bounded smooth initial data f0 is solved by

f = Stµ[0,t) ∗ f0.

This is half of Mehler’s Formula. The other half is another representation for the solution
f as a sum over a complete set of eigenfunctions for the operator L. These eigenfunctions
are the subject of the next section.

2.3 Eigenfunctions

Let ∆[a,b) be the Laplacian ∆C with C = C[a,b). Define a polynomial of degree n by

: φn : = e−
1
2∆[0,∞)φn. (2.7)

For example,
: φ4 : = φ4 − 6C[0,∞)φ

2 + 3C2
[0,∞) (2.8)

This is called a Wick ordered monomial in physics. It is an eigenfunction,

Tt : φn : = e−nt : φn : , (2.9)

because

Stµ[0,t)∗ : φn : = Ste
1
2∆[0,t) : φn : = Ste

− 1
2∆[t,∞)φn = e−

1
2∆[0,∞)Stφ

n

= e−nt : φn : .

By differentiating with respect to t at 0 we find that : φn : is an eigenfunction of L with
eigenvalue −n. By two integrations by parts L is a symmetric operator on a domain of
smooth functions in L2(R, µ[0,∞)), therefore : φn : are orthogonal polynomials in this space.
The orthogonality and degree n identifies : φn : as a constant times the nth Hermite poly-
nomial. Besides being orthogonal, the Hermite polynomials are also known to be complete.
Therefore one can define exp(−tL) by the spectral theorem and write an expansion for its
kernel in Hermite polynomials. Thus there is an expansion for exp(−tL) = Stµ[0,t)∗ in terms
of Hermite polynomials. This is the other half of the Mehler formula, but we will not need
it for these lectures.

An important property of these polynomials is that they act like ordinary powers when
differentiated:

d

dφ
: φn : =

d

dφ
e−∆[0,∞)φn = e−∆[0,∞)

d

dφ
φn = e−∆[0,∞)nφn−1

= n : φn−1 : . (2.10)
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2.4 Invariant Measure

The measure µ[0,∞) is invariant for the semigroup, i.e.∫
µ[0,∞)(dφ) TtF =

∫
µ[0,∞)(dφ) F.

This can be seen from the calculation∫
µ[0,T−t)(dφ) TtF = µ[0,T−t) ∗ TtF

∣∣
φ=0

= µ[0,T−t) ∗ Stµ[0,t) ∗ F
∣∣
φ=0

= Stµ[t,T ) ∗ µ[0,t) ∗ F
∣∣
φ=0

= Stµ[0,T ) ∗ F
∣∣
φ=0

= µ[0,T ) ∗ F
∣∣
φ=0

=
∫

µ[0,T )(dφ) F.

Now we let T →∞ to obtain invariance.

2.5 First Order Perturbation Theory

Applying the semigroup Tt gradually builds an integration with respect to the Gaussian
measure µ[0,T ) because∫

µ[0,T )e
−V =

∫
µ[0,T−t)Tte

−V = TT e−V

∣∣∣∣∣
φ=0

.

When t increases to T , µ[0,T−t) tends to a point mass measure at zero. Define the Effective
Interaction W = Wt by

e−W = Tte
−V

Then the gradual integration becomes∫
µ[0,T )e

−V =
∫

µ[0,T−t)e
−Wt

In this way integration is transformed into the study of the evolution of the Effective In-
teraction W . Since this simple formula is the result of specializing Wilson’s constructions
to one dimensional integrals, we will use the term Renormalization Group (RG) instead of
“Gradual Integration”.

First Order Effective Interaction. Suppose, for example, that

V = λ : φ4 : .

Calculating to first order in V ,

Tte
−V = Tt(1− V + O(V 2)) = e−TtV + O(V 2).

We find by the eigenfunction property, that

W = TtV + O(V 2) = λe−4t : φ4 : + O(V 2).

Thus to first order in V , integration is equivalent to a flow of the coupling constant:

λ → λe−4t.
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2.6 Infinitely Many Dimensions

The semigroup Tt, its eigenfunctions and other properties generalize to the infinite dimen-
sional context of a Gaussian random field φx as follows: Define the action of scaling St on
φ by

(Stφ)x = e−[φ]tφe−tx

where [φ] > 0 is a constant, which we will call the dimension of φ. A different operator
denoted by the same symbol St is defined on covariances by

StC(x, y) = e−2[φ]tC(e−tx, e−ty),

Let Ċ(x, y) be any smooth rapidly decaying positive-definite function of |x− y|. Define

C[a,b)(x, y) =
∫

[a,b)

dt StĊ(x, y) =
∫

[a,b)

dt e−2[φ]tĊ(e−tx, e−ty). (2.11)

Since C[a,b) is an integral over scalings of a positive-definite function, it is itself positive-
definite. Therefore it defines a Gaussian measure µ[a,b). Tt continues to be defined by
(2.5). At first we take its domain to be the linear subspace of bounded continuous cylinder
functions, where a function of the random variables φx is said to be a cylinder function if it
is a function of a finite subset of these variables. However one can prove that this domain
is dense in L2(µ[0,∞)) and Tt is a contraction semigroup on this domain so it extends to all
of L2(µ[0,∞)).

Other interesting facts are that Tt is a contraction on Lp for 1 ≤ p < ∞ and it is even
hypercontractive. This may be useful in future developments of the RG.

Choice of [φ]. The parameter [φ] determines the long distance decay of C[0,∞). Using
the notation Ċ(x, y) = f(|x− y|) and the substitution s = e−t|x− y| we have

C[0,∞)(x, y) =
∫ ∞

0

e−2[φ]tf(e−t|x− y|)dt

= |x− y|−2[φ]

∫ |x−y|

0

s2[φ]−1f(s)ds

= O(|x− y|−2[φ]) as |x− y| → ∞.

This covariance is smooth everywhere including at x = y because Ċ(x, y) is smooth, the
integral is over scalings by factors exp(t) ≥ 1 and the rapid decay of Ċ(x, y) makes the
integral over scalings convergent. The way to get a singularity at x = y is to integrate over
t ∈ (−∞, 0). Then one finds a short distance singularity

C[−∞,0)(x, y) = O(|x− y|−2[φ]), (2.12)

as |x− y| → 0. Finally consider

C(−∞,∞)(x, y) = const|x− y|−2[φ]. (2.13)

This is scale invariant, StC(−∞,∞) = C(−∞,∞), and singular at both long and short distances
because we integrated over all scalings.
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The self-repelling walk is a perturbation of a Gaussian measure whose covariance is
O(|x− y|2−D) as x− y →∞, so we will set

[φ] = D/2− 1. (2.14)

In four dimensions [φ] = 1.

2.7 First Order Perturbation Theory in Infinite Dimensions

Again, we consider the RG formula∫
µ[0,T )e

−V =
∫

µ[0,T−t)e
−Wt , (2.15)

but now we choose
V = λ

∫
Λ

dx : φ4
x : .

By the definition (2.7), : φ4
x : is given by (2.8) with C[0,∞)(x, x) in place of C[0,∞). Thus

: φ4
x : is dx-integrable on any compact set Λ and so V exists.
The eigenfunction property (2.9) becomes Tt : φ4

x : = e−4[φ]t : φ4
e−tx : . By a change of

variables we have

TtV = λ

∫
Λ

dx e−4[φ]t : φ4
e−tx : = λe(−4[φ]+D)t

∫
StΛ

dx : φ4
x : ,

giving

W = λe(4−D)t

∫
StΛ

dx : φ4
x : + O(V 2),

In the same way

Tt

(
β

∫
Λ

dx : φ2
x :

)
= βe2t

∫
StΛ

dx : φ2
x :

Tt

(
γ

∫
Λ

1 dx

)
= γeDt

∫
StΛ

1 dx.

These are not eigenfunctions of Tt because of the change in Λ, but they are still singled out
for major parts by the non-negative exponents in t.

2.8 Effective Coupling Constants

Domain of t: The rescaling Λ → StΛ shrinks Λ until at a time T defined by

Volume(ST Λ) = 1, (2.16)

it becomes a unit volume. This is very useful because problems of uniformity in Λ have
disappeared! Where have they gone to? They are hidden in the dificulty of controlling the
action of Tt on the Effective Interaction for t in the long interval [0, T ].
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Suppose

V =
∫

Λ

dx
{
λ : φ4

x : + β : φ2
x :

}
(2.17)

It is determined by the parameters ~λ = (Λ, λ, β) so we shall write V (~λ). We have shown
that upon neglecting O(V 2), the effective interaction W has the same form V (~λ) but with
parameters ~λ called effective coupling constants that depend on t according to the flow
equations

Λ → StΛ,

{
d
dtλ = (4−D)λ
d
dtβ = 2β

We will be interested in cases where λ(t) remains small for t ≤ T . We can see that this
should be true for all D > 4. For D = 4 the first order flow for λ is dλ/dt = 0, but as we will
see in Subsection 2.9, there is a correction from second order so that the equation becomes

dλ

dt
= −cλ2

with c > 0. This is solved by

λ =
λ0

1 + cλ0t
.

Thus, second order perturbation theory predicts that λ(t) → 0.

2.9 Second Order Perturbation Theory

From Mehler’s formula, the evolution of the interaction is given by

∂te
−W = Le−W . (2.18)

but now we should pause to explain the operator L more fully in this infinite dimensional
context.

First recall from (2.6) that in one dimension L is a sum of a Laplacian and −φd/dφ
which is the vector field generating scaling:

d

dt
f(e−tφ) = −φ

d

dφ
f(e−tφ)

Recall that φx ∈ Ck(Λ) with any k. Fix some k and let F be a smooth functional on the
Banach space Ck(Λ). Then, for a fixed φ, the second derivative of F is a bounded bilinear
function f, g 7→ F2(φ; f, g) on Ck(Λ)×Ck(Λ). From the definition of the Laplacian (2.3) one
finds2 that

∆CF (φ) =
∫

µC(dζ)F2(φ; ζ, ζ)

2Essentially by inserting in the definition the Taylor expansion of F (φ+sζ) in powers of s = 1 to order 2.
The remainder after order 2 makes no contribution provided the third derivative of F does not grow faster
than a Gaussian with ‖φ‖Ck(Λ).
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For example

1
2

∆C

∫∫
φxf(x, y)φy dx dy =

∫
µC(dζ)

∫∫
ζxf(x, y)ζy dx dy

=
∫∫

f(x, y)C(x, y) dx dy (2.19)

so, less precisely,
1
2

∆C =
∫∫

δ

δφx
C(x, y)

δ

δφy
dx dy

L is the sum of ∆Ċ/2 and the scaling part defined by

F → d

dt

∣∣∣∣
t=0

F (exp(−[φ]t)φexp(−t)x)

In the one dimensional φ case (2.18) implies that

∂tW = LW − 1
2
Wφ ·Wφ. (2.20)

and following our definitions this is also true for the continuum φx case with

Wφ ·Wφ :=
∫

µĊ(dζ)W1(φ; ζ)W1(φ; ζ)

As in (2.19) the
∫

µĊ(dζ) will become a factor Ċ(x, y) that integrates against the two
functional derivatives.

The corresponding integral equation is

W (t) = TtV − 1
2

∫
[0,t)

Tt−s(Wφ(s) ·Wφ(s)) ds,

which can be checked using Mehler’s formula. By iterating, we obtain a solution to any
order in V . At second order

W = TtV − 1
2

∫
[0,t)

Tt−s [(TsV )φ · (TsV )φ] ds + O(V 3).

In order to calculate the integral we use the trick:

d

dφ
f(φ)g(φ) =

(
∂

∂φ(1)
+

∂

∂φ(2)

)
f(φ(1))g(φ(2))

∣∣∣∣∣
φ(1)=φ(2)=φ

,

and assuming that V is a polynomial we write the integrand as

St−s exp
(

1
2

∆(1,1)
[0,t−s) +

1
2

∆(2,2)
[0,t−s) + ∆(1,2)

[0,t−s)

)
(TsV )φ(1) · (TsV )φ(2)

∣∣∣
φ(1)=φ(2)=φ

= St−se
∆

(1,2)
[0,t−s)

(
e

1
2∆

(1,1)
[0,t−s)(TsV )φ(1)

)
·
(
e

1
2∆

(2,2)
[0,t−s)(TsV )φ(2)

) ∣∣∣
φ(1)=φ(2)=φ

= e
∆

(1,2)
[s−t,0)(TtV )φ(1) · (TtV )φ(2)

∣∣∣
φ(1)=φ(2)=φ

=
∞∑

j=0

1
j!

[
∆(1,2)

[s−t,0)

]j

(TtV )φ(1) · (TtV )φ(2)

∣∣∣
φ(1)=φ(2)=φ

.
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The · in the last expression is with respect to Ss−tĊ, which comes from the fact that we
interchanged Tt−s and the φ-derivative. The j-th term is

1
j!

(TtV )φ,...,φ(Ss−tĊ)⊗ C⊗j
[s−t,0)(TtV )φ,...,φ,

where there are j + 1 partial φ-derivatives. Integrating we get the formula

W = TtV − 1
2

∞∑
j=1

1
j!

(TtV )φ,...,φ C⊗j
[−t,0) (TtV )φ,...,φ + O(V 3). (2.21)

For example, when V is the integral of : φ4
x : , Tt sends : φ4

x : to exp(−4[φ]t) : φ4
exp(−t)x :

and by (2.10) the functional derivatives represented by the subscripts φ act by

: φ4
x : 7→ 4: φ3

x : 7→ 12: φ2
x : etc

Thus there are nonvanishing terms j = 4, 3, 2, 1. The general structure of these terms is
indicated by the following Feynman diagrams

j = 4

j = 2

j = 3

j = 1

' $
& %

' $
& %

@
@

�
�

�
�

@
@

@
@

�
�

�
�

@
@

The edges that end on one vertex but not two are called external legs. For example the
j = 2 diagram has two vertices, each of which has two external legs. The two external legs
at the left vertex represent a factor : φ2

x : and the two at the right vertex represent a factor
: φ2

y : . The two edges joining the vertices represent C2
[−t,0)(x − y). This diagram in D = 4

contributes to W

J = −36λ2

∫∫
: φ2

x : C2
[−t,0)(x− y) : φ2

y : dx dy

where the integrals are over StΛ.
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(2.21) is an approximation to the Effective Interaction, but is this approximation well
behaved for t = T large? Leave aside any deplorable tendencies of effective coupling con-
stants to grow and consider only the integral in J . As t → ∞, u(x − y) := C2

[−t,0)(x − y)
grows a nonintegrable singularity

u∞(x− y) = O

(
1

|x− y|2j

)
.

at x− y = 0 because of (2.12).
There is a marvelous remedy which simultaneously improves the behavior of λ at large

t and removes the singularity in J : we split J into a regular and a singular part:

J = JR + JS

corresponding to AB = A(B − A) + A2 with A =: φ2
x : and B =: φ2

y : . Then JR has a
t →∞ limit because |A−B| ≤ sup |∇A||x− y|. The divergence as t →∞ is now in

JS = −36λ2

∫∫
( : φ2

x : )2C2
[−t,0)(x− y) dx dy

≈ −36λ2

(∫
C2

[−t,0)(y) dy

) ∫
( : φ2

x : )2 dx

which is called a local part3.
If we were to leave out the local part then the resulting Wreg = W + JS would no longer

be a second order solution to the flow equation (2.20). By differentiating Wreg with respect
to t we find that Wreg is an O(λ2) solution to the flow equation with the additional term

−36
d

dt

(∫
C2

[−t,0)(y) dy

) ∫
( : φ2

x : )2 dx = −72a

∫
( : φ2

x : )2 dx (2.22)

with a =
∫

C[−t,0)(y)Ċ(y) dy (2.23)

where a has a limit as t → ∞. Suppose that in addition to omitting JS we also alter the
flow of λ to

d

dt
λ = (4−D)λ− 72aλ2, D = 4 (2.24)

Then (2.22) is cancelled by dλ/dt
∫

: φ4 : . The reader who notices that the cancellation is
incomplete because ( : φ2

x : )2 is not the same as : φ4
x : is correct: the two polynomials differ

in quadratic and constant terms. However if we start with a general quartic polynomial

V =
∫

Λ

(λ : φ4
x : + β : φ2

x : + γ) dx

then the flow equations for β, γ can also be modified to as to get a complete cancelation of
(2.22).

3We wrote ≈ because integrals are over StΛ and we do not have exact translation invariance. This is not
fatal to the argument because C[−t,0)(x− y) decays to zero on length scale one which is much less than the
diameter of StΛ until t = O(T ).
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The diagrams in W with j = 3, 4 also diverge as t → ∞, but these can also be split
into regular and local parts. Again the local parts are discarded and the flow equations are
altered. One finds from j = 3 that one more term ζ

∫
Λ

(∂φx)2 dx must be added to V and
one has

Theorem 2. Let

Vt =
∫
StΛ

[
λt : φ4

x : + βt : φ2
x : + ζt : (∂φx)2 : + γt

]
dx

Define Wreg,t by (2.21) with TtV replaced by Vt and omitting all local parts that diverge
as t → ∞. Then the flow equations for the effective coupling constants ~λ = (λt, βt, ζt, γt)
can be chosen so that Wreg,t solves (2.20) to order O(~λ)2. Wreg,T is bounded in L2(µ[0,∞))
uniformly in Λ provided the effective coupling constants λ, β, ζ, γ are uniformly bounded at
t = T .

The L2(µ[0,∞)) part of Theorem 2 is obtained by using Wick’ theorem (2.4) to evaluate
the integral of the polynomial W 2

reg.
This is only a statement of Wilson’s results in the sense that no creative idea needs to

be added to his discussion to prove it. A deeper result, which was his main point, but which
he did not prove, is that the second order Wreg is a uniform in Λ approximation to the exact
effective action if the effective coupling constants ~λT are small, when the effective coupling
constants obey ordinary differential equations which include corrections from all orders in
λ. Explicit expressions for these corrections to all orders are hardly to be expected but it is
not necessary to have them: instead one can prove that the invariant manifolds and fixed
points for the flow of ~λ are qualitatively stable stable under a class of such perturbations.

In Section 4 we will define “uniform approximation to the exact effective action”. A good
definition controls the error so that at t = T one can prove that omitting WT has negligible
effect on correlations.

Already in the first order flow equation (2.18) we see that β is unstable — for generic
choice of initial coupling constants it will not remain small. Wilson claimed that there is an
invariant manifold β = βc(λ, ζ) of initial data such that β does not grow. γ is also unstable
and so if it is to remain small we must also choose the initial γ dependent on (λ, ζ), but
since exp(−γ

∫
dx) factors out of the integral we can choose it to be initially zero and then

it evaluates the integral to second order in λT , βT , ζT by∫
µ[0,∞)(dφ) e−V =

∫
µ[0,∞)(dφ) e−Wreg,T ≈ e−γT

because the rest of Wreg,T is negligible.
Wilson’s work was reviewed in [WK74]. These lectures and the paper [BCG+78] were

very helpful to me during my first attempts to learn the general ideas. In these lectures we
are only discussing the part of his work that concerns Gaussian fixed points. Theoretical
physicists regard his work on non-Gaussian fixed points as of much greater significance.
More recent reviews which may be useful for a view into the subsequent history and range
of activity in the RG include [BG95, Fis98].

Gawedzki and Kupiainen were the first authors to prove Wilson’s deeper conjectures:
that for V as above and λ small there is an invariant manifold βc(λ, ζ) and that for β
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chosen on this manifold the exact effective action flows under the RG to the Gaussian∫
(∂φ)2, in particular λ → 0 and correlations are massless Gaussian in the scaling limit,

[GK83, GK85]. The review [HT87] summarizes this and later work. Dimensions 4 − ε
were studied in [BDH98b]. Other approaches to this class of problems are the phase-cell
expansions [FMRS87] and wavelet expansions [Fed87].

Scaling limits of λφ4 perturbations of lattice Gaussian measures have also been studied
by completely different methods having nothing to do with the RG by Aizenman [Aiz82]
and by Fröhlich [Frö82]. These methods are remarkable in not assuming that the initial
perturbation is small, but they are less general in other ways.

There is an elegant and general theorem by Newman and Wright [NW81, NW82] that
gives sufficient conditions for white noise scaling limits. White noise scaling limits are generic
and arise from the instability of β. They are central limit type theorems. Intermediate
between the white noise scaling limits and the results of Aizenman and Fröhlich are the
results in [NS97].

3 Hierarchical Lattices and the Renormalization Group

The interaction

V (X) =
∫

X

[
λ : φ4

x : + β : φ2
x : + ζ : (∂φx)2 : + γ

]
dx

is such that exp(−V (X)) is multiplicative,

exp(−V (X ∪ Y )) = exp(−V (X)) exp(−V (Y )) for X ∩ Y = ∅

The formula (2.21) for the second order effective interaction developed in the last section
shows that multiplicativity is not normally preserved by the RG. In general, one cannot
control the remainder after perturbation theory without having some sort of calculus for
functionals that are approximately multiplicative. We will discuss this further in Section 4.
However there are special lattices called hierarchical lattices for which the RG preserves
multiplicativity. In this section we will look at some of the main ideas in a proof that there
are log corrections in the end-to-end distance of self-repelling walk on a four dimensional
hierarchical lattice. The reader can refer to our papers [BIa, BIb] in places which are short
on details here.

3.1 Hierarchical lattice

Fix an integer L. The picture shows the balls that define the metric. The reason why the
RG will preserve multiplicativity is that no balls overlap. This is called the ultrametric
property.
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• • • • • • • • • • • • • • • •

balls of diameters L1, L2, L3, L4 (L = 2)

original lattice x y

The distance between the specific points x, y in the picture is L4 which is the diameter of
the smallest ball containing them.

The dimension of this lattice is defined to be D = 1 because the number of points in a
ball of diameter Lk is LkD. We will consider a 4 dimensional lattice.

3.2 Group structure

We have defined a metric d(x, y). Following [BEI92], we can make the lattice into an additive
group in such a way that

d(x, y) = d(x− y, 0) = |x− y|.

Let G1 be the additive cyclic group of order LD.

G2 ≡ G1 ⊕ G1,

G3 ≡ G1 ⊕ G1 ⊕ G1.

• • • • • • • • •
x y

0 1 10 11 100 101 110 111 1000
L = 2
D = 1

x = (. . . , 0, 1, 1, 1) ∈ G3,

y = (. . . , 0, 1, 0, 0, 0) ∈ G4,

x− y = (. . . , 0, 1, 1, 1, 1) ∈ G4.

∴ |x− y| ≡ inf
{
Lk : Gk 3 x− y

}
= L4.

3.3 Scaling

Scaling is a discrete semigroup induced by a map L−1 from the infinite hierarchical lattice
to itself. L−1 identifies all points that lie in the same ball of diameter L in the hierarchical
lattice so that they become a single point in a new hierarchical lattice. Thus it is the shift

L−1x = (. . . , x3, x2, x1), for x = (. . . , x3, x2, x1, x0).

27



∴ Gk
L−1

−→ Gk/G1 = Gk−1.

Scaling pulls a configuration φnew,x on the new lattice to a configuration φold,x on the old
lattice by making it constant on the L balls of the old lattice

S : φold,x = L−[φ]φnew,L−1x

with [φ] = (D−2)/2 = 1 in four dimensions. It acts on forms by S : dφold,x = L−[φ]dφnew,L−1x.
Suppose that X = x +G1 is some L-ball in the hierarchical lattice and FX is a smooth form
on CX . Then scaling induces a new form fx = SFX on C{x} by

fx(φnew,x) = FX(φold)

These definitions extend in an obvious way to include X being any finite union over of cosets
x +G1. For example if X = Λ so that FX is a form on CΛ, then SFX is a form on the lower
dimensional CΛ/G1 .

We define the action of scaling on covariances by

(SC)(x, y) = L−2[φ]C(L−1x, L−1y)

3.4 Random walk and scaling properties

Let Xt be the process that starts at 0 and jumps by the law for y 6= x

P (Xt+dt = y |Xt = x ) ∝ |x− y|−D−2.

Unlike the random walk on ZD this is not taking nearest neighbor steps, but this is unavoid-
able: the ultrametric property implies that the hierarchical walk will remain locked inside
a ball unless it has jumps on all length scales. Define the β-potential, also called Green’s
function,

G(β, b) =
∫ ∞

0

dT e−βT E[0,T ]
0

(
δb,XT

)
.

The τ isomorphism associates to our random walk a Gaussian measure with covariance
G(β, x− y). We can use the RG if this covariance is an integral (or sum) over scalings as in
(2.11). Part (ii) of the following proposition shows that this is the case, while part (i) shows
that the hierarchical Green’s function has the same homogeneity as the Green’s function on
the simple cubic lattice.

Proposition 3.1 (Brydges-Evans-Imbrie [BEI92]).

(i) G(β = 0, b) = |b|2−D if b 6= 0,

(ii) G(β, b) =
∑∞

k=0 SkΓ
(
L2kβ, b

)
,

(iii) Γ(β, b) = 0 if |b| > L,

where
Γ(β, b) =

1
β + γ

{
1lG0(b)− L−D1lG1(b)

}
,

for some constant γ. Γ(β, b) is positive semi-definite.
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Proof. See [BEI92].
This process has the usual4 E[0,T ]

0

(
|XT |

)
≈ O

(
T 1/2

)
behavior, where ≈ means that

there are upper and lower bounds by the right hand side.

Proof. We prove only the upper bound. For |b| 6= 0, the Green’s function is

G(β, b) =
∞∑

k=logL |b|

L(2−D)k

(
1

L2kβ + γ
− L−2

L2(k−1)β + γ

)
Taking the inverse Laplace transform,

E[0,T ]
0

(
δb,XT

)
= |b|−D

∞∑
k=0

L−Dk
(
e−γL−2kT/|b|2 − e−γL−2(k−1)T/|b|2

)
.

Multiply by |b| and sum over b observing that the hierarchical space of b 6= 0 consists of
shells of radius |b| = Ll with LDl − LD[l−1] = O(LDl) elements in each shell, l = 1, 2, . . . .
The long time behavior of E[0,T ]

0

(
|XT |

)
is established by the following two estimates.∑

b:|b|≤T 1/2

|b|1−D
(
e−γL−2kT/|b|2 − e−γL−2(k−1)T/|b|2

)
≤ 2

∑
l≤ 1

2 logL T

Ll = O
(
T 1/2

)
,

∑
b:|b|>T 1/2

|b|1−D
(
e−γL−2kT/|b|2 − e−γL−2(k−1)T/|b|2

)
≤ L−2(k−1)O(T )

∑
l> 1

2 logL T

L−l = L−2(k−1)O
(
T 1/2

)
.

To use the τ isomorphism we must approximate the infinite hierarchical lattice by a finite
state space. This is done by killing the random walk on first exit from the ball Λ = Gn in
the infinite lattice. The analogy with our scale integral (2.11) is made clearer by using the
notation G[0,n) for the Green’s function killed on first exit from Gn.

Proposition 3.1, Part (ii), becomes [BIb]

G[0,n)(β, b) =
n−1∑
k=0

SkΓ
(
L2kβ, b

)
+

1
L2nβ + γ

Sn1lG0(b). (3.1)

In this notation G[0,∞) is the Green’s function of Proposition 3.1, Part (ii).
In the τ isomorphism the matrix Axy is the inverse of G[0,n)(β, x − y) and the matrix

indices x, y are summed over Λ. The covariance of the Gaussian µC = µ[0,n) is G[0,n). Thus∫
µ[0,n) φaφ̄b =

∫ ∞

0

dT e−βT E[0,T ]
ab

(
1

)
,

where
E[0,T ]

ab

(
•

)
= E[0,T ]

a

(
• δb,XT

1{exits after T}

)
.

4See [BIb, Proposition 1.1] for the more precise result that the T → ∞ limit exists for subsequences
L2nT0
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3.5 Interaction

Let g(t) be any smooth bounded function with g(0) = 1. Recalling that τx is the time spent
at lattice site x by the process Xt we set

gΛ =
∏
x∈Λ

g(τx).

By the τ -isomorphism,

Gg(b− a) :=
∫ ∞

0

dT e−βT E[0,T ]
ab

(
gΛ

)
=

∫
µ[0,n) gΛφaφ̄b, (3.2)

where on the left hand side, τx = φxφ̄x + 1
2πidφxdφ̄x. Gg(β, b − a) is called the interacting

Green’s function.
Since g(0) = 1, g has a unique representation

g(t) = e−βt
{
e−λt2 + r(t)

}
, (3.3)

with r(t) = O
(
t3

)
as t → 0. For r = 0, we recover the self-repelling walk problem∫

µ[0,n) gΛφaφ̄b =
∫ ∞

0

dT e−βT E[0,T ]
ab

(
exp(−λ

∑
x∈Λ

τ2
x)

)

3.6 Renormalization group

Earlier we defined Tt as a convolution followed by a rescaling. The following constructions
have the same structure.

The convolution of two forms A =
∑

aαdφα and B =
∑

bαdφα is defined to be

A ∗B =
∫

CΛ

∑
α,β

aα(ζ)bβ(ζ + φ)dζα(dζ + dφ)β

where the integration is only over the ζ. In particular, if FX is a form on CX , then µΓ ∗FX

is also a form on CX .
The RG is the sequence of maps Tk where k = 1, 2, . . . and

TF = SµΓ ∗ F.

If FX is a form on CX then TFX is a form on the smaller dimensional CX/G1 .
Invariance: In analogy to Subsection 2.4, the decomposition (3.1) implies∫

CΛ
µ[0,n) F =

∫
CΛ/G1

µ[0,n−1) TF, (3.4)

We call this invariance because it suggests that the form µ[0,∞) is invariant for T, but we
cannot make this precise since we have not defined forms in infinite dimensions. Recall
Λ = Gn so Λ/G1 = Gn−1.
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Independence: By (iii) of Proposition 3.1 and the ultrametric property of the hierarchical
lattice, T acts independently on disjoint balls:

TgΛ = T
(
gG1

)Λ/G1 =
(
TgG1

)Λ/G1
.

In more detail, suppose that x′ = x + G1 is a coset in Λ/G1, define Gx′ =
∏

x∈x′ gx. Then

TgΛ =
∏

x′∈Λ/G1

TGx′ .

Here we see why the RG preserves multiplicativity on the hierarchical lattice.
Form invariance: Tgx+G1 has the form g′(τL−1x) for some new function g′. This is

connected with supersymmetry. In [BIa, BIb] we prove that T commutes with the operator
Q defined in Subsection 1.7 and an even supersymmetric form on C is a function of τ .
The supersymmetry property also implies that the normalization g(0) = 1 is preserved.
Supersymmetry is the way this formalism remembers that it was born from a random walk.

Observable: An additional isolated φx is scaled:

T
(
gx+G1φb

)
= g′(τL−1x)L−1φL−1b, (3.5)

where g′ is the same as in the last item. Thus T induces a very simple “renormalization” of
the “observable”: φb → L−1φb/L.

3.7 Recursion

The results in the last subsection allow us to regard the RG as a dynamical system on the
coordinates (β, λ, r) that specify the interaction g through (3.3). Starting with

(β0, λ0, r0) = (β, λ, r),

successive applications of T generate an orbit (βk, λk, rk) with 0 ≤ k ≤ n − 1 in the space
of interactions. Each RG map also causes a reduction Λ 7→ SΛ in the state space. When
k = n− 1 the state space has shrunk to G1 so that the final integration is over CG1 .

Using the recursion we generate a sequence of Green’s functions with different interac-
tions which are equal up to scaling: let gk be the interaction determined by (βk, λk, rk) and
suppose that b is a point in the hierarchical lattice at distance |b| > L from the origin. Then

Ggk
(b) = SGgk+1(b) (3.6)

This is an immediate consequence of the τ isomorphism, the Invariance property (3.4) and
the Observable property (3.5). Although there are two factors φ0 and φb in the Green’s
function, the RG acts on them independently because of the Independence property.

We want results for the Green’s function on the infinite lattice, so we must consider the
infinite volume limit in which the initial Λ = Gn is increased. First note that if the initial
state space is enlarged then the new orbit is the same as the old orbit except it is longer —
enlarging Λ merely extends the orbit. This is because the terms in the scale decomposition
(3.1) are independent of the initial Λ. Only the number of terms is Λ dependent. Therefore
we can define the infinite volume orbit

(βk, λk, rk)0≤k<∞
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as the union of all such finite Λ0 orbits. For real parameters β, λ in the initial interaction
exp(−λτ2−βτ), the Green’s function also has an infinite volume limit if β is not too negative.
This follows from monotone convergence applied to the random walk representation. This
existence will extend to complex domains for the initial λ and β, if we prove uniform bounds
and analyticity in β, by the relative compactness of normal families of analytic functions
combined with convergence on the real axis.

Define the sector in the complex plane

Dβ := {β 6= 0 : | arg β| < 5π

8
}

and note that it has an opening angle larger than π. The domain for λ is also a sector, but
in addition λ must be small:

Dλ := {λ 6= 0 : | arg λ| < π

8
and |λ| < δ}

We arrange that the initial interaction is the self-repelling walk by setting r0 = 0. Then
(βk, λk, rk) are determined as functions of (β, λ) = (β0, λ0) by the RG map.

These arguments show that there is an orbit of interactions but give hardly any infor-
mation on the orbit. However second order perturbation theory as in Subsection 2.9 can be
worked out for this discrete RG. The recursion

λj+1 = λj −
8Bλ2

j

(1+βj)2
+ ελ,j ,

βj+1 = L2
[
βj + 2B

1+βj
λj

]
+ εβ,j

(3.7)

where B = 1−L−4, replaces the differential flow equations. For example, compare the λj+1

equation with (2.24).
This recursion was derived from a recursion for (βk, λk, rk) and then rk was eliminated

which is why βk, λk must be regarded as functions of the initial β, λ. We are able to prove
good estimates on the recursion for all k such that (βk, λk) remains inside an enlarged
domain obtained by including all β within distance 1

2 of Dβ . In particular, we prove that
the remainders ελ,j , εβ,j are analytic functions of (β, λ) = (β0, λ0) satisfying

|ελ,j | ≤ cL|λj |3|1 + βj |−
1
2 ,

|εβ,j | ≤ cL|λj |2|1 + βj |−
1
2 . (3.8)

Proposition 3.2. For each λ ∈ Dλ there exists βc(λ) = −O(λ) such that βc
k := βk(βc(λ)) →

0 as k →∞. Furthermore when β = βc(λ), λk → 0.

This shows that there are sequences that stay in the enlarged domain forever. This
proposition is partly a construction of what is called the stable manifold of the fixed point.

In the next theorem Gλ is the infinite volume limit (Λ = Gn, n → ∞) of Gg defined in
(3.2) with g = exp(−βt− λt2). Thus G0(β, b) has g = exp(−βt) and this is the β potential
or free Green’s function. The theorem tells us that the interacting Green’s function is well
approximated, particularly at large |b| by a free Green’s function with a different β parameter
defined by

βeff = lim
k→∞

L−2k(βk − βc
k). (3.9)
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This is called an effective beta in accordance with a general terminology in physics describing
cases where interacting systems are approximated by noninteracting systems optimizing over
the parameters of the noninteracting system.

Theorem 3.3. For all λ ∈ Dλ, Gλ(β, b) is analytic in βc(λ) +Dβ and∣∣Gλ(β, b)−G0(βeff, b)
∣∣ ≤ O(λN(b))

∣∣G0(βeff, b)
∣∣,

where N(b) = logL |b| is the number of iterations of the RG needed to scale b into 0.

The main idea behind this result is a kind of scattering theory argument which compares
the effect of RG transformations on the interacting Green’s function with RG transforma-
tions on the free Green’s function: namely, iterate (3.6),

Gλ(β, b) = L−2kGgk
(L−kb), (3.10)

k = N(b)− 1 times. This extracts the b dependence L−2k = L2|b|−2 and scales the starting
point 0 and the endpoint b to within distance L of each other. Having brought them close
to each other, the interacting Green’s function is equal up to a O(λN(b)) error to the free
Green’s function,

Ggk
(L−kb) = G0(βk − βc

k, L−kb) +O(λk). (3.11)

By inverse RG transformations the free Green’s function scales back to the free Green’s
function for the original starting point 0 and endpoint b.

L−2kG0(βk − βc
k, L−kb) = G0(L−2k[βk − βc

k], b) (3.12)

We also need lower bounds on the free Green’s function in order to see that the error term
is less than a free Green’s function. Preliminary descriptions of these ideas appeared in
[Imb94, Gol95]

3.8 End-to-end distance

By the inverse Laplace transform

E[0,T ]
0b

((
e−λτ2)Λ

)
=

∫
C

dβ

2πi
eβT Gλ(β, b),

where the contour C of the integration is shown in the picture, using the dotted lines to
display the boundary of the β domain.
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The inversion of Laplace transforms is a well known hard problem. In our case beautiful
results such as Tauberian theorems simply will not help, because, recalling the discussion
at the end of Subsection 1.4, we have to calculate a ratio of two fixed T objects as T →∞,
whereas Tauberian theorems are about replacing an abelian average over T by another
average over T . In this subsection we try to motivate the main ideas and as usual refer the
reader to [BIa, BIb] for details.

First we claim that Theorem 3.3 reduces the problem to∫
C

dβ

2πi
eβT G0(βeff, b)

The main reason is that the factor λN(b) supplies additional logarithmic decay in b because
the solution to the λ recursion (3.7) is

λk ≈
λ

1 + 8Bλk
(3.13)

End of discussion on this claim.
Because the contour slopes backwards and the integral contains exp(βT ), the dominant

contribution to the integral comes from the part of the contour within O(1/T ) of βc. Con-
sider the curved part of the contour. By choice of contour this is a segment of the circle
|β − βc| = 1/T . By solving the β recursion (3.7) we find that for β on this part of the
contour

βeff ≈ (β − βc) log−1/4 T.

The term 2B
1+βj

λj in (3.7) together with (3.13) slows exponential divergence of βk away from

the stable manifold orbit βc
k. This is responsible for the log−1/4 T .

By inverting this change of variable we obtain

β = βc + βeff log1/4 T.
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Substitute in the inverse Laplace transform. Let Tnew = T log1/4 T , then

E[0,T ]
0b

((
e−λτ2)Λ

)
≈ eβcT log1/4 T

∫
C

dβeff

2πi
eβeffTnewG0(βeff, b)

= eβcT log1/4 T E[0,Tnew]
0b

(
1
)
.

Here we see that the interaction is equivalent to no-interaction, a change of normalization
eβcT log1/4 T and a different time: T becomes Tnew. Then,

〈|XT |〉 :=

∑
b |b|E

[0,T ]
0b

((
e−λτ2)Λ

)
∑

b E[0,T ]
0b

((
e−λτ2

)Λ
) ≈

∑
b |b|E

[0,Tnew]
0b

(
1
)

∑
b E[0,Tnew]

0b

(
1
) = E0

(
|XTnew |

)
.

These are some of the main ideas in the proof of

Theorem 3.4. Fix an integer L ≥ 2. If λ is sufficiently small, then the self-repelling
expectation 〈〉 and the simple random walk expectation E0 are related by

〈|XT |〉 =
(

1 +
O(λ)

`(T−1)

)
E0

(
|XTnew |

)
, (3.14)

where T > 1, B ≡ 1− L−4,

`(T−1) = 1 + O(λ) + Bλ(4 log T + log |1 + λ log T |). (3.15)

and Tnew = T`(T−1)
1
4 .

We have mentioned that for the hierarchical walk without interaction E0

(
|XT |

)
grows

as
√

T so Theorem 3.4 shows that the interaction changes this law to
√

T log1/8 T .
A preliminary discussion of this theorem appeared in [Imb94]

4 Analysis of Remainders and Outlook

In this final section we look at methods for controlling the remainder after perturbation
theory. For example how are the bounds on remainders (3.8) obtained? Our discussion
is based on [BIa, BIb]. After considering hierarchical lattices we turn to perturbations of
Gaussian random fields on RD.

At various places we will be assuming that the parameter L defining the hierarchical
lattice is large and that the coupling constant λ that measures the strength of the repulsion
of the walk is small, depending on L. However we did not include the hypothesis L large in
our main Theorem 3.4 because it can be assumed with no loss of generality. For example if
L = 2 we conglomerate p RG maps into one with a new L = 2p.

35



4.1 Norms

Let X be a subset of the state space Λ. We consider forms on CX . Let

dφα =
∏
x∈X

dφαx
x dφ̄ᾱx

x ,

where each αx and ᾱx can be any non-negative integer, but only zero or one give nonvanishing
contributions because differentials are raised to a power using the wedge product. Thus zero
means “omit this differential” and one means “retain this differential”. Any smooth form
FX on CX can be uniquely expanded as

FX =
∑
α

1
α!

F
(α)
X (φ) dφα.

We have put in a factor α! =
∏

x αx!ᾱx! even though it equals one to underline a formal
similarity with Taylor series. Thus we write F

(α,β)
X for a derivative of F

(α)
X (φ) with respect

to φ (or φ̄) and define, for h ≥ 0,

‖FX‖h ≡ ‖FX‖a,h :=
∑
α,β

hα+β

α! β!
sup

φ

∣∣F (α,β)(φ) w−X(φ)
∣∣,

where w−X(φ) =
∏

x∈X w−1(φx) is a Gaussian weight

w(φx) = e−aφxφ̄x

and the supremum is taken over φ ∈ CX . When a retains the same value throughout an
equation we drop it from the notation.

The parameter a places a Gaussian bound on decay (a positive) or growth (a negative)
of FX as a function of φ at infinity. As a → −∞ the weight concentrates the supremum
towards φ = 0 so that

|FX |h :=
∑
α,β

hα+β

α! β!

∣∣F (α,β)(0)
∣∣

is the limit of ‖FX‖a,h. These norms were defined in [BEI92] and are reviewed in [BIb].
We generally use lower case letters such as r or g for forms on CX when X is the origin

in the hierarchical lattice. We write gx ≡ g{x} for a form on CX when X is the set consisting
of the single state {x} and set

gX :=
∏
x∈X

gx.

The order of the product need not be specified if at most one of the forms gx contains terms
of odd degree.

Our default choices are h = |λ|−1/4 and a = h−2 because then, by scaling φ = hφ′,

‖e−λτ2
‖a,h = ‖e−τ2

‖1,1 < ∞

For a proof of the inequality, see [BEI92].

36



Reviewing definitions we recall that the RG transformation maps the parameters λ, β
and r to new parameters λ′, β′ and r′ such that,

e−β′τ
(
e−λ′τ2

+ r′
)

= SµΓ ∗
(
e−βτ [e−λτ2

+ r]
)G1

.

with β′ and λ′ chosen so that r′ is normalized :

r′(t) = O
(
t3

)
. (4.1)

As a step on the way to solving these equations for the new parameters we first consider

e−β̃τ
(
e−λ̃τ2

+ r̃
)

= SµΓ ∗
(
e−βτ [e−λτ2

+ r]
)G1

. (4.2)

where β̃ and λ̃ are not yet fixed so that (4.1) is satisfied. When r = 0 the solution for r̃ is

r′main := eβ̃τSµΓ ∗
(
e−βτe−λτ2)G1 − e−λ̃τ2

.

β̃ and λ̃ are chosen so that, as a formal series in λ, r′main vanishes to order λ3. This of course
includes a claim that this is possible — let us return to that later.

Let B(1/2) be the ball of radius 1/2 centered on the origin in the complex plane. r′main

is an explicit functional so we can prove that there is a constant KL such that for λ ∈ Dλ

and β ∈ B(1/2) +Dβ ,

‖r′main‖ := |λ|−2
∣∣r′main

∣∣
h=1

+
∥∥r′main

∥∥
h
≤ KL|λ|.

We will comment on this more later. Recall that Dλ included a restriction |λ| < δ. The last
claim and the next lemma rest on the hypothesis that this δ is small depending on L. r′main

is the main part of r′ in the following sense:

Proposition 4.1. Let λ ∈ Dλ, β ∈ B(1/2) + Dβ. For L sufficiently large, ‖r‖ ≤ 2KL|λ|
implies ‖r′‖ ≤ 2KL|λ′|

This is important because it tells us that r′ is inconsequential for as long as λ, β remain
inside their domains. On the other hand, by second order perturbation theory, (3.7),

λ′ = λ− 8Bλ2

(1 + β)2
,

up to an error controlled by |r|h=1 ≤ λ2‖r‖ ≤ 2KLλ3, so we have a mechanism to verify
that λ, β do remain inside their domains.

β generically becomes large because the recursion (3.7) has the factor L2, but this need
not invalidate perturbation theory in λ for the following reason. Recall that Γ = Γ(β) was
defined in Proposition 3.1. We take advantage of e−βτ being Gaussian to move it past µΓ

by the identity,
SµΓ(β1) ∗

(
e−βτ

)G1
F = e−L2βτSµΓ(β1+β) ∗ F, (4.3)

for F a form on CG1 . For as long as the real part of (1 + β)−1 remains positive and
bounded, there are good estimates on convolution by µΓ. For example we can control an
RG transformation for <β ≥ −1

2 .
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Thus, we can reach a half plane as the domain for β, but how do we reach β in a sector
Dβ that has an opening angle larger than π? This is obtained by an analytic continuation
in the initial β using the change of contour of integration

φx → eiθφx,

φ̄x → eiθφ̄x,

which is equivalent to

β → e2iθβ,

λ → e4iθλ,

Γ → e−2iθΓ.

This analytic continuation is not just valid for hierarchical models. For the nearest-neighbor
walk on Zd, it follows from

Gλ(β, b) =
∑

ω:o→b

∏
x

∫ ∞

0

dt e−(2d+β)t−λt2 tNx−1

(Nx − 1)!
,

where Nx is the number of visits to site x, by the rotation of contour t → e2iθt.
By combining these ideas there are good estimates for β in B(1/2) + Dβ . This domain

for β is large enough to contain the global trajectories we need for our analysis of the inverse
Laplace transform.

In the hierarchical model, the τ3 correction in the second order perturbation,

@
@

@
@

�
�

�
�

�
�

�
�

@
@

@
@

x y

vanishes because
∑

y Γ(β, x−y) = 0. If we did not have this property, it would be impossible
to choose β̃ and λ̃ in (4.2) so as to make r̃ = O(λ3) because r̃ would contain this O(λ2)τ3

term.
Let us conclude with a brief explanation for the O(λ) bound on ‖r′main‖. The remainder

after second order perturbation theory is roughly speaking third order perturbation theory
times exp(−λτ2). One of the third order Feynman diagrams is
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This diagram is a polynomial in φ, φ̄ and dφ, dφ̄ of degree 6 because there are six external
legs. Since there are three vertices there is a factor λ3. By scaling φ = hφ′ we find that
‖λ3φ6 exp(−λτ2)‖a,h equals |λ|3h6‖φ6 exp(−τ2)‖1,1 ≤ c|λ| because h = |λ|−1/4.

4.2 Sketch of Proof of Lemma

The norm has the following properties,

1. If X and Y are disjoint,
∥∥FXGY

∥∥
h
≤ ‖FX‖h‖GY ‖h.

2. for a ≥ 0,
∥∥SFX

∥∥
a,h

=
∥∥FX

∥∥
a/L2,h/L

.

3. For h′ > h,

∥∥F
(α,β)
X

∥∥
h
≤ (α + β)!

(h′ − h)α+β
‖FX‖h′ .

4. Convolution by µ ≡ µΓ is almost the identity: Let X ⊂ G1 and a ≥ 0,∥∥Sµ ∗ FX − SFX

∥∥
2a,h

≤ cLh−2 ‖FX‖a,2h/L.

This bound holds for the complex covariance Γ(β), when <β > −1/2.

5. Suppose r(t) is a smooth function of a real variable t with r(t) = O
(
t3

)
as t → 0. It

determines a form r on C by substituting τ := τx in place of t, where x is the origin
in Λ. Then, ∥∥r e−λτ2∥∥

h
≤ O

(
L−6

)
‖r‖Lh/2.

To focus on some of the important ideas we will omit the β parameter from all formulas.
This is not too disgraceful because most of it goes into the covariance by (4.3). Keep in
mind the order of choice of parameters: first L is chosen large and then the domain of λ is
fixed, in particular |λ| ≤ δ with δ small depending on L.

We will focus on the ‖r̃‖h part of

‖r̃‖ = |λ|−2
∣∣r̃∣∣

h=1
+

∥∥r̃
∥∥

h
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By expanding r̃ in r in (4.2) we obtain

r̃ = Sµ ∗
(
e−λτ2

+ r
)G1 − e−λ̃τ2

= r′main +
∑

X⊂G1,
|X|≥1

Sµ ∗
{

rX
(
e−λτ2)G1\X

}

The first principle is that all the terms in the sum which contain two or more factors of r
are inconsequential simply by choosing λ small depending on L. In more detail∥∥∥∥ ∑

X⊂G1,
|X|≥2

S
{

rX
(
e−λτ2)G1\X

}∥∥∥∥
2h

≤
∑

X⊂G1,
|X|≥2

∥∥∥S{
rX

(
e−λτ2)G1\X

}∥∥∥
2h

and by property (2)
≤

∑
X⊂G1,
|X|≥2

∥∥∥rX
(
e−λτ2)G1\X

∥∥∥
2h/L

followed by property (1)
≤

∑
X⊂G1,
|X|≥2

‖r‖X
2h/L‖e

−λτ2
‖G1\X
2h/L

The norms are increasing in 2h/L ≤ h so we can bound in terms of ‖r‖h ≤ KL|λ| and
‖ exp(−λτ2)‖h ≤ c. There are only an L dependent number of terms in the sum so∥∥∥∥ ∑

X⊂G1,
|X|≥2

S
{

rX
(
e−λτ2)G1\X

}∥∥∥∥
2h

≤ cL|λ|2 (4.4)

for some L dependent constant cL. By property (4) we can get the same type of bound with
Sµ∗ in place of S in (4.4). (4.4) is bounded by cλ for any c by choosing cL|λ| < c.

Next consider ∥∥∥∥ ∑
x∈G1

S
{

rx

(
e−λτ2)G1\{x}

}∥∥∥∥
2h

Since there are L4 terms in the sum and S(AB) = S(A)S(B)

≤ L4
∥∥S(r)S

(
e−λτ2)G1\{x}∥∥

2h

By unraveling the definition of S, the second factor is exp(−a(L)λτ2) where a(L) = 1−L−4

so
= L4‖S(r)e−a(L)λτ2

‖2h

As it stands, a bound by the desired 2KL|λ| looks hopeless because of the L4, but this is
where the normalization (4.1) of r comes to the rescue. Since r(t) = O(t3) we may use
property (5)

≤ L4O(L−6)‖S(r)‖Lh
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so that by property (2) and ‖r‖h ≤ KL|λ|∥∥∥∥ ∑
x∈G1

S
{

rx

(
e−λτ2)G1\{x}

}∥∥∥∥
2h

≤ O(L−2)KL|λ|

By property (4) we can replace S by Sµ∗.
Collecting these bounds we have

‖r̃‖2h ≤ KL|λ|+O(L−2)KL|λ|+ cL|λ|2 ≤
3
2
KL|λ|

by choosing L large so that O(L−2) ≤ 1
4 and then the domain of λ so that cL|λ| ≤ 1

4KL.
These arguments have given some idea of why the norm ‖r‖h is suited to analysis of the

RG. We leave this argument now with the remark that the rest of the proof is an argument
that the norm of r̃ is almost the same as the exactly normalized r′ such that

e−β̃τ
(
e−λ̃τ2

+ r̃
)

= e−β′τ
(
e−λ′τ2

+ r′
)

This is because r̃ is already normalized to order λ2 and we can use the |λ|−2|r̃|h=1 ≤ ‖r̃‖
part of the norm to show that at most O(λ3) changes in λ̃ and β̃ suffice to get an exact
normalization.

4.3 Outlook

We turn to the case where φx is a Gaussian random field on RD and elaborate on the remarks
below Theorem 2: in what sense is second order perturbation theory in the running coupling
constant a uniform approximation to the exact effective interaction W? It may not be a
good idea to try to answer this question too completely because the attempt to construct the
exact effective interaction W will encounter the dreaded “Large Field problem5”. Roughly
speaking, when Λ is large, it will contain a region X ⊂ Λ where φ is much larger than is
typical for a φ distributed according to the Gaussian measure µ[0,∞]. In such a region X,
perturbation theory for W becomes very inaccurate. Furthermore estimates on |W | are not
a good idea in these regions because they will lose critical information on the sign of W . In
these anomalous regions exp(−W ) is very small because W is large positive.

We will not construct W , but instead write the integrand exp(−W ) in a way that resem-
bles the

∏
x(exp(−vx) + rx) used in the hierarchical model. Firstly, for uniformity in Λ, it is

essential to represent the integrand in a way that quantifies multiplicativity: For example,
suppose that Λ is partitioned into half-open unit cubes ∆. Then

e−
R
Λ v(φx) dx =

∏
∆⊂Λ

e−
R
∆ v(φx) dx

exemplifies a functional that is exactly a product of local factors. Secondly, a representation
based on exp(−vx) + rx permits norm estimates on r whereas a norm on W runs afoul of
the large field problem. Thirdly, we can examine the error after perturbation theory in
terms of the difference between exp(−vx) + rx and some perturbative approximation. For

5For general background related to the “large field problem” see [VEFS93].
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example we can use first order perturbation theory to construct an optimal v and then r is
the remainder. Second order perturbation would involve splitting r into an explicit second
order part determined by calculation and a new remainder which would carry the estimates.

Suppose we have a Gaussian random field φx, where x ∈ RD, with a covariance C[0,∞]

that admits a scale decomposition:

C[0,∞)(x, y) =
∑
j≥0

SjC(x, y) (4.5)

where C(x, y) = C(x− y) is a positive-definite smooth function and

SC(x, y) = L−2[φ]C(x/L, y/L).

Given an integral scale decomposition as in (2.11), we can get a discrete decomposition by
breaking the range of integration into intervals [j, j + 1) with j = 0, 1, . . . and letting C be
the integral over [0, 1). The Renormalization Group (RG) map is

T := SµC∗

We shall be interested in its action on bounded smooth functionals ZX(φ) defined on the
Banach space Cp(X), where X is a nice subset of RD. φx becomes an element of Cp(X) by
restricting x to X.

The objective is to prove a result that takes the place of Proposition 4.1. We will stay
close to the hierarchical model if we also assume that the covariance C that generates the
scale decomposition is finite range:

C(x, y) = 0 if |x− y| ≥ 1− ε (4.6)

The class of covariances that admit a scale decomposition into scalings of a finite range,
smooth and positive-definite C(x, y) must be very small, but if we relax the condition that
terms in the decomposition be exact scalings of a single function by allowing

C[0,∞)(x, y) =
∑
j≥0

SjCj(x, y), (4.7)

where Cj is uniformly bounded in a suitable norm, then it is much larger and this is good
enough for our purposes. The main criterion in choosing the norm is that ‖Cj‖ should
control fluctuations in unit cubes ∆ for the Gaussian process whose covariance is Cj :

P (‖ζ‖Cp(∆) > A) ≤ exp(−‖Cj‖A2).

In [Bry01] we show that there are such scale decompositions for inverses of certain elliptic
partial differential operators. There are enough examples to show that scale decompositions
exist for the important cases but it would be interesting to have a useful characterization of
covariances that have such scale decompositions.

The next task is to describe the structure of functionals on which T will act. We partition
RD into (half open) unit cubes ∆ centered on ZD. All sets, X, Λ, . . . are required to be unions
of such cubes, or the null set. Let

V (X) :=
∫

X

v(φx) dx,
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where v is a polynomial in φx and derivatives, such as

v(φx) = λ : φ4
x : + β : φ2

x : + ζ : (∂φx)2 : . (4.8)

Suppose g(∆) := exp(−V (∆)). We define

gX :=
∏

∆⊂X

g(∆).

For any other functional g̃(∆) we have the binomial expansion

gΛ =
(
g − g̃ + g̃

)Λ =
∑
X⊂Λ

g̃Λ\X(
g − g̃

)X
.

Let C be the Cj=0 in the decomposition (4.7). The RG map Tj=0 contains the convolution
µC ∗ F (φ) =

∫
dµC(ζ)F (φ + ζ). In the binomial expansion we set g∆ = g∆(φ + ζ) and

g̃∆ = g̃∆(φ) so that only the factors g − g̃ depend on the increment ζ and

µC ∗ gΛ =
∑
X⊂Λ

g̃Λ\XµC

(
(g − g̃)X

)
,

where (µCF )(φ) :=
∫

dµC(ζ)F (φ, ζ) is the expectation over the increment6 ζ. The set X
has a unique decomposition into connected components Xk. These connected components
are separated from each other by a distance greater or equal to one because X is a union of
unit cubes ∆. The finite range property of the covariance C of the increment implies that
increments ζx and ζy are independent for x, y in different connected components. Therefore

µC ∗ gΛ =
∑
X⊂Λ

g̃Λ\X
∏
k

µC

(
(g − g̃)Xk

)
.

Unlike the hierarchical model, the right hand side is no longer of form gΛ so we must look
for a more general class of functionals which will be closed under the action of µC∗.

We will use expressions of the form,

Exp[A](Λ) :=
∑

π:partition of Λ

∏
X∈π

A(X). (4.9)

where A(∅) = 0. (4.9) is called a polymer expansion and A is called a polymer activity. In
these lectures polymer activities also satisfy A(X) = 0 whenever X is not connected.

We define �(X) = 1X is a unit cube . Note that gΛ is a special case of a polymer expansion
in which A = g�, because in this case the only partition contributing to the sum in (4.9) is
the finest partition where all elements in the partition are unit cubes ∆. We will want A to
have the property that hardly any of it lives on large sets X so that the finest partition is
dominant in the polymer expansion.

6In probabilistic language we take the expectation conditioned on the sigma algebra generated by φ. A
natural choice for g̃(∆) is the conditional expectation of g(∆).
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We substitute A(X) = Ã(X) + A(X) − Ã(X) where A(X) = A(X, φ + ζ) and Ã(X) =
Ã(X, φ). The result is

Exp[A](Λ) =
∑

π

∑
π̃⊂π

∏
X∈π̃

Ã(X)
∏

Y ∈π\π̃

(A− Ã)(Y ) (4.10)

To take advantage of the independence resulting from the finite range property of C we glue
polymers together into larger polymers with sets Y ∈ π \ π̃ buried inside them so that these
larger polymers are independent. Therefore, define a map π, π̃ 7→ π′, where π′ is a new
partition, by declaring that

1. π′ is a coarser partition than π. (This condition is going to be changed below).

2. If Z ∈ π′ and Z ⊃ Y for some Y ∈ π \ π̃ then distance(Y, Zc) ≥ 1.

3. π′ is the finest such partition.

The first condition means that each set in π′ is a union of sets in π. The second condition
will make the new poymers independent. The last condition makes π′ unique. Finest means
that there is no way to refine the partition by splitting some set Z in π′ and still maintain
the first two properties. Let

Anew(Z) :=
∑

π,π̃ 7→{Z}

∏
X∈π̃

Ã(X)
∏

Y ∈π\π̃

(A− Ã)(Y ).

where π is now a partition of Z, π̃ ⊂ π and {Z} is the partition π′ of Z that consists of the
single set Z. We claim that

Exp[A](Λ) = Exp[Anew](Λ)
µC ∗ Exp[A](Λ) = Exp[µC(Anew)](Λ)

Proof: Rewrite (4.10) as the sum over all π, π̃ ⊂ π that map to a fixed partition π′ followed
by a sum over all partitions π′. ∑

π,π̃

=
∑
π′

∑
π,π̃ 7→π′

For π′ = {Z1, . . . , ZM}, ∑
π,π̃ 7→π′

=
∑

π,π̃ 7→{Z1}

· · ·
∑

π,π̃ 7→{ZM}

.

This proves the first claim. The second claim is an immediate consequence of condition (2)
in the definition of π, π̃ 7→ π′.

Recall that there is a rescaling in T. The problem is that the rescaling S shrinks unit
cubes to cubes of side L−1∆ centered on (L−1Z)D. We intend to forestall this trend towards
finer sets by making a small change in condition (1) in the definition of π, π̃ 7→ π′ so that,
before S is applied, the new polymer expansion is based on sets made out of cubes of side
L.

To this end we partition RD into L-cubes of side L centered on (LZ)D. We say that Z is
an L-set if Z is a union of L-cubes. We require that L be an integer so that each L-cube is a
union of cubes ∆. For Z a union of L-cubes we define an L-polymer expansion ExpL[A](Λ)
by (4.9) but with partitions π of Λ into L-subsets. We change (1) to
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1. π′ is a coarser partition than π and the sets Z ∈ π′ are L-sets

Then

• Exp[A](Λ) = ExpL[Anew](Λ)

• µC ∗ Exp[A](Λ) = ExpL[µC(Anew)](Λ)

• S
[
ExpL[A](Λ)

]
= Exp[SA](L−1Λ)

Thus the action of T on Exp[A] is equivalent to the composition TExp of the maps A 7→ Anew

followed by A 7→ µC(A) followed by A 7→ S[A]. Our conclusion is

TExp[A](Λ) = Exp[TExpA](L−1Λ)

Guided by the hierarchical case, we write

A(X) = �(X)e−V (X) + R(X)

where V =
∫

v(φx)dx and v is a polynomial such as (4.8) which is determined by running
coupling constants ~λ. We introduce a carefully chosen Banach space for the functionals R
as follows. First, R(X) must have nder derivatives, Rj with j = 0, 1, . . . , nder. These are
j-multilinear functionals

f1, . . . , fj 7→ Rj(X, φ; f1, . . . , fj)

on Cp(X), bounded in the natural norm

‖Rj(X, φ)‖ := sup
f1,...,fj

∣∣Rj(X, φ; f1, . . . , fj)
∣∣

where each fi is in the unit ball of Cp(X). We remove the φ dependence by taking a weighted
supremum over φ,

‖Rj(X)‖G := sup
φ
‖Rj(X, φ)‖G−1(X, φ),

G is a weight which controls growth in φ. Then we set

‖R(X)‖G,h :=
nder∑
j=0

hj

j!
‖Rj(X, φ)‖

and we remove the X dependence by

‖R‖G,h,A =
∑
X30

‖R(X)‖h A|X|. (4.11)

|X| is the number of cubes ∆ in X and A is a (large) positive number so that a small
norm ‖R‖G,h,A means that R is almost supported on sets X which are single cubes. There
is also |R|A,h in which the supremum over φ is replaced by evaluation at φ = 0. We set
‖R‖ := ‖R‖G,h,A + λ−2|R|h=1,A. If R is not translation invariant under translation of X
and φ, then the

∑
X30 in (4.11) is replaced by supδ

∑
X⊃∆.
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A functional F (Λ, φ) can be written in more than one way as Exp[�e−V + R](Λ) and
thus does not determine (~λ, R) unless one imposes normalization conditions on the first few
terms of the Taylor expansion ∑ 1

j!
Rj(X, 0; φ, . . . , φ)

of R. These normalization conditions have the same role as in the hierarchical case and
their content is that the Taylor series of R should not contain terms such as

∫
: φ4 : that

can be canceled by a change of v. Therefore T is composed with a further map E that
normalizes R by a shift in v. The composition ETExp induces the action (~λ, R) 7→ (~λ′, R′)
on the coordinates. The maps E is studied in detail in [BDH98a].

To control the remainder after first order perturbation theory, one defines the main part
of the remainder

r′main := TExp[A]− Ã with A = exp(−V )�

where Ã equals exp(−V )� with new coupling constants

λ → L−4[φ]+Dλ, β → L−2[φ]+Dβ, ζ → ζ, etc.

as explained in subsection 2.7.
The analogue of Proposition 4.1 is a result of the form: for L sufficiently large and ~λ

sufficiently small depending on L, if ‖R‖ ≤ 2K|λ|q, then ‖R′‖ ≤ 2KL|λ|q.
In dimension D > 4, a first order result like this can control the remainder for all

iterations of the RG because the factor L−4[φ]+D decreases λ so that the hypotheses remain
true. More details will be given in [Bry01, BMS]. The papers [BDH95, BDH98b] follow the
same general scheme, but with second order perturbation theory.

4.4 Strong Coupling

These lectures have concentrated entirely on the case λ small where the perturbation to the
Gaussian is small. Correspondingly, for self-repelling walk, the self-repulsion is small. There
are very interesting problems for the case where λ is large. In Constructive QFT, Glimm-
Jaffe-Spencer [GJS76a, GJS76b] found convergent expansions for strong coupling λφ4 and
proved that λ � 1 forces broken symmetry: two pure phases selected by φx = ± const. By
the τ isomorphism, the case where φ is complex is relevant to the study of polymers with
strong self-interactions. Strong self-interactions

∑
v(τx) with the property that v(t) has a

minimum at t > 0 should entice a polymer into assuming a collapsed configuration instead
of an extended configuration so that the expected end-to-end distance grows very slowly if
at all with the number of steps. Can one use the RG to study correlations in these cases?
A stab at the hierarchical case was made in [GI95].

The analysis of integrals
∫

dφ exp(−S(φ)) where φ is complex and the minima of the
action S(φ) are at φ 6= 0 is hard because the symmetry φx → eiθφx implies that the action
has degenerate minima on an S1 orbit. Fluctuations φx → eiθxφx where θx varies slowly
with x are not well coerced by S when Λ is large. Nevertheless, RG expansions which are
uniform in Λ have recently been constructed for the lattice model by Balaban [Ba l95, Bal96a,
Bal96c, Bal96b, Bal98b, Bal98c, Bal98a]. In principle his methods should apply, via the τ
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isomorphism, to self-interacting walk problems. This could give very complete results on
correlations for collapsed phases of self-interacting walks. The mean field theory of broken
symmetry for the supersymmetric model is the image under the τ isomorphism of Donsker-
Varadhan theory [Lut83, BMM91, BS95, BS97]. Balaban’s methods are in principle capable
of very accurately controlling corrections to the Donsker-Varadhan large deviation principle
even for hard cases without compactness. But we need some creative simplifications to his
papers in order to start moving in this direction.
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