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g(y1, . . . , yK) = f(p1, . . . , pK |Y )fY (y)|J |

= f(p1, . . . , pK)
1

Γ(θ)
yθ−1e−y

1

yK−1

=
Γ(θ)

Γ(θ1) . . .Γ(θK)

.

(
y1∑
yi

)θ1−1

. . .

(
yK∑
yi

)θK−1
1

Γ(θ)
(
∑

yi)
(θ−1)e−

∑
yi .(
∑

yi)
−(K−1)

=
K∏
i=1

1

Γ(θi)
yθi−1
i e−yi

Note that this coincides with the Dirichlet(θ1, . . . , θK) distribution.

Corollary 6.12 The invariant measure of the infinitely many alleles model can
be represented by the random probability measure

(6.26) Y (A) =
X∞(A)

X∞([0, 1])
, , A ∈ B([0, 1]).

where X∞(·) is the equilibrium of the above Jirina process and Y (·) and X∞([0, 1])
are independent.

Reversibility

Recall that the Dirichlet distribution is a reversible stationary measure for the
K − type Wright-Fisher model with house of cards mutation (Theorem 5.9).
From this and the projective limit construction it can be verified that L(Y (·)) is
a reversible stationary measure for the infinitely many alleles process. Note that
reversibility actually characterizes the IMA model among neutral Fleming-Viot
processes with mutation, that is, any mutation mechanism other than the “type-
independent” or “house of cards” mutation leads to a stationary measure that is
not reversible (see Li-Shiga-Yau (1999) [431]).

6.6.3 The Poisson-Dirichlet Distribution

Without loss of generality we can assume that ν0 is Lebesgue measure on [0, 1].
This implies that the IMA equilibrium is given by a random probability measure
which is pure atomic

(6.27) p∞ =
∞∑
i=1

aiδxi ,

∞∑
i=1

ai = 1, xi ∈ [0, 1]
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in which the {xi} are i.i.d. U([0, 1]) and the atom sizes {ai} correspond to the nor-
malized jumps of the Moran subordinator. Let (ξ1, ξ2, . . . ) denote the reordering
of the atom sizes {ai} in decreasing order.

The Poisson-Dirichlet PD(θ) distribution is defined to be the distribution of
the infinite sequence ξ = (ξ1, ξ2, . . . ) which satisfies

ξ1 ≥ ξ2 ≥ ...,
∑
k

ξk = 1.

This sequence is given by

(6.28) ξk =
ηk(θ)

G(θ)
=

ηk∑
η`
, k = 1, 2, . . . ,

where ηk = ηk(θ) is the height of the kth largest jump in [0, θ] of the Moran
process (subordinator), G and G(θ) =

∑∞
`=1 η`.

Properties of the Poisson-Dirichlet Distribution

Recalling (6.19), (6.21) we note that the set of heights of the jumps of G(·) in
[0, θ] form a Poisson random field Πθ on (0,∞) with intensity measure

θ
e−u

u
du.

We can then give a direct description of PD(θ) in terms of such a Poisson
random field. If η1 ≥ η2 ≥ η3 ≥ . . . are the points of such a random field ordered
by size then

ξk =
ηk∑∞
`=1 η`

defines a sequence ξ having the distribution PD(θ).
By the law of large numbers (for the Poisson) we get

lim
t→0

#{k : ηk > t}
L(t)

= 1

with probability one where

L(t) =

∫ ∞
t

θ
e−u

u
du ∼ −θ log t.

Thus

#{k : ηk > t} ∼ −θ log t

ηθ log 1
t
≈ t as t→ 0.

ηk ≈ e−k/θ
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Thus ξk decays exponentially fast

− log ξk ∼
k

θ
as k →∞.

The Distribution of Atom Sizes

We now introduce the random measure on (0,∞),

Zθ((a, b)) =
Ξθ([0, 1]× (a, b))

G(θ)∫ ∞
0

uZθ(du) = 1.

This is the distribution of normalized atom sizes and this just depends on the
normalized ordered atoms and hence is independent of X∞([0, 1]). Intuitively, as
θ →∞, Zθ(θdu) converges in some sense to

e−u

u
du.

To give a precise formulation of this we first note that∫ ∞
0

uk
(
e−u

u

)
du = Γ(k) = (k − 1)!

Then one can show (see Griffiths (1979), [280]) that

(6.29) lim
θ→∞

θk−1

∫ ∞
0

ukZθ(du) = (k − 1)!

and there is an associated CLT

(6.30)
√
θ
θk−1

∫
ukZθ(du)− (k − 1)!

(k − 1)!
⇒ N(0, σ2

k),

with σ2
k = (2k−1)!−(k!)2

((k−1)!)2 Joyce, Krone and Kurtz (2002) [358]. Also see Dawson

and Feng (2006) [146] for the related large deviation behaviour.

6.6.4 The GEM Representation

Without loss of generality we can assume ν0 = U [0, 1]. Consider a partition of
[0, 1] into K intervals of equal length. Then the random probability

~pK = (p1, . . . , pK)

has the symmetric Dirichlet distribution D(α, . . . , α) with α = θ
K

.
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Randomized Ordering via Size-biased sampling

Let N be a random variable having values in {1, 2, . . . , K} in such a way that

P (N = k|~pK) = pk, (1 ≤ k ≤ K)

Then a standard calculation shows that the vector

~p′ = (pN , p1, . . . , pN−1, pN+1, . . . , pK)

has distribution (cf. (5.55))

D(α + 1, α, . . . , α)

It follows that (pN , 1− pN ) has the Dirichlet distribution (Beta distribution)

D(α + 1, (K − 1)α)

so that it has probability density function

Γ(Kα + 1)

Γ(α + 1)Γ(Kα− α)
pα(1− p)(K−1)α−1.

Given v1 = pN , the conditional distribution of the remaining components of ~p is
the same as that of (1− pN )p(1), where the (K− 1)-vector ~p(1) has the symmetric
distribution D(α, . . . , α).

We say that pN is obtained from ~p by size-biased sampling. This process may
now be applied to ~p(1) to produce a component, v2 with distribution

Γ((K − 1)α + 1)

Γ(α + 1)Γ((K − 1)α− α)
pα(1− p)(K−2)α−1

and a (K − 2) vector ~p(2) with distribution D(α, . . . , α). This is an example of
Kolmogorov’s stick breaking process.

Theorem 6.13 (a) As K → ∞, with Kα = θ constant, the distribution of the
vector ~qK = (q1, q2, . . . , qK) converges weakly to the GEM distribution with param-
eter θ, that is the distribution of the random probability vector ~q = (q1, q2, . . . )
where

q1 = v1, q2 = (1− v1)v2, q3 = (1− v1)(1− v2)ν3, . . .

with {vk} are i.i.d. with Beta density (Beta(1, θ))

θ(1− p)θ−1, 0 ≤ p ≤ 1

(b) If ~q = (q1, q2, . . . ) is reordered (by size) as ~p = (p1, p2, . . . ), that is i.e. pk is
the kth largest of the {qj},then ~p has the Poisson-Dirichlet distribution, PD(θ).
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Proof. (a) Let (pK1 , . . . , p
K
k ) ∈ ∆K−1 be a random probability vector obtained

by decreasing size reordering of a probability vector sampled from the distribution
D(α, . . . , α) with α = θ

K
. Then let (qK1 , . . . , q

K
k ) be the size-biased reordering of

(pK1 , . . . , p
K
k ). Then as shown above we can rewrite this as

(6.31) qK1 = vK1 , q
K
2 = (1− vK1 )vK2 ), qK3 = (1− vK1 )(1− vK2 )vK3 , . . .

where vK1 , . . . , v
K
K−1 are independent and vKr has pdf

(6.32)
Γ((K − r)α + 1)

Γ(α + 1)Γ((K − r)α− α)
uα(1− u)(K−r−1)α−1, 0 ≤ u ≤ 1.

Now let K →∞ with Kα = θ. Then

Γ(Kα + 1)

Γ(α + 1)Γ(Kα− α)
pα(1− p)(K−1)α−1 → θ(1− p)θ−1.

and

Γ((K − r)α + 1)

Γ(α + 1)Γ((K − r)α− α)
pα(1− p)(K−r−1)α−1

=
Γ((K − r)θ/K + 1)

Γ(θ/K + 1)Γ((K − r)θ/K − θ/K)
pθ/K(1− p)(K−r−1)θ/K−1

→ θ(1− p)θ

Thus the distributions of the first m components of the vector ~qK converge weakly
to the distribution of the first m components of the random (infinite) probability
vector ~q defined by

q1 = v1, q2 = (1− v1)v2, q3 = (1− v1)(1− v2)ν3, . . .

where {vk} are i.i.d. with Beta density (Beta(1, θ))

θ(1− p)θ−1, 0 ≤ p ≤ 1.

(b) By the projective limit construction, the PD(θ) distribution arises as
the limit in distribution of the ordered probability vectors (pK1 , . . . , p

K
k ). Then

the size-biased reorderings converge in distribution to the size-biased reorder-
ing q1, q2, . . . of the probability vector p1, p2, p3, . . . . Clearly the decreasing-size
reordering of q1, q2, . . . reproduces p1, p2, . . . .

Remark 6.14 The distribution of sizes of the age ordered alleles in the infinitely
many alleles model is given by the GEM distribution. The intuitive idea is as
follows. By exchangeability at the individual level the probability that the kth allele
at a given time survives the longest (time to extinction) among those present at
that time is proportional to pk the frequency of that allele in the population at that
time. Observing that the ordered survival times correspond to ages under time
reversal, the result follows from reversibility. See Ethier [222] for justification of
this argument and a second proof of the result.
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Remark 6.15 There is a two parameter analogue of the Poisson-Dirichlet intro-
duced by Perman, Pitman and Yor (1992) [509] that shares some features with
the PD distribution. See Feng (2009) [246] for a recent detailed exposition.

6.6.5 Application of the Poisson-Dirichlet distrbution:
The Ewens Sampling Formula

In analyzing population genetics data under the neutral hypothesis it is important
to know the probabilities of the distribution of types obtained in taking a random
sample of size n. For example, this is used to test for neutral mutation in a
population.

Consider a random sample of size n chosen from the random vector ξ =
(ξ1, ξ2, . . . ) chosen from the distribution PD(θ).

We first compute the probability that they are all of the same type. Condi-
tioned on ξ this is

∑∞
k=1 ξ

n
k and hence the unconditional probability is

hn = E

{
∞∑
k=1

ξnk

}
Using Campbell’s formula we get

E

{
∞∑
k=1

ηnk

}

=
d

ds

(
E(e

∫ 1
0

∫∞
0 (esz

n−1) θe
−z
z

dz
)
|s=0

=

∫
zn
θe−z

z
dz = θ(n− 1)!

Also

E((
∞∑
k=1

ηk)
n) =

Γ(n+ θ)

Γ(θ)
.

By the Gamma representation (6.28) for the ordered jumps of the Gamma sub-
ordinator we get

E

{
∞∑
k=1

ηnk

}
= E

{
(
∞∑
k=1

ηk)
n

∞∑
k=1

ξnk

}

= E((
∞∑
k=1

ηk)
n)E

{
∞∑
k=1

ξnk

}
by independence

Therefore

hn =
θΓ(θ)(n− 1)!

Γ(n+ θ)
=

(n− 1)!

(1 + θ)(2 + θ) . . . (n+ θ − 1)
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In general in a sample of size n let

a1 = number of types with 1representative

a2 = number of types with 2 representatives

. . .

an = number of types with n representatives

Of course,

ai ≥ 0, a1 + 2a2 + · · ·+ nan = n.

We can also think of this as a partition

a = 1a12a2 . . . nan

Let Pn(a) denote the probability that the sample exhibits the partition a. Note
that Pn(n1) = hn.

Proposition 6.16 (Ewens sampling formula)

(6.33) Pn(a) = Pn(a1, . . . , an) =
n!Γ(θ)

Γ(n+ θ)

n∏
j=1

(
θaj

jajaj!

)
.

Proof. We can select the partition of {1, . . . , n} into subsets of sizes (a1, . . . , an)
as follows. Consider a1 boxes of size 1, . . . an boxes of size n. Then the number
of ways we can distribute {1, . . . , n} is n! but we can reorder the ai boxes in ai!
ways and and there are (j!) permutations of the indices in each of the aj parti-
tion elements with j elements. Hence the total number of ways we can do the
partitioning to {1, . . . , n} is n!∏

(j!)ajaj !
.

Now condition on the vector ξ = (ξ(1), ξ(2), . . . ). The probability that we
select the types (ordered by their frequencies is then given by)

Pn(a|ξ) =
n!∏

(j!)ajaj!

∑
Ia1,...an

ξ (k11) ξ(k12) . . . ξ(k1a1)ξ(k21)2 . . . ξ(k2a2)2ξ(k31)3 . . .

where the summation is over

Ia1,...an := {kij : i = 1, 2, . . . ; j = 1, 2, . . . , ai}

Hence using the Gamma representation we get

Γ(n+ θ)

Γ(θ)
Pn(a)

=
n!∏

(j!)ajaj!
E
{∑

η (k11) η(k12) . . . η(k1a1)η(k21)2 . . . η(k2a2)2η(k31)3 . . .
}
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But

E

{∑
i,j

η (k11) η(k12) . . . η(k1a1)η(k21)2 . . . η(k2a2)2η(k31)3 . . .

}

=
n∏
j=1

E

{
∞∑
k=1

η(k)j

}aj

=
n∏
j=1

{∫ ∞
0

zjθ
e−z

z
dz

}aj
by Campbell’s thm

=
n∏
j=1

{θ(j − 1)!}aj

Therefore substituting we get

Pn(a) =
n!Γ(θ)

Γ(n+ θ)

n∏
j=1

(
θaj

jajaj!

)
.
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Chapter 7

Martingale Problems and Dual
Representations

7.1 Introduction

We have introduced above the basic mechanisms of branching, resampling and
mutation mainly using generating functions and semigroup methods. However
these methods have limitations and in order to work with a wider class of mech-
anisms we will introduce some this additional tools of stochastic analysis in this
chapter. The martingale method which we use has proved to be a natural frame-
work for studying a wide range of problems including those of population systems.
The general framework is as follows:

• the object is to specify a Markov process on a Polish space E in terms of its
probability laws {Px}x∈E where Px is a probability measure on CE([0,∞))
or DE([0,∞)) satisfying Px(X(0) = x) = 1.

• the probabilities {Px} ∈ P(CE([0,∞))) satisfy a martingale problem (MP).
One class of martingale problems is defined by the set of conditions of the
form

(7.1) F (X(t))−
∫ t

0

GF (X(s))ds, F ∈ D (D, G)−martingale problem

is a Px martingale where G is a linear map from D to C(E), and D ⊂ C(E)
is measure-determining.

• the martingale problem MP has one and only one solution.

Two martingale problems MP1, MP2 are said to be equivalent if a solution to
MP1 problem is a solution to MP2 and vice versa.

In our setting the existence of a solution is often obtained as the limit of a
sequence of probability laws of approximating processes. The question of unique-

109
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ness is often the more challenging part. We introduce the method of dual repre-
sentation which can be used to establish uniqueness for a number of basic pop-
ulation processes. However the method of duality is applicable only for special
classes of models. We introduce a second method, the Cameron-Martin-Girsanov
type change of measure which is applicable to some basic problems of stochastic
population systems. Beyond the domain of applicability of these methods, things
are much more challenging. Some recent progress has been made in a series of
papers of Athreya, Barlow, Bass, Perkins [11], Bass-Perkins [28], [29] but open
problems remain.

We begin by reformulating the Jirina and neutral IMA Fleming-Viot in the
martingale problem setting. We then develop the Girsanov and duality methods
in the framework of measure-valued processes and apply them to the Fleming-
Viot process with selection.

7.2 The Jirina martingale problem

By our projective limit construction of the Jirina process (with ν0 = Lebesgue),
we have a probability space (Ω,F , {X∞ : [0,∞) × B([0, 1]) → [0,∞)}, P ) such
that a.s. t → X∞t (A) is continuous and A → X∞· (A) is finitely additive. We
can take a modification, X, of X∞ such that a.s. X : [0,∞) → MF ([0, 1]) is
continuous where MF ([0, 1]) is the space of (countably additive) finite measures
on [0, 1] with the weak topology. We then define the filtration

Ft : σ{Xs(A) : 0 ≤ s ≤ t, A ∈ B([0, 1])}

and P , the σ-field of predictable sets in R+ × Ω (ie the σ-algebra generated by
the class of Ft-adapted, left continuous processes).

Recall that for a fixed set A the Feller CSB with immigration satisfies

(7.2) Xt(A)−X0(A)−
∫ t

0

c(ν0(A)−Xs(A))ds =

∫ t

0

√
2γXt(A)dwAt

which is an L2-martingale.
Moreover, by polarization

(7.3) 〈M(A1),M(A2)〉t = γ

∫ t

0

Xs(A1 ∩ A2)ds

and if A1 ∩ A2 = ∅, then the martingales M(A1)t and M(A2)t are orthogonal.
This is an example of an orthogonal martingale measure.

Therefore for any Borel set A

(7.4) Mt(A) := Xt(A)−X0(A)−
∫ t

0

c(ν0(A)−Xs(A))ds
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is a martingale with increasing process

(7.5) 〈M(A)〉t = γ

∫ t

0

Xs(A)ds.

We note that we can define integrals with respect to an orthogonal martingale
measure (see next subsection) and show that (letting Xt(f) =

∫
f(x)Xt(dx) for

f ∈ B([0, 1]))

(7.6) Mt(f) := Xt(f)−X0(f)−
∫ t

0

c(ν0(f)−Xs(f))ds =

∫
f(x)Mt(dx)

which is a martingale with increasing process

(7.7) 〈M(f)〉t = γ

∫ t

0

f 2(x)Xs(dx)ds.

This suggests the martingale problem for the Jirina process which we state in
subsection 7.2.2.

7.2.1 Stochastic Integrals wrt Martingale Measures

A general approach to martingale measures and stochastic integrals with respect
to martingale measures was developed by Walsh [596]. We briefly review some
basic results.

Let

L2
loc =

{
ψ : R+ × Ω× E → R : ψ is P × E-measurable,

∫ t

0

Xs(ψ
2
s)ds <∞, ∀t > 0

}
A P × E-measurable function ψ is simple (ψ ∈ S) iff

ψ(t, ω, x) =
K∑
i=1

ψi−1(ω)φi(x)1(ti−1,ti](t)

for some φi ∈ bB([0, 1]), ψ ∈ bFti−1
, 0 = t0 < t1 · · · < tK ≤ ∞. For such a ψ,

define

Mt(ψ) :=

∫ t

0

∫
ψ(s, x)dM(s, x) =

K∑
i=1

ψi−1(Mt∧ti(φi)−Mt∧ti−1
(φi))

Then Mt(ψ) ∈Mloc (the space of Ft local martingales) and

〈M(ψ)t〉 =

∫ t

0

Xs(γψ
2
s)ds.
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Lemma 7.1 For any ψ ∈ L2
loc there is a sequence {ψn} in S such that

P

(∫ n

0

∫
(ψn − ψ)2(s, ω, x)γ(x)Xs(dx)ds > 2−n

)
< 2−n.

Proof. Let S̄ denote the set of bounded P × E-measurable functions which
can be approximated as above. S̄ is closed under →bp. Using
H0 = {fi−1(ω)φi(x),φ ∈ bE , fi−1 ∈ bFti−1

, φi ∈ bE}, we see that ψ(t, ω, x) =∑K
i=1 ψi−1(ω, x)1(ti−1,ti](t) is in S̄ for any ψi−1 ∈ b(Fti−1

× E). If ψ ∈ b(P × E),
then

ψn(s, ω, x) = 2n
∫ i2−n

(i−1)2−n
ψ(r, ω, x)dr is s ∈ (i2−n, (i+ 1)2−n], i = 1, 2, . . .

satisfies ψn ∈ S̄ by the above. For each (ω, x), ψn(s, ω, x) → ψ(s, ω, x) for
Lebesgue a.a. s by Lebesgue’s differentiation theorem and it follows easily that
ψ ∈ S̄. Finally if ψ ∈ L2

loc, the obvious truncation argument and dominated
convergence (set ψn = (ψ ∧ n) ∨ (−n) completes the proof.

Proposition 7.2 There is a unique linear extension of M : S →Mloc (the space
of local martingales) to a map M : L2

loc → Mloc such that Mt(ψ) is a local
martingale with increasing process 〈M(ψ)〉t given by

〈M(ψ)〉t :=

∫ t

0

γXs(ψ
2
s)ds ∀ t ≥ 0 a.s.∀ ψ ∈ L2

loc.

Proof. We can choose ψn ∈ S as in the Lemma. Then

〈M(ψ)−M(ψn)〉n = 〈M(ψ − ψn)〉n = γ

∫ n

0

Xs(γ(ψ(s)− ψn(s))2ds

P
(
〈M(ψ)−M(ψn)〉n > 2−n

)
< 2−n

The {Mt(ψn)}t≥0 is Cauchy and using Doob’s inequality and the Borel-Cantelli
Lemma we can define {Mt(ψ)}t≥0 such that

sup
t≤n
|Mt(ψ)−Mt(ψn)| → 0 a.s. as n→ ∞̇.

This yields the required extension and its uniqueness.
Note that it immediately follows by polarization that if ψ, φ ∈ L2

loc,

〈M(φ),M(ψ)〉t = γ

∫ t

0

Xs(φsψs)ds

Moreover, in this case Mt(ψ) is a L2-martingale, that is,

E(〈M(ψ)〉t) = γ

∫ t

0

E(Xs(ψ
2
s))ds <∞
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provided that

ψ ∈ L2 = {ψ ∈ L2
loc : E(

∫ t

0

Xs(ψ
2
s)ds <∞, ∀t > 0}.

Remark 7.3 Walsh (1986) [596] defined a more general class of martingale mea-
sures on a measurable space (E, E) for which the above construction of stochastic
integrals can be extended. {Mt(A) : t ≥ 0, A ∈ E} is an L2-martingale measure
wrt Ft iff

(a) M0(A) = 0 ∀A ∈ E,
(b) {Mt(A), t ≥ 0} is an Ft-martingale for every A ∈ E,
(c) for all t > 0, Mt is an L2-valued σ-finite measure.
The martingale measure is worthy if there exists a σ-finite “dominating mea-

sure” K(·, ·, ·, ω), on E × E × B(R+), ω ∈ Ω such that
(a) K is symmetric and positive definite, i.e. for any f ∈ bE × B(R+),∫ ∫ ∫

f(x, s)f(y, s)K(dx, dy, ds) ≥ 0

(b) for fixed A,B, {K(A×B × (0, t]), t ≥ 0} is Ft-predictable
(c) ∃ En ↑ E such that E{K(En × En × [0, T ]} <∞ ∀n,
(d) | 〈M(A),M(A)〉t | ≤ K(A× A× [0, t]).
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7.2.2 Uniqueness and stationary measures for the Jirina Martingale
Problem

A probability law, Pµ ∈ CMF ([0,1])([0,∞)), is a solution of the Jirina martingale
problem, if under Pµ, X0 = µ and

(7.8)

Mt(φ) := Xt(φ)−X0(φ)−
∫ t

0

c(ν0(φ)−Xs(φ))ds,

is a L2, Ft-martingale ∀ φ ∈ bB([0, 1]) with increasing process

〈M(φ)〉t = γ

∫ t

0

Xs(φ
2)ds, that is,

M2
t (φ)− 〈M(φ)〉t is a martingale.

Remark 7.4 This is equivalent to the martingale problem

(7.9) MF (t) = F (Xt)−
∫ t

0

GF (X(s))ds is a martingale

for all F ∈ D ⊂ C(MF ([0, 1]) where

D = {F : F (µ) =
n∏
i=1

µ(fi), fi ∈ C([0, 1]), i = 1, . . . , , n, n ∈ N}

and

GF (µ) = c

∫ [∫
∂F (µ)

∂µ(x)
ν0(dx)− ∂F (µ)

∂µ(x)

]
µ(dx)

+
γ

2

∫ ∫
∂2F (µ)

∂µ(x)∂µ(y)
(δx(dy)µ(dx)− µ(dx)µ(dy))

Theorem 7.5 There exists one and only one solution Pµ ∈ P(CMF ([0,1])([0,∞))
to the martingale problem (7.8). This defines a continuous MF (0, 1]) continuous
strong Markov process.
(b) (Ergodic Theorem) Given any initial condition, X0, the law of Xt converges
weakly to a limiting distribution as t→∞ with Laplace functional

(7.10) E(e−
∫ 1
0 f(x)X∞(dx)) = exp

(
−2c

γ

∫ 1

0

log(1 +
f(x)

θ
)ν0(dx)

)
.

This can be represented by

(7.11) X∞(A) =
1

θ

∫ 1

0

f(x)G(θds)

where G is the Gamma (Moran) subordinator (recall (6.17)).
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Exercise for Lecture 10
Prove the equivalence of the martingale problems (7.8) and (7.9).


