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Part 1. Equilibrium Statistical Mechanics
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Lecture 1. The Ideal Gas

During the 19th century chemists came to believe in the reality of indivisible units of matter,
but this atomic hypothesis was far from universally accepted outside their science. A major
question was whether thermodynamic concepts such as heat, temperature and entropy could
be deduced from a “kinetic theory” of matter as an assembly of particles moving according to
Newtonian mechanics. Ergodic theory began in the 1870’s with Boltzmann’s efforts to deduce
from kinetic theory the probability law on phase space which correctly predicts the time
averages of observables. In 1866 Maxwell independently postulated a Gaussian distribution
for particle velocities also based on kinetic reasoning. In 1878 J.W. Gibbs considered a more
general problem, namely to find the distribution of the states of the system in a subset of
a much larger domain. His proposed solution to this problem is called the grand canonical
ensemble. Due to fluctuation caused by the particles coming in and going out of the subset,
neither the number of particles nor the total energy in the subset is conserved and in fact it
is technically easier to work with probability laws that allow fluctuation in the energy and
number of particles. The grand canonical ensemble is the starting point for this course.

[Pai82] reviews the 19th century controversies over the existence of atoms and discusses
the origins of statistical physics.

Notation. For a set X,

(1.1) Xn = {(x1, . . . , xn) : xi ∈ X}
is the set of sequences in X with length n. By convention, X0 is a set with only one element,
written ().

(1.2) X∗ =
⋃

n≥0

Xn,

is the set of all sequences of arbitrary finite length. If x ∈ X∗, we write

(1.3) x = (x1, . . . , xN(x)),

and we write N = N(x).
If X ⊂ R

d we tacitly assume X is Lebesgue measurable and write |X| for the Lebesgue
measure of X. If X is a finite set, |X| denotes the number of elements in X instead. Functions
on R

d are always tacitly assumed Lebesgue measurable.
The indicator function is

(1.4) 1x∈X =

{
1 if x ∈ X,

0 else.

Let V : (Rd)∗ → R ∪ {+∞} be a function such that V (x) = 0 if x ∈ X0 and

(1.5) V (x) ≥ −cN(x).

The last condition is called stability.

Example 1.1. V (x) = −∑N(x)
i=1 φ(xi) where φ is bounded R

d → R; φ is called an external
field.

Example 1.2. For some v : R
d × R

d → R, V (x) =
∑

1≤i<j≤N(x) v(xi, xj); v is called a two

body potential. Conditions on v such that V is stable are discussed in the problems.
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1.1. The Grand Canonical Ensemble.

Definition 1.3. Let Λ ⊂ R
d, |Λ| < ∞. Let z ≥ 0. For E ⊂ Λ∗

(1.6) P(E) =
1

Z

∑

n≥0

zn

n!

∫

E∩Λn

e−V dx1 · · · dxn

is called the Grand Canonical Ensemble Gibbs measure, or simply the Gibbs measure, where

(1.7) Z =
∑

n≥0

zn

n!

∫

Λn

e−V dx1 · · · dxn

is the normalization factor such that P(Λ∗) = 1.

We use the stability condition of the potential to check that Z 6= ∞ so that P(E) is well
defined. In fact,

Z ≤
∑ zn

n!
|Λ|necn = ez|Λ|ec

< ∞.

Example 1.4. If V (x) = −∑N(x)
i=1 φ(xi), then

(1.8) Z = Z(φ) = exp(z

∫

Λ
eφ dx).

Notation. For F : Λ∗ → R, denote

(1.9) 〈F 〉 = EF =

∫
F dP =

1

Z

∑

n≥0

zn

n!

∫

Λn

e−V F dx1 · · · dxn.

Let X ⊂ Λ. A typical F is

(1.10) N(X, x) = # of particles of x in X =

N(x)∑

i=1

1xi∈X .

We are working with the probability space (Λ∗, P), where the σ-algebra FΛ is generated
by (NX , X ⊂ Λ), where

(1.11) NX = {N(Y ) : Y ⊂ X}.
The Gibbs measure PV =0 defined setting V = 0 in Definition 1.3 is known as the Ideal

Gas. We shall refer to the case V = −∑
φ(xi) as the Ideal Gas in External Field.

The Gibbs measure P of Definition 1.3 with V 6= 0 can be written in terms of PV =0 as
follows. For E ⊂ Λ∗,

P(E) =
1

Z

∫

E
e−V dPV =0, Z =

∫
e−V dPV =0.

Lemma 1.5 (Ideal gas). Let V = 0. Let X1, . . . , Xn ⊂ Λ, where |Λ| < ∞. Then
a) N(Xi) ∼ Poisson(z|Xi|);
b) if |Xi ∩ Xj | = 0 for i 6= j, then N(X1), . . . , N(Xn) are independent.

Proof. a) A Poisson(r) random variable Y has

(1.12) EetY =
∑

n≥0

rn

n!
e−retn = e−reret

= er(et−1).
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Since the generating function characterises the distribution it is sufficient to prove that NXi

also has this generating function, with r = (z|Xi|). Denote X = Xi. By Example 1.4, with
φ(x) = t1x∈X ,

(1.13)

∫
etN(x) dPV =0 =

1

Z

∑

n≥0

zn

n!

∫

Λn

etN(x) dx1 · · · dxn =
Z(φ)

Z(0)
= exp(z

∫

Λ
(eφ − 1) dx)

= exp(z(|X|et + |Λ − X| − |X| − |Λ − X|)) = exp(z|X|(et − 1)).

This proves a). The statement b) comes from a similar calculation and is left to the reader
(Problem 1.2). ¥

Lemma 1.6. If instead of zero potential V = 0 we consider V = −∑
φ(xi), then a) NXi ∼

Poisson(z
∫
Xi

eφ dx), and b) also holds.

Problems.

Problem 1.1. An n × n matrix A is said to be positive-definite if for all non-zero λ =
(λ1, . . . , λn) in C

n, ∑

1≤i,j≤n

λiAijλ̄j > 0.

If the inequality is not strict then the matrix is said to be positive-semidefinite. A continuous
function f : R → R is said to be positive-definite if for every x ∈ R

n, the matrix (f(xi −
xj))1≤i,j≤n is positive-semidefinite. Prove that:

(1) If f is positive-definite, then V given by a the two-body potential v(x, y) = f(x− y)
as in Example 1.2 satisfies the stability bound (1.5).

(2) If f is continuous and integrable so that the Fourier transform f̂(k) =
∫

f(x)e−ikx dx

exists, if f̂ ≥ 0, then f is positive-definite. (This is the “easy” half of Bochner’s

theorem.) Concentrate on the case where f̂ is also integrable, and then see exercise
8.4.30 in [Fol99] to remove this assumption.

This extends to R
d. Conjecture: Every two-body potential v(x, y) = f(x − y) such that V

satisfies (1.5) has the form f = non-negative function + positive-definite function.

Problem 1.2. Complete the proof of Lemma 1.5.

Problem 1.3. Prove the Ideal Gas Law which says, for V = 0,

(1.14) p|Λ| = T 〈N(Λ)〉,
where by definition, p/T = log(Z)/|Λ|. T is called the temperature; p is called the pressure.

Problem 1.4. Prove that 〈N(Λ)〉 is monotone in z.

Bibliography
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Lecture 2. Mean Field Theory

The next simplest case after the ideal gas is called mean field theory. It is important because
it exhibits the phenomena of a “phase transition”. In fact, it is a reasonable model for the
transition in which liquid water becomes steam. As you know from every day experience,
there is a very well defined temperature (100◦C), at which the density of water has a jump:
liquid water is much denser than steam.

Mean field theory should be formulated for the continuum models of last lecture, but in
order to avoid a problem with stability, we will consider lattice systems instead. The topics
of this lecture are: (1) how lattice systems are a special case of the continuum systems of
lecture 1, (2) the limit of Λ ր R

d, (3) mean field theory for lattice systems, and (4) phase
transitions.

[Min00] is a relatively friendly introduction to Gibbs measures. [Rue04] is a beautiful but
harder book on Gibbs measures. The idea of regarding lattice systems as a special case of
the continuum is explored in more detail in [RT09].

2.1. Notation. Paving R
d by blocks: Let L ∈ N. For x ∈ Z

d,

(2.1) B(x) = {y ∈ R
d : ‖y − Lx‖∞ < L/2},

where

(2.2) ‖y‖∞ = max
i=1,...,d

|yi| for y ∈ R
d.

B(x) is called a block. The set of all blocks is

(2.3) B = BL = {B(x) : x ∈ Z
d}.

Let P = P(Rd) where, letting B denote the closure of B,

(2.4) P(Λ) = {all finite unions of B, B ∈ B(Λ)}.
A set X ∈ P is called a polymer. For X ∈ P,

(2.5) |X|1 = |B(X)|
is the number of L = L1 blocks in X.

Choose L = 1 for this and the next lecture.

2.2. The random variables. After paving by blocks we are only interested in

(2.6) N(B) = # of particles in B,

(2.7) N =
∑

B∈B(Λ)

N(B) = # of particles in Λ,

(2.8) NX = (N(B) : B ∈ B(X)), X ∈ P,

and

(2.9) FX = σ(NX).

F ∈ mFX means that F is measurable with respect to FX .
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2.3. The infinite volume limit. This refers to studying the joint distributions of NX ,
X ∈ P, in a limit

Λ1 ⊂ Λ2 ⊂ · · · , Λi ∈ P,
⋃

i≥1

Λi = R
d.

An infinite volume limit is a probability space (Ω∞, P∞) carrying random variables (N(B), B ∈
B) such that for some sequence Λi, for every X ∈ P,

(2.10) lim
i→∞

PΛi{NX = n} = P∞{NX = n}.

Later in these lectures, when we encounter random variables which are not discrete (do
not take values in N0), we will use the notion of weak convergence, which is equivalent to
demanding that expectations of all bounded continuous functions of NX converge to infinite
volume expectations.

2.4. Mean field theory. For β > 0, mean field theory is defined by

(2.11) V =

{
∞ if N(B) > 1 for some B ∈ B(Λ)

− β
|Λ|1

N2

2 else.

Let

(2.12) Ω = {0, 1}B(Λ).

For n ∈ Ω,

(2.13) zn =
∏

B∈B(Λ)

zn(B),

(2.14) H(n) = − β

2|Λ|1


 ∑

B∈B(Λ)

n(B)




2

.

Then, under the grand canonical ensemble,

(2.15) P{NΛ = n} =

{
1
Z zne−H(n) n ∈ Ω,

0 n 6∈ Ω,

and

(2.16) Z =
∑

n∈Ω

zne−H(n).

Proof. Since V ∈ mFΛ

∫

NΛ=n
e−V dPV =0 =

{
e−H(n)

PV =0{NΛ = n} n ∈ Ω

0 n 6∈ Ω

and for n ∈ Ω,

e−H(n)
PV =0{NΛ = n} = e−H(n)

∏

B∈B(Λ)

(
zN(B)

N(B)!
e−z

)
= e−H(n)zne−z|Λ|1 .

Dividing by the normalization and using

P(E) =
1

Z

∫

E
e−V dPV =0,
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the result follows. ¥

The argument never used the specific form of V beyond V ∈ mFΛ, so by the same
argument, a lattice model arises whenever, for the continuum model V ∈ mFΛ, and this is
equivalent to

(2.17) v(x, y) = v([x], [y]) a.e. Lebesgue

in Example 1.2. [x] is the point in Z
d closest to x ∈ R

d, in the sense that x ∈ B if and only
if B = B([x]). [x] is well-defined a.e. in x ∈ R

d.

Proposition 2.1. In the infinite volume limit, for every X ∈ P the probability law for NX

is a convex combination of Bernoulli(1 : zeφ) where φ is a constant in the set M0 of global
minima to

(2.18) S(φ) =
1

2β
φ2 − log(1 + zeφ).

In more detail, if (β, z) 6∈ {zeβ/2 = 1} or if β ≤ 4 there is a unique global minimum φ and

(2.19) P{NX = n} =
∏

B∈B(Λ)

(
(zeφ)n(B)

1 + zeφ

)
, n ∈ Ω(X).

Otherwise |M0| = 2 and

(2.20) P{NX = n} =
1

2

∑

φ∈M0

∏

B∈B(Λ)

(
(zeφ)n(B)

1 + zeφ

)
.

Recall:

Y ∼ Bernoulli(1 : t) means Y =

{
1 with probability t

1+t

0 with probability 1
1+t

Discussion. Let p ∈ [0, 1]. There exists a probability space (Ω
(p)
∞ , P

(p)
∞ ) on which are defined

random variables

(2.21) (N(B), B ∈ B(Rd)), N(B) : Ω(p)
∞ → N

and under the law P
(p)
∞ all these random variables are independent Bernoulli(p). By taking

two copies, each carrying 1/2 probability, we define a new probability space

(2.22) (Ω∞, P∞), Ω∞ = Ω(p1) ∪ Ω(p2)
∞

(2.23) P∞|
Ω

(pi)∞
=

1

2
P

(pi)
∞ (i = 1, 2)

with an additional random variable

(2.24) ρ =

{
p1 on Ωp1

∞

p2 on Ωp2
∞

Choose pi = zeφi

1+zeφi
, φ ∈ M0, i = 1, 2 as in (2.20). Then (Ω∞, P∞) is the infinite volume

limit of mean field theory in case (2.20): For X ∈ P, Proposition 2.1 says

(2.25) lim
i→∞

PΛi{NX = n} = P∞{NX = n}
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However, ρ is not as new as it looks because we can create it from the random variables
(N(B), B ∈ B(Rd)) by the construction

(2.26) ρ = lim
Xր

1

|X|1
∑

B∈B(X)

N(B) a.s. P∞

Proof. Under P∞(·|ρ) the random variables N(B) are independent with expectation ρ so by
the strong law of large numbers

1

|X|1
∑

B∈B(X)

N(B) → E(N(B)|ρ) = ρ,

and a.s. P∞(·|ρ) convergence implies a.s. P∞ convergence. ¥

If we define FX to be the σ-algebra generated by NX , then (2.26) implies ρ is FXc

measurable for all X. In down to earth language, ρ does not depend on NX because the
|X|1 → ∞ limit in (2.26) washes out the contribution from NX . Thus ρ is T -measurable
where

(2.27) T =
⋂

X⊂Rd

FXc .

T is called the tail σ-algebra or the algebra at ∞. We say it is non-trivial because it contains
sets which have probability 6= 0 or 1; equivalently, there are non-constant T -measurable
functions such as ρ.

In case (2.19) the infinite volume limit is (Ω
(p)
∞ , P

(p)
∞ ), p = zeφ/(1+zeφ), φ ∈ M0 is unique.

In this case the only T -measurable functions are constants, by the Hewitt-Savage 0-1 law.
Physically, φ is the density. In case (2.20) the system has two co-existing “phases”, one

has a higher density than the other, much like liquid water and gaseous water. The 1/2:1/2
mixure of the two is caused by me trying to keep it simple.

By only allowing a simplified form of V for mean field theory, I have only revealed the
convex combination with coefficients 1/2 and 1/2. The infinite volume limit is normally set
up in a more general way which includes in V an external field term that represents the
interaction of particles inside Λ with a fixed configuration of particles outside Λ. By taking
these more general infinite volume limits, one can achieve other convex combinations.

Problems.

Problem 2.1. For v(x, y) as in (2.17) find H(n) so that (2.15) holds. In other words, express
∑

1≤i<j≤N(x)

v(xi, xj)

as an explicit function of the random variables (N(B) : B ∈ B).

Problem 2.2. Ising models are usually expressed in terms of

(2.28) ΩIsing = {−1, 1}Λ∩Z
d
,

e.g.

(2.29) ZIsing =
∑

σ∈ΩIsing

e
β

P

x,y∈Λ∩Zd σxσy .

What Ising model is “the same as” our mean field theory in the case (2.20)? (n = 0, 1 ↔
σ = −1, 1)
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Problem 2.3. Look up the de Finetti theorem in [Dur91] or any other good textbook, and
explain what it has to do with mean field theory.
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Lecture 3. Laplace’s Principle and Mean Field Theory

The main goal of this lecture is to prove Proposition 2.1. The secondary goal is to discuss the
place of this result relative to the original goal of proving that the grand canonical ensembles
constructed from potential that are more realistic than the mean field theory interaction also
have ‘liquid-to-gas’ phase transitions. Very few continuum particle systems in the continuum
are rigorously known to have such phase transitions.

We begin with a technical lemma (Lemma 3.1) which encapsulates a principle due to
Laplace and then give the proof of Proposition 2.1. Notice the step marked with an excla-
mation point in this proof because we will re-use the same principle of expressing a two body
interaction as a mixture of external fields.

Further Reference: [BF82]

Lemma 3.1 (Laplace). Let S be a continuous function on R
n which has a unique global

minimum at x0. Furthermore, assume that
∫

e−S dx is finite and {x : S(x) ≤ S(x0) + 1} is
compact. Then

(3.1) lim
t→∞

1

(f = 1)

∫
e−tSf dx = f(x0)

for any bounded continuous f : R
n → R.

The notation (f = 1) stands for the appropriate normalization. The idea behind the
lemma is that outside of the minimal value of S, the term e−tS will decay fast, resulting in
a delta function.

Proof. Consider
Mǫ = {x : S(x) ≤ S(x0) + ǫ}

For ǫ > 0, it contains {x : S(x) < S(x0) + ǫ}, which is open because S is continuous.
Therefore, ∫

Mǫ

e−Sdx 6= 0, ǫ > 0

If U is an open set containing x0, then U c∩M1 is compact. So S has a minimum on U c∩M1,
which cannot equal x0. Thus, there is ǫ > 0 such that

S(x) ≥ S(x0) + ǫ x 6∈ U.

We can, without loss of generality, assume that S(x0) = 0. Let

It(E, f) =

∫

E
e−tSfdx, E ⊂ R

n

Then,

It(U
c, f) ≤ ‖f‖∞ e(1−t)ǫ

∫
e−Sdx

It(R
n, 1) ≥ It(Mǫ/2, 1)

≥ e(1−t)ǫ

∫

Mǫ/2

e−Sdx.

Therefore,

(a)
It(U

c, f)

It(Rn, 1)
→ 0 as t → ∞
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and

(b)
It(U, 1)

It(R, 1)
→ 1.

Let ǫ > 0. Choose U such that |f(x) − f(x0)| < ǫ for x ∈ U . Then using (a), we have

It(R, f)

It(R, f)
=

It(U, f)

It(R, 1)
+ o(t)

≤ (f(x0) + ǫ)
It(U, 1)

It(R, 1)
+ o(t)

Using (b) this gives an upper bound in terms of f(x0) + ǫ. Likewise, a lower bound can be
found in terms of f(x0) − ǫ. ¥

Proof of Proposition 2.1. Let F = INX=n and α =
β

|Λ|1
. Then:

〈F 〉MFT,Λ =
1

(F = 1)

∑

n∈Ω

zne−HF

=
1

(F = 1)

∑

n∈Ω

zneα N2

2 F

=
1

(F = 1)

∫ ∑

n∈Ω

zneφNFe−
φ2

2α dφ.(!)

(!) is a direct consequence of a Laplace transform of a Gaussian:

1√
2π

∫
e−

φ2

2α eφNdφ = e
1
2
αN2

Define

〈F 〉φ,Λ =

∑
zneφNF∑
zneφN

.

Since F ∈ mFX ,
〈F 〉φ,Λ = 〈F 〉φ,X .

This is because the Bernoulli random variables are independent, or more concretely, by ex-
plicitly expanding the numerator and the denominator in terms of X and Λ\X and factoring
the terms reliant on Λ\X. Since

∑

n∈Ω

zneφN =
∑

(zeφ)n = (1 + zeφ)|Λ|1 ,

we have

〈F 〉MFT,Λ =
1

(F = 1)

∫
(1 + zeφ)|Λ|1 〈F 〉φ,X e−

φ2

2α dφ

=
1

(F = 1)

∫
e−|Λ|1S(φ) 〈F 〉φ,X dφ.

Now we take the infinite volume limit as |Λ|1 → ∞.
If (z, β) are such that S has a unique global minimum φ then Lemma 3.1 and the choice

F implies that, as |Λ|1 ր ∞
〈F 〉MFT,Λ → 〈F 〉φ,X = PBernoulli{NX = n}
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Figure 3.1. The plots from left to right represent the curves where β > 4,
β = 4 and β < 4. It can be seen that for β < 4, the curve is convex.

Claim. Analysis of S(φ) shows that S(φ) has a unique global minimum if β ≤ 4 or if

zeβ/2 6= 1.

If β > 4 and zeβ/2 = 1, Lemma 3.2 implies that there are two global minima related by
symmetry. With the symmetry it is trivial to modify Lemma 3.1 to finish the case (2-phase).

The claim is not fully proved in these notes but see Figure 3.1 for an idea of the situation.
¥

Lemma 3.2. For (β, z) ∈ {zeβ/2 = 1}

(3.2) S(φ) =
η2

2β
− log(e−η/2 + eη/2) + Cβ,2

where η = φ − β/2. There are two global minima φ = β/2 ± ηc when β > 4, otherwise there
is one global minimum.

Proof of Lemma 3.2. Let φ = ξ + η, then

log(1 + zeφ) = log(1 + zeξeη)

By choosing ξ so that zeξ = 1, then

log(1 + zeφ) = log(1 + eη) = log eη/2(e−η/2 + eη/2) = η/2 + log(e−η/2 + eη/2)

Also, as
φ2

2β
=

ξ2

2β
+

ξη

β
+

η2

2β
then

S(φ) =
ξ2

2β
+

(
ξ

β
− 1

2

)
η +

η2

2β
− log(e−η/2 + eη/2)

If
ξ

β
=

1

2
, then we have the formula for S(φ) claimed in the Lemma. If (β, z) ∈ {zeβ/2 = 1},

then we can simultaneously solve
ξ

β
=

1

2
and zeξ = 1 as required. It is easy to check convexity

iff β ≤ 4. ¥

3.1. Graphical interpretation. The global minima are among the solutions to

(3.3)
∂S

∂φ
= 0

which is

(3.4)
1

β
φ =

zeφ

1 + zeφ
.
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Figure 3.2. A plot of
∂S

∂φ
against φ for β > 4

Let ξ2 be the maximum and ξ1 and ξ3 be local minima.
Then, using the notation in Figure 3.1, we have that

(3.5) S(ξ1) = S(ξ2) − A, S(ξ3) = S(ξ2) − B.

For two global minima the areas, A and B, must be equal. When P is the point of inflexion
of f(φ) the two areas, A and B, are equal because f is odd about P . To fully prove the
1-phase case of Proposition 2.1 we have to show that the two areas A and B are not equal
if ξ2 is not a point of inflexion.

Discussion. Consider the grand canonical ensemble with V built from the 2-body potential

v(x, y) =

{
∞ if |x − y| ≤ 1

ℓ−df
(
‖x−y‖

ℓ

)
else

(3.6)

where f ≥ 0 and
∫

fdx = 1. The

• The limit ℓ → ∞ is called the Kac limit [Kac59]. Intuitively one expects mean field
theory in this limit because the range of the interaction is O(ℓ) → ∞ while the
strength of the interaction is O(ℓ−3).

• Lebowitz-Penrose [LP66] proved in 1966 that the Kac limit of the infinite volume
pressure is the mean field theory pressure for particles in the continuum with hardcore
and attractive potential.

• Lebowitz-Mazel-Presutti [LMP99] proved in 1999 that the infinite volume limit of the
grand canonical ensemble has a phase transition for ℓ sufficiently large, but not for
this model. Instead they replaced the hard core by a less natural 4-body repulsion.
It is a very interesting open problem to prove that the above models have phase
transitions for ℓ sufficiently large. This formulates the idea that models that are
close to mean field should have a phase transition because mean field theory does.

• This is interesting because at present hardly any continuum particle systems have
been proved to exhibit phase transitions and the ones that have are very artificial.
This open problem is the first step towards a natural class of models.

Problems.

Problem 3.1. Show that when (β, z) ∈ {zeβ/2 = 1} the probability of any configuration in
the MFT model is invariant under (nB ←→ 1 − nB for all B).
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Problem 3.2. Omit the step where we introduce the blocks B(Λ) and consider the grand
canonical ensemble with

V (x) = − β

|Λ|
N2(x)

2
.

Notice there is no hardcore condition. Apply the same idea,

e−α N2

2 =
1√
2π

∫
eφNe−φ2/(2α)dφ

What is S in this case? What goes wrong and why did introducing the condition V = ∞ if
any N(B) > 1 avoid this problem?
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Part 2. Lattice Gaussian Fields
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Lecture 4. The Lattice Laplacian and Walks on the Lattice

For this lecture we put the particle systems away for now and work towards understanding
two new systems called the massless and massive free fields on the lattice. For this we require
some estimates on the lattice Laplacian and its resolvent. These are the topics of this lecture.
In the next lecture we define the free fields.

Notation. Let d ∈ N. Think of Z
d as a graph with edges

(4.1) E = Edges(Zd) =
{
{x, y} : x, y ∈ Z

d, ‖x − y‖2 = 1
}

.

Here ‖ · ‖2 is the Euclidean norm. We use the notation xy = {x, y} for the edges.
For φ, ψ : Z

d → R, define

(4.2) (φ, ψ) =
∑

x∈Zd

φ(x)ψ(x).

We will only need this for the case when φ and ψ vanish outside a finite set.

Definition 4.1. For Λ ⊂ Z
d, |Λ| < ∞, the lattice Laplacian with Dirichlet boundary

conditions outside Λ is the unique1 symmetric Λ × Λ matrix ∆ = ∆Λ such that

(4.3) (φ,−∆φ) =
∑

xy∈E

(φx − φy)
2

for all φ : Z
d → R such that φ = 0 outside Λ.

Thus, −∆ is a linear operator R
Λ → R

Λ. The eigenvalues of −∆ are positive because
(φ,−∆φ) > 0 for φ 6= 0. Therefore, (ǫ − ∆)−1 exists for ǫ ≥ 0.2 One can write the matrix
elements of −∆ explicitly as follows:

(4.4) − ∆xy =





2d, if x = y;
−1, if xy ∈ E;
0, otherwise,

where x, y ∈ Λ.

Definition 4.2. Let Wab(Λ) denote the set of all sequences in Λ of the form

(4.5) ω = (ω0, ω1, . . . , ωn)

such that ω0 = a, ωn = b and (ωi, ωi+1) ∈ E for all i = 0, . . . , n− 1. The number of elements
in ω can be arbitrary and is denoted by n = n(ω).

Proposition 4.3. For ǫ ≥ 0, Λ ⊂ Z
d, |Λ| < ∞, we have3

(4.6) (ǫ − ∆)−1
ab =

∑

ω∈Wab(Λ)

(
1

ǫ + 2d

)n(ω)+1

.

First, we give an idea of the proof. Write

(4.7) ǫ − ∆ = D − O,

where D is a diagonal matrix with entries ǫ + 2d, and O is an off-diagonal matrix, and

(4.8) Oxy = 1 iff xy ∈ Edges(Λ).

1Look up polarisation to see that (φ,−∆φ) determines (φ,−∆φ′) for φ′ 6= φ.
2Here and below by ǫ − ∆ we denote the operator ǫI − ∆.
3Here (ǫ − ∆)−1

ab denotes the ab’th element of the inverse matrix (ǫ − ∆)−1.
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Then the resolvent expression

(4.9) (D − O)−1 = D−1 + D−1OD−1 + D−1OD−1OD−1 + . . .

is the same as

(4.10) (D − O)−1
ab =

∑

ω∈Wab(Λ)

(ǫ + 2d)−n(ω)−1

because the matrix D−1 corresponds to the sum over sequences from Wab(Λ) of length zero,
D−1OD−1 — over sequences of length 1, etc. Now we proceed with a proof.

Proof. Let

(4.11)
Wa(Λ) =

⋃

b∈Λ

Wab(Λ);

W
(m)
a (Λ) = {ω ∈ Wa(Λ): n(ω) = m} .

The right hand side of (4.6) is absolutely convergent for ǫ > 0 because

(4.12)

∑

ω∈Wab(Λ)

(ǫ + 2d)−n(ω)−1 ≤
∑

ω∈Wa(Zd)

(ǫ + 2d)−n(ω)−1

=
∞∑

n=0

(2d)n(ǫ + 2d)−n−1 =
1

ǫ
.

Once we know that D−1 + D−1OD−1 + D1OD−1OD−1 + . . . is convergent, multiplying by
D −O shows that it equals (D −O)−1. By monotone convergence we can also conclude the
case ǫ = 0:

(4.13)
∑

w∈Wab(Λ)

(2d)−n(ω)−1 = lim
ǫ↓0

∑

ω∈Wab(Λ)

(ǫ + 2d)−n(ω)−1 = lim
ǫ↓0

(ǫ − ∆)−1
ab = (−∆)−1

ab

(here the operator (−∆) is invertible because all its eigenvalues are positive). ¥

Definition 4.4. Define for k ∈ R
d,

(4.14) f(k) :=
∑

x∈Zd : ‖x‖2=1

(
ek·x − 1

)
.

Here k · x =
∑d

i=1 k(i)x(i).

Lemma 4.5. For k ∈ R
d and ǫ > f(k) and all a ∈ Z

d,

(4.15) e−k·a
∑

ω∈Wa(Zd)

(ǫ + 2d)−n(ω)−1 ek·ωn(ω) = (ǫ − f(k))−1 .

Proof. First, observe that

(4.16) e−k·aek·ωn(ω) = e
Pn(ω)−1

i=0 k·(ωi+1−ωi) =

n(ω)−1∏

i=1

ek·(ωi+1−ωi).
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The left hand side of (4.15) becomes

(4.17)

∞∑

n=0

∑

ω∈W
(n)
a (Zd)

n(ω)−1∏

i=0

(
ek·(ωi+1−ωi)

1

ǫ + 2d

)
1

ǫ + 2d

=
∞∑

n=0


 1

ǫ + 2d

∑

x∈Zd : ‖x‖2=1

ek·x




n

1

ǫ + 2d
= (ǫ − f(k))−1 ,

this concludes the proof. ¥

Corollary 4.6. For ǫ > 0,

(4.18)
∑

b∈Λ

(ǫ − ∆Λ)−1
ab ≤ 1

ǫ
,

and this increases to 1
ǫ as Λ increases to the whole of Z

d.

Proof. Set k = 0 in Lemma 4.5 and use dominated convergence for controlling the limit
Λ ր Z

d. ¥

For λ > 0 let η = sup {f(k) : ‖k‖2 = λ}.
Corollary 4.7. For λ > 0 and ǫ > η,

(4.19) (ǫ − ∆Λ)−1
ab ≤ 1

ǫ − η
e−λ‖b−a‖2 .

Proof. By Proposition 4.3 and Lemma 4.5,

(4.20) (ǫ − ∆Λ)−1
ab ≤

∑

ω∈Wab(Zd)

(
1

ǫ + 2d

)n(ω)+1

≤ 1

ǫ − f(k)
ek·(b−a).

Choose the direction of k such that k · (b − a) = −λ‖b − a‖2. After this one can replace the

factor (ǫ − f(k))−1 by the upper bound (ǫ − η)−1. ¥

Corollary 4.8. For all ǫ > 0 and a ∈ Z
d,

(4.21) lim
ΛրZd

(ǫ − ∆Λ)−1
aa = (2π)−d

∫

[−π,π]d

(
ǫ − f(ik)

)−1
dk.

The right hand side is bounded uniformly as ǫ → 0 if d ≥ 3, otherwise it diverges as ǫ → 0.

Proof. The main idea is the formula

1

(2π)d

∫

[−π,π]d
eik·xdk = δx,0, x ∈ Z

d.

Using this we have

(4.22)

(ǫ − ∆Λ)−1
aa =

1

(2π)d

∫

[−π,π]d

(∑

b∈Λ

(ǫ − ∆Λ)−1
ab eik·(b−a)

)
dk

→ 1

(2π)d

∫

[−π,π]d
(ǫ − f(ik))−1 dk, Λ ր Z

d,

by dominated convergence based on the bound (4.12).
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This proves the Corollary apart from the claim about ǫ ↓ 0. For ǫ ↓ 0 note

(4.23) f(ik) =
∑

x∈Zd : ‖x‖2=1

(
eik·x − 1

)
=

∑

x∈Zd : ‖x‖2=1

(cos (k · x) − 1) .

This is real and non-positive, and equals zero in [−π, π]d iff k = 0. Near k = 0 we have the
following expansion:

(4.24) (ǫ − f(ik))−1 =
1

ǫ + ‖k‖2
2 + o

(
‖k‖2

2

) .

This is integrable iff d ≥ 3. The claim follows from monotone convergence. ¥

Problems.

Problem 4.1. Adapt Lemma 4.5 and Corollary 4.7 to prove that, for (Axy : x, y ∈ Λ) any
Λ × Λ matrix with the property that

(4.25)
1

|Axx|
∑

x 6=y

|Axy|eκ‖x−y‖ ≤ C < 1 (x ∈ Λ),

the inverse A−1 exists, and uniformly in Λ, A−1
xy decays exponentially in ‖x − y‖.
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Lecture 5. Lattice Gaussian Fields

In this lecture the basic facts about Gaussian measures are introduced, but with a slant
towards their role in theoretical physics where they serve as the underpinning for quantum
field theory. Therefore the connection with graphs, Hermite polynomials, etc is included.

Let Λ ⊂ Z
d, |Λ| < ∞, and φ = (φx, x ∈ Λ). Suppose that A = (Axy : x, y ∈ Λ) is

symmetric with positive eigenvalues: (φ, Aφ) > 0 if φ 6= 0. A is said to be positive definite.
Define a probability measure on R

Λ by

(5.1) dµC(φ) =
1

N
e−

1
2
(φ,Aφ) dΛφ, C = A−1

Then:

(5.2)

∫
dµC(φ) e(f,φ) = e

1
2
(f,Cf), f ∈ R

Λ

(5.3)

∫
dµC φaφb = Cab

(5.4) N = (2π)|Λ|/2(detA)−1/2

Lemma 5.1. Given a Λ × Λ positive definite matrix C, there exists a unique probability
measure such that (5.2) holds and it is dµC .

Proof. Existence: C is symmetric with positive eigenvalues. Therefore A = C−1 exists and is
symmetric and also has positive eigenvalues. Define dµC by (5.1). Uniqueness: The Laplace
transform characterises the measure (a hard but well known theorem). ¥

Probability measures of the form (5.1) are said to be Gaussian. Here is a very important
fact about these probability measures: If we are given a Gaussian probability measure and
we integrate out some of the variables, the result is still Gaussian. This is what the next
Lemma says and the proof is one of the problems for this lecture.

Lemma 5.2. Let dµC be a Gaussian measure defined on R
Λ and let Λ′ ⊂ Λ. Then there is

a Gaussian measure dµC′ defined on R
Λ′

such that for any bounded function F defined on
R

Λ′
, we have

∫
RΛ dµCF =

∫
RΛ′ dµC′F .

Definition 5.3. The massless free field is the case A = −∆Λ. The free field with mass m is
the case A = m2 − ∆Λ.

Discussion. If
−→
φ : Λ → R

d is vector-valued,

(5.5)
1

2
(
−→
φ ,−∆Λ

−→
φ ) =

1

2

∑

xy∈E

(
−→
φx −−→

φy)
2,

−→
φx = 0 if x /∈ Λ.

is the energy of all the springs in a bedspring, and the frame is the Dirichlet boundary
condition. Alternatively, this is a model for sound waves in a crystal.

Question. For a bedspring, does φ0 remember the Dirichlet boundary condition as Λ ր Z
d?

For F a function on R
Λ define the expected value of F , 〈F 〉 =

∫
RΛ dµCF , where C = (−∆)−1.

We only make this definition for F such that the right hand side is absolutely convergent.
Now conside the special cases F = φ0 and F = φ2

0. As Λ ր Z
d, 〈φ0〉Λ = 0 but how about

〈φ2
0〉Λ?
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Figure 5.1. Bedspring

Example 5.4 (Mean Field Theory). If the domain Λ is paved with unit boxes and each
box has zero or one particle, the the partition function is

(5.6) Z =
∑

n∈{0,1}|Λ|

zne
1
2

P

x,y∈Λ nxvxyny .

If vxy is positive definite,

(5.7)

Z =
∑

n

zn

∫
dµv(φ) e

P

x∈Λ φxnx

=

∫
dµv(φ)

∑

n

zne
P

φxnx

=

∫
dµv(φ)

∏

x∈Λ

(1 + zeφx)

=
1

N

∫
dΛφ e−S(φ)

where

(5.8) S(φ) =
1

2
(φ, v−1φ) −

∑

x∈Λ

log(1 + zeφx).

One possible choice is the lattice analogue of the Yukawa potential (e−r/(4πr) is the Green
function for 1 − ∆ on R

3)

(5.9) vxy = βm2(m2 − ∆Λ)−1
xy

such that

(5.10) S(φ) =
1

2m2β

∑

xy

(φx − φy)
2 +

1

2β

∑

x∈Λ

φ2
x −

∑

x∈Λ

log(1 + zeφ).

As m ց 0 the term 1
2m2β

∑
xy(φx − φy)

2 in exp[−S] concentrates the partition function on

φ such that φ ≃ const. so that

(5.11)
∑

x∈Λ

log(1 + zeφ) ≃ |Λ| log(1 + zeφ),
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(5.12)
1

2β

∑

x∈Λ

φ2
x ≃ 1

2β
|Λ|φ2.

Therefore, in this limit,

(5.13)
1

|Λ| log Z → 1

|Λ| log
1

N

∫

R

dφ e
−|Λ|

“

1
2β

φ2−log(1+zeφ
”

If we next take the limit Λ ր Z
d we get infφ

(
1
2β φ2 − log(1 + zeφ

)
, which is mean field theory.

However we have committed a sin, the correct order of the limits is Λ ր Z
d is followed

by m ց 0, because one wants to be able to claim that mean field theory is asymptotic,
uniformly in the volume. Uniformity in the volume is always the true challenge of statistical
mechanics. This idea of transforming a two body potential to an integral over an external
field was independently invented or exploited by [Str57], [Hub59], [Kac59], [Sie60].

Theorem 5.5 (Wick). Let

(5.14) ∆C =
1

2

∑

x,y∈Λ

Cxy
∂

∂φx

∂

∂φy
.

For P a polynomial,

(5.15)

∫
dµC P = e

1
2
∆C P |φ=0.

Proof. Homework (Problem 5.1). Hint:
∫

dµtC(ζ) P (ζ + φ) and e
1
2
∆C P are polynomials in

φ with coefficients that depend on t that solve ∂u(t,φ)
∂t − 1

2∆Cu(t, φ) = 0. ¥

Example 5.6. Using the above theorem, we can easily prove one of the properties of Gauss-
ian measures:

(5.16)

∫
dµC φaφb = e

1
2
∆C φaφb|φ=0 = (1 +

∆C

2
+ · · · )φaφb|φ=0 = Cab

Example 5.7 (Feynman diagrams).

(5.17)

∫
dµC

φ2
a

2!

φ4
b

4!
=

1

3!
(
∆C

2
)3

φ2
a

2!

φ4
b

4!

∣∣∣
φ=0

=

(
1

2

)3 (
1

2

)
Caa Cbba Cbb b +

(
1

2

) (
1

2

)
Cab

Cab

a Cbbb

Definition 5.8 (Wick polynomials). For polynomial P ,

(5.18) :P : ≡ :P :C ≡ e−
1
2
∆C P.

Example 5.9. Using this notation,

(5.19) :φ4
a: = φ4

a −
1

2
(4)(3)Caaφ

2
a +

1

2

1

2

1

2
C2

aa4!

:φp
x: is called the pth Wick power. That ∂

∂φ :φp: = p:φp−1: follows from definition of “: − :”.
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Lemma 5.10. If P, Q are monomials of different degrees,

(5.20)

∫
dµC :P : :Q: = 0.

Remark 5.11. When |Λ| = 1, this proves that :φp: for p = 0, 1, . . . are orthogonal polyno-
mials on R, so up to normalisation, they are Hermite polynomials.

Proof. The product rule for differentiation can be written ∂
∂φAB =

(
∂

∂φA
+ ∂

∂φB

)
AB where

∂
∂φA

acts only on A and ∂
∂φB

acts only on B. Insert this decomposition into ∆C . We suppress

C and write the result as ∆ = ∆AA + 2∆AB + ∆BB. For A, B polynomials,

e
1
2
∆AB = e

1
2
∆AA+∆AB+ 1

2
∆BBAB = e∆AB (e

1
2
∆AAA)(e

1
2
∆BBB).

If A = :P : then e
1
2
∆AA :P : = P , and so is it if B = :Q:, therefore,

e
1
2
∆AB = e∆ABPQ = 0 at φ = 0

if P , Q have different degrees. ¥

Example 5.12. Consider the following integral:

(5.21)

∫
dµC

:φ2
a:

2!

:φ2
b :

2!
=

1

2

Cab

Cab

a b =
1

2
C2

ab

Note that there are no self-loops!

Problems.

Problem 5.1. What is C ′ in Lemma 5.2.

Problem 5.2. Prove Lemma 5.2. Hint: Laplace transform and uniqueness.

Problem 5.3. Answer the Question above for Z
2 by proving that for f continuous with

compact support,

(5.22) 〈f(φ0)〉Λ → 0 as Λ ր Z
2.

Hint: use the previous problems.

Problem 5.4. Prove Wick’s Theorem.
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Lecture 6. Fermionic Lattice Gaussian Fields

We have seen that Gaussian fields can be used to represent particle systems in a way that
reveals the role of the Kac limit and mean field theory. Many other models also have Gaussian
field representations. Today, we will see as further examples representations of self-avoiding
“molecules”. This also gives me a chance to briefly explain “Fermions”, but my explanation
is a device to get you used to the idea of “anticommuting variable” as a useful combinatorial
tool by equating them with differential forms. The book by Berezin [Ber66] describes the
standard setup which does not insist on any identification with differential forms. For more
information on differential forms see any of [Arn89], [Spi65], [Fla89] [Rud76, Chapter 10].

6.1. Oriented Edges. Until now Axy = Ayx, so Cxy = Cyx and graphs have unoriented
edges. To obtain oriented edges, let A = (Axy)x,y∈Λ be a not necessarily symmetric matrix
such that

(6.1) Re(φ, Aφ̄) > 0, φ 6= 0, φ ∈ C
Λ.

Complex-valued φ can “see” the antisymmetric part of A, because

(φ, Aφ̄) = (u + iv, A(u − iv))

= (u, Au) + i(v, Au) − i(u, Av) + (v, Av).

Recall that (φ, ψ) =
∑

x φxψx so there are no complex conjugates buried in the notation
(φ, ψ). The terms i(v, Au) − i(u, Av) vanish if Axy = Ayx and are a function only of the
antisymmetric A′′ in the decomposition A = A′ + A′′ with A′

xy = (Axy + Ayx)/2 and A′′
xy =

(Axy − Ayx)/2. For A a complex or real matrix such that (φ, Aφ̄) has positive real part for
φ 6= 0 define:

(6.2) dµC(φ) =
1

N
e−(φ,Aφ̄) d2Λφ,

where

(6.3) C = A−1, N = π|Λ|(det A)−1,

(6.4) φx = ux + ivx, d2Λφ =
∏

x∈Λ

duxdvx.

Remark 6.1. If Axy = Ayx, then (φ, Aφ̄) = (u, Au) + (v, Av) which gives an easy way to
prove that

(6.5) N ∝ (det A)−1/2(det A)−1/2 = (det A)−1.

but this also holds when A is not symmetric.

Notation.

(6.6)
∂

∂φ
=

1

2

(
∂

∂u
− i

∂

∂v

)
,

∂

∂φ̄
=

1

2

(
∂

∂u
+ i

∂

∂v

)

These are designed so that ∂φ
∂φ = 1, ∂φ̄

∂φ = 0, etc.

Lemma 6.2. If F ∈ C1, then

(6.7)

∫
dµC φ̄aF =

∫
dµC

∑

x∈Λ

Cax
∂F

∂φx

if both sides of this equation are integrable.
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Proof. By using (6.6) it is easy to prove that integration by parts in the form
∫

∂A
∂φa

B d2Λφ =

−
∫

A ∂B
∂φa

d2Λφ is valid provided the functions A, B tend to zero at infinity so that there are

no boundary terms. We use this in the next lines
∫

φ̄ae
−(φ,Aφ̄)F d2Λφ =

∫
(CAφ̄)ae

−(φ,Aφ̄)F d2Λφ

=
∑

x

Cax

∫ (
− ∂

∂φx
e−(φ,Aφ̄)

)
F d2Λφ =

∑

x

Cax

∫
e−(φ,Aφ̄) ∂F

∂φx
d2Λφ

¥

As in Lecture 5, we have a Wick’s Theorem with exp(
∑

Cxy
∂

∂φ̄x

∂
∂φy

), but this Lemma is

another form of Wick’s Theorem.

Example 6.3.

(6.8)

∫
dµC φ̄aφb = Cab

When Lemma 6.2 is applied to
∫

dµC φ̄a1 . . . φ̄anφb1 . . . φbn , the result is a sum over all ways
to match each of a1, . . . , an with each of b1, . . . , bn. These are called perfect matchings and
this observation prepares the way to quickly see why the next example is correct.

Example 6.4.

(6.9) IX =

∫
dµC

∏

x∈X
x 6=a,b

(1 + :φxφ̄x:)φ̄aφb =
∑

G∈Gab(X)

∏

(x,y)∈G

Cxy

where G ∈ Gab(X) iff it is a graph on the set of vertices X ∪ {a, b} such that

(1) every x ∈ X \{a, b} has no edges or exactly one incoming and one outgoing edge and
there are no loops.

(2) x = a has one outgoing, x = b one incoming edge.

That means, G ∈ Gab(X) iff there exists a self-avoiding walk from a to b and an arbitary
number of cycles, all disjoint. Case a = b is also included, provided the terminology “self-
avoiding walk from a to b” is understood to mean a cycle through a = b or a loop at a.

Figure 6.1. Self-avoiding walk and self-avoiding loops.

Proof. For X ⊂ Λ, define

(6.10) JX =

∫
dµC

∏

x∈X

(1 + :φxφ̄x:) =
∑

G∈G(X)

∏

(x,y)∈G

Cxy

where G ∈ G(X) iff every x ∈ X has no edges or exactly one incoming and one outgoing
edge and there are no loops. If X is empty we regard the sum as having a single term, the
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empty graph, for which the contribution on the right hand side is one, because the product
under the sum is empty and empty products equal one.

Induction on |X|. The inductive hypothesis is that the (6.9) and (6.10) IX hold if X is
replaced by a strictly smaller subset. To initialise the induction: For X = ∅, the empty
product

∏
x∈∅

(1 + :φxφ̄x:) = 1, so JX = 1 and so does the right hand side of (6.10); likewise
IX = Cab and therefore (6.9) also holds.

To prove (6.10): for y ∈ X, by algebra in the second equality and the inductive hypothesis
in the third equality,

JX =

∫
dµC

∏

x∈X

(1 + :φxφ̄x:)

=

∫
dµC

∏

x∈X\{y}

(1 + :φxφ̄x:) +

∫
dµC

∏

x∈X\{y}

(1 + :φxφ̄x:):φyφ̄y:

=
∑

G∈G(X\{y})

∏

(x,y)∈G

Cxy +
∑

G∈Gyy(X\{y})

′∏

(x,y)∈G

Cxy

The prime on the product means that (x, y) 6= (x, x). The first term is a sum over all cycles
not passing though the vertex y and the second is the sum over all cycles that do contain
y. Therefore they combine to give the right hand side of (6.10) and the inductive step is
complete for (6.10).

To prove (6.9): By Lemma 6.2,

IX =
∑

x1∈X\{a,b}

Cax1

∫
dµC

∏

x∈X\{a,b}
x 6=x1

(1 + :φxφ̄x:)φ̄x1φb + Cab

∫
dµC

∏

x∈X\{a,b}

(1 + :φxφ̄x:).

Apply inductive hypothesis to first term to find that it equals the contribution of all graphs
in Ga,b which have a self-avoiding walk with two or more steps. The second term is the
contribution for all graphs with a one step self-avoiding walk times JX\{a,b}. According to
(6.10), this factor equals the contribution from cycles. ¥

6.2. Differential Forms = Fermions. The symbols

(6.11) (dux, dvx : x ∈ Λ)

generate a finite dimensional algebra Ω∗ over the ring of complex-valued function of φx =
ux + ivx, x ∈ Λ via the wedge product :

(6.12a) dux ∧ duy = −duy ∧ dux

(6.12b) dux ∧ dvy = −dvy ∧ dux

(6.12c) dvx ∧ dvy = −dvy ∧ dvx

This is a clever idea (Cartan) because we automatically get the Jacobian determinant (with-
out the absolute value sign) when we make a change of variables as in

du ∧ dv =

(
∂u

∂u′
du′ +

∂u

∂v′
dv′

)
∧

(
∂v

∂u′
du′ +

∂v

∂v′
dv′

)
=

(
∂u

∂u′

∂v

∂v′
− ∂u

∂v′
∂v

∂u′

)
du′ ∧ dv′.

This observation extends to higher dimensions. Because ∧ looks like Λ, we will omit ∧. The
degree of a form is the degree as a polynomial in dux, dvy, x, y ∈ Λ. Ω∗ is called the algebra
of differential forms.
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Example 6.5. Define

(6.13) dφx = dux + idvx, dφ̄x = dux − idvx,

(6.14) dφ̄xdφx = (dux − idvx)(dux + idvx) = 2iduxdvx

Definition 6.6. The volume form on C
Λ = R

2Λ is

(6.15)
∏

x∈Λ

(duxdvx) = (2i)−|Λ|
∏

x∈Λ

(dφ̄xdφx).

This is a top degree (= 2|Λ|) form. The particular way we have written it removes a sign
ambiguity which would result if we did not carefully specify the order in which the dux, dvx

must be written.

Definition 6.7. For F ∈ Ω∗, let f(u, v)
∏

x∈Λ duxdvx be the top degree part of F . Define

(6.16)

∫
F =

∫

R2Λ

f(u, v) d2Λφ.

(Recall that d2Λφ =
∏

x∈Λ duxdvx was defined before forms were introduced. It is the
Lebesgue measure.)

Notice that
∫

F = 0 if F has zero top degree part.

Example 6.8. Let N = |Λ|.

 ∑

x,y∈Λ

Axydφ̄xdφy




N

=
∑

x1,y1

· · ·
∑

xN ,yN

Ax1,y1 · · ·AxN ,yN dφ̄x1dφy1 · · · dφ̄xN dφyN(6.17)

= N ! (det A)
∏

x∈Λ

dφ̄xdφx(6.18)

Example 6.9. Let

(6.19) S = (φ, Aφ̄) +
1

2πi

∑

x,y∈Λ

Axydφxdφ̄y.

Define e−S ∈ Ω∗ by power series in the form part. Then:

∫
e−S =

∫
e−(φ,Aφ̄)

∑

n≥0

1

n!


 1

2πi

∑

x,y∈Λ

(−Axy)dφxdφ̄y




n

(6.20)

Ex. 6.8
= (det At)π−N

∫
e−(φ,Aφ̄) d2Λφ = 1(6.21)

This is self-normalization!

Define τx ∈ Ω∗ by

(6.22) τx = φxφ̄x +
1

2πi
dφxdφ̄x

We claim that for all X ⊂ Λ

(6.23)

∫
e−S

∏

x∈X

(1 + τx) = 1.

Believing this for now:
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Example 6.10 (SAW).

(6.24)

∫
e−S

∏

x∈Λ
x 6=a,b

(1 + τx)φ̄aφb =
∑

ω∈SAWab(Λ)

∏

(x,y)∈ω

Cxy

Sketch of proof. ∫
e−S

∏

x∈Λ
x 6=a,b

(1 + τx)φ̄aφb

is a sum of standard integrals in each of which Lemma 6.2 holds: it says that, under each of
these integrals we can make the replacement

φ̄a →
∑

x1

Cax1

∂

∂φx1

and then ∂
∂φx1

differentiates everything in the integrand except exp(−φ, Aφ̄))d2Λφ. Therefore,

we can reverse the expansion of the form integral into a sum of standard integrals and find
that we have proved that

(6.25)

∫
e−S

∏

x∈Λ
x 6=a,b

(1 + τx)φ̄aφb =

∫
e−S

∑

x1

Cax1

∂

∂φx1

∏

x∈Λ
x 6=a,b

(1 + τx)φb

∂

∂φx1

(1 + τz) =

{
φ̄x1 if z = x1,

0 else.

which is a sum of form integrals of the same form as our starting point so we can iterate and
by induction get the sum over all self-avoiding walks ω of

∏

(x,y)∈ω

Cxy

∫
e−S

∏

x∈Λ
x 6∈ω

(1 + τx) =
∏

(x,y)∈ω

Cxy

by (6.23). ¥

In this example we see an interesting phenomenon. The integral
∫

e−S
∏

x∈Λ
x 6=ω

(1 + τx) is a

sum over all loops in Λ \ ω. But supersymmetry (see below) leads to a huge cancellation so
that this ends up being exactly one. Taking the view that one direction in the lattice repre-
sents time, a loop can be interpreted as the creation of a pair of particles “from the vacuum”
followed later by pair annihilation. In this view, the vacuum is a very dynamic system in its
own right because of all the creation /annihilation processes. Without supersymmetry the
result is exp(O(volume of Λ \ ω)). The exponent is the “energy of the vacuum”. This leads
to difficulties if one tries to include fields that represent gravitational forces because they are
generated by energy and so the vacuum can generate large gravitational fields that we do
not observe; The energy of the vacuum per unit volume is called the cosmological constant
and supersymmetry implies that the cosmological constant is zero.

There is a precise sense in which τx is the time a continuous time random walk spends at
site x. For more details see [BIS09].
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6.3. Supersymmetry. The ideas in in this section are taken from [Wit92]. In this pa-
per, Witten is interested in exact evaluations of the partition function for two dimensional
Yang Mills theories on manifolds. His method uses extensions of the Duistermaat-Heckman
Theorem, which is itself a far reaching generalisation of Lemma 6.12.

Define iX : Ω∗ → Ω∗ by

(1) iX is an antiderivation;
(2) iX(zero form) = 0;
(3) iXdφx = −2πiφx, iXdφ̄x = 2πiφ̄x.

iX lowers the degree. Recall that the exterior derivative d is also an antiderivation. Let

(6.26) Q = d + iX .

Q is called the supersymmetry generator. If F ∈ Ω∗ and QF = 0 we say F is supersymmetric.

Example 6.11. τx is supersymmetric:

(6.27) Qτx = dφxφ̄x + φxdφ̄x +
1

2πi

(
(−2πiφx)dφ̄x − dφx(2πiφ̄x)

)
= 0

Lemma 6.12 (Localisation). Let F ∈ Ω∗ be an even form (only even degree monomials)
with smooth coefficients which together with derivatives decay integrably. If QF = 0 then

(6.28)

∫
F = F (φ = 0, φ̄ = 0, dφ = 0, dφ̄ = 0).

Note that this proves our claim (6.23).

Proof. By Problem 6.2 ∑

x∈Λ

τx = Qω, ω =
∑

x∈Λ

1

2πi
φxdφ̄x

d

dt

∫
Fe−t

P

τx = −
∫

F (Qω)e−t
P

τx = −
∫

Q(Fωe−t
P

τx)

= −
∫

d(· · · )︸ ︷︷ ︸
Stoke’s Theorem

−
∫

iX(· · · )︸ ︷︷ ︸
wrong degree

= 0

Therefore ∫
F = lim

t→∞

∫
Fe−t

P

τx = F (φ = 0, φ̄ = 0, dφ = 0, dφ̄ = 0).

The last step is a homework problem. ¥

Remark 6.13 (Origin of term supersymmetry).

(6.29) Q2 = (d + iX)2 = d2 + d ◦ iX + iX ◦ d + i2X

d2 = 0 and iX is also nilpotent, i2X = 0, thus

(6.30) Q2 = d ◦ iX + iX ◦ d = LX ,

where LX is the Lie derivative with respect to the vector field X that generates the U(1)
action

(6.31) φ 7→ φe−2πiθ.

Q2 = LX says that Q is the square root of the U(1) generator.
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Problems.

Problem 6.1. Let f be a smooth function defined on [0,∞) with compact support. Let
τ = φφ̄+ 1

2πidφdφ̄. This is a differential form of mixed degree on R
2. Define a new differential

form denoted f(τ) by the Taylor expansion of f about the point φφ̄, as in

(6.32) f(τ) = f(φφ̄) + f ′(φφ̄)
1

2πi
dφdφ̄

Prove, by direct calculation with polar coordinates, that
∫

R2

f(τ) = f(0)

Problem 6.2.

(6.33) τx = Q

(
1

2πi
φxdφ̄x

)

Problem 6.3. Justify the last step in the proof of Lemma 6.12.

Problem 6.4. Why are there no Wick powers in Example 6.10 whereas there are in Exam-
ple 6.4?

Problem 6.5. Fix once and for all a square root (2πi)−1/2 and define

(6.34) ψx = (2πi)−1/2dφx ψ̄x = (2πi)−1/2dφ̄x.

Define differentiation with respect to ψ and ψ̄ by specifying the derivatives on monomials in
ψ and ψ̄ and show that

(6.35) Q = (2πi)1/2

(
ψx

∂

∂φx
+ ψ̄x

∂

∂φ̄x
− φx

∂

∂ψx
+ φ̄x

∂

∂ψ̄x

)

Problem 6.6. Let A be a symmetric matrix. Define

(6.36) Bx =
∑

y

Axy.

For R ⊂ Λ, let

(6.37) BR =
∏

x∈R

Bx.

For a graph F , let

(6.38) (−A)F =
∏

x,y∈E(F )

(−Axy).

The matrix tree theorem says

(6.39) detA =
∑

(F,R)

(−A)F BR,

where F is summed over all graphs on Λ which have no cycles and for each F , R is summed
over all ways to choose one root in each connected component of F .

Prove the matrix tree theorem by starting with
∫

e−S = 1. Write

(6.40)
∑

x,y

Axydφxdφ̄y = −1

2

∑

x,y

Axy(dφx − dφy)(dφ̄x − dφ̄y) +
∑

x

Bxdφxdφ̄x.
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Write φxy = φx−φy, dφxy = dφx−dφy and expand e
P

Adφdφ̄ in powers of dφxydφ̄xy; likewise

e
P

Bdφdφ̄ in terms of dφxdφ̄x. Argue that the terms in this expansion are naturally labelled
by pairs (F, R) = (forest, root).
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Lecture 7. Infrared Bounds and Broken Symmetry

So far we have encountered different models and relations between them. All these models
boil down to integrals of the form

(7.1) Z =

∫
e−αS(φ) dΛφ

and the associated measure

(7.2)
1

Z
e−αS(φ) dΛφ.

Then, there is the idea of mean field theory. When α ≫ 1, the measure concentrates onto
the minima of S(φ). In our discussion, we have also encountered the enemy of this idea,
which is that in the infinite volume limit, fluctuations around the minima may cause the
model to forget which minimum was selected by the boundary condition. We have seen that
the massless Gaussian in Z

2 forgets the Dirichlet boundary condition at ∞, but in Z
d, d ≥ 3,

this does not happen. Fluctuations around the minima are modeled by Gaussians because
at the minimum, φ0,

(7.3) S(φ) ≈ S(φ0) +
1

2
(φ − φ0)S

′′(φ − φ0)

but ≈ involves non-Gaussian O(φ − φ0)
3 corrections. Are we still able to use Gaussian

intuition? In this lecture we see a proof of the existence of phase transitions that relies on
‘Gaussian bounds’ that captures this intuition.

Consider models of the form

(7.4) Z =

∫ ∏

x∈Λ

dρ(φx) e−
1
2
(φ,−∆Λφ)

where φ : Λ → R
N is vector valued and dρ is O(N) invariant (invariant under the action of

the orthogonal group of N by N matrices). Suppose that Λ is a torus, i.e. it has periodic
boundary conditions. Then,

(7.5) (φ,−∆Λφ) =
∑

xy∈Edges(Λ)

‖x − y‖2 ,

where Edges(Λ) represents the edges such that y is a nearest neighbor to x if y = x +
e mod(side(Λ)) and ‖e‖ = 1.

Example 7.1. Take N = 1 and

(7.6) dρ(φx) = δ(φx +
√

β) + δ(φx −
√

β).

This gives the Ising model with the temperature given by β−1.

Example 7.2. If N > 1, dρ is the surface Lebesgue measure on a sphere of radius
√

β. This
is called the N -vector model or O(N) model.

The joint distributions of φ = {φx : x ∈ Λ} are O(N) invariant, which means

(7.7) PΛ{φ ∈ E} = PΛ{φ ∈ RE}
for R ∈ O(N), and are translation invariant, which means

(7.8) PΛ{(φx)x∈X ∈ E} = PΛ{(φx)x−a∈X ∈ E}
for a ∈ Z

d.
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Therefore any infinite volume limit P∞ also has these properties. Let 〈·〉 ≡ 〈·〉∞ be the
expectation for the infinite volume limit.

Theorem 7.3 (Fröhlich-Simon-Spencer 1976 [FSS76]). For d ≥ 3, β ≫ 1, there exists
c(β) > 0 such that

lim
y→∞

〈φx · φy〉 = c(β).

Corollary 7.4. The tail σ-algebra T is non-trivial.

Proof. By the ergodic theorem,

(7.9) Y := lim
X

1

|X|
∑

x∈X

φx

exists P∞-a.s. and defines a tail measurable random variable Y ∈ mT . It is not almost surely
constant because

Var(Y ) = 〈Y 2〉∞ − 〈Y 〉2∞ = 〈Y 2〉∞
by the O(N) symmetry. This means that using the dominated convergence theorem gives

(7.10) Var(Y ) = lim
X

1

|X|2
∑

x,y∈X

〈φx · φy〉∞ = c(β) > 0.

Therefore {Y ∈ E} is a non-trivial event in T . ¥

The high temperature expansion (not discussed in this course) proves that T is trivial for
β ≪ 1, so there exists βc, a critical β, where the phase transition takes place.

Physically speaking, for β > βc there is long range order. This means that a boundary
condition that selects a preferred direction for φ will be ‘remembered’ by φ0 no matter how
far away the boundary is. This is called broken O(N) symmetry. For β < βc, the boundary
condition is not remembered; all correlations decay exponentially.

For the Ising model (N = 1), the hypothesis d ≥ 3 is misleading in the sense that there
is also a phase transition in d = 2. This is proved by the Peierls argument, which is not
discussed in this course either.

7.1. Infrared bound. The difficult step in proving Theorem 7.3 is the following proposi-
tion, whose proof is deferred to later in this lecture.

Proposition 7.5 (Infrared bound). For f : Λ → R
N such that f is perpendicular to all

constant fields,

(7.11) 〈(φ, f) (φ, f)〉Λ ≤
(
f, (−∆Λ)−1f

)
.

In previous lectures we were using the Laplacian with Dirichlet boundary conditions whose
eigenvalues are positive and which is invertible. By (7.5), (φ,−∆Λφ) = 0 when φ is a
constant field, so the Laplacian with periodic boundary conditions has zero eigenvalues and
is not invertible. However the kernel of this Laplacian is exactly the subspace of constant
fields and so it is invertible on the orthogonal complement of the constant fields and this is
the reason for the hypothesis on f .

Proof of Theorem 7.3. Let |Λ| → ∞. For f with compact support, f ⊥ constant fields,

〈(φ, f) (φ, f)〉∞ ≤
∫

|f̂(k)|2 1∑
x:‖x‖=1 (1 − eik·x)

dk
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where

(7.12)

∫
dk =

∫

[−π,π]d
dk

As f , defined by f(x − y) = 〈φx · φy〉∞, is a positive-definite function, by Bochner’s
theorem [RS75, Theorem IX.9], there exists a positive measure dw(k) such that

(7.13) 〈φx · φy〉∞ =

∫
eik·(x−y) dw(k).

In terms of dw,

(7.14)

∫
|f̂(k)|2 dw(k) ≤

∫
|f̂(k)|2 1∑

x:‖x‖=1(1 − eik·x)
dk.

The hypothesis that f is perpendicular to constant fields is the same as

(7.15) f̂(0) = 0

which means that no admissible choice of f in (7.14) can detect whether dw(k) has a point

mass at k = 0. However, we can choose test functions f in (7.14) such that f̂(k) is highly
concentrated near specific points k 6= 0 and so deduce from (7.14) that (Problem 7.3)

(7.16) dw(k) = cδ(dk) + g(k) dk

where c is some constant, which could be zero, and g(k) ≥ 0 with

g(k) ≤ 1∑
x:‖x‖=1 (1 − eik·x)

.

For d ≥ 3, this bound shows that g is integrable because, as in lecture 4,
∑

x:‖x‖=1

(1 − eik·x) = ‖k‖2 + o(‖k‖2).

This implies that

(7.17)

∫
g(k) dk ≤ const.

The Riemann-Lebesgue Lemma implies that g(x − y) → 0 as y → ∞. Therefore,

〈φx · φy〉∞ → c as y → ∞.

To prove that c > 0, as dρ is surface measure on the sphere of radius
√

β, then

〈φx · φx〉∞ = β.

Setting x = y in (7.13) gives ∫
dw(k) = β.

Integrating both sides of 7.16 gives

β = c +

∫
g(k) dk

but by (7.17),
∫

g(k) dk is O(β0). This implies that as β → ∞, then c → ∞ which implies
that c > 0 for β ≫ 1. ¥
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Proposition 7.6. Let

(7.18) Z(h) =

∫ ∏

x∈Λ

dρ(φx − hx) e−
1
2
(φ,−∆Λφ)

where h : Λ → R
N . Then,

(7.19) Z(h) ≤ Z(0) = Z.

The proposition yields the following corollary:

Corollary 7.7. For f perpendicular to constant fields,

(1)

(7.20)
〈
e−(f,φ)

〉
Λ
≤ e

1
2(f,(−∆Λ)−1f).

(2) Proposition 7.5 holds.

Proof of Corollary 7.7. We first prove that (1) implies (2). We replace f by tf , substract 1
from both sides and divide both sides by t2. This gives

1

t2

〈
e−(φ,tf) − 1

〉
≤ 1

t2

(
e

1
2
t2(f,(−∆Λ)−1f) − 1

)
.

By O(N) invariance, 〈(φ, f)〉 = 0. By the Taylor expansion in t and the limit t ↓ 0, we
obtain the infrared bound Proposition 7.5.

For the proof of (1), consider
〈
e−(φ,f)

〉
Λ

=
1

Z

∫ ∏

x∈Λ

dρ(φx) e−
1
2
(φ,−∆φ)e−(φ,f).

The idea is to evaluate the integral as if it were Gaussian. Thus we complete the square
in the exponent by making a change of variables, φx = φ′

x + hx. We choose h to eliminate
terms which are linear in φ′ and find that

〈
e−〈φ,f〉

〉
Λ

=
Z(−h)

Z
e

1
2(f,(−∆)−1f).

But Z(−h)/Z ≤ 1 by Proposition 7.6. ¥

7.2. Reflection Positivity. This is a separate and interesting topic which we need to
prove Proposition 7.6. Suppose that Λ is a subset of Z

d which is invariant under a reflection
about a hyperplane that divides Λ into Λ+ on one side of the hyperplane and Λ− on the
other side. Thus

(7.21) Θ : Λ → Λ

and ΘΛ+ = Λ− and ΘΛ− = Λ+.

Example 7.8. The hyperplane is the point x = 0 in Z. Then:

(7.22) Θeφ1+φ2 = eφ−1+φ−2

Definition 7.9. 〈·〉 satisfies Osterwalder-Schrader positivity if

(7.23) 〈(ΘF )F 〉 ≥ 0 for all F ∈ FΛ+ .

Theorem 7.10. Nearest neighbour ferromagnetic models are Osterwalder-Schrader.

Proof. See [FSS76]. ¥
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Sketch of proof of Proposition 7.6. We have the following Cauchy-Schwarz inequality

〈Θ(F )G〉 ≤ 〈Θ(F )F 〉 1
2 〈Θ(G)G〉 1

2

because 〈Θ(F )G〉 defines an inner product (F, G) by using the Osterwalder-Schrader posi-
tivity. To understand the idea consider a periodic 2 × 2 lattice Λ. Then Λ has four points.
To each point x ∈ Λ there is a component hx in h = (hx)x∈Λ and these components are,
in general, not equal to the same vector. The following pictorial representation describes a
sequence of Cauchy-Schwarz inequalities applied to Z(h) and in the pictures the different hx

are symbolised by the diamond, the heart, the club, and the spade. Each Cauchy inequality
uses a reflection about a different hyperplane, but we have reflection positivity about all
these hyperplanes because the torus Λ is translation invariant and invariant under rotation
by π/2.

Z(h) =

(
♦ ♥
♣ ♠

)
≤

(
♦ ♦
♣ ♣

) 1
2
(

♥ ♥
♠ ♠

) 1
2

≤
(

♦ ♦
♦ ♦

) 1
4
(

♣ ♣
♣ ♣

) 1
4
(

♥ ♥
♥ ♥

) 1
4
(

♠ ♠
♠ ♠

) 1
4

Therefore Z(h) ≤ ∏
constants Z(constants)

1
4 . On the right hand side of this inequality we

undo the translation by writing φ = φ′ − const and noting that

e−
1
2
(φ,−∆φ) = e−

1
2
(φ′,−∆φ′)

so that ∏

constants

Z(constants)
1
4 =

∏

constants

Z(0)
1
4 = Z.

¥

Discussion. This is a very unstable method of proof.

(1) Add next-to-nearest-neighbour ferromagnetic interactions: This ruins Osterwalder-
Schrader positivity and therefore the proof, but our intuition says it must strengthen
trends towards order.

(2) The Fermions dφ, dφ ruin Osterwalder-Schrader positivity so we cannot prove the
existence of collapsed phases of self-interacting walks by Osterwalder-Schrader posi-
tivity.

Proving the existence of phase transitions in systems with O(N) symmetry, N > 1, is almost
unimaginably hard by cluster expansions. Osterwalder-Schrader positivity is essentially the
only reasonable technique we have (there are duality transformations for N = 2).

Open Problem. The quantum anti-ferromagnetic satisfies Osterwalder-Schrader positivity
so we can prove there exists phase transitions. The quantum ferromagnetic does not satisfy
Osterwalder-Schrader positivity. We can’t prove there exists a phase transition.

Problems.

Problem 7.1. Why is the function f which is defined just below (7.12) positive-definite?

Problem 7.2. Justify (7.10).

Problem 7.3. Fill in the details in the passage from (7.14) to (7.16).



STATISTICAL MECHANICS AND THE RENORMALISATION GROUP 41

Bibliography

[FSS76] J. Fröhlich, B. Simon, and T. Spencer. Infrared bounds, phase transitions, and continuous
symmetry breaking. Commun. Math. Phys., 50:79–95, (1976).

[RS75] M. Reed and B. Simon. Fourier Analysis and Self-Adjointness, volume 2 of Methods of
Modern Mathematical Physics. Academic Press, 1975.



42 DAVID BRYDGES

Lecture 8. The Newman Central Limit Theorem

The result in this lecture is a model for the type of result that the rest of this course will be
elaborating on. It is a very sophisticated central limit theorem that characterises the long
distance structure of fluctuations in a class of statistical mechanical models (ferromagnetic
models) which are not critical . The term critical will be defined later.

8.1. FKG systems.

Definition 8.1. We say that a function F : R
n → R is increasing , if F (x) ≤ F (y) for all

x, y ∈ R
n such that xi ≤ yi for i = 1, . . . , n.

Definition 8.2. A finite set X = {X1, . . . , Xn} of random variables is FKG (Fortuin-
Kasteleyn-Ginibre) if

(8.1) Cov(F (X), G(X)) ≥ 0

for all increasing functions F and G. An infinite set of random variables is FKG if every
finite subset is FKG.

Note that all increasing functions of FKG random variables are themselves FKG random
variables. Note also that for an FGK system X = {X1, . . . , Xn} we have Cov(Xi, Xj) ≥ 0 for
all i, j = 1, . . . , n because each Xk (viewed as a function R

n → R) is increasing, k = 1, . . . , n.

Theorem 8.3 ([FKG71], in this form proved in [BR80]). All ferromagnetic systems,
that is, the systems of the form

(8.2) dµ(x) =
1

Z
dnx eF (x),

where F (x) is such that

(8.3)
∂2F

∂xi∂xj
≥ 0, 1 ≤ i 6= j ≤ n,

are FKG.

Proof. [BR80, Theorem 1.1], see Problem 8.1. ¥

Definition 8.4 (Block spins). For x ∈ Z
d, L ∈ N, set

(8.4) φL(x) = |B(x)|−1/2
∑

y∈B(x)

(φy − 〈φy〉) ,

where B(x) ∈ BL is the block of size L centered on the point Lx.

L
Lx

Figure 8.1. The block B(x) ∈ BL.
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8.2. Formulation of Newman CLT. We assume that there is a system of random vari-
ables

{
φx : x ∈ Z

d
}

indexed by the points of the lattice (a so-called random field) such that

(1) The probability law of {φx} is Z
d translation invariant;

(2)
〈
φ2

x

〉
< ∞ for some x ∈ Z

d (and hence for all x ∈ Z
d);

(3)
∑

y∈Zd

Cov(φx, φy) < ∞ (this means that the model is not critical);

(4) The system
{
φx : x ∈ Z

d
}

is FKG.

Theorem 8.5 ([New80]). Under these assumptions we have

(8.5)
{

φL(x) : x ∈ Z
d
}
⇒ i.i.d. Gaussian, L → ∞.

Without loss of generality in the folowing we assume that

(8.6) 〈φx〉 = 0,
∑

y∈Zd

Cov(φx, φy) = 1.

For an arbitrary subset X ⊂ Z
d define

(8.7) φ(X) := |X|−1/2
∑

x∈X

φx.

Denote

(8.8) fL(r) =
〈
eirφ(B)

〉
, B ∈ BL

(we can take any B ∈ BL because {φx} is translation invariant).

8.3. Important properties of FKG systems.

Lemma 8.6. If two random variables X and Y are FKG, and f, g ∈ C1, then

(8.9) Cov(f(X), g(Y )) ≤ ‖f ′‖∞‖g′‖∞Cov(X, Y ).

Proof. In the proof we assume that f(s), g(s) → 0 as s → −∞ (Problem 8.2).
We have

(8.10) Ef(X) =

∫
P{X > s}f ′(s)ds.

Indeed, insert f(X) =
∫
s<X f ′(s)ds into the expectation Ef(X) and switch E and

∫
.

Similarly, we obtain

(8.11) Cov(f(X), g(Y )) =

∫∫ (
P{X > s, Y > t} − P{X > s}P{Y > t}

)
f ′(s)g′(t) ds dt.

In (8.11) we no longer need the assumption f(−∞) = g(−∞) = 0.
Write

(8.12) P{X > s, Y > y} − P{X > s}P{Y > t} = Cov(1{X>s}1{Y >t}) ≥ 0,

because the indicator functions are increasing.
Now, using (8.12) we can take out ‖f ′‖∞‖g′‖∞ from (8.11) and write

(8.13)

Cov(f(X), g(Y ))

≤ ‖f ′‖∞‖g′‖∞
∫∫ (

P{X > s, Y > t} − P{X > s}P{Y > t}
)

ds dt

= ‖f ′‖∞‖g′‖∞ Cov(X, Y ),
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The latter equality holds by choosing f(s) = s and g(t) = t in (8.11). This concludes the
proof. ¥

Proposition 8.7. If {Xj , j = 1, 2, . . . , n} are FKG, then for all rj ∈ R we have

(8.14)

∣∣∣∣∣∣

〈
ei

Pn
j=1 rjXj

〉
−

n∏

j=1

〈
eirjXj

〉
∣∣∣∣∣∣
≤ 1

2

∑

1≤k 6=l≤n

Cov(Xk, Xl)|rkrl|.

Remark 8.8. This Proposition implies that if Cov(Xk, Xl) = 0 for all 1 ≤ k 6= l ≤ n, then
the variables {Xj} are independent. This property of FKG systems is similar to that of the
Gaussian systems.

Proof. By induction on n. Lemma 8.6 starts the induction at n = 2, and Lemma 8.6 also
accomplishes the induction step. For details, see [New80]. ¥

Lemma 8.9. If g(r) is C2 at r = 0 (this means that g(r) is doubly differentiable in some
neighborhood of 0 and that g′′(r) is continuous at r = 0), g(0) = 1 and g′(0) = 0, then

(8.15) lim
n→∞

(
g

(
r√
n

))n

= eg′′(0) r2

2 .

Proof. This can be proved using Taylor expansion (Problem 8.3). ¥

8.4. Idea of the proof of Newman CLT. It suffices to prove that fL(r) → e−
1
2
r2

and
that the variables

{
φ(B(x)) : x ∈ Z

d
}

become independent as L → ∞.4 We proceed by steps.

b ∈ BL1

L1

L1L2

B ∈ BL1L2

Figure 8.2.

Step 1. For L1 ≫ 1, all the pairs (x, y) such that x ∈ b, y ∈ b′ 6= b make negligible
contribution to

(8.16)
1

|B|
∑

x,y∈B

Cov(φx, φy),

and this is uniform in L2. Here b, b′ ∈ BL1 and B ∈ BL1L2 , see Figure 8.2.

4Here B(x) ∈ BL is the block of size L centered on Lx, and φ(B(x)) and fL(r) are defined in (8.7)–(8.8).
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Step 2. Note that

(8.17) φ(B) =

√
|b|
|B|

∑

b∈BL1
(B)

φ(b).

Proposition 8.7 implies that

(8.18)
∣∣∣
〈
eirφ(B)

〉
−

(〈
e
ir 1√

n
φ(b)

〉)n∣∣∣ ≤ ǫ(L1),

where n = |B|
|b| , and this estimate is uniform in n.

Now, as L2 → ∞ and n → ∞, by Lemma 8.9 we get

(8.19)
(〈

e
ir 1√

n
φ(b)

〉)n
→ e−

r2

2
Var φ(b).

Step 3. Combining Lemma 8.9 with Step 2 we get

(8.20) lim
L1→∞

lim sup
L2→∞

∣∣∣fL1L2(r) − e−
1
2
r2

∣∣∣ = 0.

Thus, we have a subsequence L(k), k = 1, 2, . . . such that

(8.21) lim
k→∞

∣∣∣fL(k)(r) − e−
1
2
r2

∣∣∣ = 0.

Step 4. Finally, we prove

(8.22) lim
L→∞

∣∣∣fL(r) − e−
1
2
r2

∣∣∣ = 0.

8.5. The proof of Newman CLT. Here we prove Theorem 8.5 by steps that are indicated
above.
8.5.1. Step 1.

Lemma 8.10. For any block B ∈ BL we have

(8.23) lim
L→∞

∑

B′∈BL(Bc)

Cov(φ(B), φ(B′)) = 0.

Here Bc denotes the complement Z
d \ B.

Proof. Fix arbitrary ǫ > 0 and let l be such that

(8.24)
∑

y∈Zd, ‖x−y‖≥l

Cov(φx, φy) < ǫ.

This can be done because the whole sum
∑

y∈Zd Cov(φx, φy) equals one, see (8.6).
Let

(8.25) B◦ := {x ∈ B : dist(x, Bc) ≥ l} ,

see Figure 8.3.
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B

B0

l

Figure 8.3.

We have

(8.26)

∑

B′∈B(Bc)

Cov
(
φ(B), φ(B′)

)
=

1

|B|
∑

x∈B

∑

y/∈B

Cov(φx, φy)

=
1

|B|
∑

x∈B

∑

y/∈B

Cov(φx, φy)1‖x−y‖<l+

+
1

|B|
∑

x∈B

∑

y/∈B

Cov(φx, φy)1‖x−y‖≥l

≤ 1

|B|
∑

x∈B\B0

∑

y∈Zd

Cov(φx, φy)+

+
1

|B|
∑

x∈B

∑

y/∈B

Cov(φx, φy)1‖x−y‖≥l

≤ |B \ B0|
|B| +

1

|B|
∑

x∈B

ǫ

≤ 2ǫ

for all large L because lim
L→∞

|B\B0|
|B| = 0. ¥

Lemma 8.11. lim
L→∞

f ′′
L(0) = −1.

Proof. This can be proved exactly as Lemma 8.10 (Problem 8.4). ¥

8.5.2. Step 2.

Lemma 8.12.

(8.27) lim
L1→∞

lim sup
L2→∞

∣∣∣∣∣∣
fL1L2(r) −

(
fL1

(
r

L
d/2
2

))Ld
2

∣∣∣∣∣∣
= 0.

Proof. We have

(8.28) φ(B) = L
−d/2
2

∑

b∈BL1
(B)

φ(b).
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By Proposition 8.7, for all L2,

(8.29)

∣∣∣∣∣∣
fL1L2(r) − fL1

(
r

L
d/2
2

)Ld
2

∣∣∣∣∣∣
≤ 1

2
L−d

2

∑

b∈BL1
(B)

∑

b′∈BL1
(bc)

Cov(φ(b), φ(b′))r2

≤ 1

2
r2

∑

b′∈BL1
(bc)

Cov(φ(b), φ(b′))

for any b ∈ BL1(B). By Lemma 8.10, the above sum tends to zero as L1 → ∞ uniformly in
L2. This concludes the proof. ¥

8.5.3. Step 3.

Lemma 8.13.

(8.30) lim
L1→∞

lim sup
L2→∞

∣∣∣fL1L2(r) − e−
1
2
r2

∣∣∣ = 0.

Proof. We have

(8.31)

∣∣∣fL1L2(r) − e−
1
2
r2

∣∣∣

≤

∣∣∣∣∣∣
fL1L2(r) −

(
fL1

(
r

L
d/2
2

))Ld
2

∣∣∣∣∣∣
+

∣∣∣∣∣∣

(
fL1

(
r

L
d/2
2

))Ld
2

− e−
1
2
r2

∣∣∣∣∣∣
First taking lim sup

L2→∞
, and then lim

L1→∞
, we conclude that the first summand becomes zero by

Lemma 8.12, and the second summand becomes zero by Lemma 8.9. ¥

8.5.4. Step 4.

Lemma 8.14. For L1, L ∈ N define

(8.32) L2 :=

⌊
L

L1

⌋
.

Then

(8.33) lim
L→∞

(fL(r) − fL1L2(r)) = 0.

Proof. The number L2 is defined such that

(8.34) L1L2 < L < L1L2 + L1.

Let

(8.35) B ∈ BL, B̃ ∈ BL1L2

be the blocks centered on x = 0. Then

(8.36) B = B̃ ∪ X

for some X ⊂ Z
d, and

(8.37)
|X|
|B̃|

≤ Ld − (L1L2)
d

(L1L2)d
≤ (L1L2 + L1)

d − (L1L2)
d

(L1L2)d
= O

(
1

L2

)
.

This implies that X becomes negligible relative to B̃.
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Proposition 8.7 and Lemma 8.9 imply (Problem 8.5) that

(8.38)
〈
eirφ(B)

〉
−

〈
eirφ( eB)

〉
→ 0, L → ∞.

This concludes the proof. ¥

Proof of Theorem 8.5. Writing

(8.39)
∣∣∣fL(r) − e−

1
2
r2

∣∣∣ ≤ |fL(r) − fL1L2(r)| +
∣∣∣fL1L2(r) − e−

1
2
r2

∣∣∣
and noting that the first summand goes to zero as L → ∞ by Lemma 8.14, and the second
summand is less than ǫ(L1) (which in turn holds for all ǫ(L1) because L1 is arbitrary), we
conclude that

(8.40) lim
L→∞

fL(r) = e−
1
2
r2

.

This finally implies Theorem 8.5. ¥

Remark 8.15. There is a good book on limit theorems for FKG and related systems [BS07].

Problems.

Problem 8.1. Look up and be prepared to present the proof of Theorem 8.3 (a version of
the FKG inequalities) in [BR80].

Problem 8.2. In the proof of Lemma 8.6 explain why the conditions f(−∞) = g(−∞) = 0
were dropped.

Problem 8.3. Prove Lemma 8.9.

Problem 8.4. Prove Lemma 8.11.

Problem 8.5. Complete the proof of Lemma 8.14.
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Part 3. The Hierarchical Renormalisation Group
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Lecture 9. Scaling Limits and the Hierarchical Lattice

With Newman’s theorem as motivation we introduce the idea of scaling limits. Scaling limit
is a way to focus only on the long distance fluctuations of a statistical mechanical model.
Many different models can have the same scaling limit. When two different models have
the same scaling limit we say that they are in the same universality class. The grand goal
of equilibrium statistical mechanics is to classify scaling limits. A starting point is to ask
which models are in the universality class of the massless free field. The renormalization
group is one way to answer this question. We will get used to the main ideas in the context
of hierachical models.

9.1. White noise. White noise

(9.1) W = {W (X) : X ⊂ R
d, |X| < ∞}

is a collection of Gaussian random variables such that

(9.2) Cov(W (X), W (Y )) = |X ∩ Y |,

(9.3) W (∪Xi) =
∑

W (Xi) a.s. if {Xi} disjoint.

For X ⊂ R
d, [φ] > 0, let

(9.4) φ(L, X) = L−d
∑

y∈LX∩Zd

L[φ](φy − 〈φy〉).

The conclusion of Newman’s theorem can be restated as, for X ∈ PL=1,

(9.5) φ(L, X) =⇒ W (X), [φ] =
d

2
.

We say that W is the scaling limit of φ. [φ] is called the dimension of φ. Choosing the
“wrong” value for [φ] will give either no limit or a trivial limit concentrated on the zero field.

We say that two models are in the same universality class if they have the same scaling
limit. Thus Newman’s theorem is saying that all non-critical ferromagnetic models are in
the same universality class, where non-critical means

(9.6)
∑

y

Cov(φx, φy) < ∞.

The grand goal of equilibrium statistical mechanics is to classify the universality classes
for models which are critical:

(9.7)
∑

y

Cov(φx, φy) = ∞

Example 9.1. Recall that the infinite volume limit of the massless Gaussian on Z
d (d > 2)

has

(9.8) 〈φxφy〉∞ = lim
ΛրZd

〈φxφy〉Λ = (2π)−d

∫

[−π,π]d

1∑
u∈Zd,‖u‖=1(e

ik.u − 1)
eik.(x−y) dk.

Calculation (Problem 9.2) shows, for [φ] = d−2
2 ,

〈φ(L, X)φ(L, Y )〉 L→∞−→ (2π)−d

∫

Rd

(1X)ˆ(k)
1

k2
(1Y )ˆ(k) dk

= cd

∫

X

∫

Y

1

‖x − y‖d−2
dx dy.(9.9)
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Question. Is there a Gaussian field with covariance ‖x − y‖−(d−2)?

Let [φ] ∈ (0, d
2).

Proposition 9.2. There exists a probability space with

(9.10) φ = {φ(X) : X ⊂ R
d,

∫

X

∫

X
‖x − y‖−2[φ] dx dy < ∞},

Gaussian random variables such that

(9.11) Cov(φ(X), φ(Y )) =

∫

X

∫

Y
‖x − y‖−2[φ] dx dy,

(9.12) φ(X ∪ Y ) = φ(X) + φ(Y ) a.s. if X, Y disjoint.

The case [φ] = d−2
2 is called the massless continuum free field.

Proof. The next proposition constructs φ with these properties. ¥

Proposition 9.3. Let L > 1. There exists a Gaussian random field

(9.13) ζ = {ζ(x) : x ∈ R
d}

such that

(1) ζ ∈ C∞ as a function of x,
(2) Cov(ζ(x), ζ(y)) = 0 for ‖x − y‖ ≥ L/2,
(3) for ζj independent scaled copies of ζ defined by

(9.14) ζj(x)
L
= L−j[φ]ζ(

x

Lj
),

the field φ = {φ(X) : X ⊂ R
d}, given by the a.s. convergent sum

(9.15) φ(X)
def.
=

∑

j∈Z

∫

X
ζj(x) dx,

which satisfies the conclusion of Proposition 9.2.

To prove this we use:

Lemma 9.4. Let u(x) = u(‖x‖) ∈ C0(R
d), [φ] ∈ (0, d

2). There exists c such that for ‖x‖ 6= 0,

(9.16) ‖x‖−2[φ] =

∫ ∞

0

dl

l
l−2[φ]cu(

x

l
)

Proof. Let l = ‖x‖l′. Then

RHS = ‖x‖−2[φ]

∫ ∞

0

dl′

l′
l′−2[φ]cu(

1

l
) = ‖x‖−2[φ]

by choice of c. ¥

Part of proof of Proposition 9.3. In Lemma 9.4, choose u ∈ C∞
0 and absorb c into u. We

can also assume û(k) ≥ 0 because we can replace u by u∗u which is still C∞ and of compact
support. We can choose the support so that u(x) = 0 for |x| ≥ 1/2. Let

C(x) =

∫ L

1

dl

l
l−2[φ]u(x/l).
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Then Ĉ(k) ≥ 0 and C(x) = 0 for |x| ≥ L/2. The standard theory of Gaussian processes
(Remark 9.5) shows that there exists ζ ∈ C∞ with covariance C(x − y). By Lemma 9.4,

(9.17) ‖x − y‖−2[φ] =
∑

j∈Z

L−2j[φ]C(
x − y

Lj
).

We construct a probability space carrying independent “increments” ζj with covariance

L−2j[φ]C(x−y
Lj ). Define φ(X) by (9.15). This series converges a.s. by Theorem 1.8.3 of [Dur91]

and (Problem 9.1) φ(X) defined this way has the properties claimed in Proposition 9.2
because (9.17) makes the covariance match. ¥

Remark 9.5. We have used the following statement:

For a C∞ function C(x) with Ĉ(k) ≥ 0 there exists a stationary zero-mean
Gaussian process {ζ(x)}x∈Rd with covariance C(x) and a.s. C∞ sample paths.

The following argument is still in progress and is not yet correct/complete. 5 To prove it,
one could argue as follows.

Construct the process ζ(x) that has the covariance C(x) (this is Kolmogorov’s Construc-
tion Theorem applied to a Gaussian process [Wen81]). It can be easily shown that for all
i = 1, . . . , d the process 1

ǫ (ζ(ǫei)− ζ(0)) (where ei is the ith coordinate vector) is Cauchy in

mean square as ǫ → 0. It follows that ζ(x) has mean square derivatives ∂ζ
∂xi

(x), i = 1, . . . , d.

Similarly, ζ(x) has mean square partial derivatives of all orders and one can also compute
covariances of these derivatives (see also [Wen81]). These can be realised as continuous
functions by [Gar72],[IR78].

Thus, for all m ≥ 0 we can start from the process
(

∂d

∂x1 . . . ∂xd

)m

ζ(x)

and integrate it m times over (−∞, x) to get ζ(x). This implies that ζ(x) has differentiable
sample paths up to certain order.

To complete the proof one should use Kolmogorov’s Construction theorem again to pass
from “finite-dimensional distributions” ∂αζ(x) (where α are multiindices with bounded |α|)
to the joint distribution law of the process ζ(t) and all its derivatives of all orders. This
shows that the sample paths of ζ(t) are C∞.

The construction of Proposition 9.3 has created the scaling limit which labels the uni-
versality class of the lattice massless free field. What other models are in this universality
class?

Theorem 9.6 (Aizenmann 1981 [Aiz82], Fröhlich 1981 [Frö82]). In d ≥ 5, the scaling
limit of the nearest neighbor ferromagnetic Ising model, if it exists, is Gaussian.

This is also true for the φ4 field lattice field theory (which we have not yet defined). This
result was proved by random walk representation related to Lecture 6. The Renormalisation
Group (RG) is another way to prove this type of result. It is weaker in that it requires a
small parameter and stronger in that it applies to a much wider class of models and also
proves existence of scaling limit.

Since RG is complicated I want to first exhibit the idea for hierarchical models.

5If anyone knows a good reference please lets us know
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9.2. Hierarchical models. These were invented by (Dyson, 1969), but not quite in the
form I am about to describe, which is inspired by (Gallovatti et al 1978) and (Evans, 1989).

The d-dimensional hierarchical lattice Λ∞ with parameter L > 1, L ∈ N, is a countable
Abelian group with the following properties:

(1) There is an ultrametric defined by a norm |x + y| ≤ max(|x|, |y|).
(2) There is a map L−1 : Λ∞ → Λ∞ such that

(9.18) |L−1x| =
|x|
L

if L−1x 6= 0.

(3) The ball {x : |x − y| ≤ Lp} has Ldp points.

Figure 9.1. The balls of the hierarchical lattice with L = 2, d = 1

Example 9.7 (L = 2, d = 1).

(9.19) Λ∞ = {all finite binary sequences}
The group structure is

⊕
Z2, so, for example, 100 − 11 = 111. The map 2−1 : Λ∞ → Λ∞

is right shift (collapse ball):

(9.20) (xn, xn−1 · · · , x2, x1) 7−→ (xn, xn−1, · · · , x2) xn 6= 0

The metric

(9.21) |x| =

{
2n x = (xn, · · · , x1), xn 6= 0, n ≥ 1

0

satisfies

(9.22) |2−1x| =
|x|
2

if |2−1x| 6= 0,

(9.23) |x + y| ≤ max(|x|, |y|).
Ultrametric means that no balls overlap: B ∩ B′ 6= ∅ ⇒ B ⊂ B′ or B′ ⊂ B. There are 2p

points in the ball |x| ≤ 2p.

9.3. The hierarchical free field. We construct the hierarchical Gaussian free field

(9.24) φ = {φx : x ∈ Λ∞}
by creating the same structure as in Proposition 9.3. Let

(9.25) ζ = {ζx : x ∈ Λ∞}
be a Gaussian random field such that

(9.26) Cov(ζx, ζy) = 0 if |x − y| > L.

Then, for [φ] > 0, define independent scaled copies

(9.27) ζj(x)
L
= L−j[φ]ζ(L−jx)
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where

(9.28) L−j = (L−1)j : Λ∞ → Λ∞.

Then we set

(9.29) φ(x) =
∑

j≥1

ζj(x).

Since [φ] > 0, this series is a.s. convergent on a big probability space carrying all the incre-
ments ζj . This means that

(9.30) φ = ζ1 + φ′,

(9.31) φ′ L
= L−[φ]φ(L−1x),

and (Problem 9.4),

(9.32) φ′
x = φ′

y a.s. for |x − y| ≤ L.

Since this is an ultrametric no balls overlap and balls are the same as blocks B ∈ BL.

Problems.

Problem 9.1. Prove that φ(X) defined by (9.15) has the properties claimed in Proposi-
tion 9.2.

Problem 9.2. Prove (9.9).

Problem 9.3. Construct a d-dimensional hierarchical lattice.

Problem 9.4. Prove (9.32).
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Lecture 10. The Hierarchical Gaussian Free Field

In this lecture, the hierarchical Gaussian free field is introduced. We define the renormal-
ization group in the context of hierarchical models. We obtain some basic properties of this
map and see an explanation for the role of the criterium d ≥ 5 in the scaling limits.

10.1. The hierarchical free field. We recall the construction of hierarchical Gaussian
free field

(10.1) φ = {φx : x ∈ Λ∞}
by creating the same structure as in Proposition 9.3.

Let

(10.2) ζ = {ζx : x ∈ Λ∞}
be a Gaussian random field such that

(10.3) Cov(ζx, ζy) = 0 if |x − y| > L.

Then define independent scaled copies

(10.4) ζj(x)
L
= L−j[φ]ζ(L−jx),

where

(10.5) L−j = (L−1)j : Λ∞ → Λ∞.

Definition 10.1. The hierarchical field is

(10.6) φ(x) =
∑

j≥1

ζj(x)

converging a.s. on a big probability space carrying all the increments ζj .

From this definition, it follows that

(10.7) φ = ζ1 + φ′, φ′
x

L
= L−[φ]φL−1x,

and (Problem 10.1),

(10.8) φ′
x = φ′

y a.s. for |x − y| ≤ L.

Since this is an ultrametric no balls overlap and balls are the same as blocks B ∈ BL.

10.2. Definition of the renormalization group. We define the following operations:

• Integrating out ζ: Define

(10.9) E1(F ) = E(F |ζ2, ζ3, . . . ).

• Rescaling ζ: For F ∈ σ(ζ2, ζ3, . . . ), define

(10.10) L̂−1F

by replacing arguments ζj+1(x) with L−[φ]ζj(L
−1x), for j ≥ 1.

Remark 10.2. F and L̂−1F are equal in law.

• RG Transformation: For F , E|F | < ∞, define

(10.11) RG : F 7→ L̂−1 ◦ E1(F ).
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Lemma 10.3.

(10.12) EF = E(RG(F ))

Proof. Let Ej := E(F |ζj+1, ζj+2, . . . ). Then:

EF
Problem 10.2

= lim
N→∞

ENEN−1 · · ·E2E1(F )

Remark 10.2
= lim

N→∞
EN−1 · · ·E1L̂−1E1(F )

Problem 10.2
= E(RG(F ))

¥

Lemma 10.4. For P (φ) a polynomial in φ,

(10.13) E1:P (φ):v = :P (φ′):v′ ,

where

v =
∑

j≥1

Cj : is the covariance of φ,(10.14)

v′ =
∑

j≥2

Cj : is the covariance of φ′.(10.15)

Proof. Let

∆C =
∑

x,y

C(x, y)
∂

∂φ′
x

∂

∂φ′
y

,

∆C,ζ =
∑

x,y

C(x, y)
∂

∂ζx

∂

∂ζy
.

Then, from Lecture 4, for Q = : P :v,

E1Q(φ) = E1Q(φ′ + ζ) = e
1
2
∆C,ζQ(φ′ + ζ)

∣∣
ζ=0

= e
1
2
∆C Q(φ′)

= e
1
2
∆C e−

1
2
∆vP (φ′) = e−

1
2
∆v−C P (φ′) = :P (φ′):v′

¥

Lemma 10.5.

(10.16) RG:φp
x:v = L−p[φ]:φp

L−1x
:v

Proof. By Lemma 10.4,

RG:φp
x:v = L̂−1:φ′p

x :v′ = L̂−1e
− 1

2

P

j≥2 ∆Cj,ζj φ′p
x = L̂−1e

− 1
2

P

j≥2 ∆Cj,ζj

( ∑

j≥2

ζj

)p

L̂−1 replaces ζj(x) by L−[φ]ζj−1(L
−1x), thus

RG:φp
x:v = L−p[φ]:φp

L−1x
:.

¥
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10.3. Hierarchical models. Our models have had the form

(10.17) Z =

∫
e−(φ,−∆Λφ)FΛ dΛφ,

(10.18) FΛ =
∏

x∈Λ

Fx (Λ ⊂ Z
d),

where Fx is a bounded function of φx. A close hierarchical analogue is

(10.19) Z = EFΛ (Λ ⊂ Λ∞).

Remark 10.6. It would be an even closer analogue if (10.17) had been the infinite volume
Gaussian expectation of FΛ. This can be understood as a different boundary condition at
∂Λ.

We intend to calculate Z by

(10.20) Z = lim
n→∞

E(RG)nFΛ.

Lemma 10.7.

(10.21) RG(FΛ) =
∏

x∈L−1Λ

RG(FB(x)),

where

(10.22) B(x) = {y : L−1y = x}.
Proof.

RG(FΛ) = L̂−1E1

∏

B∈BL(Λ)

FB = L̂−1
∏

B∈BL(Λ)

E1F
B =

∏

x∈L−1Λ

L̂−1E1F
B(x)

︸ ︷︷ ︸
=RG(F B(x))

.

¥

Example 10.8.

(10.23) FΛ = e−V (Λ), [φ] =
d − 2

2
,

(10.24) V (Λ) =
∑

x∈Λ

Vx, Vx = g:φ4
x: + a:φ2

x:

Then, to order g, a, or equivalently, V 2 = 0,

(10.25) RG(FB(x)) = RG(e−V (B(x))) = RG(1 − V (B(x)))

= 1 −
∑

y∈B

(
gL−4[φ]:φ4

L−1y: + aL−2[φ]:φ2
L−1y:

)
= 1 − V ′

x = e−V ′
x ,

where

(10.26) V ′ = g′:φ4: + a′:φ2:

(10.27) g′ = |B|L−4[φ]g, a′ = |B|L−2[φ]a.

Putting in

(10.28) [φ] =
d − 2

2
, |B| = Ld,
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we have

(10.29) g′ = L−d+4g, a′ = L2a.

0

0

a

g

Figure 10.1. Approximate renormalization group trajectories (d > 4)

10.4. Correlation.

(10.30) 〈φaφb〉 =
EF (a, b)Λ

EFΛ
,

where, for a 6= b,

(10.31) Fx(a, b) = e−Vx





1 x 6= a, b

φa x = a

φb x = b

Apply RG to top and bottom of (10.30).

10.5. Problems.

Problem 10.1. Prove (10.8); c.f. [Dur91, Theorem 6.3].

Problem 10.2. Justify the limits in the proof of Lemma 10.3.

Problem 10.3. Find α such that

(10.32) RG(F (a, b)B(x)) = αφxe−Vx + O(g, a)

when B(x) contains a but not b. If both a, b ∈ B(x), what is

(10.33) RGn(F (a, b)B(x))

to order V 0?
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Lecture 11. The Renormalisation Group Step (1)

At the O(V ) level of the last lecture, the action of the renormalisation group is to replace

(11.1) V = g:φ4: + a:φ2: by Ṽ = g̃:φ4: + ã:φ2:

with g̃ = gLd−4[φ], ã = Ld−2[φ]a. To include all O(V 2) corrections, we introduce an error
term such that under the action of the renormalisation group

e−V + K → e−V ′
+ K ′.

In this lecture, we introduce some of the main tools for controlling this K: which space
K is in and how to measure its size. The ideas explained in this and the next lecture are
based on pages 565–573 of [BI03].

11.1. The model. For Λ ⊂ Λ∞ a subset of the hierarchical lattice, denote

(11.2) (e−V + K)Λ
def.
=

∏

x∈Λ

(e−Vx + Kx)

where

(11.3) Vx = g:φ4
x: + a:φ2

x: + b

with |a| ≤ √
g and Kx = K(φx). Inductively assuming that K is even and such that

K(t) = O(t6) as t → 0, we are interested in the effect of the renormalisation group on

(11.4) Z
def.
= E(e−V + K)Λ.

Initially, we could assume that K = 0, but after one renormalisation group step, we would
need a K. Therefore, we choose a form of Z, which remains stable under the action of the
renormalisation group.

E denotes the expectation for the hierarchical field. Then, for L > 1,

(11.5) φx
L
=L−[φ]φL−1x + ζ

and, for [φ] > 0, by the following remark we can assume that Var ζ ≤ 1 for all L.

Remark 11.1. At present our construction of hierarchical φ seems to require a different
probability model for each L, but if we assume L ∈ {3, 32, 33, . . . } this can be avoided as
follows. Construct the L = 3 probability space. On this space are defined {ζj , j ≥ 1} and
φ =

∑
ζj . We write φ = (ζ1 + ζ2) + (ζ3 + ζ4) . . . and let ξ = ζ1 + ζ2. Then we have

(11.6) φx
L
=L−[φ]φL−1x + ξ, L = 32.

More generally we obtain L = 3n by setting ξ = ζ1 + ζ2 + · · · + ζn. Also

(11.7) Var(ξx) =

log3 L∑

j=1

3−[φ]jVar(ζx).

This series is geometrically convergent for L → ∞ so we can assume, by choice of Var(ζx),
that Var(ξx) ↑ 1 as L → ∞, L ∈ {3n : n ∈ N}.
Assumption. We shall assume that d − 4[φ] < 0.

Recall that d is the dimension of the space and [φ] represents the dimension of the field.
As in the last lecture, the assumptions means that g → 0 within the O(V ) calculations.
When the coupling constants are contracted according to the O(V ) calculation, we say that
they are irrelevant.
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11.2. The Tφ norm. For F a function of finitely many {φx, x ∈ Λ∞}, we define

(11.8) ‖F‖Tφ

def.
= ‖F‖Tφ,h

def.
=

∑

x∈Λ∗∞

hn

n!

∣∣∣∣
∂nF (φ)

∂φx1 · · · ∂φxn

∣∣∣∣

where n = n(x) represents the length of the sequence x and h > 0. (Tφ stands for tangent
space.)

Example 11.2. If F = F (φx), then

(11.9) ‖F‖Tφ
=

∞∑

n=0

hn

n!

∣∣∣∣
∂nF (φ)

∂φn
x

∣∣∣∣ .

This sum converges if F is analytic on a horizontal strip of width h.

Lemma 11.3. (1)

(11.10a) ‖F1F2‖Tφ
≤ ‖F1‖Tφ

‖F2‖Tφ

and, therefore,

(11.10b)
∥∥FX

∥∥
Tφ

≤ ‖F‖X
Tφ

(2)

(11.11)
∑

x∈Λ∗∞

hn
1

n!

∥∥∥∥
∂nF (φ)

∂φx1 . . . ∂φxn

∥∥∥∥
Tφ,h2

≤ ‖F‖Tφ,h1+h2

Proof. Problem 11.1. ¥

Property (2) says that

(11.12)

∥∥∥∥
∂nF (φ)

∂φx1 . . . ∂φxn

∥∥∥∥
Tφ,h2

≤ n!

hn
1

‖F‖Tφ,h1+h2

which is a Cauchy bound. We will use that the derivatives are very small for large h1.

Example 11.4. Suppose F = F (φ). Here, we are interested in finding a bound for the Tφ

norm for the renormalisation group step. This calculation shall be referred to later in the

lecture. Recalling that RG = L̂−1E1,

(E1F )(φ′) =

∫
dµC(ζ)F (φ′ + ζ),(11.13)

(RG(F ))(φ) =

∫
dµC(ζ)F (L−[φ]φ + ζ),(11.14)

∂

∂φ
(RG(F ))(φ) = L−[φ]

∫
dµC(ζ)F ′(L−[φ]φ + ζ).(11.15)

Applying the Tφ norm gives

(11.16) ‖RG(F )‖Tφ,h ≤
∫

dµC(ζ) sup
ζ

‖F‖T
L−[φ]φ+ζ

,L−[φ]h
≤ sup

φ
‖F‖Tφ,L−[φ]h

.

We shall denote

(11.17) ‖F‖L−[φ]h

def.
= sup

φ
‖F‖Tφ,L−[φ]h

.



STATISTICAL MECHANICS AND THE RENORMALISATION GROUP 61

Lemma 11.5. For h ≤ g−1/4, there exists a constant C such that, for |a| ≤ √
g,

(11.18)
∥∥∥e−g:φ4

x:−a:φ2
x:

∥∥∥
Tφ,h

≤ eO(gh4)− 1
2
gφ4

x ≤ Ce−
1
2
gφ4

x .

If h ≤ cg−1/4 we have the same conclusion.

Proof. We give the proof for e−gφ4
. The complete case is Problem 11.2. The proof follows

from using an approximation to the exponential:
∥∥∥∥
(
1 − g

N
φ4

x

)N
∥∥∥∥

Tφ,h

Lemma 11.3 (1)

≤
∥∥∥1 − g

N
φ4

x

∥∥∥
N

Tφ,h

The definition of the Tφ norm gives
∣∣∣(1 − g

N
φ4

x) +
g

N
4|φx|3h +

g

N
6|φx|2h2 + · · · + g

N
h4

∣∣∣
N

=
∣∣∣(1 +

g

N
h4(−t4 + 4t3 + 6t2 + 4t + 1)

∣∣∣
N

by setting t = |φx|/h. Therefore, using 1 + x ≤ ex,
∥∥∥∥
(
1 − g

N
φ4

x

)N
∥∥∥∥

Tφ,h

≤
∣∣∣∣1 +

g

N
h4(−1

2
t4 + c)

∣∣∣∣
N

≤ e−
1
2
gφ4

xecgh4
.

¥

Notation. Let ‖F‖
h

= supφ ‖F‖Tφ,h and let h = g−1/4 and h̃ = 2(Ld−4[φ]g)−1/4.

11.3. RG Step I. Given (V, K) define (Ṽ , K̃) by

(11.19) RG(e−V + K)B = e−Ṽx + K̃x

where x = L−1B and Ṽx = RG(V (B)). This equation defines K̃ because Ṽ is already
determined by V (B). Define

(11.20) K̃main,x = RG(e−V (B)) − e−RG(V (B)).

Proposition 11.6. There exists c(L) such that as L → ∞ with g ≤ c(L) and ‖K‖h ≤ c(L),

(11.21)
‖K̃ − K̃main,x‖h̃

‖K‖h
= O(L−d/2).

Remark 11.7. c(L) is determined in the proof such that

lim
L→∞

c(L) = 0

exponentially (faster than 2Ld
). We will make assumptions like ‖K‖h ≤ 1, at very many

places in the proof.

Part of proof of Proposition 11.6.

K̃∗ − K̃main,x =
∑

y∈B

L̂−1e−V (B\{y})Ky(I)

+
∑

y∈B

L̂−1(E1 − Id)(e−V (B\{y})Ky)(II)

+
∑

Y ⊂B,|Y |≥2

L̂−1E1(e
−V (B\Y )K(Y ))(III)
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which follows by doing a binomial expansion. Note that

L−[φ]h̃ = L−[φ]2(Ld−4[φ]g)−
1
4 = 2L− d

4 g−
1
4 ≤ g−

1
4 = h.

Term III. We prove that (III) is bounded in its Tφ norm as claimed in Proposition 11.6 by
using Example 11.4 and Lemma 11.5 as follows:∥∥∥∥∥∥

∑

Y ⊂B,|Y |≥2

L̂−1E1(e
−V (B\Y )K(Y ))

∥∥∥∥∥∥
Tφ,h̃

≤
∑

Y ⊂B,|Y |≥2

∥∥∥e−V (B\Y )K(Y )
∥∥∥
L−[φ]h̃︸ ︷︷ ︸

≤h

≤
∑

Y ⊂B,|Y |≥2

∥∥∥e−V (B\Y )K(Y )
∥∥∥

h

Then, we can separate K from the norm by Example 11.4. This gives∥∥∥∥∥∥
∑

Y ⊂B,|Y |≥2

L̂−1E1(e
−V (B\Y )K(Y ))

∥∥∥∥∥∥
Tφ,h̃

≤


 ∑

Y ⊂B,|Y |≥2

∥∥e−V
∥∥B\Y

h


 ‖K‖2

h

≤
( ∑

Y ⊂B

∥∥e−V
∥∥B\Y

h

)
‖K‖2

h .

By reversing the binomial expansion and applying Lemma 11.5, this is the same as∥∥∥∥∥∥
∑

Y ⊂B,|Y |≥2

L̂−1E1(e
−V (B\Y )K(Y ))

∥∥∥∥∥∥
Tφ,h̃

≤
(∥∥e−V

∥∥
h

+ 1
)|B| ‖K‖2

h

≤
(
cLd ‖K‖h

)
‖K‖h .

By choosing c(L) to decrease sufficiently rapidly as L → ∞ we arrange that cLd ‖K‖h =

o(L−d/2) as L → ∞ and so the contribution of this term to

‖K̃ − K̃main,x‖h̃

‖K‖h
Ld/2

drops out. (I) and (II) will be bounded next lecture. ¥

Problem 11.1. Prove Lemma 11.3.

Problem 11.2. Complete the proof of Lemma 11.5.
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Lecture 12. The Renormalisation Group Step (2)

Proof of Proposition 11.6 (cont’d). Recall the formulation of Proposition 11.6. That is, we
want to prove that there exists c(L) such that if g ≤ c(L) and ‖K‖h ≤ c(L) then

(12.1)
‖K̃ − K̃main‖h̃

‖K‖h
= O(L−d/2).

We wrote

(12.2) K̃x − K̃main,x = I + II + III,

where

I =
∑

y∈B

L̂−1e−V (B\{y})Ky(I)

II =
∑

y∈B

L̂−1(E1 − Id)(e−V (B\{y})Ky)(II)

III =
∑

Y ⊂B,|Y |≥2

L̂−1
E1(e

−V (B\Y )K(Y )),(III)

and B is the block such that L−1B = x. In the previous lecture, we proved that there is a
choice of c(L) such that

(12.4)
‖III‖Tφ,h̃

‖K‖h
= o(L−d/2),

so our proof is complete for term III.

Term I. Since K(φy) = O(φ6
y), we can write

(12.5) K(φy) =

∫ 1

0

(1 − t)5

5!

(
d

dt

)6

K(tφy) dt =

∫ 1

0

(1 − t)5

5!
K(6)(tφy)φ

6
y dt

Note that

(12.6) L̂−1e−V (B\{y}) = e−(|B|−1)g(L−[φ]φy)
4
+···,

where dots stand for terms containing φ2
y and φ0

y = 1.

Preliminary calculation. Recall that

(12.7) h̃ = 2g̃−1/4, g̃ = Ld−4[φ]g, L−[φ]h̃ = 2|B|−1/4h.

Thus,

(12.8)

∥∥∥L−6[φ]φ6
ye

−(|B|−1)gL−4[φ]φ4
y

∥∥∥
Tφ,h̃

≤
(
L−[φ]h̃

)6
∥∥∥∥
φy

h̃

∥∥∥∥
6

h̃

∥∥∥e−(1−|B|−1)g̃φ4
y

∥∥∥
Tφ,h̃

≤ c
(
|B|−1/4h

)6

because h̃ = 2g̃−1/4 so Lemma 11.5 applies.

Therefore,

(12.9) ‖I‖Tφ,h̃ ≤ c|B|
(
|B|−1/4h

)6
sup

t

∥∥∥K(6)(tφy)
∥∥∥

L−[φ]h̃
.
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By Cauchy estimate from Lemma 11.3,

(12.10)

‖I‖Tφ,h̃ ≤ c|B|
(
|B|−1/4h

)6 1

(h − L−[φ]h̃)6
‖K‖h

≤ c|B|
(
|B|−1/4h

)6 1

(h − 2|B|−1/4h)6
‖K‖h

= O(|B|−1/2) ‖K‖h = L−d/2 ‖K‖h .

Therefore,

(12.11)
‖I‖Tφ,h

‖K‖h

= O(L−d/2), L → ∞.

The argument for II is given at the end of this lecture and it shows that

(12.12)
‖II‖Tφ,h

‖K‖h

= O(
1

h2
) = O(

√
g) = O(

√
c(L)),

so this can also be made O(L−d/2), L → ∞. ¥

12.1. RG Step II. Proposition 11.6 required K = O(φ6). The value K̃ will not obey this
condition so we cannot use Proposition 11.6 for the next RG. Therefore, define (V ′, K ′),
where

(12.13) V ′ = g′:φ4: + a′:φ2: + b′

so that

(12.14) e−V ′
+ K ′ = e−Ṽ + K̃, K ′(φx) = O(φ6

x).

To see that a solution (V ′, K ′) exists, define V ′ by making Taylor expansion in e−Ṽ + K̃ to
order φ4 and then let

(12.15) K ′ = e−Ṽ − eV ′
+ K̃.

Now K ′ is of order O(φ6).

Lemma 12.1. The solution (V ′, K ′) satisfies

(1) ‖V ′ − Ṽ ‖T0,h ≤ c ‖K‖T0,h, where T0 refers to the Tφ norm with φ = 0;

(2) ‖K ′‖h̃ ≤ c‖K̃‖h̃;

(3) ‖K ′‖T0,h ≤ c‖K̃‖T0,h,

where h ≥ 1.

Proof. See [BI03, p. 569]. ¥

Now we can prove that Kmain controls K.

Corollary 12.2. For L large, g ≤ c(L), if for some z such that z(d− 4 [φ]) > −d/2 we have

(12.16) c‖K̃main‖h̃ ≤ g̃z, ‖K‖h ≤ 2gz,

then

(12.17) ‖K ′‖h ≤ 2g̃z.
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Proof. By Lemma 12.1 we have ‖K ′‖h̃ ≤ c‖K̃‖h̃, and then we write

(12.18)

‖K ′‖h̃ ≤ c‖K̃ − K̃main‖h̃ + c‖K̃main‖h̃

≤ O(L−d/2) ‖K‖h + g̃z

≤ O(L−d/2)2gz + g̃z

≤ O
(
L−d/2−(d−4[φ])z

)
2g̃z + g̃z ≤ 2g̃z.

The last inequality holds for all L large enough. This concludes the proof. ¥

Lemma 12.1 (1) says that

g′ = Ld−4[φ]g + O
(
h−4‖K̃‖T0,h

)
;(12.19a)

a′ = Ld−2[φ]a + O
(
h−2‖K̃‖T0,h

)
.(12.19b)

The next task is to prove that the corrections to linear terms are o(g).

Notation. h = g−1/4 (as before)

Proposition 12.3. Let p > 0 and h = L[φ]. There exists cp(L) such that if

(12.20) g ≤ cp(L), ‖K‖T0,h ≤ cp(L),

then

(12.21)
‖K̃ − K̃main‖T0,h

‖K‖T0,h ∨ (h−p‖K‖h)
= O

(
Ld−6[φ]

)
.

Remark 12.4. In the lecture I wrote O(L−d/2), but this is what the proof gives and it is
better. By choosing p = 12 we have h−p = g3 which is so small that h−p‖K‖h will drop out
in our application of this result.

12.2. Domain. Let δ > 0, L ≥ L0(δ),

g ≤ c(L);(12.22a)

|a| ≤ g;(12.22b)

‖K‖T0,h ≤ g2−δ;(12.22c)

‖K‖h ≤ g1/2−δ.(12.22d)

The last two inequalities are based on calculating ‖K̃main‖. Then

g′ = Ld−4[φ]g + ǫg, ǫg ≤ g2−δ;(12.23a)

a′ = Ld−2[φ]a + ǫa, ǫa ≤ g2−δ;(12.23b)

b′ = Ldb + ǫb, ǫb ≤ g2−δ,(12.23c)

and K ′ obeys

‖K ′‖T0,h ≤ (g′)2−δ;(12.24a)

‖K ′‖h′ ≤ (g′)1/2−δ, h′ := (g′)−1/4.(12.24b)

Following [BS73] there exists a critical choice of ac, bc such that under the action of the
renormalisation group the values g, a, b tend to zero.
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Appendix 12.A. The bound on II in the proof of Proposition 11.6.

Notation.

(12.25) E
(p−1)F =

p−1∑

n=0

1

n!

(
∆C

2

)n

F.

Lemma 12.5.

(12.26) ‖E1F − E
(p−1)F‖Tφ,h1 ≤ (2p)!

2pp!

(
C(0, 0)

h2
2

)p

‖F‖h1+h2

Proof. We have

(12.27)

E1F = E
(p−1)F +

∫ 1

0

(1 − t)p−1

(p − 1)!

(
d

dt

)p

EtF

= E
(p−1)F +

∫ 1

0

(1 − t)p−1

(p − 1)!
Et

(
∆C

2

)p

F,

where Et has covariance tC in place of C.
Therefore,

(12.28)

‖E1F − E
(p−1)F‖Tφ,h1 ≤ 1

p!
sup

t

∥∥∥∥Et

(
∆C

2

)p

F

∥∥∥∥
Tφ,h1

≤ 1

p!

∥∥∥∥
(

∆C

2

)p

F

∥∥∥∥
h1

≤ 1

p!

(2p)!

2ph2
2p (C(0, 0))p ‖F‖h1+h2

by Lemma 11.3 and because C(x, y) ≤ C(0, 0) by Cauchy-Schwarz and positive-definiteness.
¥

By taking p = 1 we obtain a bound on E1F −F by O(h−2)‖F‖2h which is what is needed
to bound term II in the proof of Proposition 11.6.

Appendix 12.B. Part of proof of Proposition 12.3. (1) If F = F (φx) and F (n)(0) = 0
for n = 0, 1, . . . , p − 1, then

(12.29) ‖F‖T0,αh =
∑

n≥p

1

n!
(αh)n|F (n)(0)| ≤ αp‖F‖T0,h.

(2) Write

(12.30) K̃ − Kmain =
∑

y∈B

L̂−1
E1

(
e−V (B\{y})Ky

)
+

∑

y⊂B, |Y |≥2

L̂−1
E1

(
e−V (B\Y )KY

)
.
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As in the proof of Proposition 11.6, the second term will turn out to be negligible so we
consider the first term. Let F = e−V (B\{y})Ky, then F = O(φ6). Thus, recalling h = L[φ],

(12.31)

∥∥∥L̂−1
E1F

∥∥∥
T0,h

≤ ‖E1F‖T0,L−[φ]h
,

Lemma 12.5
≤

p−1∑

n=0

1

n!

∥∥∥∥
(

∆C

2

)n

F

∥∥∥∥
T0,L−[φ]h

+ O

(
1

h − L−[φ]h

)2p

‖F‖h

≤ c(p)‖F‖T0,2L−[φ]h
+ O

(
1

h − 1

)2p

‖F‖h

(1)

≤O
(
L−6[φ]

)
‖F‖T0,h + O(h−2p)‖F‖h

≤ O
(
L−6[φ]

)
‖K‖T0,h + O(h−2p)‖K‖h.

By (2), the contribution to ‖K̃ − Kmain‖T0,h is, using |B| to count terms in
∑

y∈B,

(12.32) |B|O
(
L−6[φ]

)
‖K‖T0,h + O(h−2p)‖K‖h ≤ O

(
Ld−6[φ]

)
‖K‖T0,h ∨

(
h−2p+1‖K‖h

)
,

where we used h ≥ L6[φ]−d, which is true by h = g−1/4 and g ≤ c(L), and we can choose
c(L). Since this holds for all p, we can write p in place of 2p − 1 and we have

(12.33)
‖K̃ − Kmain‖T0,h

‖K‖T0,h ∨ (h−p‖K‖h)
= O

(
Ld−6[φ]

)

as L → ∞. ¥
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Part 4. The Euclidean Renormalisation Group
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Lecture 13. Scaling Estimates; Coordinates; Step I

In this and the remaining lectures we will see how the hierarchical model techniques can be
lifted to the Euclidean Z

d case. First we will discuss the scheme in an abstract way and then
describe how it is applied to the anharmonic lattice

(13.1) Z =

∫

RΛ

∏

xy∈Edges(Λ)

e−f(φx−φy) dΛφ

where f is “nearly” Gaussian,

(13.2) f(φx − φy) ≃
1

2
(φx − φy)

2.

Proposition 13.1 (Brydges-Guadagni-Mitter 2003 [BGM04]). Let φ be the Z
d massless

free field. Let L ∈ N, L ≥ 2. Let d ≥ 3. There exist independent {ζj : j ≥ 1}, where
ζj = {ζj(x) : j ≥ 1}, such that

(1) ζj is Gaussian, its law is Z
d invariant,

(2) Cov(ζj(x), ζj(y)) = 0 if |x − y| ≥ Lj/2,
(3) φ =

∑
j≥1 ζj.

Furthermore the same is true for the massive Z
d free field for d ≥ 1.

These “increments” ζj cannot be scalings of ζ = ζ1 because a scaling would live on

L−j
Z

d 6= Z
d. However, Cj(x, y) := Cov(ζj(x), ζj(y)) obeys scaling estimates:

13.1. Scaling Estimates.

(13.3) |(∇α
x∇α

y Cj)(x, y)|x=y ≤ C(α)L−2(j−1)([φ]+|α|)

where

(13.4) ∇ef(x) = f(x + e) − f(x),

(13.5) α = (e1, e2, · · · , en) ∈ (unit vectors)∗.

Since C(x, y) = C(x − y), ∇α
x∇α

y C(x, y)|x=y = ∇2α
x C(0, 0).

Remark 13.2. In the massive case Cj does more: It becomes essentially zero for j ≥
logL(mass)−1. In the massless case, for d = 1, 2, there exists ζj such that ∇φ =

∑∇ζj

(while φ itself does not exist).

13.2. Coordinates. In the hierarchical model, we had

(13.6) (e−V + K)Λ =
∑

X⊂Λ

e−V (Λ\X)KX =
∑

X∈P0(Λ)

e−V (Λ\X)KX ,

recalling that P0 is all unions of L0 blocks, i.e. points in Λ. In particular, by definition, KX

factors over points: KX =
∏

x∈X Kx. In the Euclidean model, it is not possible to define K
on points. Instead, (13.6) at scale j is replaced by

(13.7)
∑

X∈Pj(Λ)

e−Vj(Λ\X)Kj(X)

where

(13.8) Kj = {Kj(X) : X ∈ Pj}
is a collection of random variables defined on polymers of the current scale, such that:
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(1) Kj(X) depends on

(13.9) {φx : x ∈ X∗}
where X∗ is a neighbourhood of X defined later.

(2) Kj(X) factorises as

(13.10) Kj(X) =
∏

Y ∈C(X)

Kj(Y )

where Y ∈ C(X) means that Y is a connected component of X.

Figure 13.1. Y ∈ Pj , j ∈ N, is connected if any pair of points a, b ∈ Y are
such that there is a sequence (a = x1, x2, · · · , xn = b) with ‖xi − xi−1‖∞ = 1
for i = 2, 3, . . . , n and xi ∈ Y , i = 1, . . . , n.

Definition 13.3. For X ∈ Pj , F, G functions on Pj ,

(13.11) (F ◦ G)(X)
def.
=

∑

Y ∈Pj(X)

F (Y )G(X \ Y ).

With this definition the “coordinates” (Vj , Kj) represent a random variable that depends
on all the fields {φx : x ∈ Λ} by

(13.12) (Vj , Kj) → (e−Vj ◦ Kj)(Λ).

13.3. RG Step I. The Euclidean RG is a method to compute

(13.13) Ee−V0(Λ), where V0(Λ) =
∑

x∈Λ

V0,x

via

(13.14) lim
N→∞

EN · · ·E1e
−V0(Λ).

In contrast to the renormalisation group on the hierarchical lattice, there is no rescaling:
The RG step is only Fj 7→ Ej+1Fj . If j = 0,

(13.15) e−V (Λ) =
∑

X∈P0(Λ)

e−V0(Λ\X)K0(X), where K0(X) =

{
1 if X = ∅
0 else.

The RG step, given (Vj , Kj) by inductive assumption, is finding (Vj+1, Kj+1) such that

(13.16) Ej+1(e
−Vj ◦ Kj)(Λ) = (e−Vj+1 ◦ Kj+1)(Λ) =

∑

X∈Pj+1(Λ)

Kj+1(X)e−Vj+1(Λ\X).

We symbolise this condition as follows:

(Vj , Kj)
Ej+1→ (Vj+1, Kj+1)

It is a two and a half step process beginning as in hierarchical case with a “linear guess”
that Vj+1 ≃ Ṽ where

(13.17) Ṽ (X) = Ej+1Vj(X).

Our first objective is a formula for K̃ such that (Vj , Kj)
Ej+1→ (Ṽ , K̃).
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Definition 13.4. For X ∈ Pj , X̄ is the smallest set in Pj+1 that contains X.

Definition 13.5. For U ∈ Pj+1, we say X ∈ P̄j(U) if X̄ = U .

Example 13.6. Let

(13.18) Ix = e−Vx , Ĩx = e−Ṽx , δIx = Ix − Ĩx.

Then

(13.19) IX = (Ĩ + δI)X =
∑

Y ⊂X

δIY ĨX\Y =
(
(δI) ◦ Ĩ

)
(X),

where

(13.20) δI(Y ) = δIY , Ĩ(Y ) = ĨY .

Fact. Properties of “◦”:

A ◦ B = B ◦ A(13.21)

A ◦ (B ◦ C) = (A ◦ B) ◦ C(13.22)

Lemma 13.7. (Vj , Kj)
Ej+1→ (Ṽ , K̃) where for U ∈ Pj+1

(13.23) K̃(U) =
∑

X∈P̄j(U)

ĨU\X
Ej+1(Kj ◦ δI)(X)

and K̃ satisfies the factorisation property (13.10), as a function on Pj; that is

(13.24) K̃(U) =
∏

X∈C(U)

K̃(X)

where X ∈ C(U) means that X ∈ Pj+1 is a connected component of U as a set in Pj+1.

Remark 13.8. This lemma does not depend on the choice Ṽ = EV . It holds for any Ṽ
which is not a function of ζj+1 so that

(13.25) Ej+1(Ĩ
X(−)) = ĨX

Ej+1(−).
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Proof.

Ej+1(I ◦ K)(Λ) = Ej+1

(
(Ĩ ◦ δI) ◦ K

)
(Λ)

= Ej+1

(
Ĩ ◦ (δI ◦ K)

)
(Λ)

=
∑

X∈Pj(Λ)

Ej+1Ĩ(Λ\X)(δI ◦ K)(X)

=
∑

X∈Pj(Λ)

ĨΛ\X
Ej+1(δI ◦ K)(X)

=
∑

U∈Pj+1(Λ)

∑

X∈P̄j(U)

ĨΛ\X̄ ĨX̄\X
Ej+1(δI ◦ K)(X)

=
∑

U∈Pj+1(Λ)

ĨΛ\U
∑

X∈P̄j(U)

ĨU\X
Ej+1(δI ◦ K)(X)

=
∑

U∈Pj+1(Λ)

ĨΛ\UK̃(U)

= (Ĩ ◦ K̃)(Λ)

Factorisation depends on the finite range property of ζj+1 and (13.10). See Problem 13.2. ¥

13.4. Problems.

Problem 13.1. Prove that if u ∈ C∞
0 (Rd) then

(13.26)

∫ Lj

Lj−1

dl

l
l−2[φ]u(

x − y

l
)

obeys scaling estimates.

Problem 13.2. Prove (13.24).

Problem 13.3. Show that Lemma 13.7 returns the hierarchical formula for K̃ when con-
nectedness is defined with the hierarchical metric and Λ∞ replaces Z

d.
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Lecture 14. Small Sets and the Negligible Part of Step I

Question. What does K̃ reduce to if the metric is hierarchical?

Example 14.1. Lemma 13.7 still applies because it made no assumption about the metric.
Thus, K̃(U) where U ∈ Pj+1 factorizes as

(14.1) K̃(U) =
∏

B∈Bj+1(U)

K̃(B)

because on the hierarchical lattice, blocks are connected components of U .

(14.2) K̃(B) =
∑

X∈P̄j(B)

ĨB\X
Ej+1(δI ◦ K)(X)

=
∑

XK ,XδI∈Pj(B)
XK∩XδI=∅

1XK∪XδI=B ĨB\(XK∪XδI)
Ej+1δI

XδI KXK

We work out the part that does not contain any K:

(14.3)
∑

XδI∈Pj(B)
XδI 6=∅

1XδI=B ĨB\XδI Ej+1δI
XδI

= Ej+1(Ĩ + δI)B − ĨB = Ej+1I
B − ĨB = Ej+1e

V (B) − e−Ej+1V (B) = Kmain

Remark 14.2.

(14.4) δIX =
∏

b∈Bj(X)

δI(b), δI(b) = I(b) − Ĩ(b)

(No L̂−1 to collapse b to a point.)

14.1. Small sets.

Definition 14.3.

(14.5) Sj = {X ∈ Pj : X connected, |X|j ≤ 2d}
is the set of small sets, where, for X ∈ Pj ,

(14.6) |X|j = |Bj(X)|
is the number of j blocks in X. For B ∈ Bj , X ∈ Pj ,

(14.7) B∗ =
⋃

{Y ∈ S : Y ⊃ B},

(14.8) X∗ =
⋃

{B∗ : B ∈ Bj(X)}
are the small set neighbourhoods of B and X respectively. For U ∈ Pj+1, we say

(14.9) X ∈ Sj(U) if {X̄ = U and X ∈ Sj}.
The following geometric lemmas hold for L ≥ L0(d).

Lemma 14.4. There exists c > 1 such that if X 6∈ S and X is connected, then

(14.10) |X|j ≥ c|X̄|j+1.
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Lemma 14.5. There exists c > 1 such that

(14.11) |X|j ≥ c|X̄|j+1 − c2d+1n(X)

where n(X) is the number of connected components of X ∈ Pj.

Figure 14.1. Illustration of geometric lemmas.

Let

(14.12) K̃main(U) =
∑

X∈P̄j(U)

ĨU\X
Ej+1(δI)X

be the XK = ∅ contribution to K̃. Let

(14.13) ∗ = {(XK , XδI) ∈ P2
j (U) : XK ∪ XδI = U, XK ∩ XδI = ∅, XK 6∈ Sj},

where n(XK) is the number of connected components of XK . Let

(14.14) R∗(U) =
∑

∗

ĨU\(XK∪XδI)
Ej+1(K(XK)δIXδI )

be contribution to K̃ corresponding to the summands ∗. It will be negliglible in a sense to
be made precise; to this end, we use properties of the norms which are only defined later.

Assumption (Norms). At each scale j, there are norms ‖·‖A ≡ ‖·‖ for A ≥ 1 (dependence
on the scale j is suppressed in the notation), so that for all functions F , G on Pj ,

(14.15) ‖F (X)G(Y )‖ ≤ ‖F (X)‖ ‖G(Y )‖, for all X, Y ∈ Pj disjoint.

In the following, α > 1 is a constant (not depending on the scale). We assume inductively

that there is a constant ǫδI such that for δI and Ĩ as in (13.18) and (13.17),

(14.16) ‖Ej+1(δI)XF (Y )‖ ≤ α|X|j+|Y |j ǫ
|X|j
δI ‖F (Y )‖, for all X, Y ∈ Pj ,

(14.17) ‖ĨX‖ ≤ α|X|j , for all X ∈ Pj ,

and that there is a constant ǫK such that

(14.18) ‖K(X)‖ ≤ ǫ
n(X)
K A−|X|j , for all X ∈ Pj .
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Lemma 14.6. There exists δ > 0 and c(A) such that

(14.19) lim
A→∞

ǫK ,ǫδI≤c(A)

1

ǫK
‖R∗(U)‖A(1+δ)|U |j+1 = 0,

for L fixed.

In other words, for A sufficiently large, ǫK ≤ c(A), ǫδI ≤ c(A),

(14.20) ‖R∗(U)‖ ≤ 10−100ǫKA−(1+δ)|U |j+1 .

Proof. Note that ∗ = ∗1 ∪ ∗2 (disjoint) where

∗1 = {(XK , XδI) ∈ ∗ : n(XK) ≥ 2},
∗2 = {(XK , XδI) ∈ ∗ : n(XK) = 1}.

Preliminary calculation: Lemma 14.5 implies

(♯) A−|XK |j−|XδI |j ≤ A−c|XK∪XδI |j+1Ac2d+1(n(XK)+n(XδI)) ≤ A−c|U |j+1Ac2d+1(n(XK)+|XδI |j)

because n(XδI) ≤ |XδI |j and XK ∪ XδI = U . Then, by (14.15), (14.16),

‖Ej+1(K(XK)(δI)XδI )‖ ≤ (α|XK |j+|XδI |j ǫ
|XδI |j
δI )(ǫ

n(XK)
K A−|XK |j )

and by (14.17)

‖ĨU\(XK∪XδI)‖ ≤ α|U |j−|XK |j−|XδI |j .

Thus, inserting 1 = A|XδI |jA−|XδI |j ,

‖R∗1(U)‖ ≤ α|U |j
∑

∗

(ǫδIA)|XδI |j ǫ
n(XK)
K A−|XK |jA−|XδI |j

(♯)

≤ α|U |jA−c|U |j+1
∑

∗

(Ac2d+1+1ǫδI)︸ ︷︷ ︸
≤1 by choice of c(A)

|XδI |j
(Ac2d+1

ǫK)n(XK)

≤ α|U |jA−c|U |j+1(Ac2d+1
ǫK)2

∑

∗

1

≤ α|U |jA−c|U |j+1(Ac2d+2
ǫK)ǫK3|U |j

= (3α)|U |jA−(c−1−δ)|U |j+1

︸ ︷︷ ︸
=((3α)Ld

A−(c−1−δ))|U|j+1

→0 as A→∞, L fixed

(Ac2d+2
ǫK)︸ ︷︷ ︸

≤1 by ǫK<c(A)

(ǫKA−(1+δ)|U |j+1).

This shows that the contribution corresponding to ∗1 satisfies the conclusion. The corre-
sponding calculation for ∗2 is Problem 14.1. ¥

14.2. Problems.

Problem 14.1. Use Lemma 14.4 to prove that the contribution corresponding to ∗2 satisfies
the conclusion of Lemma 14.6.
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Lecture 15. Cancellations on Small Sets and Step II

In the hierarchical model, we used a representation for the interaction

(15.1) e−Vj + Kj , with Kj = O(φ6).

The RG action (Vj , Kj) → (Vj+1, Kj+1) was constructed in two stages:

(1) (Vj , Kj) → (Ṽ , K̃)

(2) (Ṽ , K̃) → (Vj+1, Kj+1)

This lecture will focus on the Euclidean analogue of the second step.

15.1. Main, contractive and negligible parts of step I. Define

(15.2) L̃(U) =
∑

X∈Sj(U)

ĨU\X
Ej+1K(X).

Putting this definition together with our work in the last lecture, we find that the action of
RG in (V, K) coordinates,

(15.3) Ej+1(Ij ◦ Kj)(Λ) = Ĩ ◦ K̃(Λ),

is given by

Ĩ = e−Ṽ , K̃ = K̃main + L̃ + R∗,(15.4)

where

(15.5) Ṽ = Ej+1V and Ij = e−Vj ,

and

(15.6) K̃main(U) =
∑

X∈Pj(U)

ĨU\X
Ej+1(δI)X

is a function only of V and R∗ is a negligible contribution of K̃ (Lemma 14.6).
Following the hierarchical ‘yellow brick road’, we would like to construct a domain for

(V, K), where the RG is bounded in norm. The main step to the wizard will be to prove

that L̃ is contractive, which is done in an algebraic fashion.

Remark 15.1. In this lecture we are not rescaling the norms. The norms will be introduced
in the next lecture and shall be rescaled there.

15.2. Cancellations on blocks and small sets. Note that (15.2), the sum over X ∈
Sj(U), the small sets at level j, has O(Ld) terms. This sets the stage for an O(Ld) expansion
in the norm. The same issue appeared in the hierarchical case, where the remedy was to
impose the inductive assumption Kj = O(φ6), because this gave the compensating L−6[φ] of
(I) in Proposition 11.6. Then, in order to have K = O(φ6) at the next scale, we have solved

(15.7) e−Ṽ + K̃ = e−Vj+1 + Kj+1.

Example 15.2 (Cancellations on blocks). The analogous procedure for the Euclidean

case is to adjust Ṽ to V ′ in such a way that

(15.8) e−Ṽ ◦ K̃ = e−V ′ ◦ K ′

with

(15.9) K ′(B) = O(φ6), for B ∈ Bj+1.
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In more detail:

(15.10)

e−Ṽ ◦ K̃ = (e−V ′
+ e−Ṽ − e−V ′

) ◦ K̃

= (I ′ ◦ δĨ) ◦ K̃

= I ′ ◦ (δĨ ◦ K̃)

Thus,

(15.11)

K ′(B) = (δĨ ◦ K̃)(B)

= δĨ(B) + K̃(B)

= e−Ṽ (B) − e−V ′(B) + K̃(B)

and we can adjust V ′(B) so that K ′(B) = O(φ6), for φ = constant on B. In other words,
this procedure only works for blocks.

It will thus not solve the problem of transferring from scale j to j + 1 all the conditions

(15.12) Kj(X) = O(φ6), X ∈ SK .

How to do this is the key problem to be surmounted in the Euclidean case. The solution
I am about to describe is contained in my ongoing work with Gordon Slade [BS], but it
evolved from a more primitive idea in [BY90].

Let J = {J(X) : X ∈ Pj+1} be so that

J(X) = 0 if X 6∈ Sj+1,(15.13a)
∑

X⊃B

1

|X|j+1
Ĩ−XJ(X) = 0 for all B ∈ Bj+1.(15.13b)

Let ǫ be so that

(15.14) ‖J(X)‖ ≤ ǫA−|X|j+1

and

(15.15) ‖K̃(X) − J(X)‖ ≤ ǫA−(1+δ)|X|j+1 .

Proposition 15.3. There exists a constant c(A) and K ′ such that Ĩ ◦ K̃ = Ĩ ◦K ′, such that
K ′ factors over connected components, and satisfies

(15.16) lim
A→∞,ǫ≤c(A)

ǫ−1A(1+δ)|X|j+1‖K ′(X) − (K̃(X) − J(X))‖ = 0.

This solves the problem of arranging for K ′(X) = O(φ6) for all X ∈ Sj+1\Bj+1 because
we can choose {J(X) : X ∈ Sj+1\Bj+1} so that

(15.17) K̃(X) − J(X) = O(φ6), for X ∈ Sj+1 \ Bj+1

(on φ = constant). The relation in (15.13b) then determines J(B) for B ∈ Bj+1. Therefore,
we will not have the desired K ′(B) = O(φ6) for B ∈ Bj+1, but this is the problem we know

how to solve by adjusting Ĩ(B) as in Example 15.2.

Proof of Proposition 15.3. i) Construction of K ′: Given W ∈ Pj+1, let I(W ) be the set of

triples (X,
−→
U , UM ) where

(1) X ∈ Pj+1(W ),

(2)
−→
U = {U(B) ∈ Sj+1 : B ∈ Bj+1(X), U(B) ⊃ B},
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(3) UM ∈ Pj+1(W ),
(4) {U(B) : B ∈ Bj+1(X)} and UM are strictly disjoint,
(5) X∗ ∪ UM = W ,
(6) triples with |X|j+1 = 1, UM = ∅ are omitted.

The conditions are not needed right away. They describe the constraints arising in the sums
described as follows: Using K̃ = J + M where M = K̃ − J , write

K̃ ◦ Ĩ(Λ) =
∑

Ũ∈Pj+1(Λ)


 ∏

U∈C(Ũ)

(J(U) + M(U))


 ĨΛ\Ũ

=
∑

UJ ,UM


 ∏

U∈C(UJ )

J(U)





 ∏

V ∈C(UM )

M(V )


 ĨΛ\(UJ∪UM ),

where the sum is over UJ , UM ∈ Pj+1(Λ) that are strictly disjoint (no path contained in the
union connects the two sets). Insert, for U ∈ C(UJ), the trivial identity

J(U) =
∑

B∈Bj+1(U)

1

|U |j+1
J(U).
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Figure 15.1. UJ (lightly shaded) and UM (dark shaded) are strictly disjoint
(no path contained in the union connects them). The connected components
U(B) of UJ are indexed by singled out blocks B ∈ U(B) (framed in black).
X is the union of these singled out blocks. Its small set neighbourhood X∗

is the collection of blocks contained inside the dashed frames. Since the sets
U(B) can be taken small (J vanishes on sets that are not small), they are
contained completely inside X∗. Finally, W is the union of X∗ and UM .
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This creates a sum over pairs {(B, U(B)) : U(B) ∈ C(UJ)} (see Figure 15.1). Let X ∈ Pj+1

be the union of these blocks B ∈ Bj+1. Let W = X∗ ∪ UM . Then,

K̃ ◦ Ĩ(Λ) =
∑

W∈Pj+1(Λ)




∑

(X,
−→
U ,UM )∈I(W )


 ∏

B∈Bj+1(X)

1

|U(B)|j+1
J(U(B))





 ∏

V ∈C(UM )

M(V )


 ĨW\(U ′∪UM )


 ĨΛ\W with U ′ =

⋃

B∈Bj+1(X)

U(B).

Let K ′(W ) be the factor in the huge parenthesis, i.e.

K ′(W ) =
∑

(X,
−→
U ,UM )∈I(W )


 ∏

B∈B(X)

1

|U(B)|j+1
J(U(B))





 ∏

V ∈C(UM )

M(V )


 ĨW\(U ′∪UM )

so that
K̃ ◦ Ĩ = K ′ ◦ Ĩ

as claimed. In K ′(W ), consider the terms where UM = ∅, X = B ∈ Bj+1. They are

ĨW
∑

U(B)⊃B

1

|U(B)|j+1
J(U(B))Ĩ−U(B) = 0

by (15.13b). Therefore, condition (6) holds.

ii) For the bound on ‖K ′(W )− (K̃(W )− J(W ))‖, looking at the formula for K ′ we see that

the contribution to K ′ when X = ∅ cancels with K̃ − J because M = K̃ − K for UM with
one component. Therefore K ′(W )−K̃(W )−I is second order in ǫ. These higher order terms
are bounded using the same ideas as were used in the proof of Lemma 14.6. See [SS09] for
the proof of a similar result. ¥
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Lecture 16. Gradient Perturbations of the Massless Free Field

16.1. The model. In this lecture we consider a model with the following partition function:

(16.1) Z = Emassless free fieldF
Λ,

where

(1) Fx ∈ C3 and F is an even function of (∇φ)x, where

(16.2) (∇φ)x =
{
∇eφ(x) := φ(x + e) − φ(x) : e is a unit vector in Z

d
}

;

(2) For p = 0, 1, 2, 3 and some positive constants ǫ and h,

(16.3)

∣∣∣∣
∂p

∂(∇φ)p
(Fx − 1)

∣∣∣∣ ≤ ǫ · eh−2(∇φ)2x ,

where

(16.4) (∇φ)2x =
∑

e∈Zd : ‖e‖=1

(φ(x + e) − φ(x))2 ;

(3) Fx is invariant under the lattice symmetries of Z
d that fix x ∈ Z

d and under trans-
lations of Z

d.

For example, one can take F like this:

(16.5) Fx = exp


−ǫ

∑

e∈Zd : ‖e‖=1

(φ(x + e) − φ(x))4


 .

The boundary conditions of the model can be taken to be periodic or (as in [Dim08])
infinite volume massless free field.

Theorem 16.1. For ǫ small, h large, the scaling limit of the model is massless Gaussian
with renormalised covariance κ−1(−∆)−1 for some 0 < κ 6= 1.

16.2. Notation. Let x = (x1, . . . , xn) ∈ Λ∗, and h > 0. Write

x! = n!,(16.6)

hx = hn,(16.7)

and, for F ∈ C∞(RΛ),

(16.8) Fx(φ) =
∂nF (φ)

∂φx1 . . . ∂φxn

.

In this notation, the Taylor expansion is

(16.9) F (φ + ζ) ∼
∑

x∈Λ∗

1

x!
Fx(φ)ζx, with ζx :=

n∏

i=1

ζxi .

We write “∼” in (16.9) because we do not know whether the Taylor series converges to F .
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16.3. Test functions. We design a norm on the space

(16.10) Φ = {g : Λ∗ → R} ,

(16.11) ‖g‖Φ := sup
x∈Λ∗

sup
α∈A

h−x
j |(∇α

j g)(x)|.

Here hj = h0L
−j[φ] is the scale at jth scaling level, and

(16.12) ∇j,e = Lj∇e, for e ∈ Z
d, ‖e‖ = 1.

We choose

(16.13) A = {α : at most two derivatives with respect to each of (x1, . . . , xn)} .

We have defined test functions of scaling level j.

Remark 16.2. Test functions of norm one resemble products of fields. Indeed, according
to the scaling estimates (13.3), we have

(16.14) Var(h−1
j ∇α

j ζj(x)) = O
(
L|α|+[φ]

)
,

and this estimate is independent of j. Here ζj are independent Gaussian random variables
of which our field φ can be constructed (Proposition 9.3).

Definition 16.3. For F ∈ C∞(RΛ), g ∈ Φ,

〈F, g〉φ
def.
=

∑

x∈Λ∗

1

x!
Fx(φ)gx,(16.15)

‖F‖Tφ

def.
= sup

{
| 〈F, g〉φ | : ‖g‖Φ = 1

}
.(16.16)

Remark 16.4. This norm is the result of replacing the product ζx in Taylor expansion
(16.9) by a test function of norm one.

Remark 16.5 (Analyticity). We do not need F to be analytic, so we add a condition to
Φ that gx = 0 if x = (x1, · · · , xn) has n > PN . For ∇φ models choose PN = 3.

Proposition 16.6.

(16.17) ‖FG‖Tφ
≤ ‖F‖Tφ

‖G‖Tφ
.

Proof. Exercise. ¥

16.4. Localization of norms. Let X ⊂ Λ be a subset. We say that

(16.18) F ∈ N (X) iff Fx(φ) = 0 for all x /∈ X∗.

Define

(16.19) ‖g‖Φ(X) = inf {‖g + f‖Φ : fx = 0 for x ∈ X∗} .

Then, for F ∈ N (X), g ∈ Φ,

(16.20) | 〈F, g〉φ | ≤ ‖F‖Tφ
‖g‖Φ(X) .

Proof. For all f such that fx = 0 for x ∈ X∗,

(16.21) | 〈F, g〉φ | = | 〈F, g + f〉φ | ≤ ‖F‖Tφ
‖g + f‖Φ .

Now take the infimum over f . ¥
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16.5. Weighted L∞. In the hierarchical case we used

(16.22) ‖K‖ = sup
φ

‖K‖Tφ
,

but Euclidean models all require weighted L∞ norms because

(16.23) K̃(X) − J(X) = O(∇φ)4,

grows as |∇φ| grows. Therefore, we use

(16.24) ‖Kj(X)‖Gj
:= sup

φ
‖Kj(X)‖Tφ

G−1
j (X, φ)

with weight Gj such that

(16.25)
∏

Y ∈C(X)

Gj(Y ) ≤ Gj(X),

and

(16.26) Ej+1Gj ≤ Gj+1 (supermartingale property),

and ‖φ‖Φ is dominated by G. See [SS09] for a detailed discussion.

16.6. Loc. Let S be the span of the monomials

{1,∇φ,∇φ · ∇φ}.
For a polynomial P ∈ S, x ∈ Λ, let Px be P evaluated at the fields at x. For X ⊂ Λ, let

(16.27) P (X)
def.
=

∑

x∈X

Px, S(X)
def.
= {P (X) : P ∈ S} .

Now we consider the space of polynomial test functions Π, that is, the space of functions
g : Λ∗ → R that when restricted to X, satisfy

g
∣∣
Λ0 = c · 1,(16.28a)

g
∣∣
Λ1 = polynomial of degree ≤ d/2,(16.28b)

g
∣∣
Λ2 = polynomial of degree 0.(16.28c)

Definition 16.7. LocX : N → S(X) is the linear map characterised by

(16.29) 〈F, g〉0 = 〈P (X), g〉0 , for all g ∈ Π,

where P (X) = LocXF .

Proposition 16.8. The map exists. It is unique. It is bounded in T0 norm.

16.7. Summary. We use the norms (depending on A)

(16.30) ‖Kj‖j
def.
= sup

X∈Pc,j

‖Kj(X)‖Gj
A|X|j .

Step 1. Given

(16.31) (Ij , Kj) with ‖LocXKj(X)‖j = (negligible if A ≫ 1),

we start with

(16.32) (Ij , Kj) → (Ĩ , K̃),
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where (Lemma 14.6)

(16.33) K̃ = K̃main + L̃ + (negligible if A ≫ 1)

and

(16.34) ‖L̃‖j+1 ≤ O(Ld−4[∇φ])‖K‖j .

Step 2a. Next, by Proposition 15.3,

(Ĩ , K̃) → (Ĩ , K ′),

where

(16.35) K ′ = K̃main + L̃ − J + (negligible if A ≫ 1).

and J(X) can be chosen arbitrarily for all small sets X except blocks. We choose

(16.36) J(X) = LocX

(
K̃main(X) + L̃(X)

)
, for X ∈ Sj+1 \ Bj+1.

This choice of J achieves a map

(Ij , Kj) → (Ĩ , K ′),

with (because LocXLocX = LocX)

LocXK ′(X) = (negligible if A ≫ 1), for all X ∈ Sj+1 \ Bj+1.

(The norm still has O(L−d) contraction in the (1 − Loc)L̃ part from (16.34).)

Step 2b. In Example 15.2 we worked out how to get rid of the blocks B ∈ Bj+1. Thus,

(Ĩ , K ′) → (Ij+1, Kj+1),

with

LocXKj+1(X) = (negligible if A ≫ 1), for all X ∈ Sj+1.

Final Step. Since

(16.37)
∥∥∥Kj+1 − (1 − Loc)K̃main

∥∥∥
j+1

≤ O
(
L−d

)
‖Kj‖j ,

we conclude that RG stays close to the map

(16.38) (Ij , Kj) →
(
Ij+1, (1 − Loc)K̃main

)
,

which is computable.
16.7.1. Tuning. A point discussed in detail in [SS09]: We want Ij → c as j → ∞, but
this will only happen if we choose a “critical” κ (in Theorem 16.1) as described below (the
case j = 0). That is, V needs a “counterterm” 1

2(1 − κ)(φ,−∆φ) in order to be driven to
zero. This is why in Theorem 16.1 the scaling limit is massless Gaussian with renormalised
covariance κ−1(−∆)−1.

The need for the lattice symmetry of F can also be justified. Namely, this hypothesis
ensures that the Example 15.2 step just changes the constants a, b in V = a(∇φ)2 + b as
opposed to adding terms of the form ∇eφ · ∇e′φ with e 6= e′.



STATISTICAL MECHANICS AND THE RENORMALISATION GROUP 85

16.7.2. The case j = 0. The Gaussian measure contains a factor e−
1
2
(φ,−∆φ). For some not

yet determined κ, we have

e−
1
2
(φ,−∆φ)FΛ = e−

1
2
κ(φ,−∆φ)e−

1
2
(1−κ)(φ,−∆φ)FΛ

= e−
1
2
κ(φ,−∆φ)

(
e−

1
2
(1−κ)(∇φ)2

)Λ
FΛ

= e−
1
2
κ(φ,−∆φ)

(
e−

1
2
(1−κ)(∇φ)2

)Λ
(1 + F − 1)Λ

= e−
1
2
κ(φ,−∆φ)(I0 ◦ K0)(Λ)

with
I0 := e−

1
2
(1−κ)(∇φ)2

and

K0(X) :=
(
e−

1
2
(1−κ)(∇φ)2(F − 1)

)X
.

16.8. References. All proofs of Theorem 16.1 using RG will have various details missing,
but I tried very hard in the Park City notes to be very detailed in everything I do cover.
Proofs based on convexity are [NS97, CD08]. Proofs based on RG are [Dim08, SS09]. Many
ideas in the last four lectures are in [BS].
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