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9.2 Branching random walk and branching Brownian mo-
tions

Branching random walks and branching diffusions have a long history. A general
theory of branching Markov processes was developed in a series of three papers by
Ikeda, Nagasawa and Watanabe in 1968, 1969 [327]. The application of branching
random fields to genetics was introduced by Sawyer (1975) [534].

We consider a branching random walk (BRW). The dynamics are given by:

e Birth and death at rate ~:

0, — (k particles) 0, + -+ + 0, w.p. pg, 90, — O w.p. po,
G(2) = 1oy 2"pr offspring distribution generating function.

e Spatial random walk in S; with kernel p(+)
0, — 0, with rate p(y — z)
The BRW is critical, subcritical, supercritical depending on m = )", kpy, = 1, <
1,> 1, respectively.

We can write the generator of the branching rate walk as follows: D = {F :

F(p) = f(u(9) = f({o, 1), ¢ € By(S1), f € C(R) and for F € D,
GF(n)= > @) > pW)F (i bpry — 6:) = F(p)]

+/§Zu(x) ZPk[F(M + (k= 1)0,) — F(u)]
= (@)Y p)[f (@) + dlx +y) — ¢(x)) — f(u(e))]

rY (@)Y pelf(u(0) + (k= D)g(x)) — f(u(e)]
x k=0

Let {S; : t > 0} denote the semigroup acting on B,(S;) associated to the
random walk. Now define the Laplace functional

(9.6) u(t,z) = Py, (e” X)),
Then conditioning at the first birth-death event we obtain

(9.7) u(t,x) = (See™?)(x)e ™ + /i/ot e " (SsG(u(s,)))(z)ds.

Note that this is also valid if we replace the random walk by a Lévy process on
a locally compact abelian group.
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Proposition 9.7 The martingale problem for G is well posed and the Laplace
functional of the solution is the unique solution of equation (9.7).

The system of branching Brownian motions (BBM) is defined in the same way
with S = R? with offspring produced at the location of the parent and between
branching the particles perform independent Brownian motions. (For non-local
branching see Z. Li [429].)

Remark 9.8 We sometimes combine the reproduction and spatial jump by re-
placing the reproduction and migration by a single mechanism in which an off-
spring produced by a birth immediately moves to a new location obtained by taking
a jump with kernel p., that is, 0, — 6, + 6.

We also consider the NV(S)-measure-valued process { X;} in which each particle
has mass 7, that is,

N(t)
=1

where z;(t) denotes the location of the ith particles at time ¢.

Supercritical BRW and BBM

There is an important relation between supercritical branching Brownian motions
and the Fisher-KPP equation. This relation was developed by McKean [473] and
Bramson [49].

A basic question concerns the geometrical properties of the supercritical branch-
ing random walk. Biggins [38] has proved that the set Z(™ of positions occupied
by nth generation individuals rescaled by a factor % has asymptotic shape Z where
7 is a convex set.
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9.5 Measure-valued branching processes

9.5.1 Super-Brownian motion

Introduction

Super-Brownian motion (SBM) is a measure-valued branching process which gen-
eralizes the Jirina process. It was constructed by S. Watanabe (1968) [595] as
a continuous state branching process and Dawson (1975) [113] in the context of
SPDE. The lecture notes by Dawson (1993) [139] and Etheridge (2000) [217] pro-
vide introductions to measure-valued processes. The books of Dynkin [204], [205],
Le Gall [424], Perkins [514] and Li [434] provide comprehensive developments of
various aspects of measure-valued branching processes. In this section we begin
with a brief introduction and then survey some aspects of superprocesses which
are important for the study of stochastic population models. Section 9.5 gives a
brief survey of the small scale properties of SBM and Chapter 10 deals with the
large space-time scale properties.

Of special note is the discovery in recent years that super-Brownian motion
arises as the scaling limit of a number of models from particle systems and sta-
tistical physics. An introduction to this class of SBM invariance principles is
presented in Section 9.6 with emphasis on their application to the voter model
and interacting Wright-Fisher diffusions. A discussion of the invariance proper-
ties of Feller CSB in the context of a renormalization group analysis is given in
Chapter 11.

The SBM Martingale Problem

Let (D(A), A) be the generator of a Feller process on a locally compact met-
ric space (E,d) and v > 0. The probability laws {P, : p € M¢(E)} on
C([0,00), Mf(E)) of the superprocess associated to (A,a,v) can be character-
ized as the unique solution of the following martingale problem:

Mi(o) = (. X,) — / (A, X.) ds

is a P,-martingale with increasing process

(M(p)), = / V(0. X,) ds

for each ¢ € D(A).
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Equivalently, it solves the martingale problem

OF
GF = /AT (dz)

2] 5 52@ (dy)u(da)

D(G) = {F(u) = ¥ s0€l'>’+( O}
The special case E = [0, 1] () = [[ f(y)w(dy) — f(x)]dy is the Jirina
process. The special case F = R? A = 1A on D(A) = C}(R?) is called super-

Brownian motion.

9.5.2 Super-Brownian Motion as the Limit of Branching Brownian
Motion

Given a system of branching Brownian motions on S = R? and ¢ > 0 we consider
the measure-valued process, X¢, with particle mass m. = ¢ and branching rate
7. = 2, that is,

(9.32) = m. Z Oz (1)

where N(t) denotes the number of particles alive at time ¢ and x1(t), ..., zn()
denote the locations of the particles at time ¢. Given an initial set of particles, let
fe = M, Z;.V:(?) dz,(0), let P;_ denote the probability law of X on D), re)([0, o0)).
Let {F;}+>0 be the canonical filtration on D([0, 00), Mp(R?)).

Notation 9.13 p(¢) = (¢, p) = [ ¢pdp.

Let C(Mp(R) D D(Ge) = {F(n) = f({¢,m)) : f € C}R), 6 € CFR)}.
Then D(G.) is measure-determining on Mp(R?) ([139], Lemma 3.2.5.).

Then using Itd’s Lemma, it follows that P; € P(D([0,00), Mp(R?))) satisfies
the G*-martingale problem where for F' € D(GE)7

GF) = Fu(6)n(5A0) + " (4(8)p(V6 - Vo)
55 [ [F((9) + () + F (@) — e(a)) — 2 (u(6))]u(d)

Theorem 9.14 Assume that X¢(0) = pe = p as e — 0.
Then

e—0

(a) P, = P, € P(Cproze)([0,00)) and P, is the unique solution to the martin-
gale pmblem for all ¢ € C’Q(]Rd)

(9.33) M) = Xi() — u(6) — /O X.(5A6)ds



180 CHAPTER 9. SPATIALLY STRUCTURED MODELS

is an (FX)—martingale starting at zero with increasing process

t
(M) = [ Xile)as.
0
(b) The Laplace functional of X, is given by

(9.34) P, <e(_f¢($)Xt(dx))> _ (- Sunan)

where v(t,x) is the unique solution of

ou(t, 1
(9.35) U(at z) = §Av(t, x) — %UQ(t, z), vy =¢ € C2,(RY).

(¢c) The total mass process {X;(R%};>q is a Feller CSBP.

Proof.

Step 1. Tightness of probability laws of X* on Dy, (re)([0,00 and a.s. con-
tinuity of limit points. In order to prove tightness it suffices to prove that for
d > 0 there exists a compact subset K C R% and 0 < L < oo such that

(9.36)
and
(9.37) Pg. o (Xi(¢))~" is tight in Dg([0,00)) for ¢ € CZ(R?).

This can be checked by standard moment and martingale inequality arguments.
For example for (9.36) it suffices to show that

(9.38) sup sup E( sup (e~ 171 4 ||z[?), X5(2))) < oo,
0<e<16>0  0<t<T
and (9.37) can be verified using the Joffe-Métivier criterion (see Appendix, (17.4.2)).
The a.s. continuity of any limit point then follows from Theorem 17.14 since the
maximum jump size in X° is €.
Moreover, if P, is a limit point, it is also easy to check (cf. Lemma 16.2) that
for ¢ in CZ(R?), My(¢) is a P ,-martingale and (Fy(p) = u(@), Fa(pn) = u(9)?)

t

(M(9))e = lli% ; (GeFo(X,) — 2F1(X,)GF1 (X)) ds
= fy/o X (¢?)ds.

As pointed out above, (9.33) and Ito’s formula yields an equivalent formulation



