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7.5.3 The dual representation of the Fleming-Viot process

The Fleming-Viot process has state space P(E). We assume that the mutation
process has semigroup St with generator A and there exists an algebra of functions
D0(E) dense in C(E) and St : D0(E)→ D0(E).

We can then consider the extension of the mutation process to En, n ≥ 1
corresponding to n i.i.d. copies of the basic mutation process and with generator
A(n) =

∑n
i=1Ai where Ai denotes the action of A on the ith variable.

Let

(7.46) E2 := {(f, n) : f ∈ (D0(E))n∩, n ∈ N}.

Define F : P(E)× E2 → R by

(7.47) F (µ, (f, n)) =

∫
En
fn(x1, . . . , xn)µ(dx1) . . . µ(dxn.

Now consider the Fleming-Viot process with generator:

(7.48)

GF (µ, (f, n)) =

∫
E

(
A
∂F (µ, (f, n))

∂µ(x)

)
µ(dx)+

γ

2

∫
E

∫
E

∂2F (µ, (f, n))

∂µ(x)∂µ(y)
Q(µ; dx, dy)

and note that for for each µ ∈ P(E) this coincides with

(7.49) HF (µ, (f, n)) = F (µ, (A(n)f, n))+
γ

2

n∑
j=1

∑
k 6=j

[F (µ, (Θ̃jkf, n)−F (µ, (f, n)))]

where Θ̃jk : (D0(E))n → (D0(E))n−1 is defined by (7.44).
Then H is the generator of a càdlàg process with values in E2 and law {Qf :

f ∈ E2} which evolves as follows:

• Y (t) jumps from (D0(E)n, n) to (D0(E)n−1, n− 1) at rate 1
2
γn(n− 1)

• at the time of a jump, f is replaced by Θ̃jkf

• between jumps, Y (t) is deterministic on D0(E)n and evolves according to
the semigroup (Snt ) with generator A(n).

Theorem 7.15 (a) Let ({X(t)}t≥0, {Pµ : µ ∈ P(E)}) be a solution to the Fleming-
Viot martingale problem and the process ({Y (t)}t≥0, {Q(f,n) : (f, n) ∈ E2} be
defined as above. Then

(a) these processes are dual, that is,

(7.50) Pµ(F (X(t), (f, n))) = Qf (F (µ, Y (t))), (f, n) ∈ E2.

(b) The martingale problem is well-posed and the Fleming-Viot process is a
strong Markov process.
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Proof. In this case for (f, n) ∈ E2 µ ∈ P(E),

(7.51) GF (µ, (f, n)) = HF (µ, (f, n))

and the uniqueness follows from Theorem (7.9). (b) follows by the Stroock-
Varadhan Theorem.

7.5.4 The Kingman coalescent

Consider the special case with no mutation, that is, A ≡ 0. Then we can represent
the dual process Y (t) with Y (0) = (f, n) as follows.

(7.52) Y (t) = (ft, nt)

where nt ≤ n and there is a map

(7.53) πt : {1, . . . , n} → {1, . . . , nt}

and ft ∈ C(Ent) given by

(7.54) ft(y1, . . . , ynt) = f(x1, . . . , xn) with xi = yπt(i), i = 1, . . . , n.

In other words πt is a process with values in the set of partitions of {1, . . . , n}

and nt is a pure death process with deaths rate γ

(
k
2

)
where nt = k. This

partition-valued process is the Kingman coalescent [392] and plays an important
role in population genetics.
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10.4 Neutral Stepping Stone Models

10.4.1 The two type stepping stone model

The neutral two type stepping stone model on a countable abelian group S with
migration kernel p(·) is given by the system

dXt(x) =
∑
y∈S1

py−x(Xt(y)−Xt(x)dt

+
√

2Xt(x)(1−Xt(x))dWt(x)

x0(x) ∈ [0, 1], x ∈ S

This process can be embedded in the infinitely many types stepping stone
model which we now consider.

10.4.2 The infinitely many types stepping stone model

Consider a collection (finite or countable) of subpopulations (demes), indexed by
S. The subpopulation at ξ ∈ S at time t is described by a probability distribution
Xξ(t) over a space E = [0, 1] of possible types (alleles). In other words, Xξ(t) ∈
P(E), the set of probability measures on E so that the state space is

(10.13) (P([0, 1]))S.

Within each subpopulation there is mutation, selection and finite population
sampling. Mutation is assumed produce a new type chosen by sampling from a
fixed source distribution θ ∈ P(E). Selection is prescribed by a fitness function
V (x) in the haploid case or by V (x, y) = V (y, x) in the diploid case. Migration
from site ξ to site ξ′ is assumed to occur via a symmetric random walk with rates
qξ,ξ′ = p(ξ − ξ′). Finally Fleming-Viot continuous sampling is assumed to take
place within each subpopulation. It is a basic property of this model that for any
t > 0, Xξ(t) is a purely atomic random measure (with countably many atoms)
and therefore can be represented in the form

Xξ(t) =
∑
k∈I

mξ,k(t)δyk

where mξ,k(t) ≥ 0 denotes the proportion of the population in subpopulation ξ
of type yk ∈ E at time t. Note that in this model two individuals are related if
and only if they are of the same type.
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We denote the vector {µξ}ξ∈S by µ̄. The generator is then given by

(10.14)

GF (µ̄) = c ·
∑
ξ∈S

∫
[0,1]

∂F (µ̄)

∂µξ(u)
(θ(du)− µξ(du))

+
∑

qξ,ξ′

∫
[0,1]

∂F (µ̄)

∂µξ(u)
(µξ′(du)− µξ(du))

+
γ

2

∑∫
[0,1]

∫
[0,1]

∂2F (µ̄)

∂µξ(u)∂µξ(v)
Qµξ(du, dv)

X0,ξ = ν ∀ ξ, Qµ(du, dv) = µ(du)δu(dv)− µ(du)µ(dv).

The first term corresponds to mutation with source distribution θ, the second
to spatial migration and the last to continuous resampling. The resampling rate
coefficient γ is inversely proportional to the effective population size of a deme.

This existence and uniqueness of this system of interacting Fleming-Viot pro-
cesses was established by Vaillancourt [586] and Handa [306].

The questions which we wish to investigate are

• the distribution in a given subpopulation, that is what is the joint distribu-
tion of the {mξ,k}

• the spatial distribution of relatives

• how are these affected by the migration geometry.

10.4.3 The Dual Process Representation

Given n ∈ N consider the collection

(10.15)

Πn = {η̄ := (η, π)} : where

π is a partition of {1, . . . , n}, that is,

π : {1, . . . , n} → {1, . . . , |π|} with |π| ≤ n,

η : {1, . . . , |π|} → S.

Now consider the family of functions in C((P([0, 1]))S × Π) of the form

(10.16) Ff (µ̄, η̄) :=

∫
[0,1]

. . .

∫
[0,1]

f(uπ(1), . . . , uπ(n))µη1(du1) . . . µη|π|(du|π|)

with f ∈ C([0, 1]n).
We now consider a continuous time Markov chain, η̄t = (ηt, πt),
with state space Πn and jump rates:
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• the partition elements perform continuous time symmetric random walks on
S with rates qξ,ξ′ and in addition a partition element can jump to {∞} with
rate c (once a partition element reaches ∞ it remains there without change
of further coalescence).

• each pair of partition elements during the period they reside at an element
of S (but not {∞}) coalesce at rate γ to the partition element equal to the
union of the two partition elements.

Let H denote the generator of η̄. Then for a function of the form (10.16)

(10.17) HFf (µ̄, η̄) = GFf (µ̄, η̄).

We then obtain the dual relationship

(10.18) E(Ff (Xt, (η, π))) = E(Ff (X0, (ηt, πt)))

and this proves that the infinitely many types stepping stone martingale problem
is well-posed.

Remark 10.23 Given the dual we can construct a spatially structured coalescent
that describes the ancestral structure of a sample of a finite number of individuals
located at the same or different sites.

Note that this is essentially equivalent to the coalescent geographically struc-
tured populations introduced by developed by Notohara (1990) [488] and Takahata
(1991) [577].

Remark 10.24 Note that as γ →∞ the dual converges to the dual of the voter
model and we can regard the voter model as the limit as γ →∞ of the interacting
Fisher-Wright diffusions.

10.4.4 Spatial homogeneity and the local-fixation coexistence dichotomy

Theorem 10.25 (Dawson-Greven-Vaillancourt (1995) [142], Theorem 0.1)
Let S be a countable abelian group and consider the infinitely many types step-

ping stone model with now mutation (c = 0). Assume that the initial random field
is spatially stationary and ergodic and has mean measure

∫
(
∫
g(u)xξ(0))µ(dx) =∫

g(u)θ(du), θ ∈ P [0, 1].
(a) If qξ,ξ′ is a symmetric transient r.w. on S, then the stepping stone process

converges in distribution to a nontrivial invariant random measure νθ which has
single site mean measure θ. νθ is ergodic, in particular

(10.19) E(〈xξ, f〉 〈xζ , f〉)→ 〈µ, f〉2 as d(ξ, ζ)→∞, ∀ f ∈ L∞([0, 1]).

(b) In (a) the equilibrium state decomposes into countably many coexisting
infinite families.


