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10.4 Neutral Stepping Stone Models

10.4.1 The two type stepping stone model

The neutral two type stepping stone model on a countable abelian group S with
migration kernel p(·) is given by the system

dXt(x) =
∑
y∈S1

py−x(Xt(y)−Xt(x)dt

+
√

2Xt(x)(1−Xt(x))dWt(x)

x0(x) ∈ [0, 1], x ∈ S

This process can be embedded in the infinitely many types stepping stone
model which we now consider.

10.4.2 The infinitely many types stepping stone model

Consider a collection (finite or countable) of subpopulations (demes), indexed by
S. The subpopulation at ξ ∈ S at time t is described by a probability distribution
Xξ(t) over a space E = [0, 1] of possible types (alleles). In other words, Xξ(t) ∈
P(E), the set of probability measures on E so that the state space is

(10.13) (P([0, 1]))S.

Within each subpopulation there is mutation, selection and finite population
sampling. Mutation is assumed produce a new type chosen by sampling from a
fixed source distribution θ ∈ P(E). Selection is prescribed by a fitness function
V (x) in the haploid case or by V (x, y) = V (y, x) in the diploid case. Migration
from site ξ to site ξ′ is assumed to occur via a symmetric random walk with rates
qξ,ξ′ = p(ξ − ξ′). Finally Fleming-Viot continuous sampling is assumed to take
place within each subpopulation. It is a basic property of this model that for any
t > 0, Xξ(t) is a purely atomic random measure (with countably many atoms)
and therefore can be represented in the form

Xξ(t) =
∑
k∈I

mξ,k(t)δyk

where mξ,k(t) ≥ 0 denotes the proportion of the population in subpopulation ξ
of type yk ∈ E at time t. Note that in this model two individuals are related if
and only if they are of the same type.
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We denote the vector {µξ}ξ∈S by µ̄. The generator is then given by

(10.14)

GF (µ̄) = c ·
∑
ξ∈S

∫
[0,1]

∂F (µ̄)

∂µξ(u)
(θ(du)− µξ(du))

+
∑

qξ,ξ′

∫
[0,1]

∂F (µ̄)

∂µξ(u)
(µξ′(du)− µξ(du))

+
γ

2

∑∫
[0,1]

∫
[0,1]

∂2F (µ̄)

∂µξ(u)∂µξ(v)
Qµξ(du, dv)

X0,ξ = ν ∀ ξ, Qµ(du, dv) = µ(du)δu(dv)− µ(du)µ(dv).

The first term corresponds to mutation with source distribution θ, the second
to spatial migration and the last to continuous resampling. The resampling rate
coefficient γ is inversely proportional to the effective population size of a deme.

This existence and uniqueness of this system of interacting Fleming-Viot pro-
cesses was established by Vaillancourt [586] and Handa [306].

The questions which we wish to investigate are

• the distribution in a given subpopulation, that is what is the joint distribu-
tion of the {mξ,k}

• the spatial distribution of relatives

• how are these affected by the migration geometry.

10.4.3 The Dual Process Representation

Given n ∈ N consider the collection

(10.15)

Πn = {η̄ := (η, π)} : where

π is a partition of {1, . . . , n}, that is,

π : {1, . . . , n} → {1, . . . , |π|} with |π| ≤ n,

η : {1, . . . , |π|} → S.

Now consider the family of functions in C((P([0, 1]))S × Π) of the form

(10.16) Ff (µ̄, η̄) :=

∫
[0,1]

. . .

∫
[0,1]

f(uπ(1), . . . , uπ(n))µη1(du1) . . . µη|π|(du|π|)

with f ∈ C([0, 1]n).
We now consider a continuous time Markov chain, η̄t = (ηt, πt),
with state space Πn and jump rates:
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• the partition elements perform continuous time symmetric random walks on
S with rates qξ,ξ′ and in addition a partition element can jump to {∞} with
rate c (once a partition element reaches ∞ it remains there without change
of further coalescence).

• each pair of partition elements during the period they reside at an element
of S (but not {∞}) coalesce at rate γ to the partition element equal to the
union of the two partition elements.

Let H denote the generator of η̄. Then for a function of the form (10.16)

(10.17) HFf (µ̄, η̄) = GFf (µ̄, η̄).

We then obtain the dual relationship

(10.18) E(Ff (Xt, (η, π))) = E(Ff (X0, (ηt, πt)))

and this proves that the infinitely many types stepping stone martingale problem
is well-posed.

Remark 10.23 Given the dual we can construct a spatially structured coalescent
that describes the ancestral structure of a sample of a finite number of individuals
located at the same or different sites.

Note that this is essentially equivalent to the coalescent geographically struc-
tured populations introduced by developed by Notohara (1990) [488] and Takahata
(1991) [577].

Remark 10.24 Note that as γ →∞ the dual converges to the dual of the voter
model and we can regard the voter model as the limit as γ →∞ of the interacting
Fisher-Wright diffusions.

10.4.4 Spatial homogeneity and the local-fixation coexistence dichotomy

In this subsection we consider the neutral stepping stone model without mutation.

Theorem 10.25 (Dawson-Greven-Vaillancourt (1995) [142], Theorem 0.1)
Let S be a countable abelian group and consider the infinitely many types step-

ping stone model with no mutation (c = 0). Assume that the initial random
field {Xξ(0)}ξ∈S is spatially stationary, ergodic, weakly mixing and has single site
mean measure satisfying

(10.19) E(

∫
g(u)Xξ(0, du)) =

∫
g(u)θ(du), θ ∈ P [0, 1].

(a) If qξ,ξ′ is a symmetric transient random walk on S, then the stepping stone
process {Xξ(t)}ξ∈S converges in distribution to a nontrivial invariant P([0, 1])-
valued random field {Xξ(∞)}ξ∈S which also has single site mean measure θ.
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{Xξ(∞)}ξ∈S is spatially homogeneous (that is, the law is invariant under trans-
lations on S), ergodic and weakly mixing, in particular

(10.20) E(〈xξ, f〉 〈xζ , f〉)→ 〈µ, f〉2 as d(ξ, ζ)→∞, ∀ f ∈ L∞([0, 1]).

(b) In (a) the equilibrium state decomposes into countably many coexisting
infinite families, namely,

(10.21) Xξ(∞) =
∞∑
k=1

aξ,kδyk

with
∑

x iaξ,k =∞ for each k.
(c) If pξ is recurrent, then the set of invariant measures is a convex set with

extremal invariant measures are δa, a ∈ [0, 1], that is, there is local fixation, and

(10.22) L({Xξ(∞)}ξ∈S =

∫
(δy)

S)θ(dy).

Proof. We sketch the main steps of the proof.
The proof uses the dual representation (10.18), (??). Note that |πt| is mono-

tone decreasing so that we can define

(10.23) π∞ = lim
t→∞

πt, π∞ = {π∞(1), . . . , π∞(n)}.

Then we note that η̂ is prescribed by a coalescing random walk with delay. We let
Z(t) be a random walk on S with transition kernel {qξ,ξ′}. Since we have assumed
that the random walk is symmetric, then the difference process Z1(t) − Z2(t),
where Z1, Z2 are independent copies of the random walk, is a random walk with
jump rates 2qξ,ξ′ . We can assume that the system of coalescing random walks
with delay is constructed on a probability space on which the sequence {Zi(t)}i∈N
of independent random walks and an independent collection of exponentially
distributed random variables are defined.

Lemma 10.26 If the q-random walk is recurrent, then
(a)

(10.24) L(η̂t)− L((Z(t); {1, . . . , n}))⇒ 0 as t→∞
.

Given two initial sites 0 and ξ 6= 0 and (η, ({1}, {2})), η1 = 0, η2 = ξ,

(10.25) P (πt = {1, 2}) ≤ const ·
∫ t

0

P (Z(s) = 0)ds ≤ const

|ξ|d−2

where Z(s) is a random walk starting at ξ and with jump rate 2.
(b) If the q-random walk is transient, then

(10.26) L(ηt| |π∞| = k)− L(Z1(t), . . . , Zk(t))⇒ 0 as t→∞
and P (|π∞| = 1) < 1 provided that |π0| 6= 1.
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Proof. If the random walk is recurrent, then Z1(t)−Z2(t) visits 0 infinitely often
and therefore they must coalesce with probability one.

If the random walk is transient, then there exists a random time σ < ∞
a.s. such that σ is the last coalescence time in the system η̂t. Denote by
ξ1(t), . . . , ξ|π∞|(t) the position of the partition elements at time σ+ t. The system
ηu for times u = s+t+σ behaves like a system of |π∞| random walks in s starting
at ξ1(t) . . . ξ|π∞|(t) and conditioned on never meeting. Since for every pair i 6= j
ξi(t)−ξj(t)→∞ as t→∞, the event that ξi and ξj never meet after time t tends
to one as t→∞. It remains to show that the distance between the distributions
of the system of |π∞| independent random walks starting at (ξ1(t) . . . ξ|π∞|(t)) and
starting at (0, . . . , 0) tends to 0 as s → ∞. This is verified using a coupling by
randomized stopping times due to Greven (1987) [279] and a result of Choquet
and Deny on transient random walks (see Spitzer [569], Ch 6. T1) - see ([142] for
details).

We also note the following elementary result on random probability measures.

Lemma 10.27 Let X1, X2 be a random probability measures on [0, 1], having the
same mean measures E(Xi) = θ ∈ P([0, 1]), that is, a measurable map from a
probability space (Ω,F , P ) to P([0, 1]). Then (a)

(10.27) E[

(∫
g(y)Xi(dy)

)2

] = E[

∫
g2(y)X(dy)] ∀g ∈ C([0, 1]),

then

(10.28) Xi(ω) = δy(ω) for a.e. ω ∈ Ω and ω → y is measurable.

(b) If in addition,

(10.29) E[

(∫
g(y)X1(dy)

∫
g(y)X2(dy)

)
] = E[

∫
g2(y)X1(dy)] ∀g ∈ C([0, 1]),

then

(10.30) X1(ω) = X2(ω) = δy(ω) for a.e. ω ∈ Ω.

We return to the proof of the theorem.

(a) Recurrent Case.
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Step 1. Let m = 2 and take f(u1, u2) = g(u1)g(u2), η = (ξ, ξ). Then by the
dual representation and Lemma 10.26

(10.31)

E

(∫ 1

0

g(u)Xξ(t, du)

)2

= E

(∫
g2(u)Xη1

t
(0, du)1(πt = {1, 2})

+

∫
g(u)Xη1(t, du) ·

∫
g(u)Xη2(t, du)1(πt = {{1}, {2}}

)
= E

(∫
g2(u)Xη1

t
(0, du)

)
+ o(t)

Therefore in the limit by Lemma 10.27(a) we have

(10.32) Xξ(∞, du) = δy, a.s.

Since L(Xξ(t)) ∈ P(P([0, 1]), the set {L(Xξ(t))}t≥0 is weakly relatively com-
pact. By (10.38) a weak limit point must be concentrated on

(10.33) M = {δu : u ∈ [0, 1]}

that is, L(Xξ(∞)) =
∫ 1

0
δδuHξ(du) with Hξ ∈ P([0, 1]). But we have

(10.34) E〈Xξ(t), f〉 = 〈θ, f〉

so that for a limit point L({Xξ(∞)}ξ∈S)

(10.35) E〈Xξ(∞), f〉 = 〈θ, f〉 ∀ f ∈ C([0, 1]).

Therefore Hξ = θ

(10.36) L(Xξ(∞)) =

∫ 1

0

δδuθ(du).

Step 2. In order to show consensus of the components occurs for t→∞ take
m = 2, f(u1, u2) = g(u1)g(u2) but use η = (ξ1, ξ2) with ξ1 6= ξ2. Then again
using Lemma 10.26

(10.37)

E

(∫ 1

0

g(u)Xξ1(t, du)

∫ 1

0

g(u)Xξ2(t, du)

)
= E

(∫
g2(u)Xη1

t
(0, du)1(πt = {1, 2})

+

∫
g(u)Xη1

t
(0, du) ·

∫
g(u)Xη2

t
(0, du)1(πt = {{1}, {2}})

)
= E

(∫
g2(u)Xη1

t
(0, du)

)
+ o(t)
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The result then follows from Lemma 10.27(b), that is

(10.38) (Xξ1(∞), Xξ2(∞)) = (δy, δy) for some random y, a.s.

where

(10.39) P (y ∈ (a, b)) = θ((a, b)).

Step 3. We can obtain the analogue of (10.38) foe any finite ξ1, . . . , ξk. There-
fore we obtain

(10.40) L((xξ(t))ξ∈S)⇒
∫
δ(δu)Sθ(du)

and the proof of (a) is complete.
(b) Transient case. To prove convergence of L(t) as t→∞ we first recall that

(10.41) πt → π∞, (cf.(10.23)).

Let n ∈ N and f(x1, . . . , xn) =
∏n

i=1 fi(xi). Then by the dual representation

EX(0)(F (X(t), (η, π))) = E(η,π)(F (X(0), (ηt, πt)))

=
n∑

m=1

E(η,π)

〈Xη1
t
(0),

∏
i∈πt(1)

fi〉, . . . 〈Xηmt
(0),

∏
i∈πt(m)

fi〉1(|πt| = m)


→ E(η,π)

〈θ, ∏
i∈π∞(1)

fi〉, . . . 〈θ,
∏

i∈π∞(|π∞|)

fi〉)


where we have used the fact that |Zi(t) − Zj(t)| → ∞ in probability as t → ∞
and the weak mixing property of the initial random field so that for i 6= j

lim
t→∞

E(

∫
f1(x)XZi(t)(0, dx)

∫
f2(y)XZj(t)(0, dy))

= lim
t→∞

E(

∫
f1(x)XZi(t)(0, dx))E(

∫
f2(y)XZj(t)(0, dy))

=

∫
f1(x)θ(dx)

∫
f2(y)θ(dy).

This implies the convergence of the laws Lt.
The proof of the weak mixing property is obtained by noting that if |η1−η2| →

∞, then

(10.42) P (π∞ = ({1}, {2}))→ 1 as t→∞.

The proof that the limiting law L∞ s an invariant measure for the dynamics
is standard.
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Remark 10.28 (Population structure in 2 dimensions)
The phenomenon of diffusive clustering in dimension d = 2 was discovered by

Cox and Griffeath (1986) [98].
More recently, coalescing random walks used to study the coalescence time and

identity by descent between 2 randomly chosen individuals on a 2-d torus ( Cox
and Durrett (2002) [93], Cox, Durrett, Zähle (2005) [94])

Homozygosity in large time scales

Given a probability measure µ on [0, 1] the homozygosity is defined by

(10.43)

∫ 1

0

∫ 1

0

1x=yµ(dx)µ(dy) =
∞∑
i=1

a2
i

where {ai} are the masses of the atoms (if any) in µ, that is µ =
∑
aiδyi + µdiff

and µdiff is the non-atomic component of the measure.
It follows from Theorem 10.25 that in the recurrent case for any L ∈ N

(10.44) lim
t→∞

E

 1

N(L)

∑
|j|≤L

< Xξ(t)⊗X0(t), I∆ >

 = 1.

where I∆ = {(x, y) : x = y} and N(L) denotes the number of sites in a ball of
radius L and for the transient case

(10.45) lim
t→∞

E [< X0(t)⊗X0(t), I∆ >] < 1

Theorem 10.29 Consider the stepping stone model on Zd and random walk ker-
nel given by a nearest neighbour random walk. Let d ≥ 3 and X0 = ν, with ν
nonatomic. Then
(a)

(10.46) lim
L→∞

1

Ld

∑
|j|≤L

< Xξ(∞)⊗X0(∞), I∆ >= 0,

(b) Each allelic type present at equilibrium has infinite total mass in Zd but has
zero spatial density.
In addition, if X(0) is given the stationary measure, then
(c)

(10.47)

∫ ∞
0

< X0(t)⊗X0(0), I∆ > dt <∞

if and only if d ≥ 5.
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Proof. (a) We briefly sketch the argument. We note that if π = ({1}, {2}), η1 =
0, η2 = ξ then

(10.48) lim
t→∞

E[< Xξ(t)⊗X0(t), I∆ >] ≤ P(η,π)(πt = {1, 2})

since if coalescence does not occur, the expected homozygosity is 0. But the
probability that two random walks Z0 and Zξ starting at 0 and ξ coalesce by
time t satisfies

lim
t→∞

P (coalesce by time t)(10.49)

= lim
t→∞

E(1− e−γ
∫ t
0 (1(Z0(s)=Zξ(s)))ds)

lim
t→∞
≤ (1− e−γ

∫ t
0 P (1(Z0(s)=Zξ(s)))ds) ∼ 1

|ξ|d−2
.

The result follows by summing and dividing by Ld.
(c) is the analogue of (10.12).

Family decomposition and renormalization of the fluctuation field

The decomposition of the infinitely many types stepping stone model and the
related voter model provides a tool for the study of the renormalized fluctuation
field. (Recall that the difference between the stepping stone model and the voter
model is that coalescence of the random walks occurs with delay for the stepping
stone model but is instantaneous for the voter model. Otherwise the structure
of the infinite clusters is similar.) The following special case of a theorem of I.
Zähle illustrates this.

Theorem 10.30 [623] Consider the equilibrium voter model {Xξ(t)}ξ∈Zd ∈ {0, 1}Z
d

with nearest neighbour simple random walk kernel. For a bounded function φ with
bounded support let

(10.50) Zr(φ) :=

∑
ξ∈Zd [Xξ(∞)− E(Xξ(∞))]φ( ξ

r
)

r
d+2

2

If d ≥ 3, then as r → ∞, Zr converges weakly to the Gaussian free field on Rd,
that is, the Gaussian field on Rd with covariance kernel 1

r
d−2

2
.

Remark 10.31 Recall that the dual of the voter model and the dual for the 2
type Wright-Fisher diffusion differ only in that for the voter model the coalescence
is instantaneous and for the Wright-Fisher model coalescence occurs with delay.
Using this observation the basic strategy of the proof of this theorem which involves
the “infinite colour” decomposition can be applied to the case of the Wright-Fisher
diffusion.



Chapter 10

Spatial systems in large space
and time scales

In this chapter we consider critical spatial branching systems and interacting
neutral Fleming-Viot processes in large space and time scales. The behaviour
of these systems is determined by potential theoretic properties of the migration
process such as transience or recurrence. We begin with a brief review of some
basic notions.

10.1 Migration processes on Abelian groups

In this section we give a brief review of the basic notions of random walks and
Lévy processes on groups on abelian groups following [149].

Let S be a locally compact (additive) Abelian group with countable base and
with Haar measure ρ. A discrete time random walk, {Wn}n∈Z+ , is prescribed by
a transition function

P (x, dy) := P (Wn+1 ∈ dy|Wn = x) = p(d(y − x))

where p is a probability measure on S. The corresponding k-step transition func-
tion is

P k(x, dy) := P (Wn+k ∈ dy|Wn = x).

A continuous time random walk {Wt : t ≥ 0} with jump rate 1 is then defined
by the transition function

Pt(x, dy) := Px(Wt ∈ dy), t ≥ 0,

Pt(x, dy) =
∞∑
k=0

e−ttk

k!
P k(x, dy).

A natural generalization of continuous time random walks is the notion of
Lévy process.

211
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Definition 10.1 A S-valued process {Xt : t ≥ 0} is a Lévy process if it is stochas-
tically continuous and has stationary and independent increments.

We associate to a Lévy process a semigroup {Tt : t ≥ 0} on Bc(S), the space
of bounded measurable functions on S with compact support, as follows:

Ttϕ(x) = Ex(ϕ(Xt)),

The Green potential of X is the operator

Gϕ =

∫ ∞
0

Ttϕdt, ϕ ∈ Bc(S).

The fractional operator powers of G are given by

Gζϕ =
1

Γ(ζ)

∫ ∞
0

tζ−1Ttϕdt, ζ > 0 ϕ ∈ Bc(S).

10.1.1 Transience-Recurrence Properties

In order to review the definitions of transience and recurrence, (following [150])
we consider the last exit time, LA, of X from a non-empty set A defined by

LA := sup{t > 0 : Xt ∈ A} (if {t > 0 : Xt ∈ A} 6= ∅)

Definition 10.2 The Lévy process Xt on S is transient if for any compact set K

P (LK <∞) = 1.

and recurrent if it is not transient.

The following result in the spirit of Sato and Watanabe [530], [529] is the basis
for a finer classification of the transience properties of random walks in terms of
the moments of last exit times.

Proposition 10.3 Assume that Xt is transient, for any compact set K ⊂ S

sup
x∈K

G1K(x) <∞

and for any compact set C contained in the interior of K

inf
x∈C

G1K(x) > 0.

Then there exist positive constants c1 and c2 such that for all ζ > 0 and x ∈ S

c1G
ζ+11C(x) ≤ ExL

ζ
C ≤ c2G

ζ+11K(x).

Proof. See [150], Proposition 2.2.1.
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Definition 10.4 The degree of transience, γ, of a transient Lévy process X is
defined by

γ := sup{ζ > 0 : E0L
ζ
K <∞ for all compact K},

or equivalently

γ := sup{ζ > 0 : Gζ+1ϕ <∞ for ϕ ∈ C+
c (S)}

where C+
c (S) denotes the space of nonnegative continuous functions on S with

compact support.

Remark 10.5 Sato and Watanabe introduced the set

(10.1) T := {ζ > 0 : E0L
ζ
K <∞ for all compact K}.

In [150] we consider the extended set

T := {ζ > −1 :

∫ ∞
1

tζTtϕdt <∞ for all ϕ ∈ C+
c (S)},

and we call

γ := sup{ζ > −1 : ζ ∈ T }

the degree of the process. This coincides with the degree of transience if γ > 0,
and if −1 < γ < 0, we call γ the degree of recurrence of the process.

Given k ∈ Z+, the process is said to be (cf. [148])

k − strongly transient if k ∈ T , and

k − weakly-transient if k − 1 ∈ T and k /∈ T .

Remark 10.6 The degree of transience can be viewed as a generalization of the
notion of “critical dimension”. Note that Gζ+1ϕ at ζ = γ can be either finite or
infinite - we will give examples of both possibilities below.

10.1.2 Random walks and Lévy processes in Rd.

In this section we briefly review the classical results on random walks and Lévy
processes in Zd and Rd.

First recall that symmetric nearest neighbour random walks in Zd are recurrent
in dimensions d = 1, 2 and transient in dimensions d ≥ 3. Moreover, since the
rate of decay of the transition probabilities for simple symmetric d-dimensional
random walk is pt(0, 0) ∼ const.t−d/2, its degree is γ = d/2− 1.

We next recall the classical characterization of Lévy processes in Rd.
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Theorem 10.7 (Lévy-Khintchine representation) A Lévy process in Rd has the
characteristic function (i.e. Fourier transform)

E[ei(z,Xt)]

= exp

[
t

(
−1

2
(z, Az) +

∫
Rd

(ei(z,x) − 1− i(z, x)1{|x|≤1}(x))ν(dx) + i(m, z)

)]
where A is a symmetric nonnegative definite d × d matrix, ν is a measure on
Rd\{0} satisfying ν({0}) = 0 and

∫
Rd(|x|

2 ∧ 1)ν(dx) <∞, and m ∈ Rd.

For the proof see [528].
The case A = Id, ν = 0, m = 0 is the standard Brownian motion and the

case A = 0, m = 0 and ν(dx) = |x|−α−ddx, is the symmetric α-stable process.

Proposition 10.8 For the α-stable process on Rd the degree is

(10.2) γ =
d

α
− 1

and in this case∫ t

0

sγTsϕds ∼ const · log t→∞

as t→∞.

The distribution of jumps of the α-stable process has “long tails”.

10.2 The Persistence-Extinction Dichotomy for Critical
Branching Systems

Consider the super-Brownian motion in Rd with initial measure X0 = mλ, m > 0
where λ is Lebesgue measure If sup |φ(x)| · (1 + |x|2)

p
2 < ∞, then the solution,

vt(x) = V [φ](t, x), to

(10.3)
∂vt
∂t

= Avt −
γ

2
v2
t ,

with A = ∆
2

is integrable and integrating both sides with respect to Lebesgue
measure gives∫

vt(x)dx =
γ

2

∫ t

0

∫
v2
s(x)dxds.

Therefore the large time limit of the Laplace functional
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lim
t→∞

Pmλ (exp(−Xt(φ))) = lim
t→∞

exp

(
−m

∫
vt(x)dx

)
= lim

t→∞
exp

(
−mγ

2

∫ t

0

∫
v2
s(x)dxds

)
exists for every φ ∈ B+ since the right side is monotone in t. Therefore Xt

converges in distribution as t→∞ to a random measure on Rd with probability
law which we denote by Peqm . Replacing φ by θφ, θ > 0, and evaluating the first
and second derivatives with respect to θ at θ = 0, we can verify that the first and
second moments are given by

Pmλ(Xt(φ)) = m

∫
φ(x)dx

and

Pmλ
(
Xt(φ)2

)
= m2

(∫
φ(x)dx

)2

+ γm

∫ t

0

∫ (∫
ps(y − z)φ(z)dz

)2

dyds

= m2

(∫
φ(x)dx

)2

+ γm

∫ t

0

(∫
p2s(z1 − z2)φ(z1)φ(z2)dz1dz2

)
ds.

Recalling that for the Brownian motion transition kernel
∫∞

0
ps(z)ds diverges if

d = 1, 2 and is given by 2cd
|z|d−2 if d ≥ 3, we obtain

Pmλ
(
Xt(φ)2

)
↑ ∞ if d = 1, 2

↑ m2

(∫
φ(x)dx

)2

+ γmcd

∫ ∫
φ(z1)φ(z2)

|z1 − z2|d−2
dz1dz2 if d ≥ 3.

If d ≥ 3, the above imply that {Xt(φ)}t≥0 are uniformly integrable and
Pmλ(X∞(φ)) = mλ(φ), that is, the limiting equilibrium random measure Peqm
has the same intensity, m, as the initial intensity - this behaviour is called per-
sistence. Bramson, Cox and Greven (1997) [57] proved that {Peqm : m ∈ [0,∞)}
is in fact the set of all extremal invariant measures.

Theorem 10.9 [115] Let X∞ denote the equilibrium random measure for super-
Brownian motion in Rd with mean measure E(X∞(A)) = λ(A). Let

(10.4) 〈XK
∞, φ〉 =

∫
φ(
x

K
)X∞(dx),

and

(10.5) V (φ) := γ

(∫ ∫
|z1 − z2|d−2φ(z1)φ(z2)dz1dz2

)
.
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Then the rescaled fluctuations

(10.6)
〈XK
∞, φ〉 − 〈λ, φ〉
K

d+2
2 V (φ)

⇒ Z∞

where Z∞ is the Gaussian free field, that is, the Gaussian random field with
covariance kernel

(10.7)
1

|x− y|d−2
.

The divergence of the second moment in the low dimensional case suggests
that the behaviour is qualitatively different in these dimensions. It was proved in
Dawson (1977) [115] that in this case the spatially homogeneous super Brownian
motion with X0 = mλ suffers local extinction, that is, Xt(A)→ 0 in probability

as t→∞ for any bounded set A. Iscoe (1986b) [331] has shown that Xt(A)
a.s.−→ 0

for any bounded set if d = 1 and that this result is false if d = 2. In dimensions
d = 1, 2 Bramson, Cox and Greven ( [56]) have established that δ0 is the only
measure which is invariant for the process Xt and that for any locally finite initial
measure the system undergoes local extinction or explodes thus ruling out the
possibility of an invariant measure with infinite mean.

10.2.1 Clumping in Low Dimensions

In order to describe the low dimensional behavior of Xt with X0 = λ (Lebesgue)
in more detail we introduce the space-time-mass rescaling

XK,ξ
t (A) := K−ξXKt(K

ξ
dA)

XK,ξ
0 (A) = |A|.

Then

Pλ(exp(−XK,ξ
t (φ))) = exp(−λ(VKtφK)) with

φK(x) := K−ξφ(K−
ξ
dx).

Note that

ṽ(t, x) := KξVKtφK(K
ξ
dx)

satisfies

∂ṽ(t, x)

∂t
= K1− 2ξ

d ∆ṽ(t, x)− γ

2
K1−ξṽ(t, x)2

ṽ(0, x) = φ(x)

and therefore XK,ξ is equivalent to a super Brownian motion with “diffusion coef-

ficient” K1− 2ξ
d and “branching coefficient” γ

2
K1−ξ. The branching term dominates

in the K →∞ limit and the diffusion term dominates in the K → 0 limit if d < 2
and the opposite occurs if d > 2.
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Theorem 10.10 (Dawson and Fleischmann 1988) [117] (a) Let d < 2. Then

XK,ξ K→∞=⇒ 0 if ξ < 1 and XK,ξ K→∞=⇒ λ if ξ > 1
(b) If d = 1 and ξ = 1, then XK converges in distribution as K →∞ to the pure
atomic process {X0

t }t≥0 in which X0
t is Poisson with intensity (γ

2
t)X(0) and the

mass of each atom evolves according to a Feller continuous state branching.

(c) If d = 2, then XK,1 D= X, that is X is self-similar.

Remark 10.11 (b) suggests that for d = 1 at time K there are clumps of size K
with interclump distance K.

In the case d = 2, the phenomenon of diffusive clustering arises. The is made
precise in the following result of Klenke.

Theorem 10.12 (Klenke (1997) [[386], Theorem 2]) Let d = 2, and I = (−∞, 1].
For α ∈ I, let

Xα
t (B) := t−αXt(t

α/2B).

Then in the sense of finite dimensional distributions

L
(log t)λ

8π [{Xα
t (B)}α∈I ]

t→∞
=⇒ L1[{Z1−α}α∈I · λ(B)]

where Z is a FB process with Z0 = 1.

In the case d = 2 Theorem 10.10 (c) provides a link between the small scale
and large scale behaviours. In particular it implies that

XKt(B(0, 1))
D
=
Xt(B(0, K−1/2))

K−1
.

For t > 0 the left side goes to zero in probability as K →∞ because of the local
extinction result which then shows that the local density at time t is 0 which
implies that it does not have a non-trivial absolutely continuous component.

10.2.2 Ergodic Behaviour

The extinction-persistence result implies that if φ has compact support, then
Xt(φ) converges to zero in probability if d ≤ 2 and converges in distribution to
a non-degenerate limit if d > 2. This can be extended to an ergodic theorem in
the latter case.

Theorem 10.13 (Iscoe (1986b) ([331]) , Fleischmann and Gärtner (1986) ([252])).

(a) For d > 2 with probability one, limt→∞
1
t

∫ t
0
Xsds = λ (in the vague topology).

(b) For d = 2, as t→∞ 1
t

∫ t
0
Xsds converges a.s. in the vague topology to ηλ

where η is a non-degenerate infinitely divisible random variable with mean one.


