
Chapter 6

Infinitely many types models

Figure 6.1: Kimura

6.1 Introduction

6.1.1 Motivation

We have considered particle systems above with finitely many types. In the
1970’s with the advent of electrophoresis and molecular biology, new models were
needed in which the number of types were not fixed. In many cases the number of
types can be random and new types can be introduced at random times. Several
models began to appear at that time involving infinitely many types, for example
the ladder or stepwise mutation model of Ohta and Kimura (1973) [492] (which
could model for example continuous characteristics). Another model was one in
which no attempt to model the structure of types was made but in which new
types can be introduced (leading to the infinitely many alleles model) (Kimura
and Crow (1964) [398]). In this model we take [0, 1] as the type space. Then when
a new type is needed we can choose a type in [0, 1] by sampling from the uniform
distribution on [0, 1]. The infinitely many sites model introduced by Kimura in
1969 provides an idealization of the genome viewed as a sequence of nucleotides
(A,T,C,G). These processes now form the basis for molecular population genetics.
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More generally, such infinitely many type models provide the possibility of
coding information at a number of levels and provide a powerful tool for the
study of complex systems. For example we can code historical information,
genealogical information, and information about the random environment that
has been visited. In addition it allows for individuals with internal structure
described by an internal state space and state transition dynamics.

6.1.2 Plan

The objective of this chapter is to construct two basic infinitely-many-type pro-
cesses, formulated as measure-valued processes, by taking the projective limit of
the finite type Feller CSB and Wright-Fisher diffusions. These are the Jirina
measure-valued branching process and infinitely many alleles model of Crow and
Kimura. The latter has played a central role in population genetics. We will
establish a relation between the invariant measures of these two processes that
allows us to obtain the basic properties of the Poisson-Dirichlet distribution and
the Griffiths, Engen and McCloskey (GEM) representation.

We begin by considering the diffusion limit of a measure-valued generaliza-
tion of the Wright-Fisher Markov chain in the setting of semigroup theory. This
process, the Fleming-Viot process, includes the infinitely many alleles model as
a special case. In the next Chapter we reformulate these processes in terms of
measure-valued martingale problems and develop techniques for working with
more general classes of measure-valued processes including the class of super-
processes and the class of Fleming-Viot processes with selection, mutation and
recombination.

6.2 Measure-valued Wright-Fisher Markov chain

We now consider a Wright-Fisher model of a population of N individuals in which
the space of types is a separable metric space E. The process is then a Markov
chain {pNn }n∈N with state space

PN(E) =

{
µ =

1

N

N∑
i=1

δxi , {x1, . . . , xN} ∈ E

}
⊂ P(E).

In this case the mutation process is a Markov chain on E with probability
transition function P (x, dy) giving the type distribution of the offspring of a type
x parent if mutation occurs. Let V > 0 be a measurable function on E with V (x)
interpreted as the (haploid) fitness of a type x individual.

Then as in the finitely many type case XN
n is a Markov chain in PN(E) with

one step transition function P (µ, dµnext). This is obtained by noting that XN
n+1
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is a random probability measure on PN(E) given by:

(6.1) XN
n+1 =

1

N

N∑
i=1

δyi

where y1, . . . , yN are i.i.d. µ∗n(dy) where

µ∗n(dy) =

∫
E

(
V (x)XN

n (dx)∫
V (x)XN

n (dx)

)
P (x, dy),

that is, as before selection first and then mutation and sampling.

Example 6.1 Infinitely many alleles model [398]. E = [0, 1] and

(6.2) P (x, dz) = (1−m)δx(dz) +m

∫ 1

0

δy(dz)λ(dy)

where λ is Lebesgue measure on [0, 1].

Example 6.2 The infinitely many sites model was introduced by Kimura [400],
[401]. (See also Ethier and Griffiths (1987) [233])

Infinitely many sites model. E = [0, 1]Z+

P (x, dy) = (1−m)δx(dy) +m

∫ 1

0

δ{ξ,x)λ(dξ)

Here we interpret ξ as the locus on the genome where the last mutation occurred.

The number of segregating sites is the number of homologous DNA positions
that differ in a sample of m sequences. They are used to investigate phylogenetic
relationships. The location of polymorphisms within humans are also used to de-
termine the potential differences in reactions of individuals to medical treatments.

See Section 8.3.3 for the analysis of segregating sites.

Example 6.3 Ladder model of Ohta and Kimura (1973) [492]. This stepwise-
mutation model was introduced to describe the distribution of allelic types distin-
guishable as signed electrical charges in gel electrophoresis experiments.
Here E = Z and

(6.3) P (x, dy) = (1−m)δx(·) +
m

2
δx+1 +

m

2
δx−1

6.3 The neutral Fleming-Viot process with mutation gen-
erator A

The infinitely many alleles diffusion of Crow and Kimura can be studied as an
infinite dimensional diffusion (i.e. countably many types) (see Ethier and Kurtz
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(1981) [232]) in which a mutation always leads to a new type. However it is
advantageous to reformulate it as a measure-valued process. This process was
introduced by Fleming and Viot in 1979 [255]. We will show that it arises as the
diffusion limit of the measure-valued Wright-Fisher model.

We will now we derive the Fleming-Viot process under some simplifying as-
sumptions using semigroup methods. The general case will be dealt with below
in the martingale problem setting.

Assumptions

• Let E be a compact metric space.

• V ≡ 1, that is, we omit the selection effect.

• We consider a mutation process given by a Feller process on E with generator
(D(A), A) and semigroup {St : t ≥ 0} on C(E). A will be called the mutation
operator for the Fleming-Viot process.

We assume that D(A) contains an algebra D0(A) that separates points and
St : D0(A)→ D0(A). Then linear combinations of functions in D0(A) form
an algebra of functions separating points and therefore is dense in C(E)
and therefore measure-determining. We also assume that A arises as the
limit of a sequence of mutation Markov chains on E with transition kernels
{PN(., .)}N∈N, that is for f ∈ D(A),

(6.4) N(〈f, PN〉 − f)→ Af as N →∞

uniformly on E.

The state space for the Fleming-Viot (FV) process is P(E), the set of Borel
probability measures on E with the topology of weak convergence. For f ∈ C(E),
µ ∈ P we denote 〈f, µ〉 =

∫
fdµ.

We will now obtain the neutral FV process as the limit of neutral (i.e. V ≡ 1)
Wright-Fisher Markov chains in the diffusion time scale,

(6.5) pN(t) = XN
bNtc ∈ P(E)

where XN
n is defined by (6.1) with mutation transition functions PN(x, dy).

In order to identify the limiting generator for a P(E)-valued diffusion we need
a measure-determining family of test functions. Consider the algebra D of nice
functions on P(E) containing the functions:

(6.6) F (µ) = 〈f1, µ〉 . . . 〈fn, µ〉

with n ≥ 1 and f1, . . . , fn ∈ D(A). This algebra of functions is measure-determining
in P(P(E)).
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Notation 6.4 For F ∈ D, x ∈ E we define

∂F (µ)

∂µ(x)
= lim

ε→0

F (µ+ εδx)− F (µ)

ε
|ε=0 =

∂F (µ+ εδx)

∂ε
|ε=0

∂2F (µ)

∂µ(x)∂µ(y)
=
∂2F (µ+ ε1δx + ε2δy)

∂ε1∂ε2

|ε1=ε2=0

Proposition 6.5 Let pNn denote the measure-valued Wright-Fisher Markov chain
(6.1) under the above assumptions. Then pN(t) = XN

bNtc ⇒ pt where {pt}t≥0 is a

P(E)-valued Markov process with generator

GF (µ)

=
∑

1≤i<j≤n

(〈fifj, µ〉 − 〈fi, µ〉 〈fj, µ〉)
∏
`:`6=i,j

〈f`, µ〉+
∑
i

〈Afi, µ〉
∏
`:`6=i

〈f`, µ〉

=
1

2

[∫
∂2F (µ)

∂µ(x)∂µ(y)
δx(dy)µ(dx)−

∫
∂2F (µ)

∂µ(x)∂µ(y)
µ(dx)µ(dy)

]
+

∫
A
∂F (µ)

µ(x)
µ(dx).

for all F ∈ D.

Proof. Here we follow the Ethier-Kurtz semigroup approach. Using the Kurtz
semigroup convergence theorem ([225], Chap. 1, Theorem 6.5, Proposition 3.7
and Chap. 4. Theorem 2.5 -see Appendix I Theorems 18.1, 18.2). Using these
results it suffices to show that for F ∈ D,

(6.7) lim
N→∞

NEµ[F (pN1
N

)− F (µ))] = lim
N→∞

NEµ[F (XN
1 )− F (µ)] = GF (µ)

uniformly in µ ∈ P(E).
First note that for f1, . . . , fn ∈ C(E)

Eµ(F (XN
1 )) = Eµ[

〈
f1, X

N
1

〉
. . . 〈fn, XN

1 〉], F (µ) = 〈f1, µ〉 . . . 〈fn, µ〉

where XN
1 = 1

N

∑N
i=1 δYi and Y1, . . . , YN are i.i.d. µPN . Hence

Eµ[
〈
f1, X

N
1

〉
. . .
〈
fn, X

N
1

〉
] =

1

Nn
E

[
N∑
i=1

f1(Yi) · · ·
N∑
i=1

fn(Yi)

]

=
n∑
k=1

N [k]

Nn

∑
β∈π(n,k)

k∏
j=1

〈∏
i∈βj

fi, µP
N

〉

=
n∑
k=1

N [k]

Nn

∑
β∈π(n,k)

k∏
j=1

〈〈∏
i∈βj

fi, P
N

〉
, µ

〉
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where N [k] = N !
(N−k)!

, π(n, k) is the set of partitions β of {1, . . . , n} into k

nonempty subsets β1, . . . , βk, labelled so that min β1 < · · · < min βk.

Only the terms involving k = n, n− 1 contribute in the limit. To see this note

that we can choose n different Yi’s in N(N−1) . . . (N−n+1) = Nn− n(n−1)
2

Nn−1+
O(Nn−2) ways and n−1 different Yi’s inN(N−1) . . . (N−n+2) = Nn−1−O(Nn−2)
ways. For k = n− 2 we can choose k different Yi’s is O(Nn−2) ways, etc.

NEµ[F (XN
1 )− F (µ)]

= N

{
N [n]

Nn

n∏
j=1

〈fj, µPN〉+
N [n−1]

Nn

∑
1≤i<j≤n

〈fifj, µPN〉
∏
`:`6=i,j

〈f`, µPN〉

+ O(N−2)−
n∏
j=1

〈fj, µ〉

}

= N

{(
1− n(n− 1)

2N

) n∏
j=1

〈fj, µPN〉

+
1

N

∑
1≤i<j≤n

〈fifj, µPN〉
∏
`6=i,j

〈f`, µPN〉 −
n∏
j=1

〈fj, µ〉

}
+O(

1

N
)

Note that limN→∞〈f, µPN〉 = 〈f, µ〉. Now let bj = 〈fj, µ〉 and aj = 〈fj, µPN〉 and
recall that

(6.8) lim
N→∞

N(〈f, µPN〉 − 〈f, µ〉) = 〈Af, µ〉

Then using this together with the collapsing sum

a1 . . . an + (a1 . . . an−1bn − a1 . . . an) + (a1 . . . an−2bn−1bn − a1 . . . an−1bn)

+ (b1 . . . bn − a1b2 . . . bn)− b1 . . . bn = 0

a1 . . . an − b1 . . . bn =
∑
k

(a1 . . . akbk+1 . . . bn − a1 . . . ak+1bk+1 . . . bn).

or rewriting

(6.9)
n∏
j=1

〈f, µPN〉 =
n∏
j=1

[(〈f, µ〉+ (〈f, µPN〉 − 〈f, µ〉))]

we obtain
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NEµ[F (XN
1 )− F (µ)] =

∑
1≤i<j≤n

(〈fifj, µPN〉 − 〈fi, µPN〉 〈fj, µPN〉)
∏
`:` 6=i,j

〈f`, µPN〉

+
n∑
i=1

〈Afi, µ〉
∏
j:j<i

〈fj, µ〉
∏
j:j>i

〈fj, µPN〉+O(N−1)

= GF (µ) + o(1)

uniformly in µ.

The completes the verification of condition (6.7).

6.4 The Infinitely Many Alleles Model

This is a special case of the Fleming-Viot process which has played a crucial role
in modern population biology. It has type space E = [0, 1] and type-independent
mutation operator with mutation source ν0 ∈ P([0, 1])

Af(x) = θ(

∫
p(x, dy)f(y)− f(x))

= θ(

∫
f(y)ν0(dy)− f(x)).

Since A is a bounded operator we can take indicator functions of intervals in
D(A). If we have a partition [0, 1] = ∪Kj=1Bj where the Bj are intervals, consider
the set D(G) of functions

(6.10) F (µ) = 〈f1, µ〉 . . . 〈fn, µ〉

with n ≥ 1 and where the functions f1, . . . , fn are finite linear combinations
of indicator functions of the intervals {Bj}. Then the function GF (µ) can
be written in the same form and we can prove that the ∆K−1-valued process
{pt(B1), . . . , pt(BK)} is a version of the K − allele process with generator

GKf(p)(6.11)

=
1

2

K−1∑
i,j=1

pi(δij − pj)
∂2f(p)

∂pi∂pj
+ θ

K−1∑
i=1

(ν0(Bi)− pi)
∂f(p)

∂pi
.

We will next give an explicit construction of this process that allows us to
derive a number of interesting properties of this important model.


