
Chapter 12

Mutation-Selection Systems

The basic mechanisms of population biology are mutation, selection, recombina-
tion and genetic drift. In the previous chapter we concentrated on mutation and
genetic drift. In this chapter we introduce mathematical models of recombina-
tion and selection. However it should be emphasized that these are idealization
of highly complex biological processes and there is an immense biological liter-
ature including empirical investigation, theoretical models of varying degrees of
complexity and simulation studies. For example the concept of fitness is an ab-
stract notion that in the biological context can involve fitness at the level of a
single gene, genome or phenotype. At the level of the genome this can involve
the interaction between genes (epistasis) and various models of such interactions
have been proposed (see e.g. Gavrilets [270]). One of the continuing issues is
the question of the levels of selection (see e.g. Brandon and Burian (1984) [48],
Lloyd (2005) [438], Okasha (2006), [495] ) which include notions of group selec-
tion, kin selection, inclusive fitness (see Hamilton (1964) [295]) and so on. For
example, inclusive fitness represents to effective overall contribution of an indi-
vidual including its own reproductive success as well as its contribution (due to
its behavior) to the fitness of its genetic kin.

Our aim in this chapter is to introduce some mathematical aspects of the
interplay of mutation, selection and genetic drift.

12.1 The infinite population dynamics of mutation, selec-
tion and recombination.

12.1.1 Selection

The investigation of infinite population models with mutation, recombination
and selection leads to an interesting class of dynamical systems (see Hofbauer
and Sigmund (1988) [312] and Bürger [62], [61]). These are obtained as special
cases of the general FV process by setting γ = 0 and serve as approximations to
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254 CHAPTER 12. MUTATION-SELECTION SYSTEMS

systems in which the number of individuals N is very large.
One of the objectives of this chapter is to investigate in one setting the extent

to which the behavior of the finite system differs from that of the infinite system.
Consider an infinite diploid population without mutation or recombination

(i.e. γ = 0, A = 0, ρ = 0) with K types of gametes. The unordered pair
{i, j} represents the genotype determined by the gametes i and j. Let xi(t) be
the amount of copies of gamete i in the population at time t and pi denote the
frequency pi = xi∑

xi
.

Let V (i, j) = V (j, i) = bi,j−di,j where bij and dij are the birth and death rates
of the genotype. The fitness, V (i) of the ith gamete is defined by

V (i) =
∑
j

pjV (i, j)

and the mean fitness is defined by

V̄ (p) = V̄ =
∑
i

V (i)pi =
∑
ij

pipjV (i, j).

Then the population sizes xi satisfy the equations

ẋi = xi
∑
j

V (i, j)
xj
|x|
, i = 1, . . . , K

Proposition 12.1 The proportions {pi} satisfy the equations:

ṗi = pi(V (i)− V̄ ), i = 1, . . . , K

Proof. This can be derived from the ẋ equations by the substitution xi = |x|pi
giving

ṗi|x|+ pi(
∑

ẋj) = |x|piV (i)

which yields

ṗi + pi(
∑
j

pjV (j)) = piV (i)

and the result immediately follows.

12.1.2 Riemannian structure on ∆K−1

The deterministic differential equations of selection have played an important role
in the development of population genetics. A useful tool in their analysis was a
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geometrical approach developed by Shahshahani and Akin. We next give a brief
introduction to this idea.

Let M be a smooth manifold. The tangent space at x, TxM can be identified
with the space of tangents at x to all smooth curves through x. The tangent
bundle TM = {(p, v) : p ∈M, v ∈ TpM}.
Definition 12.2 A Riemannian metric on M is a smooth tensor field

g : C∞(TM)⊗ C∞(TM)→ C∞0 (M)

such that for each p ∈M,

g(p)|TpM⊗TpM : TpM ⊗ TpM → R
with

g(p) : (X, Y )→ 〈X, Y 〉g(p)
where 〈X, Y 〉g(p) is an inner product on TpM .

Definition 12.3 The directional derivative in direction v is defined by

∂vf(x) = lim
t→0

f(x+ tv)− f(x)

t

=
∑

vi
∂f(x)

∂xi

The gradient ∇gf(x) is defined by

〈∇gf(x), v〉g = ∂vf(x) ∀v ∈ TxM.

Example 12.4 Consider the d-dimensional manifold M = Rd and a(·) be a
smooth map from M to Rd ⊗ Rd ((d× d)-matrices). We will write

a(x) = (aij(x))

a−1(x) = (aij(x))

Assume that∑
aij(x)uiuj ≥ γ

∑
u2
j , γ > 0.

The tangent space TxM u Rd and we define a Riemannian metric on M by

ga(x)(u,v) :=
d∑

i,j=1

aij(x)uivj.

The associated Riemannian gradient and norm are

(∇af)i =
∑
j

aij
∂f

∂xj

‖u‖2
a(x) =

∑
ij

aij(x)uiuj.
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The Shahshahani metric and gradient on ∆K−1

Let MK = RK+ := {x ∈ RK , x = (x1, . . . , xK), xi > 0 for all i} is a smooth
K-dimensional manifold.

Shahshahani introduced the following Riemannian metric on MK

〈u, v〉g = gx(u, v) :=
K∑
i=1

|x|uivi
xi

|x| =
∑

xi

‖ ‖g and ∇gF will denote the corresponding norm and gradient. We have

(∇gF )i =
∑
i

xi

|x|
∂F

∂xi
∂

∂xi

Recall that the simplex ∆K−1 := {(p1, . . . , pK) : pi ≥ 0,
∑K

i=1 pi = 1}. The
interior of the simplex ∆0

K−1 = RK+ ∩∆K−1 is a (K− 1)-dimensional submanifold
of MK . We denote by Tp∆

0
K−1 the tangent space to ∆0

K−1 at p. Then g induces
a Riemannian metric on Tp∆

0
K−1.

Basic Facts
We have the Shahshahani inner product on ∆K − 1 at a point p ∈ ∆K − 1:

(12.1) 〈u, v〉p =
K∑
i=1

uivi
pi

.

1. Tp∆
0
K−1 can be viewed as the subspace of TpMK of vectors, v, satisfying

〈p, v〉g = 0 if we identify p with an element of TpMK .

Proof. Recall that Tp∆
0
K−1 is given by tangents to all smooth curves lying in

∆0
K−1. Therefore if v ∈ Tp∆0

K−1, then v = q−p where p, q ∈ ∆0
K−1 and therefore∑K

i=1 vi = 0. Therefore,∑
i

pi
1

pi
vi = 0.

2. If F : ∆0
K−1 → R is smooth, then the Shahshahani gradient is

(∇gF )i = pi

(
∂F

∂pi
−
∑
j

pj
∂F

∂pj

)
.

Proof. From the definition, ∇gF is the orthogonal projection on the subspace
Tp∆

0
K−1 of

(∇gF )i = pi
∂F

∂pi

and therefore we must have
∑

i(∇gF )i = 0. This then gives the result.
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Remark 12.5 This (Shahshahani) gradient coincides with the gradient on ∆K−1

associated with the K-alleles Wright-Fisher model and appears in the description
of the rate function for large deviations from the infinite population limit (see
below).

Theorem 12.6 The dynamical system {p(t) : t ≥ 0} is given by

ṗ(t) =
1

2
(∇g(p(t))V̄ )(p(t)).

Proof. From the above, applying the Shahshahani gradient to V̄ , we get

(∇gV̄ )i = 2
(
piV (i)− pi

∑
pjV (j)

)
= 2pi(V (i)− V̄ ).

Theorem 12.7 (Fisher’s Fundamental Theorem)
(a) Mean fitness increases on the trajectories of p(t).
(b) The rate of change of the mean V̄ (t) along orbits is proportional to the vari-
ance.
(c) At an equilibrium point the eigenvalues of the Hessian must be real.

Proof. (a) follows immediately from (b).
(b)

dV̄ (t) =
〈
∇gV̄ (p(t)), ṗ(t)

〉
g(p(t))

= 2 〈ṗ(t), ṗ(t)〉g(p(t)) = 2

(∑
i

pi(t)(V (i)− V̄ (t))2

)

= 2

(∑
i

pi(t)V (i)2 − V̄ (t)2

)
= 2V arp(t)(V) ≥ 0.

(b) It also follows from the gradient form that the Hessian is symmetric (matrix
of mixed second partials of V̄ ).

Theorem 12.8 (Kimura’s Maximum Principle) “Natural selection acts so as to
maximize the rate of increase in the average fitness of the population.”

Proof. This simply follows from the property that the directional derivative
∂vV̄ is maximal in the direction of the gradient.
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Example 12.9 Consider a two type ({1, 2}) population with frequencies (p1, p2) =
(p, 1− p).

V (i, j) = av(i) + av(j) + cδij

(When c = 0 we have the additive (or haploid) model. When a = 0 and c > 0 we
have the heterozygote advantage model.)
In this case

V̄ (p1, p2) = ap1v(1) + ap2v(2) + cp1p2

= V (p, 1− p) = ap(v(1)− v(2)) + av(2) + cp(1− p)

Then depending on the choice of a, c, v(1), v(2),the optimum value of p can range
between 0 and 1.

Remark 12.10 For the multilocus situation there is the Fisher-Price-Ewens ver-
sion (e.g. Frank (1997) [257], Ewens [244]). This is also related to the secondary
theorem of natural selection of Robertson (1966) [522] which relates the rate of
change of a quantitative character under selection in terms of the covariance of
the character and fitness.

The above equations are special cases of the class of replicator equations of the
form

(12.2)
dpi(t)

dt
= pi(t)(fi(p(t))−

∑
pifi(p(t)), i = 1, . . . , K

where {fi(p}i=1m...,K is a vector field on ∆K−1. In the linear case fi(p) =
∑

j aijpj
these are equivalent to the the Lotka-Volterra equations

(12.3)
dxi(t)

dt
= xi(t)

(
ri +

n∑
j=1

Kijxj(t)

)
, i = 1, . . . , K − 1

by setting pi(t) = xi(t)∑
i xi(t)

.

12.1.3 Mutation-Selection

The replicator equations that include both mutation and selection are given by

(12.4)
dpi(t)

dt
= pi(t)(V (i)− V̄ ) +m(

∑
j 6=i

qjipj − pi)

where m is the mutation rate and for each j, qji, i 6= j is the probability that
type j mutates to type i and

∑
i 6=j qji = 1.
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Theorem 12.11 The mutation-selection dynamical system is a Shahshahani gra-
dient system if and only if

(12.5) qji = qi ∀ j,

(that is type-independent mutation as in the infinitely many alleles model). In
the latter case the potential is

(12.6) W (p) = V̄ (p)−H(q|p), H(q|p) = −
n∑
i=1

qi log pi.

Proof. See Hofbauer and Sigmund [312], Chapt. VI, Theorem 1.
We will see below that there is a far-reaching analogue of this for the stochastic

(finite population) generalizations.

Remark 12.12 In general the deterministic mutation-selection equations are not
a gradient system and can exhibit complex dynamics - for example, a stable limit
cycle (Hofbauer and Sigmund [312], 25.4). An interesting special case is the
diploid case with three types - two favourable and mutation. Baake [23] showed
that these can exhibit stable limit cycles. Hofbauer (1985) [311] also showed this
for selection mutation models with cyclic mutation.

Smale [555] pointed out that for n types, n ≥ 5, dynamical systems on the
simplex can have complex behaviour. He gave an example that “may not be ap-
proximated by a structurally stable, dynamical system, or it may have strange
attractors with an infinite number of periodic solutions”. Some further basic re-
sults on competitive systems are covered by Hirsch (1982), (1985), (1988) [310]
and Liang and Jiang (2003) [424].

12.1.4 Multiple loci and recombination

Multiloci models give rise to dynamical systems that have been extensively stud-
ied. They give rise to a large class of dynamical systems that can have complex
behaviour. Akin [3] analyzed the simplest two loci model with selection and re-
combination and proved that in general this is not a gradient system and that
periodic orbits can exist. We briefly sketch the simplest example.

Consider a two-loci model with two alleles at each loci. We denote the types
by 1 = AB, 2 = Ab, 3 = aB, 4 = ab and with gamete frequencies

(12.7)

pAB, pAb, paB, pab, pA = pAB+pAb, pB = pAB+paB, pa = paB+pab, pb = pAb+pab.

Then the measure of linkage disequilibrium is defined as

(12.8) d := pABpab − pAbpbA
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so that d = 0 if pAB = pApB, etc. The diploid fitness function is denoted by
V (i, j). Some natural assumptions are that

(12.9) mij = mji, m14 = m23 = 0.

There are 10 zygotic types AB/AB,Ab/AB, . . . , ab/ab and the corresponding
fitness table

(12.10)

AB Ab aB ab
AB w11 w12 w13 w14

Ab w21 w22 w23 w24

aB w31 w32 w33 w34

ab w41 w42 w43 w44

The recombination vectorfield

(12.11) R = rbdξi, i = 1, 2, 3, 4

where r is the recombination rate, b is the birth rate for double heterozygotes, d
is the linkage disequilibrium and

(12.12) ξ = (1,−1,−1, 1)

so that

(12.13) dξ = p− π(p)

where π(p) has the same marginals as p but in linkage equilibrium (independent
loci).

The system of differential equations for the frequencies of types 1, 2, 3, 4 with
selection and recombination are

(12.14)
dpi
dt

= pi(V (i)− V̄ )− rbdξi i = 1, 2, 3, 4

where

(12.15) V (i) =
4∑
j=1

pjV (i, j), V̄ =
4∑
i=1

piV (i), d = p1p4 − p2p3.

In the case V ≡ 0 the system approaches linkage equilibrium. However Akin
[3] showed that there exist fitness functions V and parameters b, r such that the
system exhibits a Hopf bifurcation leading to cyclic behaviour. More generally,
multilocus systems can exhibit many types of complex behaviour (see for example,
Kirzhner, Korol and Nevo (1996) [405] and Lyubich and Kirzhner (2003) [439]).
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12.2 Infinitely many types Fleming-Viot:
Dual representation with mutation, selection and re-
combination

We now consider the Fleming-Viot process with selection and recombination and
establish uniqueness using a dual representation of Ethier and Kurtz.

Let ρ ≥ 0 and η(x1, x2,Γ) be a transition function from E × E → E. For
i = 1, . . . ,m define Rim : B(Em)→ B(Em+1) by

(12.16) Rimf(x1, . . . , xm+1) =

∫
f(x1, . . . , xi−1, z, xi+1, . . . , xm)η(xi, xm+1, dz)

and assume that Rim : Cb(E
m)→ Cb(E

m+1). The Rim are called the recombina-
tion operators for the process and ρ is called the recombination rate.

Given V ∈ Bsym(E × E), with V̄ := supx,y,z |V (x, y) − V (y, z)| < ∞, define
the selection operators

(12.17)

Vimf(x1, . . . , xm+2) =
V (xi, xm+1)− V (xm+1, xm+2)

V̄
f(x1, . . . , xm) for i = 1, . . . ,m.

For f ∈ D(A(n)) ∩ B(En), define F (f, µ) =
∫
fdµn and

(12.18)

GF (f, µ) = F (A(n)f, µ) + γ
∑

1≤i<j≤n

(
F (Θ̃ijf, µ)− F (f, µ)

)
+ρ

n∑
i=1

(F (Rinf, µ)− F (f, µ)) + V̄
n∑
i=1

F (Vinf, µ).

For f ∈ Csim(EN), with n(f) = n, and f ∈ D(An) ∩ B(En), let

(12.19) Hf :=
n∑
i=1

Aif + γ
n∑
j=1

∑
k 6=j

[Θ̃jkf − f ] + ρ
n∑
i=1

[Rinf − f ] + V̄
n∑
i=1

[Vinf − f ].

If β(f) := V̄ n(f), then

(12.20) GF (f, µ) = F (Hf, µ) + β(f))F (f, µ),

and supµ∈M1(E) |F (Hf, µ)| ≤ const · n(f).

Theorem 12.13 Let G satisfy the above conditions and assume that the mutation
process with generator A has a version with sample paths in DE[0,∞). Then for
each µ ∈ P(E) there exists a unique solution Pµ of the martingale problem for G.
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Proof. (Ethier-Kurtz (1987) [222]) We construct a function-valued dual pro-
cess. Let N be a jump Markov process taking non-negative integer values with
transition intensities

(12.21) qm,m−1 = γm(m− 1), qn,m+2 = V̄ m, qm,m+1 = ρm, qi,j = 0 otherwise.

For 1 ≤ i ≤ m, let {τk} be the jump times of N , τ0 = 0, and let {Γk} be a
sequence of random operators which are conditionally independent given M and
satisfy

(12.22) P (Γk = Θij|N) =
2

N(τk−)N(τk)
1N(τk−)−N(τk)=1, 1 ≤ i < j ≤ N(τk−)

(12.23) P (Γk = Rim|N) =
1

m
1{N(τk−)=m,N(τk=m+1)}

(12.24) P (Γk = Vim|N) =
1

m
1{N(τk−)=m,N(τk)=m+2}.

For f ∈ Csim(EN), define the Csim(EN)-valued process Y with Y (0) = f by

(12.25) Y (t) = St−τkΓkSτk−τk−1
Γk−1 . . .Γ1Sτ1f, τk ≤ τk+1.

Then for any solution Pµ to the martingale problem for G and f ∈ Csim(EN) we
get the FK-dual representation

(12.26) Pµ[F (f,X(t))] = Qf

[
F (Y (t), µ) exp

(
V̄

∫ t

0

n(Y (u))du

)]
which establishes that the martingale problem for G is well-posed. Since the
function β(f) = V̄ n(f) is not bounded we must verify condition (7.29). This
follows from the following lemma due to Ethier and Kurtz (1998) [224], Lemma
2.1.

Lemma 12.14 Let N(t) = n(Y (t)) be as above, τK := inf{t : N(t) ≥ K} and
θ > 0. Then there exists a function F (n) ≥ const · n2 and a constant L > 0 such
that

(12.27)

E

[
F (N(t ∧ τK)) exp

(
θ

∫ t∧τK

0

N(s)ds

)
|N(0) = n

]
≤ F (n)eLt, ∀ K ≥ 1,

and given N(0) = n,
{
N(t ∧ τK) exp

(
V̄
∫ t∧τK
o

N(s)ds
)

: K ≥ 1
}

are uniformly

integrable.
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Proof. Take F (m) := (m!)β, with β < 1
2
. Then

QF (m) + θmF (m)

= γm(m− 1)(F (m− 1)− F (m)) + ρm(F (m+ 1)− F (m))

+θm(F (m+ 2)− F (m)) + θmF (m)

= −γO(m2+β)(m!)β + ρO(m2)(m!)β + θO(m2β)(m!)β

Since the negative term dominates for large m if 0 < β < 1
2

and γ > 0, we can
choose L > 0 such that

(12.28) QF (m) + θmF (m) ≤ L.

The optional sampling theorem implies that for τK := inf{t : N(t) ≥ K} and
N(0) = m

E

[
exp

(
θ

∫ t∧τk

0

N(s)ds

)
|N(0) = m

]
≤ E

[
F (N(t ∧ τk) exp

(
θ

∫ t∧τk

0

N(s)ds

)
|N(0) = m

]
≤ F (m) + E

[∫ t∧τk

0

exp

(
θ

∫ u

0

N(s)ds

)
(QF (N(u)) + θN(u)F (N(u)))du|N(0) = m

]
≤ F (m) + LE

[∫ t∧τk

0

exp

(
θ

∫ u

0

N(s)ds

)
du|N(0) = m

]
and the lemma follows by Gronwall’s inequality.

In Chapter 6 we showed that the martingale problem for the Fleming-Viot
process with mutation selection and recombination is well-posed and defines a
P(E)-valued Markov diffusion process. In this chapter we focus on mutation and
selection but also give a brief introduction to some aspects of recombination. In
evolutionary theory mutation plays an important role in producing novelty and
maintaining diversity while selection eliminates deleterious mutations and makes
possible the emergence and fixation of rare advantageous mutations. From a more
abstract viewpoint this can be viewed as a search process which generates new
information.

As above we consider the mutation generator A and the bounded diploid fitness
function For V ∈ Bsym(E ×E), set V̄ = supx,y,z |V (x, y)− V (y, z)|. Without loss

of generality we can assume that V̄ = 1 and define the selection coefficient s > 0
and selection operators

(12.29) Vimf(x1, . . . , xm+2) = (V (xi, xm+1)− V (xm+1, xm+2))f(x1, . . . , xm).

For f ∈ D(A(n)) ∩ B(En), define F (f, µ) =
∫
fdµn and
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(12.30)

GF (f, µ) = F (A(n)f, µ) + γ1≤i<j≤n (F (Θijf, µ)− F (f, µ)) + s
n∑
i=1

F (Vinf, µ).

For f ∈ Csim(EN), with n(f) = n, and f ∈ D(An) ∩ B(En), let

(12.31) Kf :=
n∑
i=1

Aif + γ

n∑
j=1

∑
k 6=j

[Θjkf − f ] + s

n∑
i=1

[Vinf − f ].

where Θ̃jk, n(f) are defined as in section 7.5.
If β(f) := sn(f), then

(12.32) GF (f, µ) = F (Kf, µ) + V̄ (n(f))F (f, µ),

and supµ∈M1(E) |F (Kf, µ)| ≤ const · n(f).
The function-valued dual process is constructed as follows. Let N be a jump

Markov process taking non-negative integer values with transition intensities

(12.33) qm,m−1 = γm(m− 1), qm,m+2 = sm, qi,j = 0 otherwise.

For 1 ≤ i ≤ m, let {τk} be the jump times of N , τ0 = 0, and let {Γk} be a
sequence of random operators which are conditionally independent given N and
satisfy

(12.34) P (Γk = Θ̃ij|N) =
2

N(τk−)N(τk)
1N(τk−)−N(τk)=1, 1 ≤ i < j ≤ N(τk−)

(12.35) P (Γk = Vim|N) =
1

m
1{N(τk−)=m,N(τk)=m+2}.

For f ∈ Csim(EN), define the Csim(EN)-valued process Y with Y (0) = f by

(12.36) Y (t) = St−τkΓkSτk−τk−1
Γk−1 . . .Γ1Sτ1f, τk ≤ τk+1.

We then have the dual representation: for f ∈ Csim(EN), define the Csim(EN)-
valued process Y with Y (0) = f by

(12.37) Y (t) = St−τkΓkSτk−τk−1
Γk−1 . . .Γ1Sτ1f, τk ≤ τk+1.

Then for any solution Pµ to the martingale problem for G and f ∈ Csim(EN) we
get the FK-dual representation

(12.38) Pµ[F (f,X(t))] = Qf

[
F (Y (t), µ) exp

(
V̄

∫ t

0

n(Y (u))du

)]
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12.2.1 Girsanov formula for Fleming-Viot with Mutation and Selec-
tion

Recall that the Fleming-Viot martingale problem MP(A,γQ,0) corresponds to the
case

〈M(A),M(A)〉t = γ

∫ t

0

Q(Xs;A,A)ds

where

Q(µ; dx, dy) = µ(dx)δx(dy)− µ(dx)µ(dy).

and that M is a worthy martingale measure.
Now consider a time-dependent diploid fitness function V : [0,∞)×E×E → R

with ‖V ‖∞ <∞. . Then the FV martingale problem MP(A,Q,V )is

MV (φ)t

:= 〈Xt, φ〉 −
∫ t

0

〈Xs, Aφ〉 ds

−
∫ t

0

∫ [∫
V (s, x, y)Xs(dy)−

∫ ∫
V (s, y, z)Xs(dy)Xs(dz)

]
φ(x)Xs(dx)ds

= 〈Xt, φ〉 −
∫ t

0

〈Xs, Aφ〉 ds

−
∫ t

0

∫ ∫ [(∫
V (s, y, z)

γ
Xs(dz)

)
γQ(Xs, dx, dy)

]
φ(x)ds

〈
MV (φ)

〉
t

= γ

∫ t

0

∫ ∫
φ(x)φ(y)Q(Xs, dx, dy)ds.

We then apply Girsanov to conclude that this martingale problem has a unique
solution PV and that the Radon-Nikodym derivative

ZV
t :=

dPV

dP0
|Ft

where P0 is the unique solution to MP(A,γQ,0) is given by

ZV
t := exp

(
1

γ

∫ t

0

∫
V (s,Xs, y)M0(ds, dy)

− 1

2γ2

∫ t

0

∫ ∫
V (s,Xs, x)V (s,Xs, y)γQ(Xs; dx, dy)ds

)
.

where we write

V (s,Xs, x) =

∫
V (s, z, x)Xs(dz).
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12.3 Long-time behaviour of systems with finite popula-
tion resampling, mutation and selection

Systems with finite population resampling can have rather different long-time
behaviour than the corresponding infinite population systems. One essential dif-
ference is that even high fitness types can be lost due to resampling and in the
absence of mutation the system can eventually become unitype. On the other
hand if the mutation process can regenerate all types, then the system can reach
equilibrium in which all types are present. We now consider these two situations.

12.3.1 Fixation in finite population systems without mutation

In the previous section we have considered the infinite population system with
selection but no mutation. In this case Fisher’s fundamental theorem states that
such a system evolves to one of maximal population fitness. But what happens
in the finite population case, γ > 0? We first observe that if V ≡ 0, then
{Xt(A) : t ≥ 0} is a bounded martingale and

(12.39) Xt(A)−→
t→∞

{
1 with probability X0(A)

0 with probability (1−X0(A)).

Therefore

Xt
t→∞
=⇒ δx with x ∈ A with probability X0(A)

that is, the system experiences ultimate “fixation”. If we add selection to this,
ultimate fixation still occurs. However if γ is small then the tendency is for the
limiting types to be those of higher fitness.

12.3.2 The Equilibrium Infinitely Many Alleles Model with Selection

In order to have a non-degenerate equilibrium a source of new types through
mutation is required. In this section we consider the type independent infinitely
many alleles mutation together with selection. If ν0 is a non-atomic measure,
then mutation always leads to a new type and thus provides a mechanism to
guarantee sufficient diversity on which selection can act.

Let P0
∞ denote the probability measure on CP([0,1]))(−∞,∞) corresponding

to the reversible stationary measure, with one dimensional marginal distribution
Π0
γ(dµ), for the neutral infinitely many alleles model (recall the representation in

terms of the Moran subordinator). Assume that V is symmetric and V (s, x, y) =
V (x, y) = V (y, x).

The following results is the infinitely many types analogue of a result of Wright
[616].
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Theorem 12.15 The infinitely many alleles model with selection has a reversible
stationary measure given by

ΠV
γ (dµ) =

1

Z
e
V (µ)
γ Π0

γ(dµ)

where Z is a normalizing constant.

Proof. Let X0 have distribution

1

Z
e
V (X0)
γ Π0

γ(dX0)

Recall that to verify that this is a reversible equilibrium measure it suffices to
show that for any two continuous functions, f and g, on [0, 1]

P∞(f(X0)g(Xt)) = P∞(g(X0)f(Xt)).

But

P∞(f(X0)g(Xt))

=
1

Z

∫
f(X0)e

V (X0)
γ g(Xt)PVX0

(d{Xs : 0 ≤ s ≤ t})Π0
γ(dX0)

=
1

Z

∫
f(X0)e

V (X0)
γ ZV

t P0
∞(dX·)g(Xt).

By Girsanov

ZV
t := exp

(
1

γ

∫ t

0

∫
V (Xs, y)M0(ds, dy)

− 1

2γ2

∫ t

0

∫ ∫
V (Xs, x)V (Xs, y)γQ(Xs; dx, dy)ds

)
where

M0
s (dy) = Xs −

∫ s

0

A∗Xudu

= Xs −
∫ s

0

c[ν0 −Xu]du

As a preparation, note that by Ito’s lemma,

dt(

∫ ∫
V (x, y)Xt(dx)Xt(dy))

=

∫ ∫
V (x, y)Xt(dx)dtXt(dy) +

∫ ∫
V (x, y)Xt(dy)dtXt(dx)

+

∫ ∫
V (Xs, x)V (Xs, y)γQ(Xs; dx, dy)
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Hence by symmetry in x and y and Ito’s Lemma,

1

γ

∫ t

0

∫ ∫
V (x, y)Xs(dx)dsXs(dy) =

1

2γ
[

∫ ∫
V (x, y)Xt(dx)Xt(dy)

−
∫ ∫

V (x, y)X0(dx)X0(dy)]

− 1

2γ2

∫ t

0

∫ ∫
V (Xs, x)V (Xs, y)γQ(Xs; dx, dy)

Therefore

log(e
1
γ
V (X0)ZV

t )

=

∫ t

0

∫
1

γ
V (Xs, y)M0(ds, dy) +

1

γ

∫ ∫
V (x, y)X0(dx)X0(dy)

− 1

2γ2

∫ t

0

∫ ∫
V (Xs, x)V (Xs, y)γQ(Xs; dx, dy)ds

=
1

γ

∫ t

0

∫ ∫
V (x, y)Xs(dx)dsXs(dy)− c

γ

∫ t

0

∫ ∫
V (x, y)Xs(dx)(ν0(dy)−Xs(dy))ds

− 1

2γ2

∫ t

0

∫ ∫
V (Xs, x)V (Xs, y)γQ(Xs; dx, dy)ds

)
+

1

γ

∫ ∫
V (x, y)X0(dx)X0(dy)

=
1

2γ
[

∫ ∫
V (x, y)Xt(dx)Xt(dy) +

∫ ∫
V (x, y)X0(dx)X0(dy)]

− 1

γ2

∫ t

0

∫ ∫
V (Xs, x)V (Xs, y)γQ(Xs; dx, dy)ds

− c

γ

∫ t

0

∫ ∫
V (x, y)Xs(dx)(ν0(dy)−Xs(dy))ds

This is symmetric with respect to the direction of time. Also under P0
∞, {Xt :

t ∈ R} is stationary and reversible. Therefore we conclude that

E(f(X0)g(Xt)) = E(f(Xt)g(X0))

Therefore 1
Z
e
V (µ)
2γ Π0

γ(dµ) is a reversible invariant measure.

Corollary 12.16 Consider the K-allele case with c = γ and ν0(dx) = dx. As-
sume that V (p) is continuous and has a unique global maximum p0 ∈ ∆K−1. Then
as γ → 0, ΠV

γ =⇒ δp0 .

Proof. In this case Π0
γ(dp) is the Dirichlet (1) distribution on ∆K−1. Let

N ε
p := {p : V (p0)− V (p) ≤ ε}
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Then for any ε > 0, Π0
γ(N

ε
p0

) > 0. It is then easy to check that

ΠV
γ ((N ε

p0
)c)→ 0 as γ → 0.

Remark 12.17 One can ask if there is a reversible equilibrium for other mutation
processes. The fact that the only mutation process for which the equilibrium is
reversible was proved by Li, Shiga and Ya (1999) [432]. This is the analogue of
the result of Hofbauer and Sigmund mentioned above.


