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9.2 Branching random walk and branching Brownian mo-
tions

Branching random walks and branching diffusions have a long history. A general
theory of branching Markov processes was developed in a series of three papers by
Ikeda, Nagasawa and Watanabe in 1968, 1969 [327]. The application of branching
random fields to genetics was introduced by Sawyer (1975) [534].

We consider a branching random walk (BRW). The dynamics are given by:

• Birth and death at rate γ:

δx → (k particles) δx + · · ·+ δx w.p. pk, δx → ∅ w.p. p0,

G(z) =
∑∞

k=0 z
kpk offspring distribution generating function.

• Spatial random walk in S1 with kernel p(·)

δx → δy with rate p(y − x)

The BRW is critical, subcritical, supercritical depending on m =
∑

k kpk = 1, <
1, > 1, respectively.

We can write the generator of the branching rate walk as follows: D = {F :
F (µ) = f(µ(φ)) = f(〈φ, µ〉), φ ∈ Bb(S1), f ∈ C(R) and for F ∈ D,

GF (µ) =
∑
x

µ(x)
∑
y

p(y)[F (µ+ δx+y − δx)− F (µ)]

+κ
∑
x

µ(x)
∞∑
k=0

pk[F (µ+ (k − 1)δx)− F (µ)]

=
∑
x

µ(x)
∑
y

p(y)[f(µ(φ) + φ(x+ y)− φ(x))− f(µ(φ))]

κ
∑
x

µ(x)
∞∑
k=0

pk[f(µ(φ) + (k − 1)φ(x))− f(µ(φ))]

Let {St : t ≥ 0} denote the semigroup acting on Bb(S1) associated to the
random walk. Now define the Laplace functional

(9.6) u(t, x) = Pδx(e
−Xt(φ)).

Then conditioning at the first birth-death event we obtain

(9.7) u(t, x) = (Ste
−φ)(x)e−κt + κ

∫ t

0

e−κs(SsG(u(s, ·)))(x)ds.

Note that this is also valid if we replace the random walk by a Lévy process on
a locally compact abelian group.



9.2. BRANCHING RANDOM WALK AND BRANCHING BROWNIAN MOTIONS 169

Proposition 9.7 The martingale problem for G is well posed and the Laplace
functional of the solution is the unique solution of equation (9.7).

The system of branching Brownian motions (BBM) is defined in the same way
with S = Rd with offspring produced at the location of the parent and between
branching the particles perform independent Brownian motions. (For non-local
branching see Z. Li [429].)

Remark 9.8 We sometimes combine the reproduction and spatial jump by re-
placing the reproduction and migration by a single mechanism in which an off-
spring produced by a birth immediately moves to a new location obtained by taking
a jump with kernel pε, that is, δx → δx + δy.

We also consider theN (S)-measure-valued process {Xt} in which each particle
has mass η, that is,

Xt(A) = η

N(t)∑
i=1

δxi(t), A ⊂ S

where xi(t) denotes the location of the ith particles at time t.

Supercritical BRW and BBM

There is an important relation between supercritical branching Brownian motions
and the Fisher-KPP equation. This relation was developed by McKean [473] and
Bramson [49].

A basic question concerns the geometrical properties of the supercritical branch-
ing random walk. Biggins [38] has proved that the set I(n) of positions occupied
by nth generation individuals rescaled by a factor 1

n
has asymptotic shape I where

I is a convex set.
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9.5 Measure-valued branching processes

9.5.1 Super-Brownian motion

Introduction

Super-Brownian motion (SBM) is a measure-valued branching process which gen-
eralizes the Jirina process. It was constructed by S. Watanabe (1968) [595] as
a continuous state branching process and Dawson (1975) [113] in the context of
SPDE. The lecture notes by Dawson (1993) [139] and Etheridge (2000) [217] pro-
vide introductions to measure-valued processes. The books of Dynkin [204], [205],
Le Gall [424], Perkins [514] and Li [434] provide comprehensive developments of
various aspects of measure-valued branching processes. In this section we begin
with a brief introduction and then survey some aspects of superprocesses which
are important for the study of stochastic population models. Section 9.5 gives a
brief survey of the small scale properties of SBM and Chapter 10 deals with the
large space-time scale properties.

Of special note is the discovery in recent years that super-Brownian motion
arises as the scaling limit of a number of models from particle systems and sta-
tistical physics. An introduction to this class of SBM invariance principles is
presented in Section 9.6 with emphasis on their application to the voter model
and interacting Wright-Fisher diffusions. A discussion of the invariance proper-
ties of Feller CSB in the context of a renormalization group analysis is given in
Chapter 11.

The SBM Martingale Problem

Let (D(A), A) be the generator of a Feller process on a locally compact met-
ric space (E, d) and γ ≥ 0. The probability laws {Pµ : µ ∈ Mf (E)} on
C([0,∞),Mf (E)) of the superprocess associated to (A, a, γ) can be character-
ized as the unique solution of the following martingale problem:

Mt(ϕ) := 〈ϕ,Xt〉 −
∫ t

0

〈Aϕ,Xs〉 ds

is a Pµ-martingale with increasing process

〈M(ϕ)〉t =

∫ t

0

γ 〈ϕ,Xs〉 ds

for each ϕ ∈ D(A).



9.5. MEASURE-VALUED BRANCHING PROCESSES 179

Equivalently, it solves the martingale problem

GF =

∫
A

δF

δµ(x)
µ(dx)

+
γ

2

∫∫
δ2F

δµ(x)δµ(y)
δx(dy)µ(dx)

D(G) := {F (µ) = e−µ(ϕ), ϕ ∈ B+(Rd)}
The special case E = [0, 1], Af(x) = [

∫
f(y)ν0(dy) − f(x)]dy is the Jirina

process. The special case E = Rd A = 1
2
∆ on D(A) = C2

b (Rd) is called super-
Brownian motion.

9.5.2 Super-Brownian Motion as the Limit of Branching Brownian
Motion

Given a system of branching Brownian motions on S = Rd and ε > 0 we consider
the measure-valued process, Xε, with particle mass mε = ε and branching rate
γε = γ

ε
, that is,

(9.32) Xε(t) = mε

N(t)∑
j=1

δxj(t)

where N(t) denotes the number of particles alive at time t and x1(t), . . . , xN(t)

denote the locations of the particles at time t. Given an initial set of particles, let

µε = mε

∑N(0)
j=1 δxj(0), let P ε

µε denote the probability law of Xε on DMF (Rd)([0,∞)).

Let {Ft}t≥0 be the canonical filtration on D([0,∞),MF (Rd)).

Notation 9.13 µ(φ) = 〈φ, µ〉 =
∫
φdµ.

Let C(MF (Rd)) ⊃ D(Gε) := {F (µ) = f(〈φ, µ〉)) : f ∈ C2
b (R), φ ∈ C2

b (Rd)}.
Then D(Gε) is measure-determining on MF (Rd) ([139], Lemma 3.2.5.).

Then using Itô’s Lemma, it follows that P ε
µε ∈ P(D([0,∞),MF (Rd))) satisfies

the Gε-martingale problem where for F ∈ D(Gε),

GεF (µ) = f ′(µ(φ))µ(
1

2
∆φ) +

ε

2
f ′′(µ(φ))µ(∇φ · ∇φ)

+
γ

2ε2

∫
[f(µ(φ) + εφ(x)) + f(µ(φ)− εφ(x))− 2f(µ(φ))]µ(dx).

Theorem 9.14 Assume that Xε(0) = µε ⇒ µ as ε→ 0.
Then

(a) P ε
µε

ε→0
=⇒ Pµ ∈ P(CMF (Rd)([0,∞)) and Pµ is the unique solution to the martin-

gale problem: for all φ ∈ C2
b (Rd),

(9.33) Mt(φ) := Xt(φ)− µ(φ)−
∫ t

0

Xs(
1

2
∆φ)ds
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is an (FXt )−martingale starting at zero with increasing process

〈M(φ)〉t = γ

∫ t

0

Xs(φ
2)ds.

(b) The Laplace functional of Xt is given by

(9.34) Pµ
(
e(−

∫
φ(x)Xt(dx))

)
= e(−

∫
vt(x)µ(dx)).

where v(t, x) is the unique solution of

(9.35)
∂v(t, x)

∂t
=

1

2
∆v(t, x)− γ

2
v2(t, x), v0 = φ ∈ C2

+,b(Rd).

(c) The total mass process {Xt(Rd}t≥0 is a Feller CSBP.

Proof.
Step 1. Tightness of probability laws of Xε on DMF (Rd)([0,∞ and a.s. con-

tinuity of limit points. In order to prove tightness it suffices to prove that for
δ > 0 there exists a compact subset K ⊂ Rd and 0 < L <∞ such that

(9.36)

P ε
µε(sup0≤t≤T Xt(K

c) > δ) < δ, P ε
µε(sup0≤t≤T Xt(1) > L) < δ

and

P ε
µε ◦ (Xt(φ))−1 is tight in DR([0,∞)) for φ ∈ C2

c (Rd).(9.37)

This can be checked by standard moment and martingale inequality arguments.
For example for (9.36) it suffices to show that

(9.38) sup
0<ε≤1

sup
δ>0

E( sup
0≤t≤T

〈e−δ‖x‖(1 + ‖x‖2),Xε(t)〉) <∞,

and (9.37) can be verified using the Joffe-Métivier criterion (see Appendix, (17.4.2)).
The a.s. continuity of any limit point then follows from Theorem 17.14 since the
maximum jump size in Xε is ε.

Moreover, if Pµ is a limit point, it is also easy to check (cf. Lemma 16.2) that
for φ in C2

b (Rd), Mt(φ) is a Pµ-martingale and (F1(µ) = µ(φ), F2(µ) = µ(φ)2)

〈M(φ)〉t = lim
ε→0

∫ t

0

(GεF2(Xs)− 2F1(Xs)GεF1(Xs))ds

= γ

∫ t

0

Xs(φ
2)ds.

As pointed out above, (9.33) and Ito’s formula yields an equivalent formulation


