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Abstract. We examine the maximum dimension of a linear system of plane cubic curves whose Fq-members

are all geometrically irreducible. Computational evidence suggests that such a system has a maximum

(projective) dimension of 3. As a step towards the conjecture, we prove that there exists a 3-dimensional
linear system L with at most one geometrically reducible Fq-member.

1. Introduction

Let P describe a property of a degree d algebraic hypersurface in Pn. In algebraic geometry and adja-
cent fields, we are often interested in measuring the likelihood of the property P for a “randomly chosen”
hypersurface. When working over an infinite field, we can use Zariski dense open sets to show that property
P holds generically. However, the situation over finite fields is more subtle since open sets in the relevant
parameter space may not have any Fq-points (despite being Zariski dense over Fq).

There are alternative methods to quantify how widespread a property P holds for hypersurfaces over finite
fields. One method is to count the proportion of degree d hypersurfaces over Fq satisfying P, and consider
the asymptotic proportion (either as d → ∞ or q → ∞). As another natural metric, we can ask for the
maximum size of a linear family P can carry. More precisely, we can pose the following question for each
finite field Fq, and positive integers d and n.

Question 1. What is the maximum value of t ∈ N for which there exist {Fi = 0} for i = 0, 1, ..., t such that
X[a0:···:at] = {a0F0 + ·+ atFt = 0} satisfies the property P for all choices [a0 : a1 : . . . : at] ∈ Pt(Fq)?

The question can be rephrased in the language of linear systems: what is the largest (projective) dimension
of a linear system L ∼= Pt of degree d hypersurfaces in Pn such that each Fq-member of L satisfies P? An
answer to Question 1 measures how much the property P linearly propagates in the parameter space of all
degree d hypersurfaces in Pn. Larger values of t indicate higher levels of prevalence for P. Question 1 has
been addressed in recent papers when P stands for “is smooth” [AGR23], “is irreducible over Fq” [AGR24],
“is reducible over Fq” [AGR24], or “nonblocking with respect to Fq-lines” [AGY23].

In this paper, we address Question 1 when P stands for “is geometrically irreducible” (that is, irreducible
over Fq) for cubic plane curves: d = 3 and n = 2. In this special case, every linear system L of (projective)
dimension 4 has an Fq-member that is a reducible plane cubic over Fq by [AGR24, Theorem 1.3(d)]. Hence,
the answer to Question 1 in this setting is at most 3. We predict that the answer is exactly 3.

Conjecture 2. There exists a linear system L = ⟨F0, F1, F2, F3⟩ of cubic plane curves where each Fq-member
of L is geometrically irreducible.

As partial progress, we establish the following result.

Theorem 3. There exists a linear system L = ⟨F0, F1, F2, F3⟩ of cubic plane curves where each Fq-member
of L is irreducible over Fq and there is at most one geometrically reducible Fq-member of L.

While we focus on the case of cubic plane curves in the present paper, the same question applies to
hypersurfaces of degree d in Pn for any d and n.

Problem 4. Determine the maximum (projective) dimension of a linear system L of degree d hypersurfaces
in Pn such that each Fq-member is geometrically irreducible.
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By [AGR24, Theorem 1.3(d)], every linear system of dimension
(
n+d−1
n−1

)
has an Fq-member that is reducible

over Fq. Hence, the answer to Problem 4 is at most
(
n+d−1
n−1

)
− 1. On the other hand, by [AGR23, Theorem

2], when p = char(Fq) ∤ gcd(d, n+ 1), there exists an n-dimensional linear system whose Fq-members are all
smooth, hence geometrically irreducible. Hence, the answer to Problem 4 is at least n. We expect the true
answer to Problem 4 to be closer to the upper bound

(
n+d−1
n−1

)
− 1. After all, we expect most geometrically

reducible hypersurfaces defined over Fq to be reducible over Fq.
We also have a related open problem with the condition “geometrically irreducible” relaxed to “not

containing a linear component over Fq.”

Problem 5. Determine the maximum (projective) dimension of a linear system L of degree d hypersurfaces
in Pn such that each Fq-member has no linear factor.

By definition, the answer to Problem 4 is less than or equal to the answer to Problem 5. It is reasonable
to expect that the two answers agree, at least for all sufficiently large q (as a function of n and d). The
heuristic is that most reducible hypersurfaces (over Fq) have a linear factor. Note that Conjecture 2 concerns
the case n = 2 and d = 3 for which Problems 4 and 5 coincide.

While these open problems are new, we note that the study of reducible members in a linear system of
algebraic hypersurfaces is rich in literature. One case that has been investigated thoroughly is the number of
reducible (or totally reducible) hypersurfaces in a pencil of hypersurfaces [Lor93,Vis93,PY08]. The setting
between the cited work and the present work differs in a few places. We only consider Fq-members while the

previous work is about controlling reducibility over Fq-members. On the other hand, we do not restrict our
attention to pencils and allow large-dimensional linear systems.

Structure of the paper. We provide two proofs for Theorem 3. In Section 2, we provide a non-
constructive proof in the spirit of the work done in [AGR24], while in Section 3 we provide an explicit
construction of a 3-dimensional linear system as desired for the conclusion of Theorem 3. Appendix A
provides numerical evidence (computed using SageMath) that supports Conjecture 2 for all q ≤ 11.

2. Proof 1: Galois orbits

In this section, we discuss the construction in our previous paper [AGR24] joint with Reichstein in the
special case of plane cubic curves. Note that [AGR24, Theorem 1.3(c)] provides a linear system of cubics
L ∼= P3 where each Fq-member of L is irreducible over Fq. We will show that the same linear system L has at
most one geometrically reducible Fq-members, establishing a proof of Theorem 3. We begin with reviewing
the construction of L.

The proof of [AGR24, Theorem 1.3(c)] is based on the existence of a point P ∈ P2(Fq6) such that P is
not contained in any degree 2 curve C over Fq [AGR24, Theorem 1.1]. Equivalently, no conic defined over

Fq contains the Galois orbit S = {P, P σ, ..., P σ5}. Here, Pσ denotes the image of the point P under the

Frobenius map [x : y : z] 7→ [xq : yq : zq]. For simplicity, let us write Pi = Pσi

so that S = {P0, ..., P5}.
Recall that the dimension of the Fq-vector space of cubic forms in 3 variables is 10. Imposing the condition

that a cubic passes through a specific point imposes at most 1 linear condition on the coefficients. Since
S = {P0, ..., P5} has 6 points and S is defined over Fq (despite Pi not individually defined over Fq), the
Fq-vector subspace of all cubics passing through S has dimension at least 10 − 6 = 4. Let F0, F1, F2, F3

denote four linearly independent cubic forms in Fq[x, y, z] each passing through all points of S.
Let L = ⟨F0, F1, F2, F3⟩ ∼= P3 denote the 3-dimensional linear system of cubic curves passing through S.

Let C be a reducible cubic curve (over Fq) which is an Fq-member of L. There are two ways in which a
reducible cubic C = L ∪Q can pass through the set S:

(a) Let Lij be the line joining Pi and Pj and Q can vary in P1-worth of conics passing through the
remaining 4 points.

(b) Let Qi be the conic passing through 5 points in the set S \ {Pi}. Then L can vary in P1-worth of
lines passing through the remaining point Pi.

However, if C is defined over Fq, it must be the case that C is a union of three Fq3-lines, Galois conjugated

by Gal(Fq3/Fq). It is straightforward to see that exactly one one of these curves, namely P0P3∪P1P4∪P2P5,
is defined over Fq. Hence, all Fq-members of L are irreducible over Fq and exactly one Fq-member of L fails
to be geometrically irreducible.
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3. Proof 2: Explicit Construction

The first proof relies on the existence of a point P ∈ P2(Fq6) which does not lie on any conic defined over
Fq. The proof of this assertion in [AGR24, Theorem 1.1] was obtained by an intricate counting argument
and hence is nonconstructive by its nature. In this section, we offer an alternative proof of Theorem 3 which
has the advantage of providing an explicit construction.

We start with a lemma on reducible cubic curves containing only the monomials x2y, y2z, z2x, xyz.

Lemma 6. Suppose ax2y + by2z + cz2x+ dxyz = 0 is a geometrically reducible cubic curve. Then abc = 0.

Proof. The reducible cubic has a linear factor L. Without loss of generality, L = x+βy+γz for some scalars
β, γ. If a = 0, then we are done. Hence, we may assume a = 1 after scaling. We have:

(3.1) x2y + by2z + cz2x+ dxyz = LQ

for some quadratic factor Q. We match the coefficients on both sides of (3.1) to prove that b = 0. We
proceed in five steps:

(1) The cubic has no x3 term, so Q has no x2 term. The term x2y can only be constructed from
multiplying x from L with a term in xy from Q; thus, the coefficient of xy in Q must be 1.

(2) If β ̸= 0, then Q has no y2 term; in that case, LQ has the term (βy) · xy which leads to the term
xy2 in the cubic that cannot be canceled, a contradiction. Therefore, β = 0.

(3) The cubic has no xy2 term and β = 0, so Q has no y2 term. The cubic has no x2z term and Q has
no x2 term, so Q has no xz term.

(4) So, Q = xy + δ1yz + δ2z
2 and L = x+ γz. From (3.1), we see γδ1 = 0. If γ = 0, then x divides the

cubic, implying that b = 0, as desired.
(5) If γ ̸= 0, then we have δ1 = 0. In this case, (3.1) reads:

(x+ γz)(xy + δ2z
2) = x2y + by2z + cz2x+ dxyz.

We obtain b = 0, as desired.

Thus, any geometrically reducible cubic of the form ax2y + by2z + cz2x+ dxyz = 0 satisfies abc = 0. □

We will now present the second proof of our main theorem.

Proof of Theorem 3. Consider the linear system L1 = ⟨x2y, y2z, z2x, xyz⟩. By the Normal Basis Theorem,

there exists an element α ∈ Fq3 such that α, αq, αq2 forms a basis of Fq3 as an Fq-vector space. We construct
a new linear system from L1 where x, y, and z are replaced by appropriate linear forms. Let

F = (αx+ αqy + αq2z)2(αqx+ αq2y + αz),

G = (αqx+ αq2y + αz)2(αq2x+ αy + αqz),

H = (αq2x+ αy + αqz)2(αx+ αqy + αq2z),

T = (αx+ αqy + αq2z)(αqx+ αq2y + αz)(αq2x+ αy + αqz).

Consider the linear system L2 = ⟨F,G,H, T ⟩. The Frobenius map t 7→ tq sends F 7→ G 7→ H 7→ F
and fixes T . Thus, the linear system L2 is defined over Fq, meaning that we can find new generators
R0, R1, R2, R3 ∈ Fq[x, y, z] with deg(Ri) = 3 such that L2 = ⟨R0, R1, R2, R3⟩. We claim that each Fq-
member of L2 is geometrically irreducible except the member T ∈ L2 which is a union of three lines
conjugated by Gal(Fq3/Fq). Indeed, we have a new coordinate system induced by the linear transformation:

x′ = αx+ αqy + αq2z

y′ = αqx+ αq2y + αz

z′ = αq2x+ αy + αqz

Applying Lemma 6 in the new coordinate system, we see that any geometrically reducible Fq-member of L2

given by

aF + bG+ cH + dT = 0,

3



satisfies abc = 0. After applying the Frobenius map t 7→ tq twice and using the fact that T is defined over
Fq, we get two additional equations:

aG+ bH + cF + dT = 0,

aH + bF + cG+ dT = 0

Since abc = 0, at least one of a, b, c is zero. The three equations above and the linear independence of
F,G,H, T imply a = b = c = 0. Hence, the only geometrically reducible Fq-member of L2 is {T = 0}. Note
that {T = 0} is irreducible over Fq. Thus, the linear system L2 satisfies the desired properties. □

Appendix A: computational evidence for the conjecture

We verified Conjecture 2 for all q ≤ 11 using SageMath [Sage21]. It suffices to randomly generate a cubic
linear system L = ⟨F0, F1, F2, F3⟩ until all Fq-members of L are geometrically irreducible. The table below
lists the successful linear systems for q ∈ {2, 3, 4, 5, 7, 8, 9, 11}.

q = 2

F0 = x2y + x2z + y2z F2 = xy2 + y3 + xyz + xz2

F1 = x3 + yz2 F3 = x2y + xy2 + xz2 + z3

q = 3

F0 = y3 + x2z + y2z + yz2 + z3 F2 = x3 − x2y − xy2 + xz2 − yz2

F1 = x3 − xy2 + y2z − xz2 + yz2 − z3 F3 = −x3 − x2y + y3 + x2z − xz2

q = 4

F0 = x2y + y3 + x2z + xyz + yz2 F2 = x3 + xy2 + y2z + xz2 + yz2

F1 = x2y + xyz + y2z + z3 F3 = x3 + yz2

q = 5

F0 = 2x2y + xy2 + y3 + xz2 + yz2 F2 = 2x3 + x2y + xy2 + y3 − 2x2z − xyz − y2z + xz2 + 2yz2

F1 = x2y + 2xy2 − 2y3 − 2x2z + 2y2z − 2xz2 − yz2 F3 = −2x2y − 2xy2 − x2z − 2xyz + y2z − xz2 + 2z3

q = 7

F0 = −x3 − 3xy2 + y3 + 3y2z + xz2 − 2yz2 + 3z3 F2 = x3 − 2x2y + y3 − x2z − 3xyz − 2y2z + xz2 − 3z3

F1 = 3x3 − 3x2y − 3xy2 − 3y3 + xyz − 2y2z − 2z3 F3 = −3x3 − 2x2y + 2xy2 + 2y3 − 2x2z − 2y2z − xz2 + 3z3

q = 8

F0 = x2y + y2z + xz2 + yz2 F2 = x3 + x2y + y2z + xz2 + z3

F1 = x2y + xy2 + xz2 + z3 F3 = x2y + y3 + x2z + xyz + xz2 + yz2 + z3

q = 9

F0 = −x3 + x2y + y3 + x2z + xyz − y2z + xz2 − yz2 F2 = x2y + xy2 + x2z + xz2 + yz2 + z3

F1 = xy2 − x2z − xyz − y2z − z3 F3 = xy2 − y3 − x2z + y2z − yz2

q = 11

F0 = −3x3 − 5xy2 + 2x2z + 4y2z − 2xz2 − 4z3 F2 = 5x3 + 3x2y + y3 − 2x2z − 5xyz − y2z − 5xz2 − 3yz2 − 4z3

F1 = x3 + xy2 + 2y3 + 3x2z + 4xyz − y2z − 3xz2 + 2yz2 − z3 F3 = 2x3 − 3x2y + 4xy2 + 2y3 − 5x2z + y2z − 2xz2 − yz2 + z3
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