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NEµ[F (XN
1 )− F (µ)] =

∑
1≤i<j≤n

(〈fifj, µPN〉 − 〈fi, µPN〉 〈fj, µPN〉)
∏
`:` 6=i,j

〈f`, µPN〉

+
n∑
i=1

〈Afi, µ〉
∏
j:j<i

〈fj, µ〉
∏
j:j>i

〈fj, µPN〉+O(N−1)

= GF (µ) + o(1)

uniformly in µ.
The completes the verification of condition (6.7).

6.4 The Infinitely Many Alleles Model

This is a special case of the Fleming-Viot process which has played a crucial role
in modern population biology. It has type space E = [0, 1] and type-independent
mutation operator with mutation source ν0 ∈ P([0, 1])

Af(x) = θ(

∫
p(x, dy)f(y)− f(x))

= θ(

∫
f(y)ν0(dy)− f(x)).

Since A is a bounded operator we can take indicator functions of intervals in
D(A). If we have a partition [0, 1] = ∪Kj=1Bj where the Bj are intervals, consider
the set D(G) of functions

(6.10) F (µ) = 〈f1, µ〉 . . . 〈fn, µ〉

with n ≥ 1 and where the functions f1, . . . , fn are finite linear combinations
of indicator functions of the intervals {Aj}. Then the function GF (µ) can
be written in the same form and we can prove that the ∆K−1-valued process
{pt(A1), . . . , pt(AK)} is a version of the K − allele process with generator

GKf(p)(6.11)

=
1

2

K−1∑
i,j=1

pi(δij − pj)
∂2f(p)

∂pi∂pj
+ θ

K−1∑
i=1

(ν0(Ai)− pi)
∂f(p)

∂pi
.

We will next give an explicit construction of this process that allows us to
derive a number of interesting properties of this important model.

6.4.1 Projective Limit Construction of the Infinitely Many Alleles
Model

Let µ, ν0 ∈ P(E), C = C[0,∞)([0,∞)). Let U denote the collection of finite
partitions u = (Au1 , . . . , A

u
|u|) of E into measurable subsets in B(E) and |u| denotes
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the number of sets in the partition u. We place a partial ordering on U as follows:

v � u

if v is a refinement of u. We can also identify partitions with the finite algebras of
subsets of E they generate. Given a partition we define the probability measure,
Pu on Cu as the law of the Wright-Fisher diffusion with generator

G(K)f(p) =
1

2

K−1∑
i,j=1

pi(δij − pj)
∂2f(p)

∂pi∂pj

+
1

2

K−1∑
i=1

θ(νi − pi)
∂f(p)

∂pi

νi := ν0(Aj)

and initial measure µ, that is, the law of (pt(A
u
1), . . . , pt(A

u
|u|) (and the additive

extension of this to the algebra generated by u).

Remark 6.6 Recall that the associated Markov transition function is determined
by the joint moments as follows.

Since the family of functions pk1
1 . . . , p

kK−1

K−1 belong to D(G(K)) we can apply

G(K) and obtain the following system of equations for the joint moments:

(6.12) mk1,...,kK−1
(t) := E[pk1

1 (t) . . . p
kK−1

K−1 (t)],

∂

∂t
mk1,...,kK−1

(t) =
1

2

∑
i

ki(ki − 1)mk1,.,ki−1,..kK−1
(t)

− 1

2

∑
i 6=j

kikjmk1,...kK (t)

+
θ

2

K−1∑
i=1

νikimk1,.kj−1,.,ki+1,..kK (t)

− θ

2

K−1∑
i=1

kimk1,...kK−1
(t)

Since this system of linear equations is closed, there exists a unique solution which
characterizes the K-allele Wright-Fisher diffusion.

In a similar way we can apply this to the function corresponding to the coa-
lescence of two partition elements

f(p) = f̃(p̃)

p̃ = (p̃1, . . . , p̃K−1)

= (p1, . . . , p`−1, p`+1, . . . , pk−1, pk+1, . . . , pK−1, (p` + pk))
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G(K)f(p) =
1

2

K−2∑
i,j=1

p̃i(δij − p̃j)
∂2f(p̃)

∂p̃i∂p̃j

+
θ

2

K−2∑
i=1

(ν̃i − p̃i)
∂f̃(p̃)

∂p̃i

= G(K−1)f̃(p̃)

In other words we have consistency under coalescence of the partition elements.
Because of uniqueness this implies that the process p̃(t) = (p̃1(t), . . . , p̃K−1(t))
coincides with the (K − 1)−allele Wright-Fisher diffusion.

We denote the canonical projections πu : CB(E) → Cu and πuv : Cv → Cu if
v � u such that
πu = πuvπv, v � u.
The family {Pu}u∈U forms a projective system of probability laws, that is for

every pair, (u, v), v � u, {Pu} then satisfies

(6.13) πuv(Pv) = Pu, Pu(B) = Pv(π
−1
uv (B)).

Therefore, by Theorem 17.6 (in Appendix I) there exists a projective limit
measure, that is, a probability measure P∞ on CB([0,1]) such that for any u ∈ U ,
πuP∞ = Pu.

For fixed t (or any finite set of times) we can identify the projective limit,

(6.14) {p̃t(A) : A ∈ B([0, 1])}

with an element of X ([0, 1]), the space of all finitely additive, non-negative, mass
one measures on [0, 1], equipped with the projective limit topology, i.e., the weak-
est topology such that for all Borel subset B of [0, 1], µ(B) is continuous in µ.
Under this topology, X ([0, 1]) is Hausdorff. The σ-algebra B of the space X ([0, 1])
is the smallest σ-algebra such that for all Borel subset B of [0, 1], µ(B) is a mea-
surable function of µ.

For fixed t ∈ [0,∞), p̃t(·) is a.s. a finitely additive measure, that is, a
member of X [0, 1] and satisfies the conditions of Theorem 17.8 in the Appen-
dices (conditions 1,2 follow immediately from the construction, 3 follows since
for any A ∈ B([0, 1]) E(pt(A)) ≤ max(µ(A), ν0(A)) and (4) is automatic since
all measures are bounded by 1). Therefore for fixed t this determines a unique
countably additive version pt(·), that is, a random countable additive measure
pt ∈ P([0, 1]) a.s. Similarly, taking two times t1, t2 we obtain a the joint distri-
bution of a pair (pt1 , pt2) of random probability measures. We can then verify
that t→

∫
f(x)pt(dx) is a.s. continuous for a countable convergence determining

class of functions so that there is an a.s. continuous version with respect to the
topology of weak convergence.
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Remark 6.7 We can carry out the same construction assuming that for each
u ∈ U the Wright-Fisher diffusion starts with the stationary Dirichlet measure
and obtain by the projective limit a probability measure on P(E) which for any
partition has the associated Dirichlet distribution.

6.5 The Jirina Branching Process

In 1964 Jirina [355] gave the first construction of a measure-valued branching
process. The state space is the space of finite measures on [0, 1], Mf ([0, 1]). ν0 ∈
M1([0, 1]). We will construct a version of this process with immigration by a
projective limit construction.

Given a partition (A1, . . . , AK) of [0, 1] let {Xt(Ai) : t ≥ 0, i = 1, . . . , K}
satisfy the SDE (Feller CSB plus immigration):

dXt(Ai) = c(ν0(Ai)−Xt(Ai))dt+
√

2γXt(Ai)dW
Ai
t(6.15)

X0(Ai) = µ(Ai)

where ν0 is in P([0, 1]) and for each i, WAi
t is a standard Brownian motion and

for i 6= j WAi
t and W

Aj
t are independent.

We can then verify that the processes Xt(Ai) : i = 1, . . . , K are independent
and as t→∞, Xt(Ai) converges in distribution to a stationary measure X∞(Ai)
with density which satisfies

fi(x) =
1

Z
xθi−1e−θx, x > 0

where θ = c
γ
, θi = θν0(Ai).

This can be represented by X∞(A) = θ−1G(θν0(A)) where θ = c
γ

and

L{(X∞(A1), . . . , X∞(AK))} =

L{1

θ
[G(θ1), G(θ1 + θ2)−G(θ1), . . . , G(θ)−G(θ − θK)]}

where G(s) is the Moran subordinator - see subsection 6.6.1 below.
For u = (Au1 , . . . , A

u
|u|) ∈ U (defined as in the last subsection) let {Pu =

L({(Xt(A1), . . . , Xt(A|u|) : t ≥ 0, A ∈ u})}. Then the collection {Pu}u∈U forms
a projective system and as in the previous section there exists a projective limit
measure P∞ on (C[0,∞)([0,∞)))B([0,1]). Moreover for fixed t ∈ [0,∞), Xt(·) is a.s.
a finitely additive measure that is regular (on a countable generating subset of
B([0, 1])) we obtain a unique countably additive version (recall Theorem 17.8).
Thus, {Xt(·) : t ≥ 0} is a measure-valued process and again we can obtain an a.s.
continuous MF ([0, 1])-valued version. This MF ([0, 1])-valued process is called the
Jirina process.
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Corollary 6.8 The stationary measure for the Jirina process is given by the ran-
dom measure

(6.16) X∞(A) =
1

θ

∫ 1

0

1A(x)dG(θs), A ∈ B([0, 1])

where G(·) is the Moran gamma subordinator.

6.6 Invariant Measures of the IMA and Jirina Processes

6.6.1 The Moran (Gamma) Subordinator

We begin by recalling the the Gamma distribution with parameter α > 0 given
by the density function

gα(u) = uα−1e−u/Γ(α)

and Laplace transform of gα is∫ ∞
0

gα(y)e−λydy =
1

(1 + λ)α
, λ > −1,

The Moran subordinator {G(α) : α ≥ 0} is an increasing process with station-
ary independent increments G(α2)−G(α1), α1 < α2 given by gα2−α1 .

Lévy representation

Lemma 6.9

(6.17) E
(
e−λG(α)

)
= exp

(
−α
∫ ∞

0

(1− e−uλ)e
−u

u
du

)
.

Proof. Note that

∂

∂λ

∫ ∞
0

(1− e−λz)z−1e−zdz =

∫ ∞
0

(e−λz)e−zdz =
1

1 + λ∫ ∞
0

(1− e−λz)z−1e−zdz = log(1 + λ)

Hence we have the Lévy-Khinchin representation with Lévy measure e−z

z
, z >

0

(6.18)
1

(1 + λ)α
= exp

{
−α
∫ ∞

0

(1− e−λz)z−1e−zdz

}
.
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Poisson representation

The Poisson random field with intensity measure µ is a random counting measure
Π on a space S. Π(Ai),Π(Aj) are independent if i 6= j and Π(A) is Poisson with
parameter µ(A).

Theorem 6.10 (Campbell’s Theorem.) Let Π be a Poisson random field with
intensity µ ∈ M(S) and f : S → R, Σ =

∑
x∈Π f(x) =

∫
f(x)Π(dx) converges

a.s. if and only if∫
S

min(|f(x)|, 1)µ(dx) <∞

and then

E(es
∫
f(x)Π(dx)) = exp(

∫
(esf(x) − 1)µ(dx)), s ∈ R

provided the integral on the right exists.

Now consider the Poisson random measure on [0, 1]× (0,∞)

(6.19) Ξθ =
∑

δ{x,u}

with intensity measure

θν0(dx)
e−u

u
du.

Let X̃∞(A) :=
∫
A

∫∞
0
uΞθ(dx, du). Then by Campbell’s Theorem

E(e−λX̃∞(A)) = E(e−λ
∫
A

∫∞
0 uΞθ(dx,du))(6.20)

= e−θν0(A)
∫

(1−e−λu) e
−u
u
du.

Hence we can represent equilibrium of the Jirina process by the random measure
with Poisson representation {X∞(A) : A ∈ B([0, 1])} by

(6.21) X∞(A) = θ−1

∫
A

∫ ∞
0

uΞθ(dx, du)

and this can be obtained as the projective limit of the finite systems.

If ν0 is Lebesgue measure on [0, 1] then have that the {X∞([0, s)}0≤s≤1 =
{G(s)}0≤s≤1 where G(s) is the Moran subordinator with with increments G(s2)−
G(s1) having the Gamma θ(s2 − s1) distribution θ = c

γ
.
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6.6.2 Representation of the Infinitely Many Alleles Equilibrium

Recall (Theorem 5.9) that the Dirichlet distribution Dirichlet(θ1, . . . , θn) has the
joint density on relative to (n− 1)-dimensional Lebesgue measure on ∆n−1 given
by

f(p1, . . . , pn−1) =
Γ(θ1 + · · ·+ θn)

Γ(θ1) . . .Γ(θn)
pθ1−1

1 pθ2−1
2 . . . pθn−1

n .

Recall that if the θ are large the measure concentrates away from the boundary
whereas is the θ are small things concentrate near the boundary corresponding
to highly disparate p with a few large pj and the others small. For example if
the θj are small but equal there is a high probability that at least one of the pj
is much greater than average; and which value or values of j have large pj is a
matter of chance.

Proposition 6.11 Let X∞ denote the equilibrium random measure for the Jirina
process and consider a partition [0, 1] = ∪ni=1Ai and define

(6.22) Y (Ai) :=
X∞(Ai)

X∞([0, 1])
=
G(θ|Ai|)
G(θ)

.

Then the family (Y (A1), . . . , Y (AK)) is independent of X∞([0, 1]) and has as
distribution the Dirichlet(θ1, . . . θK) where θj = θν0(Aj).

Proof. Let Y be Gamma(θ) and
(P1, . . . , PK) Dirichlet (θ1, . . . , θK) with Y and (P1, . . . , PK) independent, and
define (Y1, . . . , YK) by

(6.23) Yi := Y Pi.

We will verify that (Y1, . . . , YK) has the joint probability density function

(6.24) g(y1, . . . , yK) =
K∏
i=1

uθi−1
i e−ui/Γ(θi).

Consider the 1-1 transformation (Y1, Y2, . . . , YK)↔ (Y, P2, . . . , PK) with Jaco-
bian

(6.25) |J | =
{
|∂x1, . . . , xK
∂y1, . . . , yK

|, x1 = y, x2 = p2, . . . , xK = pK

}
=

1

yK−1
.

By independence of Y and (P1, . . . , PK), we obtain the joint density of (Y1, . . . , YK)
as
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g(y1, . . . , yK) = f(p1, . . . , pK |Y )fY (y)|J |

= f(p1, . . . , pK)
1

Γ(θ)
yθ−1e−y

1

yK−1

=
Γ(θ)

Γ(θ1) . . .Γ(θK)

.

(
y1∑
yi

)θ1−1

. . .

(
yK∑
yi

)θK−1
1

Γ(θ)
(
∑

yi)
(θ−1)e−

∑
yi .(
∑

yi)
−(K−1)

=
K∏
i=1

1

Γ(θi)
yθi−1
i e−yi

Note that this coincides with the Dirichlet(θ1, . . . , θK) distribution.

Corollary 6.12 The invariant measure of the infinitely many alleles model can
be represented by the random probability measure

(6.26) Y (A) =
X∞(A)

X∞([0, 1])
, , A ∈ B([0, 1]).

where X∞(·) is the equilibrium of the above Jirina process and Y (·) and X∞([0, 1])
are independent.

Reversibility

Recall that the Dirichlet distribution is a reversible stationary measure for the
K − type Wright-Fisher model with house of cards mutation (Theorem 5.9).
From this and the projective limit construction it can be verified that L(Y (·)) is
a reversible stationary measure for the infinitely many alleles process. Note that
reversibility actually characterizes the IMA model among neutral Fleming-Viot
processes with mutation, that is, any mutation mechanism other than the “type-
independent” or “house of cards” mutation leads to a stationary measure that is
not reversible (see Li-Shiga-Yau (1999) [431]).

6.6.3 The Poisson-Dirichlet Distribution

Without loss of generality we can assume that ν0 is Lebesgue measure on [0, 1].
This implies that the IMA equilibrium is given by a random probability measure
which is pure atomic

(6.27) p∞ =
∞∑
i=1

aiδxi ,

∞∑
i=1

ai = 1, xi ∈ [0, 1]



Supplementary EXERCISES FOR LECTURE 9

1. Consider two Feller CSB with immigration as in Equation 6.15 in the
notes (with WAi

t , W
Aj

t independent Brownian motions, i 6= j). Show that
Yt := Xt(Ai) + Xt(Aj) is a Feller CSB with immigration.

2. Prove Campbell’s Theorem.

3. Consider the Gamma subordinator {G(s) : s ≥ 0} and let 0 ≤ a < b.
(a) Prove that

P (G(b)−G(a) = 0) = 0

(b) Calcuate the probability that there is no jump in (a, b) larger than 1.

1


