Problem 1. What is the maximum number of points in the cartesian plane whose both coordinates are rational numbers, which lie on the same circle whose center is not a point whose both coordinates are rational numbers?

Solution. Let \((x_0, y_0)\) be the coordinates of the center of the circle and let \((x_i, y_i)\) for \(i = 1, \ldots, \ell\) be points with both coordinates rational numbers lying on our circle; our goal is to find the largest value for \(\ell\). We know that \(\ell = 2\) is possible since both \((-1, 0)\) and \((1, 0)\) lie on the same circle centered at the point \((0, \alpha)\) for any \(\alpha \in \mathbb{R}\).

We will show below that \(\ell \geq 3\) is impossible.

So, assume \(\ell \geq 3\); then we know that for each \(i = 1, \ldots, \ell\), we have that

\[(x_i - x_0)^2 + (y_i - y_0)^2 = (x_1 - x_0)^2 + (y_1 - y_0)^2.\]

This last equation simplifies to

\[(1) \quad x_i^2 + y_i^2 - x_1^2 - y_1^2 = 2(x_i - x_1) \cdot x_0 + 2(y_i - y_1) \cdot y_0.\]

We know that both both \(x_0\) and \(y_0\) are rational numbers; without loss of generality, we may assume \(y_0 \notin \mathbb{Q}\).

Since not all 3 points \((x_i, y_i)\) for \(i = 1, 2, 3\) can lie on the same line, then we cannot have that \(y_1 = y_2 = y_3\) or, without loss of generality, we assume \(y_3 \neq y_1\).

Using (1) for \(i = 3\), we conclude that also \(x_3 - x_1 \neq 0\) since otherwise we would derive a contradiction because the left hand side is given to be rational, while the right hand wouldn’t be rational.

Now, similar to equation (1), we get

\[(2) \quad x_2^2 + y_2^2 - x_3^2 - y_3^2 = 2(x_2 - x_3) \cdot x_0 + 2(y_2 - y_3) \cdot y_0.\]

So, either \(y_2 - y_3 \neq 0\) or \(y_2 - y_1 \neq 0\); again, without loss of generality, we may assume \(y_2 - y_3 \neq 0\). Therefore, arguing as before, we get \(x_2 - x_1 \neq 0\); also, we have:

\[(3) \quad (x_2 - x_1) \cdot x_0 + (y_2 - y_1) \cdot y_0 \in \mathbb{Q} \quad \text{and} \quad (x_3 - x_1) \cdot x_0 + (y_3 - y_1) \cdot y_0 \in \mathbb{Q}.\]

Now, if

\[(4) \quad \frac{y_2 - y_1}{x_2 - x_1} \neq \frac{y_3 - y_1}{x_3 - x_1},\]

then (3) yields that \(x_0, y_0 \in \mathbb{Q}\), which is a contradiction. So, we must have that

\[\frac{y_3 - y_1}{x_3 - x_1} = \frac{y_2 - y_1}{x_2 - x_1},\]

which means that the three points \((x_1, y_1), (x_2, y_2)\) and \((x_3, y_3)\) are on the same line, contradicting that they are on the same circle. So, indeed we cannot have more than 2 points with rational coordinates on the same circle whose center doesn’t have rational coordinates.
Problem 2. Let $F_0(x) = \log(x)$ and for each $n \geq 1$ and $x > 0$, we let
\[F_n(x) = \int_0^x F_{n-1}(t) \, dt. \]

Compute
\[\lim_{n \to \infty} \frac{n! \cdot F_n(1)}{\ln(n)}. \]

Solution. We claim that for each $n \geq 1$, we have that
\[F_n(x) = \frac{x^n}{n!} \left(\log(x) - \sum_{k=1}^{n} \frac{1}{k} \right). \]

The statement is easily seen to be true when $n = 1$ since - integrating by parts - we obtain that $F_1(x) = x \log(x) - x$. (Here we also use implicitly the fact that\[
\lim_{x \to 0^+} x \log(x) = 0
\]
and thus, more generally, for any positive integer m, we have that\[
\lim_{x \to 0^+} x^m \log(x) = 0.
\]
The above limits are easily computed using L'Hôpital's Rule, for example.) Then, inductively, we see that if\[F_n(x) = \frac{x^n}{n!} \left(\log(x) - \sum_{k=1}^{n} \frac{1}{k} \right), \]
then computing $F_{n+1}(x)$ (again using integration by parts and the above limit of $x^m \log(x)$ as $x \to 0^+$), we get
\[F_{n+1}(x) = \frac{x^{n+1}}{(n+1)!} \cdot \log(x) - \frac{x^{n+1}}{(n+1)! \cdot (n+1)} - \frac{x^{n+1}}{(n+1)! \cdot (n+1)} \cdot \left(\sum_{k=1}^{n} \frac{1}{k} \right), \]
which delivers the desired formula for $F_{n+1}(x)$ inductively. Therefore
\[n! \cdot F_n(1) = - \sum_{k=1}^{n} \frac{1}{k} \]
and so, we are left to compute the limit
\[\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k} \log(n). \]
Now, using the fact that the function $x \mapsto \frac{1}{x}$ is decreasing for $x \geq 1$, we see that
\[\int_1^{n+1} \frac{1}{x} \, dx < \sum_{k=1}^{n} \frac{1}{k} < 1 + \int_1^{n} \frac{1}{x} \, dx \]
(after considering left, respectively right Riemann sums for the integral of $1/x$). So, this means that
\[\log(n+1) < \sum_{k=1}^{n} \frac{1}{k} < 1 + \log(n) \]
and therefore, using the Squeeze Theorem, we conclude that
\[\lim_{n \to \infty} \frac{n! \cdot F_n(1)}{\log(n)} = - \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k \log(n)} = -1. \]
Problem 3. Let \(p \) be a prime number and let \(f \in \mathbb{Z}[x] \). Assume that the integers \(f(k) \) for \(0 \leq k \leq p^2 - 1 \) are all distinct modulo \(p^2 \). Then prove that for each \(n \in \mathbb{N} \), the integers \(f(k) \) for \(0 \leq k \leq p^n - 1 \) are distinct modulo \(p^n \).

Solution. First of all, we know that if
\[
x \equiv y \pmod{m}
\]
for any integers \(x, y, m \). In particular, this means that
\[
f(k + pj) \equiv f(k) \pmod{p}
\]
for each \(k, j = 0, \ldots, p - 1 \).

On the other hand, a simple computation shows that
\[
f(k + pj) \equiv f(k) + pjf'(k) \pmod{p^2}
\]
for each \(k, j = 0, \ldots, p - 1 \).

Since the numbers \(f(k + pj) \) are distinct modulo \(p^2 \), then this means that actually \(f'(k) \) is not divisible by \(p \) (for each \(k = 0, \ldots, p - 1 \)).

Now, we prove inductively on \(n \) that the numbers \(f(0), \ldots, f(p^n - 1) \) are all distinct modulo \(p^n \); the statement for \(n = 1, 2 \) is already the hypothesis in our problem. So, we assume that \(f(0), \ldots, f(p^n - 1) \) are distinct modulo \(p^n \) (for some \(n \geq 2 \)) and we prove that \(f(0), \ldots, f(p^{n+1} - 1) \) are distinct modulo \(p^{n+1} \).

We have that for each \(\ell \in \{0, \ldots, p^n - 1\} \),
\[
f'(\ell) \not\equiv 0 \pmod{p}
\]
because each \(f'(\ell) \) is congruent with some \(f'(k) \) modulo \(p \) where \(\ell \equiv k \pmod{p} \) and we know that for \(k \in \{0, \ldots, p - 1\} \), we have that
\[
f'(k) \not\equiv 0 \pmod{p}.
\]

Now, since each \(f(\ell) \) are distinct modulo \(p^n \) for \(\ell = 0, \ldots, p^n - 1 \), in order to obtain the inductive conclusion, all we need to show is that for each \(j \in \{0, \ldots, p - 1\} \), the numbers \(f(\ell + jp^n) \) are distinct modulo \(p^{n+1} \). But using the same computation as before (which is essentially a Taylor expansion around \(x = \ell \), or alternatively obtained from expanding each monomial from \(f(\ell + jp^n) \)), we have that
\[
f(\ell + jp^n) \equiv f(\ell) + jfp^n f'(\ell) \pmod{p^{n+1}}.
\]

Since \(p \) doesn’t divide \(f'(\ell) \), then as we vary \(j \in \{0, \ldots, p - 1\} \), we obtain distinct residue classes modulo \(p^{n+1} \) for the numbers \(f(\ell + jp^n) \), therefore showing that the integers \(f(0), \ldots, f(p^{n+1} - 1) \) are all distinct modulo \(p^{n+1} \), as desired. Indeed, if \(0 \leq i_1 < i_2 \leq p^{n+1} - 1 \), then either
\[
i_2 \not\equiv i_1 \pmod{p^n},
\]
in which case by the inductive hypothesis, we have that
\[
f(i_1) \not\equiv f(i_2) \pmod{p^n}
\]
and therefore, also
\[
f(i_2) \not\equiv f(i_1) \pmod{p^{n+1}},
\]
or \(i_2 = i_1 + p^n j \) for some \(1 \leq j \leq p - 1 \) and then
\[
f(i_2) \equiv f(i_1) + p^n j f'(i_1) \pmod{p^{n+1}}
\]
and because \(p \) doesn’t divide \(f'(i_1) \) (nor divides \(j \)), then
\[
f(i_2) \not\equiv f(i_1) \pmod{p^{n+1}}.
\]
Problem 4. Find all functions \(f : \mathbb{R} \to \mathbb{R} \) whose derivative is continuous with the property that for each rational number \(\frac{\alpha}{\beta} \), written in lowest terms (i.e., \(a, b \in \mathbb{Z} \) with \(b \in \mathbb{N} \) and \(\gcd(a, b) = 1 \)), we have that also \(f \left(\frac{\alpha}{\beta} \right) \) is a rational number whose denominator, when we write \(f \left(\frac{\alpha}{\beta} \right) \) in lowest terms, is also equal to \(b \).

Solution. Let \(\frac{\alpha}{\beta} \in \mathbb{Q} \) be a fraction in its lowest terms (so, \(\gcd(a, b) = 1 \)). We consider the limit:

\[
L := \lim_{n \to \infty} f \left(\frac{\alpha}{\beta} + \frac{1}{bn} \right) - f \left(\frac{\alpha}{\beta} \right) .
\]

Clearly, since \(f \) is differentiable, then we have that \(L = f' \left(\frac{\alpha}{\beta} \right) \).

On the other hand, we claim that \(L \) must be an integer; here’s why. We have that

\[
\frac{\alpha}{\beta} + \frac{1}{bn} = \frac{an + 1}{bn}
\]

is a rational number whose denominator (in lowest terms) is a divisor of \(bn \). Therefore, due to our hypothesis, we have that there exists some integer \(k_n \) such that

\[
f \left(\frac{\alpha}{\beta} + \frac{1}{bn} \right) = \frac{k_n}{bn} .
\]

On the other hand, we already know (again due to our hypothesis) that there exists an integer \(\ell \) such that

\[
f \left(\frac{\alpha}{\beta} \right) = \frac{\ell}{b},
\]

which means that

\[
\frac{k_n}{bn} - \frac{\ell}{b} = k_n - n\ell \in \mathbb{Z} .
\]

So, \(L \) is actually a limit of some integers; therefore, \(L \) itself must be an integer (and actually, it means that for all \(n \) sufficiently large, we have that \(k_n - n\ell \) must be constant).

So, we have that for each rational number \(q \in \mathbb{Q} \), \(f'(q) \in \mathbb{Z} \). Now, since (by our hypothesis), \(f'(x) \) is a continuous function, then this means that \(f'(x) \) must be a constant function. Indeed, first of all, because each real number is the limit point of a sequence of rational numbers and \(f'(q) \in \mathbb{Z} \) when \(q \in \mathbb{Q} \), then this forces that for any \(x_0 \in \mathbb{R} \),

\[
f'(x_0) = \lim_{q \to x_0} f'(q) \in \mathbb{Z} .
\]

So, \(f' : \mathbb{R} \to \mathbb{Z} \) is a continuous function, which in particular, it means that it must satisfy the Intermediate Value Theorem. However \(f'(x) \) never takes values which are not integers; therefore, \(f'(x) \) cannot take two distinct integer values \(r < s \) (say) because then this would violate the Intermediate Value Theorem since \(f'(x) \) would never take the value \(r + \frac{1}{2} \). So, \(f'(x) \) is constant (equal to some integer \(c \)), which means that

\[
f(x) = cx + d \text{ for some given } c \in \mathbb{Z} \text{ and } d \in \mathbb{R} .
\]

Now, since \(f(q) \in \mathbb{Q} \) whenever \(q \in \mathbb{Q} \), then this means that \(d \in \mathbb{Q} \). Moreover, because \(f(0) = d \), applying our hypothesis to the rational number \(\frac{\alpha}{\beta} \) yields that \(d \) itself must be an integer number. We finally claim that \(c \) must be either equal to 1 or to \(-1\).

Now, first of all, \(c \) cannot be equal to 0 because then \(f(x) = d \in \mathbb{Z} \) and so, \(f \left(\frac{1}{2} \right) \) would not be a fraction in its lowest terms with denominator equal to 2.
Second, if $|c| > 1$, then we consider

$$f\left(\frac{1}{2c}\right) = \frac{1}{2} + d$$

is a fraction in lowest terms with denominator equal to 2, thus contradicting our hypothesis (because it should have denominator equal to $|2c| > 2$). So, indeed, we need $|c| = 1$.

On the other hand, if $f(x) = x + d$ or $f(x) = -x + d$, then clearly, our hypothesis is verified and we are done.