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ABSTRACT. A plane curve C in P2 defined over Fq is called plane-filling if C contains every Fq-
point of P2. Homma and Kim, building on the work of Tallini, proved that the minimum degree of a
smooth plane-filling curve is q+2. We study smooth plane-filling curves of degree q+3 and higher.

1. INTRODUCTION

The study of space-filling curves in R2 starts with the work of Peano [Pea90] in the 19th century.
About 100 years later, Nick Katz [Kat99] studied space-filling curves over finite fields and raised
open questions about their existence. One version of Katz’s question was the following. Given
a smooth algebraic variety X over a finite field Fq, does there always exist a smooth curve C ⊂
X such that C(Fq) = X(Fq)? In other words, is it possible to pass through all of the (finitely
many) Fq-points of X using a smooth curve? Gabber [Gab01] and Poonen [Poo04] independently
answered this question in the affirmative.

We will consider the special case when X = P2. We say that a curve C ⊂ P2 is plane-filling if
C(Fq) = P2(Fq). Equivalently, C is a plane-filling curve C if #C(Fq) = q2 + q + 1. In a natural
sense, plane-filling curves are extremal. There are other classes of extremal curves with respect to
the set of Fq-points, including blocking curves [AGY23] and tangent-filling curves [AG23].

From Poonen’s work [Poo04], we know that there exist smooth plane-filling curves of degree
d over Fq whenever d is sufficiently large with respect to q. It is natural to ask for the minimum
degree of a smooth plane-filling curve over Fq. Homma and Kim [HK13] proved that the minimum
degree is q + 2. More precisely, by building on the work of Tallini [Tal61a, Tal61b], they showed
that a plane-filling curve of the form

(ax+ by + cz)(xqy − xyq) + y(yqz − yzq) + z(zqx− zxq) = 0

is smooth if and only if the polynomial t3 − (ct2 + bt + a) ∈ Fq[t] has no Fq-roots. In a sequel
paper [Hom20], Homma investigated further properties of plane-filling curves of degree q+2. The
automorphism group of these special curves was studied by Duran Cunha [DC18]. As another
direction, Homma and Kim [HK23] investigated space-filling curves in P1 × P1.

In this paper, we investigate the existence of smooth plane-filling curves of degree q + 3 and
higher. The guiding question for our paper is the following.

Question 1.1. Let q be a prime power. Does there exist a smooth plane-filling curve of degree
q + 3 defined over Fq?

The three binomials xqy − xyq, yqz − yzq, and zqx − zxq generate the ideal of polynomials
defining plane-filling curves; see [HK13, Proposition 2.1] for proof of this assertion. Thus, any
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plane-filling curve of degree q + 3 must necessarily be defined by

Q1(x, y, z) · (xqy − xyq) +Q2(x, y, z) · (yqz − yzq) +Q3(x, y, z) · (zqx− zxq) = 0

for some homogeneous quadratic polynomials Q1, Q2, Q3 ∈ Fq[x, y, z]. The difficulty is finding
suitable Q1, Q2, Q3 for which the corresponding curve is smooth.

Our first result gives a necessary and sufficient condition for the plane-filling curve Ck to be
smooth at all the Fq-points.

Theorem 1.2. For each k ∈ Fq, consider the plane-filling curve Ck defined by

x2(xqy − xyq) + y2(yqz − yzq) + (z2 + kx2)(zqx− zxq) = 0. (1)

Then Ck is smooth at every Fq-point of P2 if and only if the polynomial x7 + kx3 − 1 has no zeros
in Fq.

To ensure that the previous theorem is not vacuous, we need to show that there exists some
k ∈ Fq such that x7 + kx3 − 1 has no zeros in Fq.

Proposition 1.3. There exists a value k ∈ Fq such that x7 + kx3 − 1 ∈ Fq[x] has no zeros in Fq.

Proof. When x = 0, there is no k ∈ Fq such that x7 + kx3 − 1 = 0. For each x ∈ F∗
q , there is a

unique value of k ∈ Fq such that x7 + kx3 − 1 = 0. Thus, there are at most q− 1 values of k ∈ Fq

such that the polynomial x7 + kx3 − 1 has a zero in Fq. □

The next result improves Proposition 1.3.

Theorem 1.4. There exist at least q
6
−1− 28

3

√
q many values of k ∈ Fq such that x7+kx3−1 ∈ Fq[x]

has no zeros in Fq.

Note that Theorem 1.2 and Proposition 1.3 together yields that for each odd q, there exists at least
one value k ∈ Fq for which the corresponding curve Ck has no singular Fq-points. Furthermore,
we expect that the curves in Theorem 1.2 are smooth if and only if they are smooth at all their
Fq-points. Our main conjecture below restates this prediction.

Conjecture 1.5. Suppose q is odd. The plane-filling curve Ck defined by (1) is smooth if and only
if the polynomial x7 + kx3 − 1 has no zeros in Fq.

We have verified Conjecture 1.5 using Macaulay2 [GS] for all odd prime powers q < 200.
When q = 2m is even, the curve Ck defined by (1) turns out to be singular (for every k ∈ Fq). As
a replacement, we consider another curve Dk in this case:

x2(xqy − xyq) + y2(yqz − yzq) + (z2 + kxy)(zqx− zxq) = 0. (2)

We make a similar conjecture regarding the smoothness of the curves Dk.

Conjecture 1.6. Suppose q is even. The plane-filling curve Dk defined by (2) is smooth if and only
if the polynomial x7 + kx5 + 1 has no zeros in Fq.

The polynomial x7 + kx5 + 1 featured above is prominent because one can show, similar to
Theorem 1.2, that a plane-filling curve Dk is smooth at all of its Fq-points (when q is even) if and
only if x7 + kx5 + 1 has no Fq-roots. We have verified Conjecture 1.6 using Macaulay2 [GS] for
q = 2m when 1 ≤ m ≤ 9.

We prove the following as partial progress towards Conjecture 1.5.
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Theorem 1.7. Suppose q is odd. There exists a suitable choice of k ∈ Fq such that the plane-filling
curve Ck defined by by (1) is smooth at all Fq2-points.

A similar argument as the one employed in Theorem 1.7 yields an analogous result when q is
even, and the curve Ck is replaced by Dk.

To prove Theorem 1.7, we will prove that any plane-filling curve of degree q+3 which is smooth
at Fq-points and has no Fq-linear component must be smooth at each of its Fq2-points.

We also investigate plane-filling curves of degree q + r + 1 where r ≥ 2 is arbitrary.

Theorem 1.8. For each k ∈ Fq, consider the plane-filling curve Ck,r defined by

xr(xqy − xyq) + yr(yqz − yzq) + (zr + kxr)(zqx− zxq) = 0.

Then Ck,r is smooth at every Fq-point of P2 if and only if the polynomial xr2+r+1 + kxr+1 − 1 = 0
has no zeros in Fq.

Structure of the paper. In Section 2, we prove Theorem 1.4. We devote Section 3 to Theorem 1.7,
and Section 4 to Theorem 1.8.

2. PROOF OF THEOREM 1.4

We begin this section by noting that Theorem 1.2 is a special case of Theorem 1.8 which will
be proven in Section 4. Our Theorem 1.2 provides a criterion that tests whether the plane-filling
curve Ck defined by (1) is smooth at every Fq-point.

The following technical result will be employed in our proof of Theorem 1.4.

Lemma 2.1. The polynomial x3y3(x+ y)(x2 + y2) + (x2 + xy + y2) is irreducible in Fq[x, y].

Proof. The proof employs a technique seen in Eisenstein’s criterion. First, suppose p = char(Fq) ̸=
3. Assume, to the contrary, that f(x, y) := x3y3(x + y)(x2 + y2) + (x2 + xy + y2) is reducible
over the algebraic closure Fq. Write f(x, y) = g(x, y) · h(x, y), and express

g(x, y) = gm(x, y) + gm+1(x, y) + · · ·+ gs(x, y)

h(x, y) = hn(x, y) + hn+1(x, y) + · · ·+ ht(x, y)

where gi(x, y) and hj(x, y) are homogeneous of degree i and j, respectively, for m ≤ i ≤ s and
n ≤ j ≤ t. From f(x, y) = g(x, y) · h(x, y), we see that

gmhn = x2 + xy + y2

gsht = x3y3(x+ y)(x2 + y2)∑
i+j=k higj = 0 for 2 < k < 9

Since the characteristic p ̸= 3, the polynomial x2 + xy + y2 factors into distinct linear factors in
Fq[x, y]. Let x+ λy be one of those linear factors with λ ∈ Fq. Then x2 + xy + y2 is divisible by
x+ λy but not by (x+ λy)2. Thus, exactly one of gm or hn is divisible by x+ λy. Without loss of
generality, assume x+ λy divides gm, and not hn. Then using

∑
i+j=k higj = 0 for 2 < k < 9, we

inductively see that x+ λy divides gj for each m ≤ j ≤ s. In particular, x+ λy divides gsht. This
is a contradiction because x+ λy does not divide x3y3(x+ y)(x2 + y2). Indeed, x2 + xy+ y2 and
x3y3(x+ y)(x2 + y2) are relatively prime.

When p = 3, a similar argument works from the other end of the polynomial: the leading term
x3y3(x+y)(x2+y2) is divisible by x+y but not by (x+y)2. We deduce that f(x, y) is irreducible
over Fq for every prime power q. □
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Proof of Theorem 1.4. Our goal is to give a lower bound on the number of k ∈ Fq such that the
polynomial x7 + kx3 − 1 has no roots in Fq. As x ranges in F∗

q (note that there is no k ∈ Fq for
which x = 0 would be a root of x7 + kx3 − 1), the number of “bad” choices of k are parametrized
by 1−x7

x3 . We will show that there are many choices of x and y such that 1−x7

x3 and 1−y7

y3
give rise to

the same value of k. Setting these expressions equal to each other, we obtain the following.

1− x7

x3
=

1− y7

y3
⇒ x7y3 − y3 = y7x3 − x3

After rearranging and dividing both sides by x− y, we obtain an affine curve C ⊂ A2 defined by

x3y3(x+ y)(x2 + y2) + x2 + xy + y2 = 0,

for x, y ∈ F∗
q and x ̸= y. Let G be a graph whose vertex set is F∗

q , and there is an edge between
x and y if (x, y) lies on the affine curve C. We consider undirected edges, so the pairs (x, y) and
(y, x) correspond to the same edge.

Claim 1. The number of edges of G is at least q
2
− 6− 28

√
q.

Let C̃ ⊂ P2 be the projectivization of C. By Lemma 2.1, the curve C̃ is geometrically irreducible.
By Hasse-Weil inequality for geometrically irreducible curves [AP96, Corollary 2.5], #C̃(Fq) ≥
q + 1 − 56

√
q. Since the line at infinity z = 0 can contain at most 5 distinct Fq-points, we have

#C(Fq) ≥ q − 4− 56
√
q; furthermore, we exclude the points for which xy = 0 and there is only

one such point [0 : 0 : 1] ∈ C̃. We also need to rule out the points on the diagonal, namely x = y;
in this case, 4x9 + 3x2 = 0 which contributes at most 7 additional points with x ̸= 0. Thus, the
number of (x, y) ∈ C(Fq) with x ̸= y is at least q− 12− 56

√
q. The claim follows since the edges

are undirected.
Claim 2. Every connected component of G is a complete graph Kn where n ∈ {1, 2, 3, 4, 5, 6}.
If (x, y) and (x, z) are both edges of G, then 1−x7

x3 = 1−y7

y3
and 1−x7

x3 = 1−z7

z3
. Consequently,

1−y7

y3
= 1−z7

z3
and (y, z) lies on the curve C, so (y, z) is an edge in G too. Thus, each connected

component of G is a clique. In addition, from the equation of C, the degree of each vertex x ∈ G
is at most 6.

For each 1 ≤ i ≤ 6, let mi denote the number of cliques of size i in G. Counting the number of
edges in G leads to the following equality.

#E(G) =
6∑

i=1

i(i− 1)

2
·mi.

Each clique of size i in G increases the number of “good” values of k by an additive factor of
i − 1 because each clique corresponds to one “bad” value of k, i.e., a value k ∈ Fq for which the
equation x7 + kx3 − 1 = 0 is solvable for some x ∈ Fq. More precisely,

#{k ∈ Fq | x7 + kx3 − 1 has no zeros in Fq}

= q −
6∑

i=1

mi

= 1 + (q − 1)−
6∑

i=1

mi
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= 1 +
6∑

i=1

i ·mi −
6∑

i=1

mi

= 1 +
6∑

i=1

(i− 1) ·mi

≥ 1 +
1

3

6∑
i=1

(i− 1)i

2
·mi ≥ 1 +

1

3
#E(G) ≥ 1 +

1

3

(q
2
− 6− 28

√
q
)

as desired. □

3. SMOOTHNESS AT Fq2 -POINTS

In this section, we show that a plane-filling curve C of degree q + 3 has the following special
property: being smooth at Fq-points implies being smooth at Fq2-points under a mild condition.

Proposition 3.1. Suppose C is a plane-filling curve of degree q + 3 such that
(i) The curve C is smooth at all the Fq-points.

(ii) The curve C has no Fq-linear component.
Then C is smooth at each Fq2-point.

Proof. Assume, to the contrary, that C is singular at some Fq2-point Q. Then Q is not an Fq-
point due to the hypothesis (i). Let Qσ denote the Galois conjugate of Q under the Frobenius
automorphism. More explicitly, if Q = [x : y : z] ∈ P2, then Qσ = [xq : yq : zq]. Note that Qσ is
also contained in C (since C is defined over Fq). Moreover, Qσ is also a singular point of C.

Consider the line L joining Q and Qσ, which is an Fq-line by Galois theory. By hypothesis (ii),
the line L must intersect C in exactly q+3 points (counted with multiplicity). However, L already
contains q + 1 distinct Fq-points of C (because C is plane-filling), and passes through the two
singular points Q and Qσ, each contributing intersection multiplicity at least 2. Thus, the total
intersection multiplicity between L and C is at least (q + 1) + 2 + 2 = q + 5, a contradiction. □

Remark 3.2. We can weaken the hypothesis of Proposition 3.1 by replacing the condition deg(C) =
q + 3 with deg(C) ≤ q + 4. Indeed, the same proof works verbatim.

Next, we show that the plane-filling curves Ck of degree q+3 considered in equation (1) indeed
satisfy condition (ii) when q is odd.

Proposition 3.3. The curve Ck defined by (1) has no Fq-linear components when q is odd.

Proof. There are three types of Fq-lines in P2.
Type I. The line L is given by z = 0.
The curve Ck meets the line {z = 0} at finitely many points determined by x2(xqy − xyq) = 0.

In particular, {z = 0} is not a component of C.
Type II. The line L is given by x = az for some a ∈ Fq.
The curve Ck meets the line {x = az} at finitely many points determined by

(az)2((az)qy − (az)yq) + y2(yqz − yzq) + (z2 + k(az)2)(zq(az)− z(az)q) = 0.

After simplifying and using aq = a, the last term cancels and we obtain:

a3zq+2y − a3z3yq + yq+2z − y3zq = 0
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In particular, {x = az} is not a component of C.
Type III. The line L is given by y = ax+ bz for some a, b ∈ Fq.
If a = 0 or b = 0, then y = bz or y = ax, and the analysis is very similar to the previous case.

We will assume that a ̸= 0 and b ̸= 0. We substitute y = ax+ bz into the equation (1) and collect
terms to obtain:

(b+ a3 − k)xq+2z + (2a2b)xq+1z2 + (b2a− 1)xqz3+

(−b− a3 + k)x3zq + (−2ab)x2zq+1 + (−ab2 + 1)xzq+2 = 0

The coefficient of xq+1z2 is 2a2b, which is nonzero since q is odd (so 2 ̸= 0), a ̸= 0 and b ̸= 0.
Thus, L is not a component of Ck. □

We are now in a position to prove Theorem 1.7 on the existence of k ∈ Fq such that the plane-
filling curve Ck is smooth at all its Fq2-points.

Proof of Theorem 1.7. The result follows immediately from Proposition 1.3, Proposition 3.1, and
Proposition 3.3. □

4. HIGHER DEGREE PLANE-FILLING CURVES

We begin by establishing Theorem 1.8, which provides a necessary and sufficient condition for
the plane-filling curve Ck,r to be smooth at all the Fq-points.

Proof of Theorem 1.8. We consider the curve Ck,r given by the equation:

xr · (xqy − xyq) + yr · (yqz − yzq) + (zr + kxr) · (zqx− zxq) = 0. (3)

We analyze the singular locus of Ck,r and get the equations:

rxr−1 · (xqy − xyq) + xr · (−yq) + krxr−1 · (zqx− zxq) + (zr + kxr) · zq = 0 (4)

xr · xq + ryr−1 · (yqz − yzq) + yr · (−zq) = 0 (5)
yr · yq + rzr−1 · (zqx− zxq) + (zr + kxr) · (−xq) = 0. (6)

We next analyze the possibility that we have a singular point when xyz = 0.
If x = 0, then equation (4) yields z = 0, which is then employed in (6) to derive y = 0,

contradiction.
If y = 0, then equation (5) yields x = 0 and then equation (4) yields z = 0, contradiction.
If z = 0, then equation (5) yields x = 0 and then equation (6) yields y = 0, contradiction.
So, the only possible singular points are of the form [x : 1 : z].
We search for possible singular points [x : 1 : z] ∈ P2(Fq). Then equations (4), (5) and (6) read:

−xr + zr+1 + kxrz = 0 (7)

xr+1 − z = 0 (8)
1− zrx− kxr+1 = 0. (9)

Substituting z = xr+1 from equation (8) into equations (7) and (9), we obtain

−xr + xr2+2r+1 + kx2r+1 = 0 and 1− xr2+r+1 − kxr+1 = 0,

that is, there exists a singular Fq-rational point on Ck,r if and only if there exists x ∈ F∗
q such that

xr2+r+1 + kxr+1 − 1 = 0, (10)

as desired.
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We end the proof by mentioning that some care is needed to treat the case when the characteristic
p of the field divides the degree of the curve (i.e., p divides r+1 in this setting). Indeed, the singular
locus of any projective curve {f = 0} is defined by {f = ∂f

∂x
= ∂f

∂y
= ∂f

∂z
= 0}. When p divides

deg(f), it is not enough to consider the points in the locus {∂f
∂x

= ∂f
∂y

= ∂f
∂z

= 0}. Fortunately, in
our case, the Fq-point [x : 1 : z] is automatically on the curve Ck,r because Ck,r is plane-filling. □

It may be natural to make a prediction identical to Conjecture 1.5 for higher-degree curves.
However, some care is needed, as the following two examples show. We found these examples
using Macaulay2 [GS].

Example 4.1. Let r = 5, q = 11, and k = 9. The plane-filling curve C9,5 over F11 is smooth
at all the F11-points because the polynomial x31 + 9x6 − 1 is an irreducible polynomial over F11.
However, C9,5 is singular at two Galois-conjugate F112-points.

In the previous example, the curve C9,5 is irreducible over F11. Thus, C9,5 satisfies the two
conditions of Theorem 3.1 and yet it is singular at two F112-points. Since deg(C9,5) = q + 6, we
see that Remark 3.2 is close to being sharp.

Example 4.2. Let r = 7, q = 5. In this case, the plane-filling curve Ck,7 defined over F5 is singular
for each k ∈ F5. Indeed, the associated polynomial x57+kx8−1 has an F5-root for k ∈ {0, 2, 3, 4}.
For these values of k, the curve Ck,r is singular at an F5-point. For k = 1, the curve C1,7 is singular
at four points, namely, two pairs of Galois-conjugate F52-points.

The two examples above illustrate that Conjecture 1.5 needs to be modified for plane-filling
curves of degree q+r+1 when r is arbitrary. We propose two related conjectures on the smoothness
of the curve Ck,r from Theorem 1.8. Recall that Ck,r ⊂ P2 is defined by

xr(xqy − xyq) + yr(yqz − yzq) + (zr + kxr)(zqx− zxq) = 0

where r ≥ 2 is a positive integer and k ∈ Fq.

Conjecture 4.3. Let r ≥ 2. There exists an integer m := m(r) with the following property. For all
finite fields Fq with cardinality q > m and characteristic not dividing r, there exists some k ∈ Fq

such that the curve Ck,r is smooth.

Using Macaulay2 [GS], we enumerated through values of r in the range [2, 17] and q in the range
[2, 100] with gcd(r, q) = 1. We found only the following pairs (r, q) for which Ck,r is singular for
every k ∈ Fq: (r, q) = (7, 5), (13, 3), (16, 9), and (17, 7).

Conjecture 4.4. Let r ≥ 2. There exists an integer s := s(r) with the following property. For all
finite fields Fq with characteristic not dividing r, and for all k ∈ Fq, if Ck,r is smooth at all of its
Fqs-points, then Ck,r is smooth.

As a motivation for Conjecture 4.4, we mention the following general fact about pencils of plane
curves. The family of plane curves Ck forms a pencil of plane curves since the parameter k ∈ Fq

appears linearly in the defining equation. If L is a pencil of plane curves in P2 parametrized by A1,
then Fq-members of L are defined by f(x, y, z) + kg(x, y, z) = 0 where k ∈ Fq is arbitrary. We
will use Xk to denote this plane curve in the following proposition.

Proposition 4.5. Let L be a pencil of plane curves {Xk}k∈Fq of degree d defined over a finite field
Fq. Suppose that for every s ≥ 1, there exists some k ∈ Fq such that Xk is smooth at all of its
Fqs-points. Then there exists some ℓ ∈ Fq such that Xℓ is smooth.
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Proof. Assume, to the contrary, that Xk is singular for each k ∈ Fq. For each k ∈ Fq, let nk ∈ N
such that the curve Xk is singular at some Fqnk -point. Let N :=

∏
k∈Fq

nk. By construction, no
Xk is smooth at all of its FqN -points, contradicting the hypothesis. □

Proposition 4.5 asserts that to find a smooth member of any pencil L defined over Fq, it is suffi-
cient to find a member which is smooth at all points of an (arbitrary) finite degree. Conjecture 4.4
strengthens the conclusion by predicting that for a pencil of plane-filling curves, one finds a smooth
member by only checking smoothness at all points of fixed finite degree.

REFERENCES

[AG23] Shamil Asgarli and Dragos Ghioca, Tangent-filling plane curves over finite fields, Bull. Aust. Math. Soc.
(2023), published online on May 2, 2023, available at https://arxiv.org/abs/2302.13420.

[AGY23] Shamil Asgarli, Dragos Ghioca, and Chi Hoi Yip, Plane curves giving rise to blocking sets over finite fields,
Designs, Codes and Cryptography (2023), to appear, available at https://arxiv.org/abs/2208.
13299.

[AP96] Yves Aubry and Marc Perret, A Weil theorem for singular curves, Arithmetic, geometry and coding theory
(Luminy, 1993), 1996, pp. 1–7.

[DC18] Gregory Duran Cunha, Curves containing all points of a finite projective Galois plane, J. Pure Appl. Algebra
222 (2018), no. 10, 2964–2974.

[Gab01] O. Gabber, On space filling curves and Albanese varieties, Geom. Funct. Anal. 11 (2001), no. 6, 1192–1200.
[Hom20] Masaaki Homma, Fragments of plane filling curves of degree q + 2 over the finite field of q elements, and

of affine-plane filling curves of degree q + 1, Linear Algebra Appl. 589 (2020), 9–27.
[HK13] Masaaki Homma and Seon Jeong Kim, Nonsingular plane filling curves of minimum degree over a finite

field and their automorphism groups: supplements to a work of Tallini, Linear Algebra Appl. 438 (2013),
no. 3, 969–985.

[HK23] , Filling curves for P1 × P1, Comm. Algebra 51 (2023), no. 6, 2680–2687.
[Kat99] Nicholas M. Katz, Space filling curves over finite fields, Math. Res. Lett. 6 (1999), no. 5-6, 613–624.

[GS] Daniel R. Grayson and Michael E. Stillman, Macaulay2, a software system for research in algebraic geom-
etry. http://www.math.uiuc.edu/Macaulay2/.

[Pea90] Giuseppe Peano, Sur une courbe, qui remplit toute une aire plane, Math. Ann. 36 (1890), no. 1, 157–160.
[Poo04] Bjorn Poonen, Bertini theorems over finite fields, Ann. of Math. (2) 160 (2004), no. 3, 1099–1127.
[Tal61a] Giuseppe Tallini, Le ipersuperficie irriducibili d’ordine minimo che invadono uno spazio di Galois, Atti

Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 30 (1961), 706–712.
[Tal61b] , Sulle ipersuperficie irriducibili d’ordine minimo che contengono tutti i punti di uno spazio di

Galois Sr,q , Rend. Mat. e Appl. (5) 20 (1961), 431–479.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, SANTA CLARA UNIVERSITY, 500 EL CAMINO
REAL, USA 95053

Email address: sasgarli@scu.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, 1984 MATHEMATICS ROAD, CANADA
V6T 1Z2

Email address: dghioca@math.ubc.ca

8

https://arxiv.org/abs/2302.13420
https://arxiv.org/abs/2208.13299
https://arxiv.org/abs/2208.13299
http://www.math.uiuc.edu/Macaulay2/

	1. Introduction
	Structure of the paper

	2. Proof of Theorem 1.4
	3. Smoothness at Fq2-points
	4. Higher degree plane-filling curves
	References

