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7.4 Dual martingale problems

Dual processes play an important role in the study of interacting particle sys-
tems (see Liggett [436]). A dual representation for the Fleming-Viot process was
introduced in Dawson and Hochberg (1982) [131]. The following generalization
with applications to measure-valued processes was established in (Dawson-Kurtz
(1982) [143]). Here we give the main ideas and refer [140], Sect. 5.5 for the
details.

To give the main idea we first present the theorem in a simplified case.

Theorem 7.9 (Dual Representation)
Let Ey, Ey be Polish spaces and F(,

B € By(Ey) and P, : Ey — P(Dg, (0, 00))
Assume that

), GF(-,-), HF(-,-) € By(E; x Es),
and Q, : Ey — P(Dg,(0,00))

t
(7.20) F(X(t),y) —/ GF(X(s),y)ds is a Px( martingale for each y € Fy
0

t
F(z,Y(t)) — / HF(z,Y(s))ds is a Qy ) martingale for each x € E;
0

and
(7.21) GF(z,y) = HF (z,y) + B(y)F(z,y).
Then

(7.22) EJ (F(X(t),y)) = E) (F(x,Y(t))exp(/otﬁ(Y(s))ds) , 0<t<T

Proof. Let

(7.26) ®1(s,t) = BX ® E;/ (GF(X(S),Y(t)) exp(/o B(Y(u))du))

(7.27)
t,) = EX oY ([HFCCE,Y () + 0¥ ()P0, V()] exp [ A0 w)a))
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where @1, ®, are the first partial derivatives with respect to the first and second
variables. Under the assumptions, ®;(s,t — s), Pa(s,t — s), 0 < s < t exist and
are uniformly bounded .

Therefore

(7.28) <I>(0,t)—CI>(t,0):/t%d)(s,t—s):/t(fbl(s,t—s)—q)g(s,t—s))ds:O

|

In applications the assumption that 3(-) and GF(-,-) are bounded needs to
be relaxed. The following extension (see [140], Cor. 5.5.3) provides the required
conditions.

Proposition 7.10 Assume that
(i) F € Co(Ey X Ey), and {F(-,y) : y € Es) is measure-dtermining on E
(i1) there exist stopping times T Tt such that

129 { @ suplGFG V() el [ 80 w)lan |

are Qs, — uniformly integrable for all y € Fy

K

and (i1i) Qs,(Y (s—) # Y (s)) = 0 for each s > 0, that is, no fized discontinuities.
Then the G-martingale problem is well-posed and for all y € E

(7.30) PL(F(X(1).1)) = /

Eq

u(dz) (Qéy (2, Y () exp < /0 t B(Y(u))du)) |

Example 7.11 (The Wright-Fisher diffusion with polynomial drift)
Let Ay ={(z1,...,2q),2; > 0,i=1,...,d, Z?zlmi <1}
Then consider the Wright-Fisher diffusion {x(t)} with generator

d 52 d P

G= i b;

where {a; ;(x)} is the real symmetric non-negative definite matriz, {a;;(z)} =

{z;(0;j — z;)} and the drift coefficient b;j(x) is a polynomial satisfying certain

natural boundary conditions on Ag_1 to ensure that the process remains in Ag_1.
Shiga (1981)) [541] obtained a dual in terms of a family of functions {¢s tacr, ¢Ga €

D(G) defined by

¢a(x1,...,xd):Hx?", a=(ag,...,aq) €T
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and showed that
= Z Qa,ﬁ(qbﬁ - ¢o¢) + ha¢o¢
B

where @ = {Qap} defines a conservative Markov chain oy with state space T
Then the following identity follows from Proposition 7.10:

(7.31) Eula(2(6))] = Eald (x) exp( / hadu)], 0 <t < o

provided that
to
Ea[exp(/ |ha, |du)] < 00 Va €T
0

Therefore the corresponding Wright-Fisher martingale problem is well-posed.

Example 7.12 (Markov chains) Consider a continuous time Markov chain with
state space Ex = {1,..., K} and transition rates

(7.32) i — j with rate m;;

Let P denote the collection of subsets of Fx and define the function F :
PIC x By by

(7.33) F(A,j) = 1a(j)

Now consider the Markov A; chain with state space PK and transition rates

(7.34) A— AU{j} at rate ijg

leA

(7.35) A — A\{j} at rate Z my ifj €A

Le Ac
(7.36)
GF(Aaj) = ijﬂ(lA( - 1A ijé 1 - a])) - Z mij(Aaj)

¢ tcA fcAc
Then

(7 37)

= 31O mr) (FAULEN = F(A)+ Y[~ mu) (F(A\{k}) — F(A))]

keAc (eA keA (eAc
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and therefore

(7.38)
HF(A5) =Y O m)Qaopen () — 1a0G)) + DO mue) Leargen () — 1a())
keAc (ecA keA (eAc
= " my(1 = F(A,5)) = Y mjF(A,j).
leA leAc

By duality we have

(7.39) Ej(L(Xt)) = Egy(14,(5))-

Remark 7.13 If {my;} is irreducible, then the Markov chain A; has two traps ()
and Ex. It is easy to verify that A, is absorbed at a trap with probability one. This
together with (7.39) implies (the elementary result) that P;(x(t) = () converges
as t — oo to a stationary measure w, with

(740) Ty = P{g}(.At — EK), (e Eyi
and that limy_, P;(X(t) = ¢) is independent of j.

7.5 Dual representation of the neutral Fleming-Viot pro-
cess

The method of dual representation plays an important role in the study of
Fleming-Viot processes and will be frequently used below. To introduce this
we first consider the special case of a neutral Fleming-Viot process with a nice
mutation process.

7.5.1 The General Neutral F.V. Process

Let E be a compact metric space, A be a linear operator defined on D(A) C C(F)
and assume that the closure of A generates a Feller semigroup, {S; : t > 0} on

C(E). A probability measure P, on C([0,00), M;(E)) is said to be a solution of
the neutral Fleming-Viot martingale problem MIP(4 ¢y with initial condition p if

]PDM(XO = /J) =1
and for each ¢ € C} (F) N D(A)
M) = (6.) — (6 X0) = [ (40, X.) ds

where M defines a martingale measure M°(ds, dz) with covariance

(MO(dz), MO(dy)), = 7 / Q(X.: di, dy)ds
Q(p; dx, dy) = 6,(dy)pu(dr) — p(dr)p(dy).
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Theorem 7.14 There exists a unique solution to the MIP4 g o) martingale prob-
lem.

Proof. This will be proved in the following section. m

7.5.2 Equivalent Formulation of the martingale problem

We now turn to an equivalent formulation of the Fleming-Viot process that will
be needed for the application of the dual representation in the next chapter.

Let F € D(G) ce C*(P(E))

) 6r0 = [ (A58 wtan) + 3 [ [ S de.a)

where Q(p, dz, dy) = p(dz)d,(dy) — p(dz)p(dy).
Now consider function F(p,(f,n)) = [... [ f(x1,...,z,)u"(dz) with f €
C(E™), n € N and

(7.42) p"(dx) = p(dzy) ... p(dxy,).
Then

(7.43) GF(u, (f,m) = (W', AP f) + 2 > (=" 8uh) = (. 1)

(7.44) (O 1) (W, yn—1) = fla1,...,zN)
On the right side of (7.44)

x =1y for k <iVjy, k#l/\j
(7.45) Tiv; = Tinj = Yinj
T = Yk—1 fOfk>iVj.

We will interpret this below as the coalescence of dual particles. The dual
particle system of coalescing Markov processes leads to the Kingman coalescent
-see Section 8.2.5 for details.

7.5.3 The dual process

The Fleming-Viot process has state space P(F). We assume that the mutation
process has semigroup S; with generator A and there exists a dense set Dy C C(F)
and St : DO — Do.

We can then consider the extension of the mutation process to E", n > 1
corresponding to n i.i.d. copies of the basic mutation process and with generator
A = > A; where A; denotes the action of A on the ith variable.
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Consider the algebra of functions, C(EY), of the form

(746) f=> fu.  f2€CE"),  fu=0aan

(7.47) n(f) = max{m : f,, # 0}.
Define F : C(EN) x P(E) by

(7.48) F Z fn Ty, T )dp®"”

A function f € C(E"Y) is said to be simple if f,, = 0 for all m < n(f). The set
of simple functions is denoted by Cgjm(EY).
Now consider the Fleming-Viot process with MP generator: for each f €

Dy(A)

(1.49) GF(.0 = [ (A S i+ 1 [ / Sy,

and note that for for each p € P(E) this coincides with

(7.50) KE(f.p) = FAfp) + 5 30 S F(O5uf.0) = F(f. )]

where

(751) Af => A"y,

where éjk : D — Dyt is defined by (7.44).
Then K is the generator of a cadlag process with values in Csim(EN) and law
{Qy : f € Caim(EM)} which evolves as follows:

e Y (t) jumps from C(E™) to C(E™!) at rate 3yn(n — 1)
e at the time of a jump, f is replaced by éjkf

e between jumps, Y'(¢) is deterministic on C'(E™) and evolves according to the
semigroup (S!') with generator A™.

Theorem 7.15 (a) Let ({ X (t) }i>0, { Py : 1t € P(E)}) be a solution to the Fleming-
Viot martingale problem and the process ({Y (t)}i>0,{Qs : [ € Csm(EN)}) be
defined as above. Then



