
Chapter 2

Historical Overview, Recent
Developments, Challenges and
Course Perspective

Historical review of the development of stochastic models in population biology:
deterministic models, branching processes, stochastic models in population ge-
netics, molecular biology, epidemiology and ecology. Diffusion approximations,
genealogy, particle systems and stepping stone models. Scientific challenges and
the role of stochastic models.

2.1 Classical deterministic population dynamics

We begin our historical review with some basic models from demography, ecology
and epidemiology.

The mathematical formulation of the growth of an age-structured population
was developed by Euler (1760) ([231]). The (female) birth rate at time t {B(t)}t≥0

satisfies the renewal equation

(2.1) B(t) =

∫ t

0

B(t− s)(1− L(s))m(s)ds.

This leads to exponential growth B(t) ∼ eαt where the Malthusian pa-
rameter α is given by the characteristic equation of demography (Euler-Lotka
equation)

(2.2) 1 =

∫ ∞
0

e−αs(1− L(s))m(s)ds,

where m(s) is the average birth rate for an individual of age s and L(s) is the
cumulative distribution function of the lifetime of an individual.
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The implications of exponential growth of the human population was the sub-
ject of the famous writings of Thomas Malthus - Essay on the Principle of Pop-
ulation - (1798) which had a major impact and which was one of the influences
on Darwin.

2.1.1 The Logistic Equation

Verhulst (1838) ([586]) introduced the logistic equation which describes the more
realistic situation in which resources are limited and the death rate increases as
the resources are exhausted.

dx

dt
= αx(1− x

N
), x(0) ≥ 0, α ≥ 0(2.3)

x(t) =
Nx(0)eαt

N + x(0)(eαt − 1)
→ N as t→∞(2.4)

Here N < ∞ is interpreted as the carrying capacity of the environment in
which the population lived.

2.1.2 The Lotka-Volterra Equations for Competing Species

Equations to model the competition between species in ecology were proposed by
(Lotka (1925) [415] and Volterra (1926) [585]):

dx1

dt
= r1x1

(
1− x1

K1

− a12
x2

K1

)
(2.5)

dx2

dt
= r2x2

(
1− x2

K2

− a21
x1

K2

)
(2.6)

Coexistence, that is, a stable equilibrium with both species present occurs if
1
a21

> K1

K2
> a12.

Remark 2.1 Gause (1934) proposed the competitive-exclusion principle that states
two species cannot stably coexist if they occupy the same niche, for example, if
a12 = a21.

2.1.3 The SIR Epidemic Model

A classical model for the progress of an epidemic due to Kermack and McKendrick
(1927) [372] is given by the system of ode:

dS

dt
= −βSI, dI

dt
= βSI − γI, dR

dt
= γI,(2.7)

S(0) > 0, I(0) > 0, R(0) = 0.(2.8)
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Here S denotes the population of susceptible individuals, I the population of
infectious individuals and R the population of removed individuals.

The epidemiological threshold quantity is defined by

(2.9) R0 =
βS(0)

γ
( reproductive ratio)

If R0 < 1, then the infected population never increases whereas if R0 > 1 the
epidemic “will spread”.

2.1.4 Population models and dynamical systems

As suggested by these elementary examples, the modeling of interacting multitype
populations leads to a rich area of dynamical systems and there exists an immense
literature in this field.

For example the extension of the Lotka-Volterra equations to N interacting
species is given by the system:

(2.10)
xi(t)

dt
= rixi

(
1−

N∑
j=1

αijxj

)
, i = 1, . . . , N.

These multispecies dynamical systems can have very complex behavior includ-
ing limit cycles or chaotic behaviour. In fact S. Smale (1976) [551] proved that
for N ≥ 5 these systems can exhibit any asymptotic behavior.

2.2 Small population effects

Deterministic models provide good approximations to the growth of large (non-
critical) populations but for small populations and “nearly critical populations”
it is essential to take account of their inherent discrete nature and randomness.

2.2.1 The Bienamyé-Galton-Watson Branching Process (BGW)

The importance of the fact that individuals produce a random number of off-
spring and the possibility exists that the population can become extinct led Bien-
aymé (1845) [33], and Galton-Watson (1874) [591] to introduce this probabilistic
model.

The population size at generation n is denotes Xn. Starting with X1 = 1,
at each generation each individual gives rise to a random number of children as
follows:

Xn+1 =
Xn∑
k=1

ξk, where the {ξk}k=1,...,Xn are independent.
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Generating functions provide a basic tool for developing these processes. The
generating function for the offspring distribution is given by:

f(s) = E[sξ] =
∞∑
k=0

pks
k, 0 ≤ s ≤ 1

f ′(1) = m = mean offspring size.

The key relation is

E[sXn ] = fn(s), where fn+1 = f [fn(s)].

The extinction probability, is defined by q := P (Xn = 0 for some n <∞).

Theorem 2.2 (Steffensen (1930,1932)) If m ≤ 1 (critical, subcritical branch-
ing), the q = 1. If m > 1 (supercritical branching), the q is the unique nonnegative
solution in [0, 1)

(2.11) s = f(s).

If m <∞, then

Xn

mn
is a martingale .

Propagation of initial randomness

Theorem 2.3 (Hawkins and Ulam (1944), Yaglom (1947), Harris (1948), [292])
If m > 1, σ2 = f ′′(1) + f ′(1)− (f ′(1))2 <∞, then

Xn

mn
→ W, in L2 and a.s. as n→∞

and

EW = 1, Var(W ) =
σ2

(m2 −m)
, P (W = 0) = q.

2.2.2 Reed-Frost epidemic model

A probabilistic analogue of the SIR epidemic model known as the Reed-Frost
model is given as follows. We consider an initial population of susceptible indi-
viduals S0 = N and one infected individual I0 = 1.

St+1 ∼ Bin(St, (1− p)It), t ∈ N,
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that is, in each time unit a susceptible individual has probability p of meeting
each infected individual and one such contact results in infection. Individuals
are infected during one time period so that It+1 = St − St+1. If 1− p = e−λ/N ,
then Von Bahr and Martin-Löf (1980) [448] showed that as N → ∞ the critical
threshold is λ = 1.

2.2.3 Multitype populations and the Wright-Fisher Model

The celebrated work of Mendel (1865) [455] on the inheritance of traits and its
rediscovery around 1900 led to the development of the field of genetics. The
modern theory of mathematical genetics was initiated in the work of Wright
(1931), (1932) [609],[610] and Fisher (1930) [246]. They introduced a probabilistic
model of finite population sampling that serves as a starting point for modern
population genetics. This model deals with a population of individuals of different
types. As a mathematical idealization they assume that the total population is
constant in time and they focus on the changes in the relative proportions of the
different types of individual. The key ingredients are:

• Fixed finite population size N

• Typespace (alleles)

EK = {1, . . . , K}

• Xn(i) is the number of individuals of type i, at generation n.

Let N (EK) denote the counting measures on E. Then dynamics are defined
by a Markov chain Xn = (Xn(1), . . . , Xn(K)) with state space

{(x1, . . . , xK) ∈ N :
K∑
i=1

xi = N}.

The intuitive idea leading to the transition mechanism for the neutral model
is that first each individual in the nth generation produces a large number of po-
tential offspring. Then in a second stage the population is pruned back (culling)
so that the total population remains N (this can be thought of as an analogue
of carrying capacity). Based on the neutral assumption, that is each of the indi-
viduals in produced in the first stage has equal probability of being selected, the
(n+ 1)st generation consists of N individuals of types {1, . . . , K} obtained by

• multinomial sampling from the empirical distribution

P (Xn+1 = (y1, . . . , yK)|Xn = (x1, . . . , xK))

=
N !

y1!y2! . . . yK !

(x1

N

)y1

. . .
(xK
N

)yK
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An important feature of this process is the loss of information (diversity) lead-
ing to fixation, that is, the long time survival of exactly one type. To see this
note that

pn(i) is a martingale where pn(i) =
Xn(i)

N

and

pn(i)→ 0 or 1 as n→∞ for each i w.p.1.

The dual perspective

If we choose k individuals at random from generation n+1 and look backwards
in time to identify the parents in the nth generation, by an elementary conditional
probability calculation, we see that the each individual in generation n + 1
picks its parents “at random”. This naturally leads to the notion of identity by
descent introduced by Malécot (1941) [467], that is, two individuals are identical
by descent if they have a common ancestor (and no mutations have occurred).

2.3 The Role of Stochastic Analysis

Basic developments in stochastic analysis:
The development of stochastic population modelling was made possible by the

remarkable developments in stochastic analysis.

• Markov chains and processes (1906) [446], Kolmogorov (1931), [402]

• Brownian motion Wiener (1923) [607], Lévy (1948) [425]

• Ito stochastic calculus (1942), (1946), (1951) [329]

• Markov processes and their semigroup characterization
Feller (1951) [242], Itô-McKean (1965).

Given a Markov process {X(t)}t≥0 with state space E (for example, compact
metric space) and f ∈ C(E) (bounded continuous functions on E) and
x ∈ E, let

Ttf(x) = Ex(f(X(t))


