
Chapter 7

Martingale Problems and Dual
Representations

7.1 Introduction

We have introduced above the basic mechanisms of branching, resampling and
mutation mainly using generating functions and semigroup methods. However
these methods have limitations and in order to work with a wider class of mech-
anisms we will introduce some this additional tools of stochastic analysis in this
chapter. The martingale method which we use has proved to be a natural frame-
work for studying a wide range of problems including those of population systems.
The general framework is as follows:

• the object is to specify a Markov process on a Polish space E in terms of its
probability laws {Px}x∈E where Px is a probability measure on CE([0,∞))
or DE([0,∞)) satisfying Px(X(0) = x) = 1.

• the probabilities {Px} ∈ P(CE([0,∞))) satisfy a martingale problem (MP).
One class of martingale problems is defined by the set of conditions of the
form

(7.1) F (X(t))−
∫ t

0

GF (X(s))ds, F ∈ D (D, G)−martingale problem

is a Px martingale where G is a linear map from D to C(E), and D ⊂ C(E)
is measure-determining.

• the martingale problem MP has one and only one solution.

Two martingale problems MP1, MP2 are said to be equivalent if a solution to
MP1 problem is a solution to MP2 and vice versa.

In our setting the existence of a solution is often obtained as the limit of a
sequence of probability laws of approximating processes. The question of unique-
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110 CHAPTER 7. MARTINGALE PROBLEMS AND DUAL REPRESENTATIONS

ness is often the more challenging part. We introduce the method of dual repre-
sentation which can be used to establish uniqueness for a number of basic pop-
ulation processes. However the method of duality is applicable only for special
classes of models. We introduce a second method, the Cameron-Martin-Girsanov
type change of measure which is applicable to some basic problems of stochastic
population systems. Beyond the domain of applicability of these methods, things
are much more challenging. Some recent progress has been made in a series of
papers of Athreya, Barlow, Bass, Perkins [11], Bass-Perkins [28], [29] but open
problems remain.

We begin by reformulating the Jirina and neutral IMA Fleming-Viot in the
martingale problem setting. We then develop the Girsanov and duality methods
in the framework of measure-valued processes and apply them to the Fleming-
Viot process with selection.

7.2 The Jirina martingale problem

By our projective limit construction of the Jirina process (with ν0 = Lebesgue),
we have a probability space (Ω,F , {X∞ : [0,∞) × B([0, 1]) → [0,∞)}, P ) such
that a.s. t → X∞t (A) is continuous and A → X∞· (A) is finitely additive. We
can take a modification, X, of X∞ such that a.s. X : [0,∞) → MF ([0, 1]) is
continuous where MF ([0, 1]) is the space of (countably additive) finite measures
on [0, 1] with the weak topology. We then define the filtration

Ft : σ{Xs(A) : 0 ≤ s ≤ t, A ∈ B([0, 1])}

and P , the σ-field of predictable sets in R+ × Ω (ie the σ-algebra generated by
the class of Ft-adapted, left continuous processes).

Recall that for a fixed set A the Feller CSB with immigration satisfies

(7.2) Xt(A)−X0(A)−
∫ t

0

c(ν0(A)−Xs(A))ds =

∫ t

0

√
2γXt(A)dwAt

which is an L2-martingale.
Moreover, by polarization

(7.3) 〈M(A1),M(A2)〉t = γ

∫ t

0

Xs(A1 ∩ A2)ds

and if A1 ∩ A2 = ∅, then the martingales M(A1)t and M(A2)t are orthogonal.
This is an example of an orthogonal martingale measure.

Therefore for any Borel set A

(7.4) Mt(A) := Xt(A)−X0(A)−
∫ t

0

c(ν0(A)−Xs(A))ds
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is a martingale with increasing process

(7.5) 〈M(A)〉t = γ

∫ t

0

Xs(A)ds.

We note that we can define integrals with respect to an orthogonal martingale
measure (see next subsection) and show that (letting Xt(f) =

∫
f(x)Xt(dx) for

f ∈ B([0, 1]))

(7.6) Mt(f) := Xt(f)−X0(f)−
∫ t

0

c(ν0(f)−Xs(f))ds =

∫
f(x)Mt(dx)

which is a martingale with increasing process

(7.7) 〈M(f)〉t = γ

∫ t

0

f 2(x)Xs(dx)ds.

This suggests the martingale problem for the Jirina process which we state in
subsection 7.2.2.

7.2.1 Stochastic Integrals wrt Martingale Measures

A general approach to martingale measures and stochastic integrals with respect
to martingale measures was developed by Walsh [597]. We briefly review some
basic results.

Let

L2
loc =

{
ψ : R+ × Ω× E → R : ψ is P × E-measurable,

∫ t

0

Xs(ψ
2
s)ds <∞, ∀t > 0

}
A P × E-measurable function ψ is simple (ψ ∈ S) iff

ψ(t, ω, x) =
K∑
i=1

ψi−1(ω)φi(x)1(ti−1,ti](t)

for some φi ∈ bB([0, 1]), ψ ∈ bFti−1
, 0 = t0 < t1 · · · < tK ≤ ∞. For such a ψ,

define

Mt(ψ) :=

∫ t

0

∫
ψ(s, x)dM(s, x) =

K∑
i=1

ψi−1(Mt∧ti(φi)−Mt∧ti−1
(φi))

Then Mt(ψ) ∈Mloc (the space of Ft local martingales) and

〈M(ψ)t〉 =

∫ t

0

Xs(γψ
2
s)ds.
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Lemma 7.1 For any ψ ∈ L2
loc there is a sequence {ψn} in S such that

P

(∫ n

0

∫
(ψn − ψ)2(s, ω, x)γ(x)Xs(dx)ds > 2−n

)
< 2−n.

Proof. Let S̄ denote the set of bounded P × E-measurable functions which
can be approximated as above. S̄ is closed under →bp. Using
H0 = {fi−1(ω)φi(x),φ ∈ bE , fi−1 ∈ bFti−1

, φi ∈ bE}, we see that ψ(t, ω, x) =∑K
i=1 ψi−1(ω, x)1(ti−1,ti](t) is in S̄ for any ψi−1 ∈ b(Fti−1

× E). If ψ ∈ b(P × E),
then

ψn(s, ω, x) = 2n
∫ i2−n

(i−1)2−n
ψ(r, ω, x)dr is s ∈ (i2−n, (i+ 1)2−n], i = 1, 2, . . .

satisfies ψn ∈ S̄ by the above. For each (ω, x), ψn(s, ω, x) → ψ(s, ω, x) for
Lebesgue a.a. s by Lebesgue’s differentiation theorem and it follows easily that
ψ ∈ S̄. Finally if ψ ∈ L2

loc, the obvious truncation argument and dominated
convergence (set ψn = (ψ ∧ n) ∨ (−n) completes the proof.

Proposition 7.2 There is a unique linear extension of M : S →Mloc (the space
of local martingales) to a map M : L2

loc → Mloc such that Mt(ψ) is a local
martingale with increasing process 〈M(ψ)〉t given by

〈M(ψ)〉t :=

∫ t

0

γXs(ψ
2
s)ds ∀ t ≥ 0 a.s.∀ ψ ∈ L2

loc.

Proof. We can choose ψn ∈ S as in the Lemma. Then

〈M(ψ)−M(ψn)〉n = 〈M(ψ − ψn)〉n = γ

∫ n

0

Xs(γ(ψ(s)− ψn(s))2ds

P
(
〈M(ψ)−M(ψn)〉n > 2−n

)
< 2−n

The {Mt(ψn)}t≥0 is Cauchy and using Doob’s inequality and the Borel-Cantelli
Lemma we can define {Mt(ψ)}t≥0 such that

sup
t≤n
|Mt(ψ)−Mt(ψn)| → 0 a.s. as n→ ∞̇.

This yields the required extension and its uniqueness.
Note that it immediately follows by polarization that if ψ, φ ∈ L2

loc,

〈M(φ),M(ψ)〉t = γ

∫ t

0

Xs(φsψs)ds

Moreover, in this case Mt(ψ) is a L2-martingale, that is,

E(〈M(ψ)〉t) = γ

∫ t

0

E(Xs(ψ
2
s))ds <∞
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provided that

ψ ∈ L2 = {ψ ∈ L2
loc : E(

∫ t

0

Xs(ψ
2
s)ds <∞, ∀t > 0}.

Remark 7.3 Walsh (1986) [597] defined a more general class of martingale mea-
sures on a measurable space (E, E) for which the above construction of stochastic
integrals can be extended. {Mt(A) : t ≥ 0, A ∈ E} is an L2-martingale measure
wrt Ft iff

(a) M0(A) = 0 ∀A ∈ E,
(b) {Mt(A), t ≥ 0} is an Ft-martingale for every A ∈ E,
(c) for all t > 0, Mt is an L2-valued σ-finite measure.
The martingale measure is worthy if there exists a σ-finite “dominating mea-

sure” K(·, ·, ·, ω), on E × E × B(R+), ω ∈ Ω such that
(a) K is symmetric and positive definite, i.e. for any f ∈ bE × B(R+),∫ ∫ ∫

f(x, s)f(y, s)K(dx, dy, ds) ≥ 0

(b) for fixed A,B, {K(A×B × (0, t]), t ≥ 0} is Ft-predictable
(c) ∃ En ↑ E such that E{K(En × En × [0, T ]} <∞ ∀n,
(d) | 〈M(A),M(A)〉t | ≤ K(A× A× [0, t]).

7.2.2 Uniqueness and stationary measures for the Jirina Martingale
Problem

A probability law, Pµ ∈ CMF ([0,1])([0,∞)), is a solution of the Jirina martingale
problem, if under Pµ, X0 = µ and

(7.8)

Mt(φ) := Xt(φ)−X0(φ)−
∫ t

0

c(ν0(φ)−Xs(φ))ds,

is a L2, Ft-martingale ∀ φ ∈ bB([0, 1]) with increasing process

〈M(φ)〉t = γ

∫ t

0

Xs(φ
2)ds, that is,

M2
t (φ)− 〈M(φ)〉t is a martingale.

Remark 7.4 This is equivalent to the martingale problem

(7.9) MF (t) = F (Xt)−
∫ t

0

GF (X(s))ds is a martingale

for all F ∈ D ⊂ C(MF ([0, 1]) where

D = {F : F (µ) =
n∏
i=1

µ(fi), fi ∈ C([0, 1]), i = 1, . . . , , n, n ∈ N}
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and

GF (µ) = c

∫ [∫
∂F (µ)

∂µ(x)
ν0(dx)− ∂F (µ)

∂µ(x)

]
µ(dx)

+
γ

2

∫ ∫
∂2F (µ)

∂µ(x)∂µ(y)
(δx(dy)µ(dx)− µ(dx)µ(dy))

Theorem 7.5 There exists one and only one solution Pµ ∈ P(CMF ([0,1])([0,∞))
to the martingale problem (7.8). This defines a continuous MF (0, 1]) continuous
strong Markov process.
(b) (Ergodic Theorem) Given any initial condition, X0, the law of Xt converges
weakly to a limiting distribution as t→∞ with Laplace functional

(7.10) E(e−
∫ 1
0 f(x)X∞(dx)) = exp

(
−2c

γ

∫ 1

0

log(1 +
f(x)

θ
)ν0(dx)

)
.

This can be represented by

(7.11) X∞(A) =
1

θ

∫ 1

0

f(x)G(θds)

where G is the Gamma (Moran) subordinator (recall (6.17)).

Proof. Outline of method. As discussed above the projective limit construc-
tion produced a solution to this martingale problem.

A fundamental result of Stroock and Varadhan ([571] Theorem 6.2.3) is that in
order to prove that the martingale problem has at most one solution it suffices to
show that the one-dimensional marginal distributions L(Xt), t ≥ 0, are uniquely
determined. Moreover in order to determine the law of a random measure, X,
on [0, 1] it suffices to determine the Laplace functional.

The main step of the proof is to verify that if Pµ is a solution to the Jirina
martingale problem, t > 0, and f ∈ C+([0, 1]), then

(7.12) Eµ(e−Xt(f)) = e−µ(ψ(t))−cν0(
∫ t
0 ψ(t−s)ds)

where

dψ(s, x)

ds
= −cψ(s, x)− γ

2
ψ2(s, x),

ψ(0, x) = f(x).

STEP 1: -discretization
We can choose a sequence of partitions {An1 , . . . , AnKn} and λn1 , . . . , λ

n
Kn

such that

(7.13)
Kn∑
i=1

λni 1Ani ↑ f(·).
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We next show that for a partition {A1, . . . , AK} of [0, 1] and λi ≥ 0, i = 1, . . . , K,

exp(−
K∑
i=1

λiXt(Ai)) = exp

(
−

K∑
i=1

ψi(t)X0(Ai)−
∑

cν0(Ai)

∫ t

0

ψi(t− s)ds

)
dψi
ds

= −cψi −
γ

2
ψ2
i

ψi(0) = λi.

To verify this first note that by Itô’s Lemma, for fixed t and 0 ≤ s ≤ t,

dψi(t− s)Xs(Ai) = Xs(Ai)dψi(t− s) + ψi(t− s)dXs(Ai)

= Xs(Ai)dψi(t− s) + ψi(t− s)cν0(Ai)

− cψi(t− s)Xs(Ai) + ψi(t− s)dMs(Ai)

and

Xt(Ai)ψi(0)−X0(Ai)ψi(t)

= −
∫ t

0

Xs(Ai)ψ̇i(t− s)ds+ cν0(Ai)

∫ t

0

ψi(t− s)ds

− c
∫ t

0

Xs(Ai)ψi(t− s)ds+Nt(Ai)

where {N}0≤s≤t is an orthogonal martingale measure with

Ns(Ai) =

∫ s

0

ψi(t− u)M(Ai, du)

〈N(Ai)〉s =
γ

2

∫ s

0

ψ2
i (t− u)Xu(Ai)du

〈N(Ai), N(Aj)〉s = 0 if i 6= j.

Again using Itô’s lemma, for 0 ≤ s ≤ t

de−Xs(Ai)ψi(t−s) = ψ̇i(t− s)e−Xs(Ai)ψi(t−s)ds− ψi(t− s)e−Xs(Ai)ψi(t−s)dXs(Ai)

+
γ

2
e−Xs(Ai)ψi(t−s)ψ2

i (t− s)Xs(Ai)ds

= ψ̇i(t− s)e−Xs(Ai)ψi(t−s)ds+ cψi(t− s)e−Xs(Ai)ψi(t−s)Xsds

+ cν0(A)ψi(t− s)e−Xs(Ai)ψi(t−s)ds

+
γ

2
e−Xs(Ai)ψi(t−s)ψ2

i (t− s)Xsds+ dNs(Ai)

= cν0(Ai)ψi(t− s)e−Xs(Ai)ψi(t−s)ds+ dNs(Ai)
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Then by the method of integrating factors we can get

Ñs(Ai) = e(−Xs(Ai)ψi(t−s)+cν0(Ai)
∫ t
s ψi(t−u)du), 0 ≤ s ≤ t,

is a bounded non-negative martingale that can be represented as

(7.14) Ñt(Ai)− Ñ0(Ai) =

∫ t

0

e−ζi(s)dNs(Ai).

where

(7.15) ζi(s) =

(
cν0(Ai)

∫ t

s

ψi(t− u)du

)
.

Noting that the martingales Ñt(Ai), Ñt(Aj) are orthogonal if i 6= j we can
conclude that

(7.16) e−
∑
i(Xs(Ai)ψi(t−s)−cν0(Ai)

∫ t
s ψi(t−u)du), 0 ≤ s ≤ t,

is a bounded martingale. Therefore for each n

(7.17) E
[
e−

∑Kn
i=1(Xt(Ani )ψni (0))

]
= e−

∑Kn
i=1(X0(Ani )ψni (t)−cν0(Ani )

∫ t
s ψ

n
i (t−u)du)

STEP 2: Completion of the proof
Taking limits as n→∞ and dominated convergence we can then show that the
Laplace functional

E(e−Xt(f)) = e−X0(ψ(t))−cν0(
∫ t
0 ψ(t−s)ds)

where

dψ(s, x)

ds
= −cψ(s, x)− γ

2
ψ2(s, x),

ψ(0, x) = f(x).

Therefore the distribution of Xt(f) is determined for any non-negative con-
tinuous function, f , on [0, 1]. Since the Laplace functional characterizes the law
of a random measure, this proves that the distribution at time t is uniquely
determined by the martingale problem. This completes the proof of uniqueness.

(b) Recall that ψ(·, ·) satisfies

dψ(x, s)

ds
= −cψ(x, s)− γ

2
ψ2(x, s),

ψ(x, 0) = f(x)
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Solving, we get

ψ(x, t) =
f(x)e−ct

1 + f(x)
θ
− f(x)

θ
e−ct

, θ =
2c

γ

Next, note that ψ(x, t)→ 0 as t→∞ and∫ ∞
0

ψ(x, s)ds =

∫ ∞
0

f(x)e−ct

1 + f(x)
θ
− f(x)

θ
e−ct

dt =

∫
(−f(x)

c
)d(e−ct)

1 + f(x)
θ
− f(x)

θ
(e−ct)

=
2

γ

∫ 1

0

f(x)
θ
du

1 + f(x)
θ
− f(x)

θ
u

=
2

γ

∫ f(x)
θ

0

f(x)
θ
du

1 + f(x)
θ
− f(x)

θ
u

=
2

γ
log(1 +

f(x)

θ
)

Therefore

E(e−Xt(f))→ e−
2c
γ

∫
log(1+

f(x)
θ

)ν0(dx)

This coincides with the Laplace functional of

1

θ

∫
f(s)G(θds)

where G(·) is the Moran subordinator. Therefore X∞(f) can be represented as

X∞(f) =
1

θ

∫
f(s)G(θds).

Remark 7.6 A more general class of measure-valued branching processes, known
as superprocesses or Dawson-Watanabe processes will be discussed in Section 9.4.
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9.5 Measure-valued branching processes

9.5.1 Super-Brownian motion

Introduction

Super-Brownian motion (SBM) is a measure-valued branching process which gen-
eralizes the Jirina process. It was constructed by S. Watanabe (1968) [596] as
a continuous state branching process and Dawson (1975) [114] in the context of
SPDE. The lecture notes by Dawson (1993) [140] and Etheridge (2000) [218] pro-
vide introductions to measure-valued processes. The books of Dynkin [205], [206],
Le Gall [425], Perkins [515] and Li [435] provide comprehensive developments of
various aspects of measure-valued branching processes. In this section we begin
with a brief introduction and then survey some aspects of superprocesses which
are important for the study of stochastic population models. Section 9.5 gives a
brief survey of the small scale properties of SBM and Chapter 10 deals with the
large space-time scale properties.

Of special note is the discovery in recent years that super-Brownian motion
arises as the scaling limit of a number of models from particle systems and sta-
tistical physics. An introduction to this class of SBM invariance principles is
presented in Section 9.6 with emphasis on their application to the voter model
and interacting Wright-Fisher diffusions. A discussion of the invariance proper-
ties of Feller CSB in the context of a renormalization group analysis is given in
Chapter 11.

The SBM Martingale Problem

Let (D(A), A) be the generator of a Feller process on a locally compact met-
ric space (E, d) and γ ≥ 0. The probability laws {Pµ : µ ∈ Mf (E)} on
C([0,∞),Mf (E)) of the superprocess associated to (A, a, γ) can be character-
ized as the unique solution of the following martingale problem:

Mt(ϕ) := 〈ϕ,Xt〉 −
∫ t

0

〈Aϕ,Xs〉 ds

is a Pµ-martingale with increasing process

〈M(ϕ)〉t =

∫ t

0

γ 〈ϕ,Xs〉 ds

for each ϕ ∈ D(A).
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Equivalently, it solves the martingale problem

GF =

∫
A

δF

δµ(x)
µ(dx)

+
γ

2

∫∫
δ2F

δµ(x)δµ(y)
δx(dy)µ(dx)

D(G) := {F (µ) = e−µ(ϕ), ϕ ∈ B+(Rd)}

The special case E = [0, 1], Af(x) = [
∫
f(y)ν0(dy) − f(x)]dy is the Jirina

process. The special case E = Rd A = 1
2
∆ on D(A) = C2

b (Rd) is called super-
Brownian motion.

9.5.2 Super-Brownian Motion as the Limit of Branching Brownian
Motion

Given a system of branching Brownian motions on S = Rd and ε > 0 we consider
the measure-valued process, Xε, with particle mass mε = ε and branching rate
γε = γ

ε
, that is,

(9.32) Xε(t) = mε

N(t)∑
j=1

δxj(t)

where N(t) denotes the number of particles alive at time t and x1(t), . . . , xN(t)

denote the locations of the particles at time t. Given an initial set of particles, let

µε = mε

∑N(0)
j=1 δxj(0), let P ε

µε denote the probability law of Xε on DMF (Rd)([0,∞)).

Let {Ft}t≥0 be the canonical filtration on D([0,∞),MF (Rd)).

Notation 9.13 µ(φ) = 〈φ, µ〉 =
∫
φdµ.

Let C(MF (Rd)) ⊃ D(Gε) := {F (µ) = f(〈φ, µ〉)) : f ∈ C2
b (R), φ ∈ C2

b (Rd)}.
Then D(Gε) is measure-determining on MF (Rd) ([140], Lemma 3.2.5.).

Then using Itô’s Lemma, it follows that P ε
µε ∈ P(D([0,∞),MF (Rd))) satisfies

the Gε-martingale problem where for F ∈ D(Gε),

GεF (µ) = f ′(µ(φ))µ(
1

2
∆φ) +

ε

2
f ′′(µ(φ))µ(∇φ · ∇φ)

+
γ

2ε2

∫
[f(µ(φ) + εφ(x)) + f(µ(φ)− εφ(x))− 2f(µ(φ))]µ(dx).

We can also obtain the Laplace functional of Xε(t) using Proposition 9.7 with
{St : t ≥ 0} the Brownian motion semigroup on C(Rd) and G(z) = 1

2
+ 1

2
zz.

Theorem 9.14 Assume that Xε(0) = µε ⇒ µ as ε→ 0.
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Then
(a) P ε

µε

ε→0
=⇒ Pµ ∈ P(CMF (Rd)([0,∞)) and Pµ is the unique solution to the martin-

gale problem: for all φ ∈ C2
b (Rd),

(9.33) Mt(φ) := Xt(φ)− µ(φ)−
∫ t

0

Xs(
1

2
∆φ)ds

is an (FXt )−martingale starting at zero with increasing process

〈M(φ)〉t = γ

∫ t

0

Xs(φ
2)ds.

(b) The Laplace functional of Xt is given by

(9.34) Pµ
(
e(−

∫
φ(x)Xt(dx))

)
= e(−

∫
vt(x)µ(dx)).

where v(t, x) is the unique solution of

(9.35)
∂v(t, x)

∂t
=

1

2
∆v(t, x)− γ

2
v2(t, x), v0 = φ ∈ C2

+,b(Rd).

(c) The total mass process {Xt(Rd}t≥0 is a Feller CSBP.

Proof.
Step 1. Tightness of probability laws of Xε on DMF (Rd)([0,∞ and a.s. con-

tinuity of limit points. In order to prove tightness it suffices to prove that for
δ > 0 there exists a compact subset K ⊂ Rd and 0 < L <∞ such that

(9.36)

P ε
µε(sup0≤t≤T Xt(K

c) > δ) < δ, P ε
µε(sup0≤t≤T Xt(1) > L) < δ

and

P ε
µε ◦ (Xt(φ))−1 is tight in DR([0,∞)) for φ ∈ C2

c (Rd).(9.37)

This can be checked by standard moment and martingale inequality arguments.
For example for (9.36) it suffices to show that

(9.38) sup
0<ε≤1

sup
δ>0

E( sup
0≤t≤T

〈e−δ‖x‖(1 + ‖x‖2),Xε(t)〉) <∞,

and (9.37) can be verified using the Joffe-Métivier criterion (see Appendix, (17.4.2)).
The a.s. continuity of any limit point then follows from Theorem 17.14 since the
maximum jump size in Xε is ε.

Moreover, if Pµ is a limit point, it is also easy to check (cf. Lemma 16.2) that
for φ in C2

b (Rd), Mt(φ) is a Pµ-martingale and (F1(µ) = µ(φ), F2(µ) = µ(φ)2)

〈M(φ)〉t = lim
ε→0

∫ t

0

(GεF2(Xs)− 2F1(Xs)GεF1(Xs))ds

= γ

∫ t

0

Xs(φ
2)ds.
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As pointed out above, (9.33) and Ito’s formula yields an equivalent formulation
of the martingale problem, namely: for f ∈ C2

b (R), φ ∈ C2
b (Rd), and F (µ) =

f(µ(φ)),

(9.39) F (Xt)−
∫ t

0

GF (Xs)ds is a P µ −martingale

where

GF (µ) = f ′(µ(φ))µ(
1

2
∆φ) +

γ

2
f ′′(µ(φ))µ(φ2).

Step 2. (Uniqueness) In order to prove (b) we first verify that Pµ also solves the
following time dependent martingale problem. Let ψ : [0,∞)× E → [0,∞) such
that ψ, ∂

∂s
ψ and ∆ψ are bounded and strongly continuous in Cb(Rd). Assume

that

(9.40)

∥∥∥∥ψ(s+ h, ·)− ψ(s, ·)
h

− ∂

∂s
ψ(s, ·)

∥∥∥∥
∞
→0 as h→ 0.

Then

(9.41)

exp(−Xt(ψt))+

∫ t

0

exp(−Xs(ψs))Xs((A+
∂

∂s
)ψs)ds−

γ

2

∫ t

0

exp(−Xs(ψs))Xs(ψ
2
s)ds

is a Pµ-martingale. Let PFtµ denote the conditional expectation with respect to
Ft under Pµ.

To prove (9.41) first note that applying (9.39) to exp(−µ(φ)) with φ ∈ C2
b (Rd),

we obtain

(9.42)

Et(φ) = exp(−Xt(φ))+

∫ t

0

exp(−Xs(φ))Xs(Aφ)ds− γ
2

∫ t

0

exp(−Xs(φ))Xs(φ
2)ds

is a Pµ-martingale.
Next take

u(s,Xt) = exp(−Xt(ψs)), v(s,Xt) = exp(−(Xt(ψs))Xt(
∂

∂s
ψs), and(9.43)

w(s,Xt) = exp(−Xt(φ))(Xt(Aψs))

so that for t2 > t1

(9.44) u(t2, Xt2)− u(t1, Xt2) = −
∫ t2

t1

v(s,Xt2)ds.
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Then using (9.42) we have

(9.45)

PFt1µ [u(t1, Xt2)− u(t1, Xt1)] = −PFt1µ [

∫ t2

t1

w(t1, Xs)ds]

+
γ

2
PFt1µ [

∫ t2

t1

u(t1, Xs)Xs(ψ
2
s)ds].

Let Λn be a partition of [t1, t2] with mesh(Λn)→ 0 and

ψn(s, x) : =
n∑
i=1

ψ(tni , x)1[tni ,t
n
i+1)(s)

Xn(s) : =
n∑
i=1

Xtni+1
1[tni ,t

n
i+1)(s)

Let un(t,Xt) := exp(−Xt(ψ
n
t )).

Then by (9.45)

PFt1µ [un(t2, Xt2)− un(t1, Xt1)] = −PFt1m [

∫ t2

t1

exp(−Xn
s (ψs))X

n
s (
∂

∂s
ψs)ds]

−PFt1µ [

∫ t2

t1

exp(−Xs(ψ
n
s ))Xs(Aψ

n
s )ds]

+
γ

2
PFt1µ [

∫ t2

t1

exp(−Xs(ψ
n
s ))Xs((ψ

n
s )2)ds].

Standard arguments show that this converges to

PFt1µ [u(t2, Xt2)− u(t1, Xt1)] = −PFt1m [

∫ t2

t1

exp(−Xs(ψs))Xs(
∂

∂s
ψs)ds]

−PFt1µ [

∫ t2

t1

exp(−Xs(ψs))Xs(Aψs)ds]

+
γ

2
PFt1µ [

∫ t2

t1

exp(−Xs(ψs))Xs((ψs)
2)ds]

which completes the proof of (9.41).
Now let vt = Vtφ be the unique solution (see [501]) of

(9.46)
∂vt
∂t

= Avt −
γ

2
v2
t , v0 = φ ∈ C2

+,b(Rd).

Then vt satisfies (9.40). Applying (9.41) we deduce that {exp(−Xs(vt−s))}0≤s≤t
is a martingale. Equating mean values at s = 0 and s = t we get the fundamental
equality

(9.47) Pµ( exp(−Xt(φ)) = exp(−µ(Vtφ)).
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The extension from φ ≥ 0 in D(A) to φ ≥ 0 in bE follows easily by considering
the “weak form”

Vtφ = Ptφ−
γ

2

∫ t

0

Pt−s(Vsφ)2ds

and then taking bounded pointwise limits.
(9.47) proves the uniqueness of the law Pµ(Xt ∈ ·) for any solution of (MP)

and hence the uniqueness of Pµ (see [571] or [226], Chapt. 4, Theorem 4.2).
(c) follows by taking φ ≡ 1 and comparing the Laplace transforms of the

transition measures.

Corollary 9.15 (Infinite divisibility) Pµ is an infinitely divisible probability mea-
sure with canonical representation

− log(Pµ(exp(−Xt(φ)))(9.48)

= −
∫

log(Pδx(exp(−Xt(φ)))µ(dx) =

∫
MF (Rd)\{0}

(1− eν(φ))Rt(x, dν)

where the canonical measure Rt(x, dν) ∈MF (MF (Rd)\{0}) satisfies
Rt(x,MF (Rd)\{0}) = 2

γt
and the normalized measure is an exponential probability

law with mean γt
2

.

The infinite divisibility of SBM allow us to use the the theory of infinitely
divisible random measure (see e.g. Dawson (1992) (1993), [120], [140]) to obtain
detailed properties of the process.

Weighted occupation time

If {Xt : t ≥ 0} is a super-Brownian motion, then we defined the associated
weighted occupation time Yy : t ≥ 0 as

(9.49) Yt(A) =

∫ t

0

Xs(A)ds, A ∈ B(Rd).

Theorem 9.16 (Iscoe (1986) [330])
Let µ ∈ MF (Rd) and φ, ψ ∈ C2

c,+(Rd). Then the joint Laplace functional of Xt

and Yt is given by

(9.50) Eµ
[
e−〈ψ,Xt〉−〈φ,Yt〉

]
= e−

∫
u(t,x)µ(dx)

where u(., .) is the unique solution of

∂u(t, x)

∂t
=

1

2
∆u(t, x)− γ

2
u2(t, x) + φ(x),(9.51)

u(0, x) = ψ(x).
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Proof. The idea is to approximate the integral
∫ t

0
Xs(φ)ds by a Riemann sum

approximation as follows:

Eµ

{
exp

[
−〈ψ,Xt〉 −

∫ t

0

〈φ,Xs〉ds
]}

= lim
N→∞

Eµ

{
exp

[
−〈φ,Xt〉 −

N∑
n=1

〈φ,Xnt
N
〉 t
N

]}
Now consider two semigroups on C(Rd):

• Vtψ given by the solution of

(9.52) v(t) = Stψ −
∫ t

0

St−s(v(s))2ds,

• Wt given by

(9.53) Wtψ = ψ + tφ, Ẇtψ = φ.

Using the iterated conditioning and the Markov property we obtain

Eµ

(
exp

[
−〈ψ,Xy〉 −

∫ t

0

〈φ,Xs〉ds
])

(9.54)

= lim
N→∞

exp
[
−〈(V t

N
W t

N
)Nψ, µ〉

]
Then by the Trotter-Lie product formula (cf. Chorin et al [74])

(9.55) Ut = lim
N→∞

(
V t
N
W t

N

)N
on C0,+(Rd).

and therefore

(9.56) Eµ

(
exp

[
−〈ψ,Xt〉 −

∫ t

0

〈φ,Xs〉ds
])

= exp (−〈Utψt, µ〉)

noting that the interchange of limit and integral is justified by dominated con-
vergence since

(9.57) (V t
N
W t

N
)Nψ ≤ (S t

N
W t

N
)Nψ ≤ Stψ + (1 + t)‖φ‖.

As an application of this Iscoe established the compact support property of
super-Brownian motion:

Theorem 9.17 Let {Xt : t ≥ 0} with be super-Brownian motion with initial
measure δ0. Then

(9.58) Pδ0( sup
0≤t<∞

Xt(Rd \ B(0, R) ) > 0) = 1− e−
u(0)

R2 ,
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where u(·) is the solution of

∆u(x) = u2(x), x ∈ B(0, 1),(9.59)

u(x)→∞ as x→ ∂B(0, 1).

Proof. Iscoe (1988) [332].

Convergence of renormalized BRW and interacting Feller CSBP

A number of different variations of rescaled branching systems on Rd can be
proved to converge to SBM. For example, the following two results can be proved
following the same basic steps.

Theorem 9.18 Let ε = 1
N

. Consider a sequence of branching random walks

Xε
t on εZd with random walk kernel pε(·) which satisfies (9.2), particle mass

mε = ε, branching rate γε = γ
ε

and assume that Xε
0 ⇒ X0 in MF (Rd). Then

{Xε
t }t≥0 ⇒ {Xt}t≥0 where Xt is a super-Brownian motion on Rd with A = σ2

2
∆

and branching rate γ.

Remark 9.19 The analogue of these results for more general branching mech-
anisms with possible infinite second moments are established in Dawson (1993),
[140] Theorem 4.6.2.

Theorem 9.20 Consider a sequence of interacting Feller CSBP in which the
rescaled random walks converge to Brownian motion. Then the interacting Feller
CSBP converge to SBM.

9.5.3 The Poisson Cluster Representation

Let X be an infinitely divisible random measure on a Polish space E with finite
expected total mass E[X(E)] <∞. Then (cf. [140], Theorem 3.3.1) there exists
a measure XD ∈MF (E) and a measure R ∈M(MF (E)\{0}) satisfying∫

(1− e−µ(E))R(dµ) <∞

and such that

− log(P (e−X(φ))) = XD(φ) +

∫
(1− e−ν(φ))R(dν).

XD is called the deterministic component andR is called the canonical measure.
For example, for a Poisson random measure with intensity Λ, R(dν) =

∫
δδx(dν)Λ(dx).

If we replace each Poisson point, x, with a random measure (cluster) with prob-
ability law R(x, dν) then we obtain

R(dν) =

∫
Λ(dx)R(x, dν).



Exercise: Lectures 11-12.

Let Bi(t), i = 1, . . . N be independent Brownian motions in Rd and define
the measure-valued process

X
(N)
t (A) =

N∑
i=1

1A(Bi(t)), A ∈ B(Rd).

Assume that as N → ∞, X
(N)
0 (A) =⇒ |A ∩ B(0, 1)| where |A| denotes the

Lebesgue measure of A.

(a) Find the generator of the process {Xt} acting on the class of functions
of the form

F (µ) = f(µ(φ)), φ ∈ C2
b (Rd), f ∈ C2(R).

(b) Prove the dynamical law of large numbers:

{X(N)
t : t ≥ 0} ⇒ {Xt : t ≥ 0} as N →∞

(in the sense of weak convergence on CMF (Rd)([0,∞))) where

Xt(A) =
∫
A

∫
B(0,1)

p(t, x− y)dxdy.

where p(t, x) = 1
(2πt)d/2 e

−|x|2/2t.

1


