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Abstract. We prove a non-abelian variant of the classical Mordell-Lang conjecture in the
context of finite-dimensional central simple algebras.

1. Introduction

Many important classes of Diophantine problems can be formulated in the context of start-
ing with a set of invertible matrices B1, . . . , Br ∈ GLm (over some algebraically closed field
K) and then given a subvariety V ⊆ GLm(K), one studies the set

(1.1) {(n1, . . . , nr) ∈ Zr : Bn1
1 · · ·B

nr
r ∈ V } .

To give just a small sample of questions that fall under this framework, when r = 1, K = Q,
and V is the set of matrices whose (1, 1)-entry is zero then this question is equivalent to
Skolem’s problem, which asks whether there is a decision procedure to determine if an integer
linear recurrence has a zero. By increasing r and using block diagonal matrices, we can
similarly study solutions (n1, . . . , nr) ∈ Nr to f1(n1) + · · · + fr(nr) = 0 where f1, . . . , fr are
sequences satisfying linear recurrences. This was studied by Cerlienco, Mignotte, and Piras
[CMP87] and it was later shown by Derksen and Masser [DM15] that determining whether
there is a solution is undecidable.

The above construction can be further generalized by considering some ambient algebraic
variety G endowed with finitely many self-maps ϕ1, . . . , ϕr and then given some starting point
α ∈ G and some subvariety V ⊂ G, one studies the structure of the set:

(1.2) {(n1, . . . , nr) ∈ Nr : (ϕ◦n1
1 ◦ ϕ◦n2

2 ◦ · · · ◦ ϕ◦nr
r ) (α) ∈ V } .

The Mordell-Lang conjecture (proven by Laurent [Lau84] in the case of algebraic tori, by
Faltings [Fal91] in the case of abelian varieties and by Vojta [Voj96] for arbitrary semiabelian
varieties) asserts that if G is a semiabelian variety (defined over an algebraically closed field K
of characteristic 0), then the intersection of any finitely generated subgroup Γ of G(K) with
a subvariety V ⊂ G is a finite union of cosets of subgroups of Γ. This famed conjecture can
easily be translated into a question of type (1.2) by considering the above self-maps ϕi on G be
translations by elements from a finite set of generators for Γ. This alternative interpretation
of the classical Mordell-Lang question led to the formulation of the Dynamical Mordell-Lang
Conjecture (see [BGT16] for a comprehensive treatment of this problem).

Recently, two of the authors (see [Hua20] and [GH24]) have investigated S-unit equations
in finite-dimensional division rings and by embedding these rings into matrix rings one can
phrase many of these “noncommutative S-unit questions” into the general framework above.

As it turns out, there is a natural dichotomy that arises when studying the original prob-
lem (1.1) inside GLm: when the matrices are diagonalizable then the solution sets are well
behaved and a version of the Mordell-Lang conjecture holds in this context (see [GTZ11,
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Theorem 1.3]). Even though the result from [GTZ11] is stated in the context of endomor-
phisms of semiabelian varieties, the problem translates immediately to a question regarding
finitely generated subgroups of GLm of diagonalizable matrices. Indeed, given diagonalizable
matrices Bi, i.e.,

Bi = C−1i ·Di · Ci for some Ci ∈ GLm and some diagonalizable matrix Di,

then the question of finding all r-tuples (n1, . . . , nr) ∈ Zr with the property that

Bn1
1 · · ·B

nr
r ∈ V (for some given subvariety V of GLm)

reduces to the classical Mordell-Lang problem for algebraic tori, solved by Laurent [Lau84].
On the other hand, when one allows arbitrary matrices Bi, the above general question be-
comes undecidable and work of Scanlon and Yasufuku [SY14] shows that any Diophantine
subset of Nr can be realized as the set of solutions to an equation Bn1

1 · · ·Bnr
r ∈ V for a

subvariety V of GLm(K). The fundamental difference between these two situations is that in
the diagonalizable case the analysis reduces to the study of equations

P (λn1
1,1, . . . , λ

n1
1,m, . . . , λ

nr
r,1, . . . , λ

nr
r,m) = 0

(with P a polynomial and λi,j eigenvalues of the matrices), which, although difficult, can be
greatly aided with the help of theorems on S-unit equations (see [Lau84, Sch90]).

In the non-diagnonalizable case, however, one now must contend with polynomial-exponential
equations and the famed DPRM Theorem (see [Mat93]) shows that every recursively enumer-
able subset of Nr (that is, every subset that can be enumerated by a Turing machine) can be
realized as the zero set of such an equation.

Somewhat surprisingly we are able to show that the pathologies that arise in the non-
diagonalizable case can be handled when one imposes conditions on the eigenvalues of the
matrix generators and only considers subvarieties V of Mn(K) that do not pass through the

origin. Given a field K, we recall that a collection of elements s1, . . . , sr ∈ K
×

is multiplica-
tively independent if n1, . . . , nr ∈ Z and sn1

1 · · · · · snr
r = 1 imply that n1 = · · · = nr = 0.

We say a collection of elements B1, . . . , Br ∈ Mr(K) has multiplicatively independent
eigenvalues if the set of eigenvalues (counted without multiplicity) of B1, . . . , Br are pair-
wise disjoint and their union is multiplicatively independent. Our main result is the following
general Mordell-Lang variant.

Theorem 1.1. Let K be an algebraically closed field of characteristic zero, let B1, . . . , Br ∈
GLm(K) be matrices with multiplicatively independent eigenvalues, and let V be a closed
subvariety of GLm(K) not passing through zero. If

(1.3) Γ := {Bn1
1 · · · · ·B

nr
r : n1, . . . , nr ∈ Z},

then |V (K) ∩ Γ| <∞.

In fact, we prove a slightly more general (although equivalent) version of Theorem 1.1 for
central simple algebras (see Theorem 2.2), which has the advantage of being immediately
applicable to recent “noncommutative” variants of the Mordell-Lang problem.

We note that the finiteness we obtain can be viewed as the “generic” situation of the
Mordell-Lang conjecture; that is, one generally expects the intersection of a finitely generated
group in a semiabelian variety with a subvariety to be finite unless there is some additional
geometric structure that explains the infinite intersection. One cannot expect to get a gen-
eral finiteness result of the form given in Theorem 2.2 without some mild constraints; we
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give examples in § 2.3 which show that attempts to weaken the hypotheses can give rise to
pathological intersection sets.

The outline of this paper is as follows. In § 2 we state a couple of technical results, which
are both variants of the classical Mordell-Lang problem in two different settings. Theorem 2.2
is an equivalent formulation of Theorem 1.1 in the context of finite-dimensional central simple
algebras, while Theorem 2.7 is a variant of the classical Mordell-Lang theorem in the context
of commutative linear algebraic groups. Theorem 2.7 is also a key ingredient in our proof of
Theorem 2.2. We prove Theorem 2.7 in § 3 and we conclude our proof of Theorem 2.2 in § 4.

Acknowledgments. We thank Zinovy Reichstein for numerous helpful conversations.

2. A couple of variants of the classical Mordell-Lang conjecture

We start by setting the notation for our paper.

2.1. Notation. Throughout this paper, let N denote the set of nonnegative integers, K be a
field of characteristic 0, and A be a finite-dimensional central simple algebra over K. We let
` := [A : K]. Then, geometrically, A can be identified with the K-points of the `-dimensional
affine space A`(K). Moreover, since the multiplicative group A× embeds into GL`(K) by
f 7→ Lf , where Lf : A→ A is left-multiplication map by f , we see that A× can be identified
with the K-points of a linear algebraic group. For f ∈ A, we define Λf to be the set of

eigenvalues of Lf over the algebraic closure K, not counting multiplicities.

Definition 2.1. We say a collection of elements f1, . . . , fr ∈ A× has multiplicatively in-
dependent eigenvalues if Λf1 , . . . ,Λfr are disjoint and their union is multiplicatively inde-
pendent.

In this paper, unless otherwise noted, each algebraic group is connected.

2.2. A variant of the Mordell-Lang problem for central simple algebras. The fol-
lowing result is an equivalent re-statement of Theorem 1.1 in the setting of finite-dimensional
central simple algebras.

Theorem 2.2. Let K,A be as above, V be a closed K-subvariety of A not passing through
zero, f1, . . . , fr ∈ A×, and Γ be the set:

(2.1) Γ = {fn1
1 · · · · · f

nr
r : n1, . . . , nr ∈ Z} ⊆ A×.

If f1, . . . , fr have multiplicatively independent eigenvalues, then |V (K) ∩ Γ| <∞.

Next we present various examples showing the relevance of the hypotheses from Theo-
rem 2.2.

2.3. Examples. We first recall that for any nilpotent matrix x in Matn(K) (so that xn = 0),
there is a well-defined unipotent matrix

(2.2) exp(x) :=

∞∑
k=0

xk/k! =

n−1∑
k=0

xk/k!.

Moreover, exp(x+ y) = exp(x) exp(y) if xy = yx.
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We denote by εn the nilpotent matrix

(2.3) εn :=


0 1

0
. . .
. . . 1

0

 ∈ Matn(K).

The following example shows the necessity of the assumption of Theorem 2.2 that V does
not pass through 0.

Example 2.3. Let A = Mat3(K), ε := ε3, f1 = 2 exp(ε), and f2 = 3 exp(−ε2). Then for
n1, n2 ∈ Z, we have that

(2.4) fn1
1 fn2

2 = 2n13n2 exp
(
n1ε− n2ε2

)
= 2n13n2

(
1 + n1ε+

(
−n2 +

n21
2

)
ε2
)
.

Hence, if V ⊆ A is cut out by the condition that the top-right entry is zero, then fn1
1 fn2

2 ∈ V
if and only if n2 =

n2
1
2 . The corresponding subset in Z2 is not only infinite, but also not a

finite union of cosets of subgroups of Z2.

In this example, f1, f2 have multiplicatively independent eigenvalues, but 0 ∈ V .

In view of [GH24], it is tempting to replace the assumption of Theorem 2.2 that f1, . . . , fr
have multiplicatively independent eigenvalues by the assumption that det(f1), . . . ,det(fr) are
multiplicatively independent. The following example shows we cannot do so.

Example 2.4. Let A = Mat4(K), ε := ε3, f1 = diag(2 exp(ε), 1) ∈ Mat3+1(K), and f2 =
diag(3 exp(−ε2), 1). Let V ⊆ A be cut out by the condition that the (3, 1)-entry is zero and
the (4, 4)-entry is 1. Then by the same argument as the preceeding example, fn1

1 fn2
2 ∈ V if

and only if n2 =
n2
1
2 .

In this example, 0 /∈ V , and det(f1) = 23,det(f2) = 33 are multiplicatively independent.
However, f1 has eigenvalues {2, 1}, and the presence of 1 implies that f1, f2 do not have
multiplicatively independent eigenvalues.

Finally, the next example shows that if one were to replace the set Γ from Theorem 2.2
with the subgroup generated by f1, . . . , fr, then the conclusion would fail.

Example 2.5. Let A = Mat2(K), f1 = diag(2, 3), and f2 = diag(5, 7) + ε, where ε =

[
0 1
0 0

]
.

Then the subgroup Γ generated by f1, f2 contains u := f1f2f
−1
1 f−12 = I2− 1

21ε. In particular,
un for n ∈ N give infinitely many elements in V (K) ∩ Γ, where

(2.5) V =

{[
a b
c d

]
: a = d = 1, c = 0

}
.

2.4. A variant of the Mordell-Lang problem in an arbitrary commutative algebraic
group. Theorem 2.7 is our key ingredient for proving Theorem 2.2 and it is itself another
variant of the classical Mordell-Lang problem (this time in the context of the commutative
linear algebraic groups).
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One of the most important special case of the classical Mordell-Lang conjecture says that
given a semiabelian variety G (defined over an algebraically closed field K of characteristic 0)
and given a finitely generated subgroup Γ ⊂ G(K), if

(2.6) V contains no translate of a nontrivial algebraic subgroup of G,

then |V (K) ∩ Γ| < ∞. It is natural to consider extensions of the classical Mordell-Lang
conjecture to arbitrary commutative algebraic groups G. The first such case to consider would
be for affine groups, i.e., when G is isomorphic to G`

m×Gk
a for some k, ` ∈ N, and once again

study this problem under the assumption (2.6). However, [GHST19, Examples 1.1 and 1.2]
show that the presence of multiple copies of Ga will generate counterexamples of the Mordell-
Lang principle. Our next Theorem 2.7 provides a setting where the aforementioned variant
of the Mordell-Lang conjecture holds even in the presence of arbitrarily many copies of Ga in
the linear algebraic group G.

In order to state Theorem 2.7, we need the following definition.

Definition 2.6. Let G be a commutative linear algebraic group over a field K of charac-
teristic 0, and Γ be a finitely generated subgroup of G(K). We say Γ ⊆ G(K) is strongly
independent if there are r, u, `1, . . . , `r ∈ Z≥0 and an isomorphism G ' G`1+···+`r

m × Gu
a,

under which a generating set g1, . . . , gr of Γ takes the form

(2.7)

g1 = (λ1,1, . . . , λ1,`1)× (1, . . . , 1)× · · · × (1, . . . , 1)× b1,
g2 = (1, . . . , 1)× (λ2,1, . . . , λ2,`2)× · · · × (1, . . . , 1)× b2,
. . .

gr = (1, . . . , 1)× (1, . . . , 1)× · · · × (λr,1, . . . , λr,`r)× br,

where λi,j ∈ K× are multiplicatively independent and b1, . . . , br ∈ Ku (i.e., they are K-vectors

with u entries). In this case, we let Ti := G`i
m and U = Gu

a and we say Γ ⊆ G(K) is strongly
independent with respect to the decomposition G = T1 × · · · × Tr × U .

Theorem 2.7. Let G be a commutative linear algebraic group over a field K of characteristic
zero, V ⊆ G be a closed subvariety, and Γ be a finitely generated subgroup of G(K). Assume

(i) Γ is strongly independent in G(K) with respect to some decomposition G = T1× · · · ×
Tr × U , and

(ii) there is no i ∈ {1, . . . , r} and no geometric point v ∈
(∏

j 6=i Tj

)
× U such that

(2.8) Ti × {v} ⊆ V ;

then |V (K) ∩ Γ| <∞.

2.5. Remarks regarding Theorem 2.7. We show next that the conclusion in Theorem 2.7
fails if one removes the hypotheses regarding V and Γ.

First of all, condition (2.8) is a weaker version of condition (2.6) and in its absence, Theo-
rem 2.7 would fail as the next example shows it.

Example 2.8. Consider G = G2
m and Γ be generated by (2, 1) and (1, 3), while V = {2}×Gm.

Then clearly, V ∩ Γ is infinite. Note that in this example, Γ is strongly independent, but V
does not satisfy hypothesis (2.8) from Theorem 2.7.
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The relevance of the hypothesis that Γ is strongly independent is more subtle. On one
hand, the next example shows that in its absence, one would definitely have to strengthen the
hypothesis (2.8) to the original hypothesis (2.6) from the classical Mordell-Lang problem.

Example 2.9. Consider the case when G = G2
m and Γ ⊂ G(K) is spanned by (2, 1) and

(1, 4). Then Γ is contained in the subvariety V given by the equation x2 = x21. We note that
V meets the hypothesis (2.8) from Theorem 2.7, but since Γ is not strongly independent, the
intersection V ∩ Γ is infinite in this case.

However, the following example shows that even if we were to strengthen the hypothe-
sis (2.8) to (2.6), one would still not obtain the desired conclusion in Theorem 2.7 in the
absence of the hypothesis that Γ is strongly independent.

Example 2.10. Consider the case when G = Gm×Ga and Γ is generated by (2, 1) and (2, 0).
Then Γ has infinite intersection with the diagonal subvariety V ⊂ G given by the equation
x1 = x2. Indeed, Γ consists of all points of the form{(

2m+n,m
)

: m,n ∈ Z
}

and so, V ∩ Γ consists of the set

{(2s, 2s) : s ∈ N} ,
which is not a finite union of cosets of a subgroups of Γ. In this case, V is a curve, which is
not a coset of subgroup of Γ, but nevertheless the intersection V ∩Γ is infinite; however, note
that Γ is not strongly independent in this example.

3. Proof of Theorem 2.7

In this Section we work with the notation and hypotheses from Theorem 2.7 in order to
prove it.

It suffices to prove Theorem 2.7 assuming K is algebraically closed. Therefore, we may
assume G = G`

m ×Gk
a for some `, k ∈ N. Furthermore, we can write

` := `1 + `2 + · · ·+ `r,

where the group Γ is generated by

(3.1)

g1 = (λ1,1, . . . , λ1,`1)× (1, . . . , 1)× · · · × (1, . . . , 1)× b1,
g2 = (1, . . . , 1)× (λ2,1, . . . , λ2,`2)× · · · × (1, . . . , 1)× b2,
. . .

gr = (1, . . . , 1)× (1, . . . , 1)× · · · × (λr,1, . . . , λr,`r)× br,

for some b1, . . . , br ∈ Gk
a(K); moreover, the elements λi,j ∈ K× are multiplicatively indepen-

dent. We write each

(3.2) bi := (bi,1, . . . , bi,k) for i = 1, . . . , r,

where each bi,j ∈ K (for 1 ≤ i ≤ r and 1 ≤ j ≤ k).

Taking into account that ` = `1 + · · ·+ `r, we represent each polynomial f in the vanishing
ideal I(V ) of V as a polynomial in

K[x1,1, . . . , x1,`1 , x2,1, . . . , x2,`2 , . . . , xr,1, . . . , xr,`r , y1, . . . , yk].
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So, we let f1, . . . , fm be a given set of generators for I(V ) and we consider next fs, for some
1 ≤ s ≤ m. Then we can write fs as

(3.3) fs :=
∑

j=(ji,u) 1≤i≤r
1≤u≤`i

r∏
i=1

`i∏
u=1

x
ji,u
i,u · Ps,j(y1, . . . , yk),

where the sum in (3.3) runs over a finite set Js of tuples

j := (j1,1, . . . , j1,`1 , j2,1, . . . , j2,`2 , . . . , jr,1, . . . , jr,`r) ∈ N`,

while Ps,j ∈ K[y1, . . . , yk] is some nonzero polynomial.

For each j ∈ Js, there is a polynomial Qs,j ∈ K[z1, . . . , zr] (depending on the bi’s, according

to equation (3.2)) with the property that

(3.4) Qs,j(n1, . . . , nr) := Ps,j

(
r∑

i=1

ni · bi

)
for each n1, . . . , nr ∈ Z.

Using equations (3.1), (3.2) and (3.4), we see that fs vanishes at the point gn1
1 · · · gnr

r ∈
G`

m ×Gk
a (for some integers n1, . . . , nr) if and only if

(3.5)
∑
j∈Js

r∏
i=1

`i∏
u=1

λ
ji,u·ni

i,u ·Qs,j(n1, . . . , nr) = 0.

So,
∏r

i=1 g
ni
i ∈ V if and only if n := (n1, . . . , nr) satisfies the system of equations (3.5) for

s = 1, . . . ,m. We argue by contradiction and assume there exists an infinite set of solutions
S :=

{
n(i)
}
i≥1 to the above system of polynomial-exponential equations (3.5). In order to

simplify the index notation from (3.5), we re-write that equation as follows:

(3.6)
∑
j∈Js

(
λ
j
)n

·Qs,j (n) = 0,

where λ := (λi,u) 1≤i≤r
1≤u≤`i

and (
λ
j
)n

:=

r∏
i=1

`i∏
u=1

λ
ji,u·ni

i,u .

In order to analyze the system of m polynomial-exponential equations (3.5), we will apply
the method from [Lau84, § 8]. Since there are finitely many partitions for each set of indices
Js, there exists a given collection of partitions

(3.7) P := (Ps)1≤s≤m
where Ps is a partition of Js for each s = 1, . . . ,m, which is maximally compatible (as
defined in [Lau84, p. 320]) for infinitely many solutions n ∈ S for the system of polynomial-
exponential equations (3.5). At the expense of replacing S by a suitable infinite subset,
we may assume that each of the solutions n ∈ S is maximally compatible with the given
partition (3.7). The compatibility of the collection of partitions P with respect to each
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solution n ∈ S refers to the fact that for each s = 1, . . . ,m, considering the partition Ps of Js
given by

(3.8) Js := Js,1 ∪ · · · ∪ Js,vs (for some positive integer vs),

we have that for each s = 1, . . . ,m:

(3.9)
∑
j∈Js,i

(
λ
j
)n

Qs,j (n) = 0 for each i = 1, . . . , vs.

The maximality of the collection P refers to the fact that there is no further refined collection
of partitions (3.8) such that equations (3.9) hold for each subpart of each corresponding
partition of Js for s = 1, . . . ,m.

We let HP be the subgroup of Zr defined as in [Lau84, p. 319], i.e., HP consists of all
n ∈ Zr with the property that for each s = 1, . . . ,m and for each i = 1, . . . , vs, we have that

(3.10)

(
λ
j1
)n

=

(
λ
j2
)n

for each j1, j2 ∈ Js,i.

According to [Lau84, Theorem 6], we cannot have that HP is the trivial subgroup of Zr since
we assumed there exists an infinite set S of solutions n maximally compatible with respect
to P. So, from now on, we assume there exists some nontrivial n(0) ∈ HP (i.e., not all the

entries of n(0) are equal to 0). Without loss of generality, we assume that

(3.11) n(0) :=
(
n
(0)
1 , . . . , n(0)r

)
with n

(0)
1 6= 0.

Equation (3.10) says that for each s = 1, . . . ,m and for each i = 1, . . . , vs,

(3.12)

(
λ
j
)n(0)

is the same as we vary j ∈ Js,i.

We fix some s ∈ {1, . . . ,m} and also some i ∈ {1, . . . , vs}; then we write each j ∈ Js,i as we
did before: j := (j1,1, j1,2, . . . , j1,`1 , j2,1, j2,2, . . . , j2,`2 , . . . , jr,1, jr,2, . . . , jr,`r). Re-writing (3.12)
using the index notation as in (3.5), we get that

(3.13)
r∏

p=1

`p∏
u=1

λ
jp,u·n(0)

p
p,u is constant as we vary j ∈ Js,i.

Since the λp,u’s are multiplicatively independent and also, n
(0)
1 6= 0, it follows from (3.13) that

for each s = 1, . . . ,m and for each i = 1, . . . , vs, the vector:

(3.14) j
(1)

:= (j1,1, j1,2, . . . , j1,`1) is constant as we vary j ∈ Js,i.

We let n(1) ∈ S and write (3.9) for n := n(1); we get for each s ∈ {1, . . . ,m} and for each
i ∈ {1, . . . , vs} that

(3.15)
∑
j∈Js,i

r∏
p=1

`p∏
u=1

λ
jp,u·n(1)

p
p,u Qs,j

(
n(1)

)
= 0,
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where n(1) :=
(
n
(1)
1 , . . . , n

(1)
r

)
. Using (3.14), we divide (3.9) by

`1∏
u=1

λ
j1,u·n(1)

1
1,u

and therefore, we get

(3.16)
∑
j∈Js,i

r∏
p=2

`p∏
u=1

λ
jp,u·n(1)

p
p,u ·Qs,j

(
n(1)

)
= 0.

We write y(1) :=
∑r

i=1 n
(1)
i · bi ∈ Gk

a(K). Specializing y to y(1) in equation (3.3), we re-write
that equation (for each s = 1, . . . ,m) according to the given partition Ps of Js as follows (see
also the way we re-wrote equation (3.5) as equation (3.6)):

(3.17) fs

(
x, y(1)

)
=

vs∑
i=1

∑
j∈Js,i

(
xj
)
· Ps,j

(
y(1)
)
.

In equation (3.17), we have (as before) (x)j :=
∏r

p=1

∏`p
u=1 x

jp,u
p,u . Using equations (3.14) and (3.16)

(for each s = 1, . . . ,m and each i = 1, . . . , vs) and specializing further in equation (3.17) each

xp,j := λ
n
(1)
p

p,j for p = 2, . . . , r and j = 1, . . . , `p,

we get that

(3.18) fs

(
x1,1, . . . , x1,`1 , λ

n
(1)
2

2,1 , λ
n
(1)
2

2,2 , . . . , λ
n
(1)
2

2,`2
, . . . , λn

(1)
r

r,1 , . . . , λ
n
(1)
r

r,`r
, y(1)

)
= 0,

for any x1,1, . . . , x1,`1 . Thus, equation (3.18) tells us that V contains the entire subvariety of

G`
m ×Gk

a = T1 × · · ·Tr ×Gk
a given by

T1 ×
{(

λ
n
(1)
2

2,1 , λ
n
(1)
2

2,2 , . . . , λ
n
(1)
2

2,`2
, . . . , λn

(1)
r

r,1 , . . . , λ
n
(1)
r

r,`r
, y(1)

)}
,

thus contradicting the hypothesis from Theorem 2.7. Therefore, indeed, we only have finitely
many solutions to the system of polynomial-exponential equations (3.6). Hence, this concludes
our proof of Theorem 2.7.

4. Proof of Theorem 2.2

In this section, we work with the notation and the hypotheses from Theorem 2.2 in order
to prove it.

By base-changing from K to the algebraic closure K, we may assume K is algebraically
closed, and A = Matn(K) is the matrix algebra for some n ≥ 1, so f1, . . . , fr ∈ GLn(K). Note
that the eigenvalues of Lfi are just the eigenvalues of fi repeated n times, so Λfi is simply
the set of eigenvalues of fi (not counting multiplicities).

Consider the commutative K-subalgebra K[fi] of Matn(K) generated by fi. We have
commutative linear algebraic groups Gi := K[fi]

× and G := G1 × · · · × Gr. Let gi be the
element (1, . . . , fi, . . . , 1) in G, and let Γ′ be the subgroup of G generated by g1, . . . , gr.

Over an algebraically closed field K, any commutative linear algebraic group is necessarily
of the form G`

m ×Gu
a with `, u ≥ 0. Indeed, one has a direct product decomposition into the
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semisimple part (which gives a torus) and the unipotent part. For a commutative unipotent
group, the exponential map is an isomorphism of algebraic groups, so the unipotent part is
of the form Gu

a.

Next, we will be more explicit regarding each algebraic group Gi. Let Λfi = {λi,1, . . . , λi,`i}
and also, let Gi = Ti×Ui, where Ti is the semisimple part and Ui is the unipotent part. Using
the Jordan canonical form of fi, we have an isomorphism Ti ' (K×)`i , such that the image
of fi projected onto Ti is identified with (λi,1, . . . , λi,`i).

Let U := U1 × · · · × Ur ' Gu
a and let T := T1 × · · · × Tr. From the above discussion, we

get an isomorphism G = T × U ' G`1+···+`r
m × Gu

a under which g1, . . . , gr takes the form of
(2.7) for some v1, . . . , vr ∈ Ku. Since f1, . . . , fr have multiplicatively independent eigenvalues,
λi,j are multiplicatively independent. Thus Γ′ ⊆ G is strongly independent in the sense of
Definition 2.6.

Define an algebraic map (not necessarily a group homomorphism)

(4.1) µ : G = G1 × · · · ×Gr → GLn(K), (z1, . . . , zr)→ z1 . . . zr,

where the multiplication takes place in GLn(K), and let W := µ−1(V ), which is a closed
subvariety of G. We claim that W does not contain a subvariety of the form Ti×{v} for some

i ∈ {1, . . . , r} and some v ∈
(∏

j 6=i Tj

)
× U .

We argue by contradiction and so, without loss of generality, assume that T1×{v} ⊆W for
some v ∈ (

∏r
i=2 Ti)× U . Consider the canonical map τ1 : K× ↪→ G1 ⊆ GLn(K) given by the

scalar matrices. Then τ1 in fact maps into T1 = (K×)`1 and takes the form τ1(c) = (c, . . . , c).
A crucial property of µ is that it behaves well with scalar multiplication: for c ∈ K× and
(z1, . . . , zr) ∈ G = G1 × · · · ×Gr, we have

(4.2) µ(τ1(c) · (z1, . . . , zr)) = µ(cz1, . . . , zr) = cµ(z1, . . . , zr).

Now we pick (z1, . . . , zr) ∈ G that lies in T1 × {v} under the identification G = T × U .
For all c ∈ K×, since T1 × {v} is a T1-coset of G, and τ1(c) ∈ T1 ⊆ T , it follows that
τ1(c) · (z1, . . . , zr) ∈ T1 × {v}. Since T1 × {v} ⊆W , applying µ gives

(4.3) cµ(z1, . . . , zr) ∈ V for all c ∈ K×.
As V is Zariski closed in Matn(K), we get that 0 ∈ V , contradicting thus the hypothesis from
Theorem 2.2. This proves the claim.

Finally, since the assumptions of Theorem 2.7 are verified, we have |W (K) ∩ Γ′| < ∞.
Applying µ, this means fn1

1 . . . fnr
r ∈ V for only finitely many (n1, . . . , nr) ∈ Zr, so the

conclusion of Theorem 2.2 is proved.
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