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7.4 Dual martingale problems

Dual processes play an important role in the study of interacting particle sys-
tems (see Liggett [436]). A dual representation for the Fleming-Viot process was
introduced in Dawson and Hochberg (1982) [131]. The following generalization
with applications to measure-valued processes was established in (Dawson-Kurtz
(1982) [143]). Here we give the main ideas and refer [140], Sect. 5.5 for the
details.

To give the main idea we first present the theorem in a simplified case.

Theorem 7.9 (Dual Representation)
Let E1, E2 be Polish spaces and F (·, ·), GF (·, ·), HF (·, ·) ∈ Bb(E1 × E2),

β ∈ Bb(E2) and Px : E1 → P(DE1(0,∞)) and Qy : E2 → P(DE2(0,∞))
Assume that

F (X(t), y)−
∫ t

0

GF (X(s), y)ds is a PX(0) martingale for each y ∈ E2(7.20)

F (x, Y (t))−
∫ t

0

HF (x, Y (s))ds is a QY (0) martingale for each x ∈ E1

and

(7.21) GF (x, y) = HF (x, y) + β(y)F (x, y).

Then

(7.22) EX
x (F (X(t), y)) = EY

y

(
F (x, Y (t)) exp(

∫ t

0

β(Y (s))ds

)
, 0 < t < T

Proof. Let

(7.23) Φ(s, t) := EX
x ⊗ EY

y

(
F (X(s), Y (t)) exp(

∫ t

0

β(Y (u))du)

)
(7.24) Φ(t, 0) = EX

x (F (X(t), y))

(7.25) Φ(0, t) = EY
y (F (x, Y (t)))

(7.26) Φ1(s, t) = EX
x ⊗ EY

y

(
GF (X(s), Y (t)) exp(

∫ t

0

β(Y (u))du)

)

(7.27)

Φ2(t, s) = EX
x ⊗EY

y

(
[HF (X(t), Y (s)) + βY (s)F (X(t), Y (s))] exp(

∫ s

0

β(Y (u))du)

)
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where Φ1,Φ2 are the first partial derivatives with respect to the first and second
variables. Under the assumptions, Φ1(s, t − s),Φ2(s, t − s), 0 ≤ s ≤ t exist and
are uniformly bounded .

Therefore

(7.28) Φ(0, t)−Φ(t, 0) =

∫ t

0

∂

∂s
Φ(s, t− s) =

∫ t

0

(Φ1(s, t− s)−Φ2(s, t− s))ds = 0

In applications the assumption that β(·) and GF (·, ·) are bounded needs to
be relaxed. The following extension (see [140], Cor. 5.5.3) provides the required
conditions.

Proposition 7.10 Assume that
(i) F ∈ Cb(E1 × E2), and {F (·, y) : y ∈ E2) is measure-dtermining on E1

(ii) there exist stopping times τK ↑ t such that{
(1 + sup

x
|GF (x, Y (τK))|) · exp(

∫ τK

0

|β(Y (u))|du)

}
K

(7.29)

are Qδy − uniformly integrable for all y ∈ E2

and (iii) Qδy(Y (s−) 6= Y (s)) = 0 for each s ≥ 0, that is, no fixed discontinuities.
Then the G-martingale problem is well-posed and for all y ∈ E2

(7.30) Pµ(F (X(t), y)) =

∫
E1

µ(dx)

(
Qδy [F (x, Y (t)) exp

(∫ t

0

β(Y (u))du

))
.

Example 7.11 (The Wright-Fisher diffusion with polynomial drift)

Let ∆d−1 = {(x1, . . . , xd), xi ≥ 0, i = 1, . . . , d,
∑d

i=1 xi ≤ 1}
Then consider the Wright-Fisher diffusion {x(t)} with generator

G =
d∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

d∑
i=1

bi(x)
∂

∂xi

where {ai,j(x)} is the real symmetric non-negative definite matrix, {aij(x)} =
{xi(δij − xj)} and the drift coefficient bi(x) is a polynomial satisfying certain
natural boundary conditions on ∆d−1 to ensure that the process remains in ∆d−1.

Shiga (1981)) [541] obtained a dual in terms of a family of functions {φα}α∈Γ, φα ∈
D(G) defined by

φα(x1, . . . , xd) =
d∏
i=1

xαii , α = (α1, . . . , αd) ∈ Γ
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and showed that

Gφα =
∑
β

Qα,β(φβ − φα) + hαφα

where Q = {Qα,β} defines a conservative Markov chain αt with state space Γ.
Then the following identity follows from Proposition 7.10:

(7.31) Ex[φα(x(t))] = Eα[φαt(x) exp(

∫ t

0

hαudu)], 0 ≤ t ≤ t0

provided that

Eα[exp(

∫ t0

0

|hαu |du)] <∞ ∀α ∈ Γ

Therefore the corresponding Wright-Fisher martingale problem is well-posed.

Example 7.12 (Markov chains) Consider a continuous time Markov chain with
state space EK = {1, . . . , K} and transition rates

(7.32) i→ j with rate mij

Let PK denote the collection of subsets of EK and define the function F :
PK × EK by

(7.33) F (A, j) = 1A(j)

.
Now consider the Markov At chain with state space PK and transition rates

(7.34) A→ A ∪ {j} at rate
∑
`∈A

mj`

(7.35) A→ A\{j} at rate
∑
`∈Ac

mj` if j ∈ A

(7.36)

GF (A, j) =
∑
`

mj`(1A(`)− 1A(j)) =
∑
`∈A

mj`(1− F (A, j))−
∑
`∈Ac

mj`F (A, j)

Then

(7.37)

HF (A) =
∑
k∈Ac

[(
∑
`∈A

mk`)(F (A∪{k})−F (A)]+
∑
k∈A

[(
∑
`∈Ac

mk`)(F (A\{k})−F (A))]
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and therefore

(7.38)

HF (A, j) =
∑
k∈Ac

(
∑
`∈A

mk`))(1(A∪{k})(j)− 1A(j)) +
∑
k∈A

(
∑
`∈Ac

mk`)(1(A\{k})(j)− 1A(j))

=
∑
`∈A

mj`(1− F (A, j))−
∑
`∈Ac

mj`F (A, j).

By duality we have

(7.39) Ej(1`(Xt)) = E{`}(1At(j)).

Remark 7.13 If {mij} is irreducible, then the Markov chain At has two traps ∅
and EK. It is easy to verify that At is absorbed at a trap with probability one. This
together with (7.39) implies (the elementary result) that Pj(x(t) = `) converges
as t→∞ to a stationary measure π` with

(7.40) π` = P{`}(At → EK), ` ∈ EK
and that limt→∞ Pj(X(t) = `) is independent of j.

7.5 Dual representation of the neutral Fleming-Viot pro-
cess

The method of dual representation plays an important role in the study of
Fleming-Viot processes and will be frequently used below. To introduce this
we first consider the special case of a neutral Fleming-Viot process with a nice
mutation process.

7.5.1 The General Neutral F.V. Process

Let E be a compact metric space, A be a linear operator defined on D(A) ⊂ C(E)
and assume that the closure of A generates a Feller semigroup, {St : t ≥ 0} on
C(E). A probability measure Pµ on C([0,∞),Mf (E)) is said to be a solution of
the neutral Fleming-Viot martingale problem MP(A,Q,0) with initial condition µ if

Pµ(X0 = µ) = 1

and for each φ ∈ C+
b (E) ∩D(A)

M0
t (φ) := 〈φ,Xt〉 − 〈φ,X0〉 −

∫ t

0

〈Aφ,Xs〉 ds

where M0
t defines a martingale measure M0(ds, dx) with covariance〈

M0(dx),M0(dy)
〉
t

= γ

∫ t

0

Q(Xs; dx, dy)ds

Q(µ; dx, dy) = δx(dy)µ(dx)− µ(dx)µ(dy).



124 CHAPTER 7. MARTINGALE PROBLEMS AND DUAL REPRESENTATIONS

Theorem 7.14 There exists a unique solution to the MP(A,Q,0) martingale prob-
lem.

Proof. This will be proved in the following section.

7.5.2 Equivalent Formulation of the martingale problem

We now turn to an equivalent formulation of the Fleming-Viot process that will
be needed for the application of the dual representation in the next chapter.

Let F ∈ D(G) ⊂∈ C2(P(E))

(7.41) GF (µ) =

∫
E

(
A
δF (µ)

δµ(x)

)
µ(dx) +

γ

2

∫
E

∫
E

δ2F (µ)

δµ(x)δµ(y)
Q(µ; dx, dy)

where Q(µ, dx, dy) := µ(dx)δx(dy)− µ(dx)µ(dy).
Now consider function F (µ, (f, n)) =

∫
. . .
∫
f(x1, . . . , xn)µn(dx) with f ∈

C(En), n ∈ N and

(7.42) µn(dx) = µ(dx1) . . . µ(dxn).

Then

(7.43) GF (µ, (f, n)) = 〈µn, A(n)f〉+
γ

2

∑
i 6=j

(
〈µn−1, Θ̃ijf〉 − 〈µn, f〉

)

(7.44) (Θ̃ijf)(y1, . . . , yN−1) := f(x1, . . . , xN)

On the right side of (7.44)

(7.45)

xk = yk for k < i ∨ j, k 6= i ∧ j
xi∨j = xi∧j = yi∧j

xk = yk−1 for k > i ∨ j.

We will interpret this below as the coalescence of dual particles. The dual
particle system of coalescing Markov processes leads to the Kingman coalescent
-see Section 8.2.5 for details.

7.5.3 The dual process

The Fleming-Viot process has state space P(E). We assume that the mutation
process has semigroup St with generator A and there exists a dense setD0 ⊂ C(E)
and St : D0 → D0.

We can then consider the extension of the mutation process to En, n ≥ 1
corresponding to n i.i.d. copies of the basic mutation process and with generator
A(n) =

∑n
i=1Ai where Ai denotes the action of A on the ith variable.
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Consider the algebra of functions, C(EN), of the form

(7.46) f =
∞∑
n=1

fn, fn ∈ C(En), fn = 0 a.a. n

(7.47) n(f) = max{m : fm 6= 0}.
Define F : C(EN)× P(E) by

(7.48) F (f, µ) =

n(f)∑
n=1

∫
En
fn(x1, . . . , xn)dµ⊗n

A function f ∈ C(EN) is said to be simple if fm = 0 for all m < n(f). The set
of simple functions is denoted by Csim(EN).

Now consider the Fleming-Viot process with MP generator: for each f ∈
D0(A)

(7.49) GF (f, µ) =

∫
E

(
A
∂F (f, µ)

∂µ(x)

)
µ(dx) +

γ

2

∫
E

∫
E

∂2F (f, µ)

∂µ(x)∂µ(y)
Q(µ; dx, dy)

and note that for for each µ ∈ P(E) this coincides with

(7.50) KF (f, µ) = F (Af, µ) +
γ

2

n(f)∑
j=1

∑
k 6=j

[F ((Θ̃jkf, µ)− F (f, µ))]

where

(7.51) Af =
∑
m

A(m)fm.

where Θ̃jk : Dn
0 → Dn−1

0 is defined by (7.44).
Then K is the generator of a càdlàg process with values in Csim(EN) and law

{Qf : f ∈ Csim(EN)} which evolves as follows:

• Y (t) jumps from C(En) to C(En−1) at rate 1
2
γn(n− 1)

• at the time of a jump, f is replaced by Θ̃jkf

• between jumps, Y (t) is deterministic on C(En) and evolves according to the
semigroup (Snt ) with generator A(n).

Theorem 7.15 (a) Let ({X(t)}t≥0, {Pµ : µ ∈ P(E)}) be a solution to the Fleming-
Viot martingale problem and the process ({Y (t)}t≥0, {Qf : f ∈ Csim(EN)}) be
defined as above. Then


