
Chapter 3

Branching Processes I:
Supercritical growth and
population structure

The fundamental characteristic of biological populations is that individuals un-
dergo birth and death and that individuals carry information passed on from their
parents at birth. Furthermore there is a randomness in this process in that the
number of births that an individual gives rise to is in general not deterministic
but random. Branching processes model this process under simplifying assump-
tions but nevertheless provide the starting point for the modelling and analysis
of such populations. In this chapter we present some of the central ideas and key
results in the theory of branching processes.

3.1 Basic Concepts and Results on Branching Processes

Figure 3.1: Bienamyé, Galton and Watson

3.1.1 Bienamyé-Galton-Watson processes

The Bienamyé-Galton-Watson branching process (BGW process) is a Markov
chain on N0 := {0, 1, 2, . . . }. The discrete time parameter is interpreted as the
generation number and Xn denotes the number of individuals alive in the n’th
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32 CHAPTER 3. BRANCHING PROCESSES I

generation. Generation (n + 1) consists of the offspring of the nth generation as
follows:

• each individual i in the nth generation produces a random number ξi with
distribution

pk = P [ξi = k], k ∈ N0

• ξ1, ξ2, . . . , ξXn are independent.

Let X0 = 1. Then for n ≥ 0

Xn+1 =
Xn∑
i=1

ξi, {ξi} independent

We assume that the mean number of offspring

m =
∞∑
i=1

ipi <∞.

The BGW process is said to be subcritical if m < 1, critical if m = 1 and
supercritical if m > 1.

A basic tool in the study of branching processes is the generating function

(3.1) f(s) = E[sξ] =
∞∑
k=0

pks
k, 0 ≤ s ≤ 1.

Then

(3.2) f ′(1) = m, f ′′(1) = E[ξ(ξ − 1)] ≥ 0.

Let

fn(s) = E[sXn ], n ∈ N.
Then conditioned on Xn, and using the independence of the {ξi},

fn+1(s) = E[s
∑Xn
i=1 ξi ] = E[f(s)Xn ] = fn(f(s)) = f(fn(s)).

Note that f(0) = P [ξ = 0] = p0 and

P [Xn+1 = 0] = f(fn(0)) = f(P [Xn = 0])

Then if m > 1, p0 > 0, P [Xn = 0] = fn(0) ↑ q where q is the smallest
nonnegative root of

f(s) = s,

and if m ≤ 1, P [Xn = 0] ↑ 1. Note that 1 and q are the only roots of f(s) = s.
Since E[Xn+1|Xn] = mXn,

(3.3) Wn :=
Xn

mn
is a martingale and limn→∞Wn = W exists a.s.
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Proposition 3.1 We have P [W = 0] = q or 1, that is, conditioned on nonex-
tinction either W = 0 a.s. or W > 0 a.s.

Proof. It suffices to show that P [W = 0] is a root of f(s) = s. The ith
individual of the first generation has a descendant family with a martingale limit
which we denote by W (i). Then {W (i)}i=1,...,X1 are independent and have the
same distribution as W . Therefore

(3.4) W =
1

m

X1∑
i=1

W (i)

and therefore W = 0 if and only if for all i ≤ X1, W (i) = 0. Conditioning on X1

implies that

(3.5) P [W = 0] = E(P (W (i) = 0)X1) = f(P [W = 0]).

Therefore P [W = 0] is a root of f(s) = s.

Remark 3.2 In the case Var(X1) = σ2 <∞ we can show by induction that

(3.6) Var(Xn) =

σ2mn(mn − 1)

m2 −m
, m 6= 1,

= nσ2, m = 1

Then if m > 1 the martingale Xn
mn

is uniformly integrable and E(W ) = 1.

Moreover Xn
mn
→ W in L2 and

(3.7) Var(W) =
σ2

m2 −m
> 0 (see Harris [292] Theorem 8.1).

If m > 1, σ2 =∞, a basic question concerns the nature of the random variable
W and the question whether or not Xn

mn
→ W in L1. The question was settled

by a celebrated result of Kesten and Stigum which we present in Theorem 3.6
below. We first introduce some further basic notions.

Bienamyé-Galton-Watson process with immigration (BGWI)

The Bienamyé-Galton-Watson process with offspring distribution {pk} and im-
migration process {Yn}n∈N0 satisfies

(3.8) Xn+1 =
Xn∑
i=1

ξi + Yn+1,

where the ξi are iid with distribution {pk}.
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Let FY be the σ-field generated by {Yk : k ≥ 1} and Xn,k be the number of
descendants at generation n of the individuals who immigrated in generation k.
Then the total number of individuals in generation n is Xn =

∑n
k=1Xn,k.

For k < n the random variable Wn,k = Xn,k/m
n−k is the has the same law as

X̃n−k/m
n−k where X̃n is the BGW process with Yk initial particles. Therefore

(3.9) E[
Xn,k

mn−k ] = Yk.

Now consider the subcritical case m < 1. If {Yi} are i.i.d. with E[Yi] < ∞,

then the Markov chain Xn has a stationary measure with mean E[Y ]
1−m .

Next consider the supercritical case m > 1. Then

(3.10) E[
Xn

mn
|FY ] = E[

1

mn

n∑
k=1

Xn,k|FY ] =
n∑
k=1

1

mk
E[

Xn,k

mn−k |F
Y ] =

n∑
k=1

Yk
mk

.

If supk E[Yk] <∞, then

(3.11) lim
n→∞

E[Xn]

mn
=
∞∑
k=1

E[Yk]

mk
<∞.

A dichotomy in the more subtle case E[Yk] = ∞ is provided by the following
theorem of Seneta.

Theorem 3.3 (Seneta (1970) [557]) Let Xn denote the BGW process with mean
offspring m > 1, X0 = 0 and with i.i.d. immigration process Yn.
(a) If E[log+ Y1] <∞, then lim Xn

mn
exists and is finite a.s.

(b) If E[log+ Y1] =∞, then lim sup Xn
cn

=∞ for every constant c > 0.

Proof. The theorem is a consequence of the following elementary result.

Lemma 3.4 Let Y, Y1, Y2, . . . be nonnegative iid rv. Then a.s.

(3.12) lim sup
n→∞

1

n
Yn =

{
0, if E[Y ] <∞
∞, if E[Y ] =∞

Proof. Recall that E[Y ] =
∫∞

0
P (Y > x)dx. This gives

∑
n P (Y

n
> c) < ∞

for any c > 0 if E[Y ] <∞ and the result follows by Borel-Cantelli. If E[Y ] =∞,
then

∑
P (Y

n
> c) = ∞ for any c > 0 and the result follows by the second

Borel-Cantelli Lemma since the Yn are independent.

Proof of (a). By (3.10)

(3.13) E[
Xn

mn
|FY ] =

n∑
k=1

Yk
mk

.
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Since here we assume E[log+ Y1] < ∞, Lemma 3.4 gives lim supk→∞
Yk
ck
< ∞ for

any c > 0. Therefore the series given by the last expression in (3.13) converges
a.s. and therefore limn→∞E[Xn

mn
|FY ] exists and is finite a.s. This implies (a)

Proof of (b). If E[log+ Y1] = ∞, then by Lemma 3.4 lim supn→∞
log+ Yn

n
= ∞

a.s. Therefore for any c > 0

(3.14) lim sup
n→∞

Yn
cn

=∞

a.s. Since Xn ≥ Yn, (b) follows.

3.1.2 Bienamyé-Galton-Watson trees

In addition to the keeping track of the total population of generation n + 1 in
a BGW process it is useful to incorporate genealogical information, for example,
which individuals in generation n+ 1 have the same parent in generation n. This
leads to a natural family tree structure which was introduced in the papers of Joffe
and Waugh (1982), (1985), [347], [348] in their determination of the distribution
of kin numbers and developed in the papers of Chauvin (1986) [72] and Neveu
(1986) [482].

A convenient representation of the BGW random tree is as follows. Let u =
(i1, . . . , in) denote an individual in generation n who is the inth child of the in−1-
th child of . . . of the i1-th child of the ancestor, denoted by ∅. The space of
individuals (vertices) is given by

(3.15) I = {∅} ∪ ∪∞n=1Nn.

Given u = (u1, . . . , um), v = (v1, . . . , vn) ∈ I, we denote the composition by
uv := (u1, . . . , um, v1, . . . , vn)

A plane rooted tree T with root ∅ is a subset of I such that

1. ∅ ∈ T ,

2. If v ∈ T and v = uj for some u ∈ I and j ∈ I, then u ∈ T ,

3. For every u ∈ T , there exists a number ku(T ) ≥ 0, such that uj ∈ T if
and only if 1 ≤ j ≤ ku(T ).

A plane tree can be given the structure of a graph in which a parent is connected
by an edge to each of its offspring.

Let T be the set of all plane trees. If t ∈ T let [t]n be the set of rooted trees
whose first n levels agree with those of t. Let V denote the set of connected
sequences in I, ∅, v1, v2, . . . , which do not backtrack. Given t ∈ T, let V (t)
denote the set of paths in t. If vn is a vertex at the nth level, let [t; v]n denote
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the set of trees with distinguished paths such that the tree is in [t]n v ∈ V (t) and
the path goes through vn.

Given a finite plane tree T the height h(T ) is the maximal generation of a
vertex in T and #(T ) denotes the number of vertices in T . Let Tn be the set of
trees of height n.

A random tree is given by a probability measure on T. Given an offspring dis-
tribution L(ξ) = {pk}k∈N, the corresponding BGW tree is constructed as follows:

Let the initial individual be labelled ∅. Give it a random number of children
denoted 1, 2, . . . , ξ∅.

Then each of these has a random number of children, for example i has chil-
dren denoted (i, 1), . . . , (i, ξi) etc. Each of these has children, for example (i, j)
has ξi,j children labelled (i, j, 1), . . . , (i, j, ξi,j), etc. Then considering the first n
generations in this way we obtain a probability measure PBGW

n on Tn.
The probability measures, PBGW

n form a consistent family and induce a prob-
ability measure PBGW on T, the law the BGW random tree.

Let

(3.16) Zn = number of vertices in the tree at level n.

Then by the construction it follows that Zn is a version of the BGW process and
we can think of the BGW tree as an enriched version of the BGW process.
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Figure 3.2: BGW Tree

The size-biased BGW tree

The fundamental notion of size-biasing has many applications. It will be used
below in the proof of Lyons, Pemantle and Peres (1995) [438] of some basic results
on Bienamyé-Galton-Watson processes (see Theorem 3.6 below).
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To exploit this notion for branching processes we consider the size-biased off-
spring distribution

(3.17) p̂k =
kpk
m
, k = 1, 2, . . . .

We denote by ξ̂ a random variable having the size biased offspring distribution.

The size-biased BGW tree T̂ is constructed as follows:

• the initial individual is labelled ∅; ∅ has a random number ξ̂∅ of children
(with the size-biased offspring distribution) p̂,

• one of the children of ∅ is selected at random and denoted v1 and given an

independent size-biased number ξ̂v1 of children,

• the other children of ∅ are independently assigned ordinary BGW descen-
dant trees with offspring number ξ,

• again one of the children of v1 is selected at random and denoted v2 and

given an independent size-biased number ξ̂v2 of children,

• this process is continued and produces the size-biased BGW tree T̂ which is
immortal and infinite distinguished path v which we call the backbone.
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Figure 3.3: Size-biased BGW Tree

Define the measure P̄BGW
∗ ∈ P(T × V) to be the joint distribution of the

random tree T̂ and backbone {v0, v1, v2, . . . }. Let P̄BGW denote the marginal

distribution of T̂ . We can view the vertices off the backbone (v0, v1, . . . ) of the
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size-biased tree as a branching process with immigration in which the immigrants
are the siblings of the individuals on the backbone. The distribution of the

number of immigrants at generation n, Yn, is given by the law ξ̂ − 1.
Given a tree t let [t]n denote the tree restricted to generations 1, . . . , n. Let

Zn(t) denote the number of vertices in the tree at the nth level (generation) and
Fn = σ([t]n). Let

(3.18) Wn(t) :=
Zn(t)

mn

denote the martingale associated to a tree t with Zn(t) vertices at generation n.

Lemma 3.5 (a) The Radon-Nikodym derivative of the marginal distribution P̄BGW |Fn
of T̂ with respect to P PGW |Fn is given by

(3.19)
dP̄BGW

n

dPBGW
n

(t) = Wn(t).

(b) Under the measure P̄BGW
∗ , the vertex vn at the nth level of the tree T̂ in the

random path (v0, v1, . . . ) is uniformly distributed on the vertices at the nth level

of T̂ .

Proof.
We will verify that

(3.20) P̄BGW
∗ [t, v]n =

1

mn
PBGW [t]n

and therefore

(3.21) P̄BGW [t]n = Wn(t)PBGW [t]n.

First observe that the

P̄BGW
∗ (Z1 = k, v1 = i) =

kpk
m
· 1

k
(3.22)

=
pk
m

=
1

m
P (ξ = k), for i = 1, . . . , k.

since v1 is randomly chosen from the offspring (1, . . . , ξ̂∅).

Now consider [T̂ , v]n+1. We can construct this by first selecting ξ̂0 and v1

and then following the next n generations of the resulting descendant tree and

backbone as well as the BGW descendant trees of the remaining ξ̂0 − 1 vertices

in the first generation. If ξ̂∅(t) = k we denote the resulting descendant trees by
t(1), t(2), . . . , t(k).

Let vn+1(t) be a vertex (determined by a position in the lexicographic order)
at level n + 1. It determines v1(t) and the descendant tree t(v1) that it belongs



3.1. BASIC CONCEPTS AND RESULTS ON BRANCHING PROCESSES 39

to. If ξ̂∅(t) = k, v1(t) = i, then we obtain

(3.23) P̄BGW
∗ [t; v]n+1 =

pk
m
· P̄BGW
∗ [t(i); vn+1]n ·

k∏
j=1,j 6=i

PBGW [t(j)]n.

Then by induction for each n

(3.24) P̄BGW
∗ [t; v]n =

1

mn
PBGW [t]n

for each of the Zn(t) positions v in the lexicographic order at level n and [t]n.
Consequently we have obtained the martingale change of measure

(3.25) P̄BGW
∗ [t]n =

Zn(t)

mn
PBGW [t]n

and

(3.26) P̄BGW
∗ [v = i|t] =

1

Zn(t)
for i = 1, . . . , Zn(t).

For an infinite tree t we define

(3.27) W (t) := lim sup
n→∞

Wn(t).

Note that in the critical and subcritical cases the measures PBGW and P̄BGW are
singular since the PBGW - probability of nonextinction is zero. The question as
to whether or not they are singular in the supercritical case will be the focus of
the next subsection.

3.1.3 Supercritical branching

As mentioned above if 0 < m <∞, then under PBGW

(3.28) Wn =
Zn
mn

is a martingale and converges to a random variable W a.s. as n → ∞. The
characterization of the limit W in the supercritical case, m > 1, under minimal
conditions was obtained in the following theorem of Kesten and Stigum (1966)
[365]. The proof given below follows the “conceptual proof” of Lyons, Pemantle
and Peres (1995) [438].

Theorem 3.6 (Kesten-Stigum (1966) [365]) Consider the BGW process with off-
spring ξ and mean offspring size m. If 1 < m <∞, the following are equivalent

(i) PBGW [W = 0] = q
(ii) EBGW [W ] = 1
(iii) E[ξ log+ ξ] <∞
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Proof. By Lemma 3.5

(3.29)
dP̄BGW

n

dPBGW
n

(t) = Wn(t)

where the left side denotes the Radon-Nikodym derivative wrt Fn = σ([t]n).
Note that PBGW (W = 0) ≥ q where q = PBGW (E0) where E0 := {Zn =

0 for some n < ∞} (extinction probability). Moreover, since Fn ↑ F = σ(t), we
have the Radon-Nikodym dichotomy (see Theorem 16.12)

(3.30) W = 0, PBGW − a.s. ⇔ PBGW⊥P̄BGW ⇔ W =∞ P̄BGW − a.s.

and

(3.31)

∫
WdPBGW = 1 ⇔ P̄BGW � PBGW ⇔ W <∞ P̄BGW − a.s.

Now recall (3.13) that the size-biased tree can be represented as a branching
process with immigration in which the distribution of the number of immigrants

at generation n, Yn, is given by the law ξ̂ − 1, that is

(3.32) E[Zn|Y ] =
n∑
k=1

Yk
mk

.

If E[log+ ξ̂] = E[ξ log+ ξ] =
∑∞

k=1 kpk log k =∞, then

(3.33) W = lim
n→∞

Zn
mn

=∞, P̄BGWa.s.

by Theorem 3.3 (b). Therefore PBGW (W = 0) = 1 by (3.30).

If E[ξ log+ ξ] < ∞, then E[log+ ξ̂] =
∑∞

k=1 kpk log k < ∞. and by Theorem
3.3(a)

(3.34) lim
n→∞

E(
Zn
mn
|Y) =

∞∑
k=1

Yk
mk

<∞, P̄BGWa.s.

and therefore

(3.35) W = lim
n→∞

Zn
mn

<∞, P̄BGW − a.s.

Then EBGW [W ] =
∫
WdPBGW = 1 by (3.31).

Finally, since by Proposition 3.1 PBGW (W = 0) = q or 0, we obtain (i).

Remark 3.7 The supercritical branching model is the basic model for a growing
population with unlimited resources. A more realistic model is a spatial model
in which resources are locally limited but the population can grow by spreading
spatially. A simple deterministic model of this type is the Fisher-KPP equation.
We will consider the analogous spatial stochastic models in a later chapter.
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3.1.4 The general branching model of Crump-Mode-Jagers

We now consider a far-reaching generalization of the Bienamyé-Galton-Watson
process known as a Crump-Mode Jagers (CMJ) process ([112], [338]). This is a
process with time parameter set [0,∞) consisting of finitely many individuals at
each time.

With each individual x we denote its birth time τx, lifetime λx and reproduc-
tion process ξx. The latter is a point process which gives the sequence of birth
times of individuals. ξx(t) is the number of offspring produced (during its life-
time) by an individual x born at time 0 during [0, t]. The intensity of ξx, called
the reproduction function is defined by

(3.36) µ(t) = E[ξ(t)].

The lifetime distribution is defined by

(3.37) L(u) = P [λ ≤ u].

We begin with one individual ∅ which we assume is born at time τ∅ = 0. The
reproduction processes ξx of different individuals are iid copies of ξ.

The basic probability space is

(3.38) (ΩI ,BI , PI) =
∏
x∈I

(Ωx,Bx, Px)

where I is given as in (3.15) and (ξx, λx) are random variables defined on (Ωx,Bx, Px)
with distribution as above.

We then determine the birth times {τx, x ∈ I} as follows:

τ∅ = 0,(3.39)

τ(x′,i) = τx′ + inf {u : ξx′(u) ≥ i}.

Note that for individuals never born τx =∞.
Let

(3.40) Zt =
∑
x∈I

1τx≤t<λx , Tt =
∑
x∈I

1τx≤t

that is, the number of individuals alive at time t and total number of births before
time t, respectively.

For λ > 0 we define

(3.41) ξλ(t) :=

∫ t

0

e−λtξ(dt).

The Malthusian parameter α is defined by the equation

(3.42) E[ξα(∞)] = 1
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that is,

(3.43)

∫ ∞
0

e−αtµ(dt) = 1.

The stable average age of child-bearing is defined as

(3.44) β =

∫ ∞
0

tµ̃(dt) where µ̃(dt) = e−αtµ(dt).

Example 3.8 Consider a population in which individuals have an internal state
space, say N. Assume that the individual starts in state 0 at its time of birth
and and its internal state changes according to a Markov transition mechanism.
Finally assume that when it is in state i it produces offspring at rate λi.

Definition 3.9 Characteristics of an individual A characteristic of an individual
is given by a process φ : R×Ω→ R+ which is given by a B(R)×σ(ξ)-measurable
non-negative function satisfying φ(t) = 0 for t < 0, let

(3.45) Zφ
t =

∑
x∈I

φx(t− τx)

denote the process counted with characteristic φ.

Example 3.10 If φa(t) = 1[0,inf(a,λ))(t), then Zφa

t counts the number of individu-
als alive at time t whose ages are less than a.

The following fundamental generalization of the Kesten-Stigum theorem was
developed in papers of Doney (1972),(1976) [176], [177], and Nerman (1981) [475].

Theorem 3.11 Consider a CMJ process with malthusian parameter α and as-
sume that β <∞.

(a) [176] Then as t→∞, e−αtZt converges in distribution to mW∞ where

(3.46) m =

∫∞
0
e−αs(1− L(s))ds

β

and W∞ is a random variable (see Proposition 3.13) and
(b) The following are equivalent:

E[ξα(∞) log+ ξα(∞)] <∞(3.47)

E[W ] > 0(3.48)

E[e−αtZt]→ E[W ] as t→∞(3.49)

W > 0 a.s. on {Tt →∞}.(3.50)

(c) [475] Under the condition that there exists a non-increasing integrable func-
tion g such that
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(3.51) E[sup
t

(ξα(∞)− ξα(t))

g(t)
] <∞,

then e−αtZt converges a.s. as t→∞.

Remark 3.12 A sufficient condition is the existence of non-increasing integrable
function g such that

(3.52)

∫ ∞
0

1

g(t)
e−αtµ(dt) <∞.

(See Nerman [475] (5.4)).

Comments on Proofs
(b) The equivalence statements can be proved in this general case following

the same lines as that of Lyons, Pemantle and Peres - see Olofsson (1996) [492].
(a) - convergence in distribution was proved by Doney (1972) [176]. However

the almost sure convergence required some basic new ideas since we can no longer
directly use the martingale convergence theorem since Zt is not a martingale in
the general case. The a.s. convergence was proved by Nerman [475]. We will not
give Nerman’s long detailed technical proof of this result but will now introduce
the key tool used in its proof and which is of independent interest, namely, an
underlying intrinsic martingale Wt discovered by Nerman [475] and then give an
intuitive idea of the remainder of the proof.

Denote the mother of x by m(x) and let

(3.53) It = {x ∈ I : τm(x) ≤ t < τx <∞},

the set of individuals whose mothers are born before time t but who themselves
are born after t

Consider the individuals ordered by their times of birth

(3.54) 0 = τx1 ≤ τx2 ≤ . . .

Define An = σ-algebra generated by {(τxi , ξxi , λxi) : i = 1, . . . , n} Recall (3.40)
and let Ft = ATt .

Define

(3.55) Wt :=
∑
x∈It

e−ατx .

Proposition 3.13 (Nerman (1981) [475]) (a) The process {Wt, Ft} is a non-
negative martingale with E[Wt] = 1.

(b) There exists a random variable W∞ < ∞ such that Wt → W∞ a.s. as
t→∞.
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Proof. Define

R0 = 1,(3.56)

Rn = 1 +
n∑
i=1

e−ατxi (ξαxi(∞)− 1), n = 1, 2, . . .

Equivalently, letting τ(xi,k) denote the time of birth of the kth offspring of xi,

(3.57) Rn = 1 +
n∑
i=1

ξxi (∞)∑
k=1

e−ατ(xi,k) −
n∑
i=1

e−ατxi

so that Rn is a weighted (weights e−ατx) sum of children of the first n individuals.
We next show that (Rn,An) is a non-negative martingale. Rn and τxn+1 are

An-measurable and ξαxn+1
is independent of An and

(3.58) E[ξαxn+1
(∞)] = µα(∞) = 1.

Therefore

(3.59) E[Rn+1 −Rn] = e−ατxn+1E[ξαxn+1
− 1] = 0.

Next we observe that since I(t) consists of exactly the children of the first Tt
individuals to be born after t, it follows that Wt = RTt .

Note that for fixed t, {Tt ≤ k} = {τxn ≤ t} ∈ An and therefore Tt is an in-
creasing family of integer-valued stopping times with respect to {An}. Therefore
{Wt} is a supermartingale with respect to the filtration {ATt}.

Since E[Tt] <∞ and

(3.60) E[|Rn+1 −Rn| |An] = e−ατxn+1E[|ξα(∞)− 1|] ≤ 2.

a standard argument (e.g. Breiman [34] Prop. 5.33) implies that E[Wt] =
E[RTt ] = 1 and {Wt} is actually a martingale.

(b) This follows from (a) and the martingale convergence theorem.

Remark 3.14 We now sketch an intuitive explanation for the proof of the a.s.
convergence of e−αtZt using Proposition 3.13. This is based on the relation be-
tween Wt and Zt which is somewhat is somewhat indirect. To give some idea of
this, let

(3.61) Wt,c =
∑
x∈It,c

e−ατx ,

where

(3.62) It,c = {x = (x′, i) : τx′ ≤ t, t+ c < τx <∞}.
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Note that if we consider the characteristic χc defined by

(3.63) χc(s) = (ξα(∞)− ξα(s+ c))eαs for s ≥ 0,

then

(3.64) Wt,c = e−αtZχc

t

where

(3.65) Zχc

t =
∑
x∈I

χcx(t− τx), χcx(s) = (ξαx (∞)− ξαx (s+ c))eαs.

Note that limc→0Wt,c = Wt and limc→0 Z
χc

t = Zχ
t where

(3.66) χ(s) =

∫ ∞
s

e−α(u−s)ξ(du).

Then Zχ
t → mχW∞, a.s. where

(3.67) mχ =

∫∞
0
e−αt(1− L(t))dt

β
.

In the special case where ξ is stationary then the distribution of χ(s) does not
depend on s. Then Zχ

t is a sum of Zt i.i.d. random variables and therefore as
t→∞, Zχ

t should approach a constant times Zt by the law of large numbers.

Stable age distribution

The notion of the stable age distribution of a population is a basic concept in
demography going back to Euler. The stable age distribution in the deterministic
setting of the Euler-Lotka equation (2.2) is

(3.68) U(∞, ds) =
(1− L(s))e−αsds∫∞

0
(1− L(s))e−αsds

.

It was introduced into the study of branching processes by Athreya and Kaplan
(1976) [10]. Let Za

t denote the number of individuals of age ≤ a. The normalized
age distribution at time t is defined by

(3.69) U(t, [0, a)) :=
Za
t

Zt
, a ≥ 0.

Theorem 3.15 (Nerman [475] Theorem 6.3 - Convergence to stable age distri-
bution) Assume that ξ satisfies the conditions of Theorem 3.11. Then on the
event Tt →∞,

(3.70) U(t, [0, a))→
∫ a

0
(1− L(u))e−αudu∫∞

0
(1− L(u))e−αudu

a.s. as t→∞.
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3.1.5 Multitype branching

A central idea in evolutionary biology is the differential growth rates of different
types of individuals. Multitype branching processes provide a starting point for
our discussion of this basic topic.

Consider a multitype BGW process with K types. Let ξ(i,j) be a random
variable representing the number of particles of type K produced by one type i
particle in one generation.

Let Z(j) be the number of particles of type j in generation n and Zn :=

(Z
(1)
n , . . . , ZK

n ).

For k = (k1, . . . , kK), let p
(i)
k = P [ξ(i,j) = kj, j = 1, . . . , K]. Assume that

M = (m(i,j))i,j=1,...,K ,(3.71)

m(i,j) = E[ξ(i,j)] <∞ ∀ i, j.

Then

(3.72) E(Zm+n|Zm) = ZmMn, m, n ∈ N.

The behaviour of E[Zn] as n→∞ is then obtained from the classical Perron-
Frobenius Theorem:

Theorem 3.16 (Perron-Frobenius) Let M be a nonnegative K ×K matrix. As-
sume that Mn is strictly positive for some n ∈ N. Then M has a largest positive
eigenvalue ρ which is a simple eigenvalue with positive right and left normalized
eigenvectors u = (ui) (

∑
ui = 1) and v = (vi) which are the only nonnegative

eigenvectors. Moreover

(3.73) Mn = ρnM1 + Mn
2

where M1 = (uivj)i,j∈{1,...,K} normalized by
∑

i, juivj = 1. Moreover M1M2 =
M2M1 = 0, Mn

1 = M1.
Finally,

(3.74) |Mn
2 | = O(αn)

for some 0 < α < ρ.

The analogue of the Kesten-Stigum theorem stated above is given as follows.

Theorem 3.17 (Kesten-Stigum (1966) [365]), (Kurtz, Lyons, Pemantle and Peres
(1997) [408])
(a) There is a scalar random variable W such that

(3.75) lim
n→∞

Zn

ρn
= Wu a.s.
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and P [W > 0] > 0 iff

(3.76) E[
J∑

i,j=1

ξ(i,j) log+ ξ(i,j)] <∞.

(b) Almost surely, conditioned on nonextinction,

(3.77) lim
n→∞

Zn

|Zn|
= u.

3.2 Multilevel branching

Consider a host-parasite population in which the individuals in the host population
reproduce by BGW branching and the population of parasite on a given host also
develop by an independent BGW branching. This is an example of a multilevel
branching system.

A multilevel population system is a hierarchically structured collection of ob-
jects at different levels as follows:
E0 denotes the set of possible types of level 1 object,
for n ≥ 1 each level (n + 1) object is given by a collection of level n object in-
cluding their their multiplicities.

Multilevel branching dynamics
Consider a continuous time branching process such that

• for n ≥ 1, when a level n object branches, all its offspring are copies of it

• if n ≥ 2, then the offspring contains a copy of the set of level-n− 1 objects
contained in the parent level n object.

• let γn the level n branching rate and by fn(s) the level n offspring generating
function.

Then the questions of extinction, classification into critical, subcritical and super-
critical case and growth asymptotics in the supercritical case are more complex
than the single level branching case. See for example, Dawson and Wu (1996)
[154].


