LINEAR SYSTEM OF GEOMETRICALLY IRREDUCIBLE PLANE CUBICS OVER FINITE FIELDS

SHAMIL ASGARLI AND DRAGOS GHIOCA

ABSTRACT. We examine the maximum dimension of a linear system of plane cubic curves whose \mathbb{F}_q -members are all geometrically irreducible. Computational evidence suggests that such a system has a maximum (projective) dimension of 3. As a step towards the conjecture, we prove that there exists a 3-dimensional linear system \mathcal{L} with at most one geometrically reducible \mathbb{F}_q -member.

1. INTRODUCTION

Let \mathcal{P} describe a property of a degree d algebraic hypersurface in \mathbb{P}^n . In algebraic geometry and adjacent fields, we are often interested in measuring the likelihood of the property \mathcal{P} for a "randomly chosen" hypersurface. When working over an infinite field, we can use Zariski dense open sets to show that property \mathcal{P} holds generically. However, the situation over finite fields is more subtle since open sets in the relevant parameter space may not have any \mathbb{F}_q -points (despite being Zariski dense over $\overline{\mathbb{F}_q}$).

There are alternative methods to quantify how widespread a property \mathcal{P} holds for hypersurfaces over finite fields. One method is to count the proportion of degree d hypersurfaces over \mathbb{F}_q satisfying \mathcal{P} , and consider the asymptotic proportion (either as $d \to \infty$ or $q \to \infty$). As another natural metric, we can ask for the maximum size of a linear family \mathcal{P} can carry. More precisely, we can pose the following question for each finite field \mathbb{F}_q , and positive integers d and n.

Question 1. What is the maximum value of $t \in \mathbb{N}$ for which there exist $\{F_i = 0\}$ for i = 0, 1, ..., t such that $X_{[a_0:\cdots:a_t]} = \{a_0F_0 + \cdots + a_tF_t = 0\}$ satisfies the property \mathcal{P} for all choices $[a_0:a_1:\ldots:a_t] \in \mathbb{P}^t(\mathbb{F}_q)$?

The question can be rephrased in the language of linear systems: what is the largest (projective) dimension of a linear system $\mathcal{L} \cong \mathbb{P}^t$ of degree d hypersurfaces in \mathbb{P}^n such that each \mathbb{F}_q -member of \mathcal{L} satisfies \mathcal{P} ? An answer to Question 1 measures how much the property \mathcal{P} linearly propagates in the parameter space of all degree d hypersurfaces in \mathbb{P}^n . Larger values of t indicate higher levels of prevalence for \mathcal{P} . Question 1 has been addressed in recent papers when \mathcal{P} stands for "is smooth" [AGR23], "is irreducible over \mathbb{F}_q " [AGR24], "is reducible over \mathbb{F}_q " [AGR24], or "nonblocking with respect to \mathbb{F}_q -lines" [AGY23].

In this paper, we address Question 1 when \mathcal{P} stands for "is geometrically irreducible" (that is, irreducible over $\overline{\mathbb{F}_q}$) for cubic plane curves: d = 3 and n = 2. In this special case, every linear system \mathcal{L} of (projective) dimension 4 has an \mathbb{F}_q -member that is a reducible plane cubic over \mathbb{F}_q by [AGR24, Theorem 1.3(d)]. Hence, the answer to Question 1 in this setting is at most 3. We predict that the answer is exactly 3.

Conjecture 2. There exists a linear system $\mathcal{L} = \langle F_0, F_1, F_2, F_3 \rangle$ of cubic plane curves where each \mathbb{F}_q -member of \mathcal{L} is geometrically irreducible.

As partial progress, we establish the following result.

Theorem 3. There exists a linear system $\mathcal{L} = \langle F_0, F_1, F_2, F_3 \rangle$ of cubic plane curves where each \mathbb{F}_q -member of \mathcal{L} is irreducible over \mathbb{F}_q and there is at most one geometrically reducible \mathbb{F}_q -member of \mathcal{L} .

While we focus on the case of cubic plane curves in the present paper, the same question applies to hypersurfaces of degree d in \mathbb{P}^n for any d and n.

Problem 4. Determine the maximum (projective) dimension of a linear system \mathcal{L} of degree d hypersurfaces in \mathbb{P}^n such that each \mathbb{F}_q -member is geometrically irreducible.

²⁰²⁰ Mathematics Subject Classification. Primary 14N05; Secondary 14C21, 14H50, 14G15.

Key words and phrases. linear system, cubic curves, geometric irreducibility, finite fields.

By [AGR24, Theorem 1.3(d)], every linear system of dimension $\binom{n+d-1}{n-1}$ has an \mathbb{F}_q -member that is reducible over \mathbb{F}_q . Hence, the answer to Problem 4 is at most $\binom{n+d-1}{n-1} - 1$. On the other hand, by [AGR23, Theorem 2], when $p = \operatorname{char}(\mathbb{F}_q) \nmid \operatorname{gcd}(d, n+1)$, there exists an *n*-dimensional linear system whose \mathbb{F}_q -members are all smooth, hence geometrically irreducible. Hence, the answer to Problem 4 is at least *n*. We expect the true answer to Problem 4 to be closer to the upper bound $\binom{n+d-1}{n-1} - 1$. After all, we expect most geometrically reducible hypersurfaces defined over \mathbb{F}_q to be reducible over \mathbb{F}_q .

We also have a related open problem with the condition "geometrically irreducible" relaxed to "not containing a linear component over $\overline{\mathbb{F}_q}$."

Problem 5. Determine the maximum (projective) dimension of a linear system \mathcal{L} of degree d hypersurfaces in \mathbb{P}^n such that each \mathbb{F}_q -member has no linear factor.

By definition, the answer to Problem 4 is less than or equal to the answer to Problem 5. It is reasonable to expect that the two answers agree, at least for all sufficiently large q (as a function of n and d). The heuristic is that most reducible hypersurfaces (over $\overline{\mathbb{F}_q}$) have a linear factor. Note that Conjecture 2 concerns the case n = 2 and d = 3 for which Problems 4 and 5 coincide.

While these open problems are new, we note that the study of reducible members in a linear system of algebraic hypersurfaces is rich in literature. One case that has been investigated thoroughly is the number of reducible (or totally reducible) hypersurfaces in a pencil of hypersurfaces [Lor93, Vis93, PY08]. The setting between the cited work and the present work differs in a few places. We only consider \mathbb{F}_q -members while the previous work is about controlling reducibility over $\overline{\mathbb{F}_q}$ -members. On the other hand, we do not restrict our attention to pencils and allow large-dimensional linear systems.

Structure of the paper. We provide two proofs for Theorem 3. In Section 2, we provide a nonconstructive proof in the spirit of the work done in [AGR24], while in Section 3 we provide an explicit construction of a 3-dimensional linear system as desired for the conclusion of Theorem 3. Appendix A provides numerical evidence (computed using SageMath) that supports Conjecture 2 for all $q \leq 11$.

2. Proof 1: Galois orbits

In this section, we discuss the construction in our previous paper [AGR24] joint with Reichstein in the special case of plane cubic curves. Note that [AGR24, Theorem 1.3(c)] provides a linear system of cubics $\mathcal{L} \cong \mathbb{P}^3$ where each \mathbb{F}_q -member of \mathcal{L} is irreducible over \mathbb{F}_q . We will show that the same linear system \mathcal{L} has at most one geometrically reducible \mathbb{F}_q -members, establishing a proof of Theorem 3. We begin with reviewing the construction of \mathcal{L} .

The proof of [AGR24, Theorem 1.3(c)] is based on the existence of a point $P \in \mathbb{P}^2(\mathbb{F}_{q^6})$ such that P is not contained in any degree 2 curve C over \mathbb{F}_q [AGR24, Theorem 1.1]. Equivalently, no conic defined over \mathbb{F}_q contains the Galois orbit $S = \{P, P^{\sigma}, ..., P^{\sigma^5}\}$. Here, P^{σ} denotes the image of the point P under the Frobenius map $[x:y:z] \mapsto [x^q:y^q:z^q]$. For simplicity, let us write $P_i = P^{\sigma^i}$ so that $S = \{P_0, ..., P_5\}$.

Recall that the dimension of the \mathbb{F}_q -vector space of cubic forms in 3 variables is 10. Imposing the condition that a cubic passes through a specific point imposes at most 1 linear condition on the coefficients. Since $S = \{P_0, ..., P_5\}$ has 6 points and S is defined over \mathbb{F}_q (despite P_i not individually defined over \mathbb{F}_q), the \mathbb{F}_q -vector subspace of all cubics passing through S has dimension at least 10 - 6 = 4. Let F_0, F_1, F_2, F_3 denote four linearly independent cubic forms in $\mathbb{F}_q[x, y, z]$ each passing through all points of S.

Let $\mathcal{L} = \langle F_0, F_1, F_2, F_3 \rangle \cong \mathbb{P}^3$ denote the 3-dimensional linear system of cubic curves passing through S. Let C be a reducible cubic curve (over $\overline{\mathbb{F}_q}$) which is an \mathbb{F}_q -member of \mathcal{L} . There are two ways in which a reducible cubic $C = L \cup Q$ can pass through the set S:

- (a) Let L_{ij} be the line joining P_i and P_j and Q can vary in \mathbb{P}^1 -worth of conics passing through the remaining 4 points.
- (b) Let Q_i be the conic passing through 5 points in the set $S \setminus \{P_i\}$. Then L can vary in \mathbb{P}^1 -worth of lines passing through the remaining point P_i .

However, if C is defined over \mathbb{F}_q , it must be the case that C is a union of three \mathbb{F}_{q^3} -lines, Galois conjugated by $\operatorname{Gal}(\mathbb{F}_{q^3}/\mathbb{F}_q)$. It is straightforward to see that *exactly one* one of these curves, namely $\overline{P_0P_3} \cup \overline{P_1P_4} \cup \overline{P_2P_5}$, is defined over \mathbb{F}_q . Hence, all \mathbb{F}_q -members of \mathcal{L} are irreducible over \mathbb{F}_q and exactly one \mathbb{F}_q -member of \mathcal{L} fails to be geometrically irreducible.

3. Proof 2: Explicit Construction

The first proof relies on the existence of a point $P \in \mathbb{P}^2(\mathbb{F}_{q^6})$ which does not lie on any conic defined over \mathbb{F}_q . The proof of this assertion in [AGR24, Theorem 1.1] was obtained by an intricate counting argument and hence is nonconstructive by its nature. In this section, we offer an alternative proof of Theorem 3 which has the advantage of providing an explicit construction.

We start with a lemma on reducible cubic curves containing only the monomials x^2y, y^2z, z^2x, xyz .

Lemma 6. Suppose $ax^2y + by^2z + cz^2x + dxyz = 0$ is a geometrically reducible cubic curve. Then abc = 0.

Proof. The reducible cubic has a linear factor L. Without loss of generality, $L = x + \beta y + \gamma z$ for some scalars β, γ . If a = 0, then we are done. Hence, we may assume a = 1 after scaling. We have:

$$(3.1) x2y + by2z + cz2x + dxyz = LQ$$

for some quadratic factor Q. We match the coefficients on both sides of (3.1) to prove that b = 0. We proceed in five steps:

- (1) The cubic has no x^3 term, so Q has no x^2 term. The term x^2y can only be constructed from multiplying x from L with a term in xy from Q; thus, the coefficient of xy in Q must be 1.
- (2) If $\beta \neq 0$, then Q has no y^2 term; in that case, LQ has the term $(\beta y) \cdot xy$ which leads to the term xy^2 in the cubic that cannot be canceled, a contradiction. Therefore, $\beta = 0$.
- (3) The cubic has no xy^2 term and $\beta = 0$, so Q has no y^2 term. The cubic has no x^2z term and Q has no x^2 term, so Q has no xz term.
- (4) So, $Q = xy + \delta_1 yz + \delta_2 z^2$ and $L = x + \gamma z$. From (3.1), we see $\gamma \delta_1 = 0$. If $\gamma = 0$, then x divides the cubic, implying that b = 0, as desired.
- (5) If $\gamma \neq 0$, then we have $\delta_1 = 0$. In this case, (3.1) reads:

$$(x + \gamma z)(xy + \delta_2 z^2) = x^2 y + by^2 z + cz^2 x + dxyz.$$

We obtain b = 0, as desired.

Thus, any geometrically reducible cubic of the form $ax^2y + by^2z + cz^2x + dxyz = 0$ satisfies abc = 0.

We will now present the second proof of our main theorem.

Proof of Theorem 3. Consider the linear system $\mathcal{L}_1 = \langle x^2 y, y^2 z, z^2 x, xyz \rangle$. By the Normal Basis Theorem, there exists an element $\alpha \in \mathbb{F}_{q^3}$ such that $\alpha, \alpha^q, \alpha^{q^2}$ forms a basis of \mathbb{F}_{q^3} as an \mathbb{F}_q -vector space. We construct a new linear system from \mathcal{L}_1 where x, y, and z are replaced by appropriate linear forms. Let

$$F = (\alpha x + \alpha^{q} y + \alpha^{q^{2}} z)^{2} (\alpha^{q} x + \alpha^{q^{2}} y + \alpha z),$$

$$G = (\alpha^{q} x + \alpha^{q^{2}} y + \alpha z)^{2} (\alpha^{q^{2}} x + \alpha y + \alpha^{q} z),$$

$$H = (\alpha^{q^{2}} x + \alpha y + \alpha^{q} z)^{2} (\alpha x + \alpha^{q} y + \alpha^{q^{2}} z),$$

$$T = (\alpha x + \alpha^{q} y + \alpha^{q^{2}} z) (\alpha^{q} x + \alpha^{q^{2}} y + \alpha z) (\alpha^{q^{2}} x + \alpha y + \alpha^{q} z).$$

Consider the linear system $\mathcal{L}_2 = \langle F, G, H, T \rangle$. The Frobenius map $t \mapsto t^q$ sends $F \mapsto G \mapsto H \mapsto F$ and fixes T. Thus, the linear system \mathcal{L}_2 is defined over \mathbb{F}_q , meaning that we can find new generators $R_0, R_1, R_2, R_3 \in \mathbb{F}_q[x, y, z]$ with $\deg(R_i) = 3$ such that $\mathcal{L}_2 = \langle R_0, R_1, R_2, R_3 \rangle$. We claim that each \mathbb{F}_q member of \mathcal{L}_2 is geometrically irreducible except the member $T \in \mathcal{L}_2$ which is a union of three lines conjugated by $\operatorname{Gal}(\mathbb{F}_{q^3}/\mathbb{F}_q)$. Indeed, we have a new coordinate system induced by the linear transformation:

$$x' = \alpha x + \alpha^{q} y + \alpha^{q^{2}} z$$
$$y' = \alpha^{q} x + \alpha^{q^{2}} y + \alpha z$$
$$z' = \alpha^{q^{2}} x + \alpha y + \alpha^{q} z$$

Applying Lemma 6 in the new coordinate system, we see that any geometrically reducible \mathbb{F}_q -member of \mathcal{L}_2 given by

$$aF + bG + cH + dT = 0,$$

satisfies abc = 0. After applying the Frobenius map $t \mapsto t^q$ twice and using the fact that T is defined over \mathbb{F}_q , we get two additional equations:

$$aG + bH + cF + dT = 0,$$

$$aH + bF + cG + dT = 0$$

Since abc = 0, at least one of a, b, c is zero. The three equations above and the linear independence of F, G, H, T imply a = b = c = 0. Hence, the only geometrically reducible \mathbb{F}_q -member of \mathcal{L}_2 is $\{T = 0\}$. Note that $\{T = 0\}$ is irreducible over \mathbb{F}_q . Thus, the linear system \mathcal{L}_2 satisfies the desired properties. \Box

APPENDIX A: COMPUTATIONAL EVIDENCE FOR THE CONJECTURE

We verified Conjecture 2 for all $q \leq 11$ using SageMath [Sage21]. It suffices to randomly generate a cubic linear system $\mathcal{L} = \langle F_0, F_1, F_2, F_3 \rangle$ until all \mathbb{F}_q -members of \mathcal{L} are geometrically irreducible. The table below lists the successful linear systems for $q \in \{2, 3, 4, 5, 7, 8, 9, 11\}$.

q = 2	
$F_0 = x^2y + x^2z + y^2z$	$F_2 = xy^2 + y^3 + xyz + xz^2$
$F_1 = x^3 + yz^2$	$F_3 = x^2y + xy^2 + xz^2 + z^3$
q = 3	
$F_0 = y^3 + x^2 z + y^2 z + y z^2 + z^3$	$F_2 = x^3 - x^2y - xy^2 + xz^2 - yz^2$
$F_1 = x^3 - xy^2 + y^2z - xz^2 + yz^2 - z^3$	$F_3 = -x^3 - x^2y + y^3 + x^2z - xz^2$
q = 4	
$F_0 = x^2 y + y^3 + x^2 z + xyz + yz^2$	$F_2 = x^3 + xy^2 + y^2z + xz^2 + yz^2$
$F_1 = x^2y + xyz + y^2z + z^3$	$F_3 = x^3 + yz^2$
q = 5	
$F_0 = 2x^2y + xy^2 + y^3 + xz^2 + yz^2$	$F_2 = 2x^3 + x^2y + xy^2 + y^3 - 2x^2z - xyz - y^2z + xz^2 + 2yz^2$
$F_1 = x^2y + 2xy^2 - 2y^3 - 2x^2z + 2y^2z - 2xz^2 - yz^2$	$F_3 = -2x^2y - 2xy^2 - x^2z - 2xyz + y^2z - xz^2 + 2z^3$
q = 7	
$F_0 = -x^3 - 3xy^2 + y^3 + 3y^2z + xz^2 - 2yz^2 + 3z^3$	$F_2 = x^3 - 2x^2y + y^3 - x^2z - 3xyz - 2y^2z + xz^2 - 3z^3$
$F_1 = 3x^3 - 3x^2y - 3xy^2 - 3y^3 + xyz - 2y^2z - 2z^3$	$F_3 = -3x^3 - 2x^2y + 2xy^2 + 2y^3 - 2x^2z - 2y^2z - xz^2 + 3z^3$
q = 8	
$F_0 = x^2 y + y^2 z + x z^2 + y z^2$	$F_2 = x^3 + x^2y + y^2z + xz^2 + z^3$
$F_1 = x^2y + xy^2 + xz^2 + z^3$	$F_3 = x^2y + y^3 + x^2z + xyz + xz^2 + yz^2 + z^3$
q = 9	
$F_0 = -x^3 + x^2y + y^3 + x^2z + xyz - y^2z + xz^2 - yz^2$	$F_2 = x^2y + xy^2 + x^2z + xz^2 + yz^2 + z^3$
$F_1 = xy^2 - x^2z - xyz - y^2z - z^3$	$F_3 = xy^2 - y^3 - x^2z + y^2z - yz^2$
q = 11	
$F_0 = -3x^3 - 5xy^2 + 2x^2z + 4y^2z - 2xz^2 - 4z^3$	$F_2 = 5x^3 + 3x^2y + y^3 - 2x^2z - 5xyz - y^2z - 5xz^2 - 3yz^2 - 4z^3$
$F_1 = x^3 + xy^2 + 2y^3 + 3x^2z + 4xyz - y^2z - 3xz^2 + 2yz^2 - z^3$	$F_3 = 2x^3 - 3x^2y + 4xy^2 + 2y^3 - 5x^2z + y^2z - 2xz^2 - yz^2 + z^3$

References

[[]AGR23] Shamil Asgarli, Dragos Ghioca, and Zinovy Reichstein, Linear families of smooth hypersurfaces over finitely generated fields, Finite Fields Appl. 87 (2023), Paper No. 102169, 10.

- [AGR24] _____, Linear system of hypersurfaces passing through a Galois orbit, arXiv e-prints (2024), available at https: //arxiv.org/abs/2310.10361.
- [AGY23] Shamil Asgarli, Dragos Ghioca, and Chi Hoi Yip, Existence of pencils with nonblocking hypersurfaces, Finite Fields Appl. 92 (2023), Paper No. 102283, 11.
- [Lor93] Dino Lorenzini, Reducibility of polynomials in two variables, J. Algebra 156 (1993), no. 1, 65-75.

[PY08] J. V. Pereira and S. Yuzvinsky, Completely reducible hypersurfaces in a pencil, Adv. Math. 219 (2008), no. 2, 672–688.

- [Sage21] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.4), 2021. https://www.sagemath.org.
- [Vis93] Angelo Vistoli, The number of reducible hypersurfaces in a pencil, Invent. Math. 112 (1993), no. 2, 247-262.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, SANTA CLARA UNIVERSITY, 500 EL CAMINO REAL, USA 95053 *Email address:* sasgarli@scu.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z2 $Email \ address: \ dghioca@math.ubc.ca$