7.5.3 The dual representation of the Fleming-Viot process

The Fleming-Viot process has state space $\mathcal{P}(E)$. We assume that the mutation process has semigroup S_t with generator A and there exists an algebra of functions $D_0(E)$ dense in C(E) and $S_t: D_0(E) \to D_0(E)$.

We can then consider the extension of the mutation process to E^n , $n \ge 1$ corresponding to n i.i.d. copies of the basic mutation process and with generator $A^{(n)} = \sum_{i=1}^{n} A_i$ where A_i denotes the action of A on the ith variable.

$$(7.46) E_2 := \{ (f, n) : f \in (D_0(E))^n \cap, n \in \mathbb{N} \}.$$

Define $F: \mathcal{P}(E) \times E_2 \to \mathbb{R}$ by

$$(7.47) F(\mu, (f, n)) = \int_{E^n} f_n(x_1, \dots, x_n) \mu(dx_1) \dots \mu(dx_n).$$

Now consider the Fleming-Viot process with generator:

(7.48)

$$GF(\mu,(f,n)) = \int_{E} \left(A \frac{\partial F(\mu,(f,n))}{\partial \mu(x)} \right) \mu(dx) + \frac{\gamma}{2} \int_{E} \int_{E} \frac{\partial^{2} F(\mu,(f,n))}{\partial \mu(x) \partial \mu(y)} Q(\mu;dx,dy)$$

and note that for for each $\mu \in \mathcal{P}(E)$ this coincides with

$$(7.49) \ HF(\mu,(f,n)) = F(\mu,(A^{(n)}f,n)) + \frac{\gamma}{2} \sum_{j=1}^{n} \sum_{k \neq j} [F(\mu,(\widetilde{\Theta}_{jk}f,n) - F(\mu,(f,n)))]$$

where $\widetilde{\Theta}_{jk}: (D_0(E))^n \to (D_0(E))^{n-1}$ is defined by (7.44).

Then H is the generator of a càdlàg process with values in E_2 and law $\{Q_f : f \in E_2\}$ which evolves as follows:

- Y(t) jumps from $(D_0(E)^n, n)$ to $(D_0(E)^{n-1}, n-1)$ at rate $\frac{1}{2}\gamma n(n-1)$
- at the time of a jump, f is replaced by $\widetilde{\Theta}_{ik}f$
- between jumps, Y(t) is deterministic on $D_0(E)^n$ and evolves according to the semigroup (S_t^n) with generator $A^{(n)}$.

Theorem 7.15 (a) Let $(\{X(t)\}_{t\geq 0}, \{P_{\mu} : \mu \in \mathcal{P}(E)\})$ be a solution to the Fleming-Viot martingale problem and the process $(\{Y(t)\}_{t\geq 0}, \{Q_{(f,n)} : (f,n) \in E_2\})$ be defined as above. Then

(a) these processes are dual, that is,

$$(7.50) P_{\mu}(F(X(t), (f, n))) = Q_f(F(\mu, Y(t))), \quad (f, n) \in E_2.$$

(b) The martingale problem is well-posed and the Fleming-Viot process is a strong Markov process.

Proof. In this case for $(f, n) \in E_2 \ \mu \in \mathcal{P}(E)$,

(7.51)
$$GF(\mu, (f, n)) = HF(\mu, (f, n))$$

and the uniqueness follows from Theorem (7.9). (b) follows by the Stroock-Varadhan Theorem. \blacksquare

7.5.4 The Kingman coalescent

Consider the special case with no mutation, that is, $A \equiv 0$. Then we can represent the dual process Y(t) with Y(0) = (f, n) as follows.

$$(7.52) Y(t) = (f_t, n_t)$$

where $n_t \leq n$ and there is a map

$$(7.53) \ \pi_t : \{1, \dots, n\} \to \{1, \dots, n_t\}$$

and $f_t \in C(E^{n_t})$ given by

$$(7.54) f_t(y_1, \dots, y_{n_t}) = f(x_1, \dots, x_n) with x_i = y_{\pi_t(i)}, i = 1, \dots, n.$$

In other words π_t is a process with values in the set of partitions of $\{1, \ldots, n\}$ and n_t is a pure death process with deaths rate $\gamma \begin{pmatrix} k \\ 2 \end{pmatrix}$ where $n_t = k$. This partition-valued process is the *Kingman coalescent* [392] and plays an important role in population genetics.

10.4 Neutral Stepping Stone Models

10.4.1 The two type stepping stone model

The neutral two type stepping stone model on a countable abelian group S with migration kernel $p(\cdot)$ is given by the system

$$dX_{t}(x) = \sum_{y \in S_{1}} p_{y-x}(X_{t}(y) - X_{t}(x))dt + \sqrt{2X_{t}(x)(1 - X_{t}(x))}dW_{t}(x)$$

$$x_{0}(x) \in [0, 1], x \in S$$

This process can be embedded in the infinitely many types stepping stone model which we now consider.

10.4.2 The infinitely many types stepping stone model

Consider a collection (finite or countable) of subpopulations (demes), indexed by S. The subpopulation at $\xi \in S$ at time t is described by a probability distribution $X_{\xi}(t)$ over a space E = [0, 1] of possible types (alleles). In other words, $X_{\xi}(t) \in \mathcal{P}(E)$, the set of probability measures on E so that the state space is

$$(10.13) (\mathcal{P}([0,1]))^S$$
.

Within each subpopulation there is mutation, selection and finite population sampling. Mutation is assumed produce a new type chosen by sampling from a fixed source distribution $\theta \in \mathcal{P}(E)$. Selection is prescribed by a fitness function V(x) in the haploid case or by V(x,y) = V(y,x) in the diploid case. Migration from site ξ to site ξ' is assumed to occur via a symmetric random walk with rates $q_{\xi,\xi'} = p(\xi - \xi')$. Finally Fleming-Viot continuous sampling is assumed to take place within each subpopulation. It is a basic property of this model that for any t > 0, $X_{\xi}(t)$ is a purely atomic random measure (with countably many atoms) and therefore can be represented in the form

$$X_{\xi}(t) = \sum_{k \in I} m_{\xi,k}(t) \delta_{y_k}$$

where $m_{\xi,k}(t) \geq 0$ denotes the proportion of the population in subpopulation ξ of type $y_k \in E$ at time t. Note that in this model two individuals are related if and only if they are of the same type.

We denote the vector $\{\mu_{\xi}\}_{\xi\in S}$ by $\bar{\mu}$. The generator is then given by (10.14)

$$GF(\bar{\mu}) = c \cdot \sum_{\xi \in S} \int_{[0,1]} \frac{\partial F(\bar{\mu})}{\partial \mu_{\xi}(u)} (\theta(du) - \mu_{\xi}(du))$$

$$+ \sum_{\xi \in S} \int_{[0,1]} \frac{\partial F(\bar{\mu})}{\partial \mu_{\xi}(u)} (\mu_{\xi'}(du) - \mu_{\xi}(du))$$

$$+ \frac{\gamma}{2} \sum_{\xi \in S} \int_{[0,1]} \int_{[0,1]} \frac{\partial^{2} F(\bar{\mu})}{\partial \mu_{\xi}(u) \partial \mu_{\xi}(v)} Q_{\mu_{\xi}}(du, dv)$$

$$X_{0,\xi} = \nu \ \forall \ \xi, \quad Q_{\mu}(du, dv) = \mu(du)\delta_u(dv) - \mu(du)\mu(dv).$$

The first term corresponds to mutation with source distribution θ , the second to spatial migration and the last to continuous resampling. The resampling rate coefficient γ is inversely proportional to the effective population size of a deme.

This existence and uniqueness of this system of interacting Fleming-Viot processes was established by Vaillancourt [586] and Handa [306].

The questions which we wish to investigate are

- the distribution in a given subpopulation, that is what is the joint distribution of the $\{m_{\xi,k}\}$
- the spatial distribution of relatives
- how are these affected by the migration geometry.

10.4.3 The Dual Process Representation

Given $n \in \mathbb{N}$ consider the collection

$$\Pi_n = \{\bar{\eta} := (\eta, \pi)\} : \text{ where}$$

$$\pi \text{ is a partition of } \{1, \dots, n\}, \text{ that is,}$$

$$\pi : \{1, \dots, n\} \to \{1, \dots, |\pi|\} \text{ with } |\pi| \le n,$$

$$\eta : \{1, \dots, |\pi|\} \to S.$$

Now consider the family of functions in $C((\mathcal{P}([0,1]))^S \times \Pi)$ of the form

$$(10.16) \ F_f(\bar{\mu}, \bar{\eta}) := \int_{[0,1]} \dots \int_{[0,1]} f(u_{\pi(1)}, \dots, u_{\pi(n)}) \mu_{\eta_1}(du_1) \dots \mu_{\eta_{|\pi|}}(du_{|\pi|})$$

with $f \in C([0, 1]^n)$.

We now consider a continuous time Markov chain, $\bar{\eta}_t = (\eta_t, \pi_t)$, with state space Π_n and jump rates:

- the partition elements perform continuous time symmetric random walks on S with rates $q_{\xi,\xi'}$ and in addition a partition element can jump to $\{\infty\}$ with rate c (once a partition element reaches ∞ it remains there without change of further coalescence).
- each pair of partition elements during the period they reside at an element of S (but not $\{\infty\}$) coalesce at rate γ to the partition element equal to the union of the two partition elements.

Let H denote the generator of $\bar{\eta}$. Then for a function of the form (10.16)

(10.17)
$$HF_f(\bar{\mu}, \bar{\eta}) = GF_f(\bar{\mu}, \bar{\eta}).$$

We then obtain the dual relationship

(10.18)
$$E(F_f(X_t, (\eta, \pi))) = E(F_f(X_0, (\eta_t, \pi_t)))$$

and this proves that the infinitely many types stepping stone martingale problem is well-posed.

Remark 10.23 Given the dual we can construct a spatially structured coalescent that describes the ancestral structure of a sample of a finite number of individuals located at the same or different sites.

Note that this is essentially equivalent to the coalescent geographically structured populations introduced by developed by Notohara (1990) [488] and Takahata (1991) [577].

Remark 10.24 Note that as $\gamma \to \infty$ the dual converges to the dual of the voter model and we can regard the voter model as the limit as $\gamma \to \infty$ of the interacting Fisher-Wright diffusions.

10.4.4 Spatial homogeneity and the local-fixation coexistence dichotomy

Theorem 10.25 (Dawson-Greven-Vaillancourt (1995) [142], Theorem 0.1)

Let S be a countable abelian group and consider the infinitely many types stepping stone model with now mutation (c = 0). Assume that the initial random field is spatially stationary and ergodic and has mean measure $\int (\int g(u)x_{\xi}(0))\mu(dx) = \int g(u)\theta(du)$, $\theta \in \mathcal{P}[0,1]$.

(a) If $q_{\xi,\xi'}$ is a symmetric transient r.w. on S, then the stepping stone process converges in distribution to a nontrivial invariant random measure ν_{θ} which has single site mean measure θ . ν_{θ} is ergodic, in particular

(10.19)
$$E(\langle x_{\xi}, f \rangle \langle x_{\zeta}, f \rangle) \to \langle \mu, f \rangle^2 \text{ as } d(\xi, \zeta) \to \infty, \quad \forall f \in L_{\infty}([0, 1]).$$

(b) In (a) the equilibrium state decomposes into countably many coexisting infinite families.