LINEAR SYSTEM OF GEOMETRICALLY IRREDUCIBLE PLANE CUBICS OVER FINITE FIELDS

SHAMIL ASGARLI AND DRAGOS GHIOCA

Abstract

We examine the maximum dimension of a linear system of plane cubic curves whose \mathbb{F}_{q}-members are all geometrically irreducible. Computational evidence suggests that such a system has a maximum (projective) dimension of 3 . As a step towards the conjecture, we prove that there exists a 3-dimensional linear system \mathcal{L} with at most one geometrically reducible \mathbb{F}_{q}-member.

1. Introduction

Let \mathcal{P} describe a property of a degree d algebraic hypersurface in \mathbb{P}^{n}. In algebraic geometry and adjacent fields, we are often interested in measuring the likelihood of the property \mathcal{P} for a "randomly chosen" hypersurface. When working over an infinite field, we can use Zariski dense open sets to show that property \mathcal{P} holds generically. However, the situation over finite fields is more subtle since open sets in the relevant parameter space may not have any \mathbb{F}_{q}-points (despite being Zariski dense over $\overline{\mathbb{F}_{q}}$).

There are alternative methods to quantify how widespread a property \mathcal{P} holds for hypersurfaces over finite fields. One method is to count the proportion of degree d hypersurfaces over \mathbb{F}_{q} satisfying \mathcal{P}, and consider the asymptotic proportion (either as $d \rightarrow \infty$ or $q \rightarrow \infty$). As another natural metric, we can ask for the maximum size of a linear family \mathcal{P} can carry. More precisely, we can pose the following question for each finite field \mathbb{F}_{q}, and positive integers d and n.
Question 1. What is the maximum value of $t \in \mathbb{N}$ for which there exist $\left\{F_{i}=0\right\}$ for $i=0,1, \ldots, t$ such that $X_{\left[a_{0}: \cdots: a_{t}\right]}=\left\{a_{0} F_{0}+\cdot+a_{t} F_{t}=0\right\}$ satisfies the property \mathcal{P} for all choices $\left[a_{0}: a_{1}: \ldots: a_{t}\right] \in \mathbb{P}^{t}\left(\mathbb{F}_{q}\right)$?

The question can be rephrased in the language of linear systems: what is the largest (projective) dimension of a linear system $\mathcal{L} \cong \mathbb{P}^{t}$ of degree d hypersurfaces in \mathbb{P}^{n} such that each \mathbb{F}_{q}-member of \mathcal{L} satisfies \mathcal{P} ? An answer to Question 1 measures how much the property \mathcal{P} linearly propagates in the parameter space of all degree d hypersurfaces in \mathbb{P}^{n}. Larger values of t indicate higher levels of prevalence for \mathcal{P}. Question 1 has been addressed in recent papers when \mathcal{P} stands for "is smooth" [AGR23], "is irreducible over \mathbb{F}_{q} " [AGR24], "is reducible over \mathbb{F}_{q} " AGR24], or "nonblocking with respect to \mathbb{F}_{q}-lines" [AGY23].

In this paper, we address Question 1 when \mathcal{P} stands for "is geometrically irreducible" (that is, irreducible over $\overline{\mathbb{F}_{q}}$) for cubic plane curves: $d=3$ and $n=2$. In this special case, every linear system \mathcal{L} of (projective) dimension 4 has an \mathbb{F}_{q}-member that is a reducible plane cubic over \mathbb{F}_{q} by [AGR24, Theorem 1.3(d)]. Hence, the answer to Question 1 in this setting is at most 3. We predict that the answer is exactly 3.

Conjecture 2. There exists a linear system $\mathcal{L}=\left\langle F_{0}, F_{1}, F_{2}, F_{3}\right\rangle$ of cubic plane curves where each \mathbb{F}_{q}-member of \mathcal{L} is geometrically irreducible.

As partial progress, we establish the following result.
Theorem 3. There exists a linear system $\mathcal{L}=\left\langle F_{0}, F_{1}, F_{2}, F_{3}\right\rangle$ of cubic plane curves where each \mathbb{F}_{q}-member of \mathcal{L} is irreducible over \mathbb{F}_{q} and there is at most one geometrically reducible \mathbb{F}_{q}-member of \mathcal{L}.

While we focus on the case of cubic plane curves in the present paper, the same question applies to hypersurfaces of degree d in \mathbb{P}^{n} for any d and n.

Problem 4. Determine the maximum (projective) dimension of a linear system \mathcal{L} of degree d hypersurfaces in \mathbb{P}^{n} such that each \mathbb{F}_{q}-member is geometrically irreducible.

By [AGR24, Theorem 1.3(d)], every linear system of dimension $\binom{n+d-1}{n-1}$ has an \mathbb{F}_{q}-member that is reducible over \mathbb{F}_{q}. Hence, the answer to Problem 4 is at most $\binom{n+d-1}{n-1}-1$. On the other hand, by [AGR23, Theorem 2], when $p=\operatorname{char}\left(\mathbb{F}_{q}\right) \nmid \operatorname{gcd}(d, n+1)$, there exists an n-dimensional linear system whose \mathbb{F}_{q}-members are all smooth, hence geometrically irreducible. Hence, the answer to Problem 4 is at least n. We expect the true answer to Problem 4 to be closer to the upper bound $\binom{n+d-1}{n-1}-1$. After all, we expect most geometrically reducible hypersurfaces defined over \mathbb{F}_{q} to be reducible over \mathbb{F}_{q}.

We also have a related open problem with the condition "geometrically irreducible" relaxed to "not containing a linear component over $\overline{\mathbb{F}_{q}}$. ,
Problem 5. Determine the maximum (projective) dimension of a linear system \mathcal{L} of degree d hypersurfaces in \mathbb{P}^{n} such that each \mathbb{F}_{q}-member has no linear factor.

By definition, the answer to Problem 4 is less than or equal to the answer to Problem 5. It is reasonable to expect that the two answers agree, at least for all sufficiently large q (as a function of n and d). The heuristic is that most reducible hypersurfaces (over $\overline{\mathbb{F}_{q}}$) have a linear factor. Note that Conjecture 2 concerns the case $n=2$ and $d=3$ for which Problems 4 and 5 coincide.

While these open problems are new, we note that the study of reducible members in a linear system of algebraic hypersurfaces is rich in literature. One case that has been investigated thoroughly is the number of reducible (or totally reducible) hypersurfaces in a pencil of hypersurfaces [Lor93, Vis93, PY08]. The setting between the cited work and the present work differs in a few places. We only consider \mathbb{F}_{q}-members while the previous work is about controlling reducibility over $\overline{\mathbb{F}_{q}}$-members. On the other hand, we do not restrict our attention to pencils and allow large-dimensional linear systems.

Structure of the paper. We provide two proofs for Theorem 3. In Section 2, we provide a nonconstructive proof in the spirit of the work done in [AGR24], while in Section 3 we provide an explicit construction of a 3-dimensional linear system as desired for the conclusion of Theorem 3. Appendix A provides numerical evidence (computed using SageMath) that supports Conjecture 2 for all $q \leq 11$.

2. Proof 1: Galois orbits

In this section, we discuss the construction in our previous paper [AGR24] joint with Reichstein in the special case of plane cubic curves. Note that [AGR24, Theorem 1.3(c)] provides a linear system of cubics $\mathcal{L} \cong \mathbb{P}^{3}$ where each \mathbb{F}_{q}-member of \mathcal{L} is irreducible over \mathbb{F}_{q}. We will show that the same linear system \mathcal{L} has at most one geometrically reducible \mathbb{F}_{q}-members, establishing a proof of Theorem 3 . We begin with reviewing the construction of \mathcal{L}.

The proof of $[A G R 24$, Theorem $1.3(\mathrm{c})]$ is based on the existence of a point $P \in \mathbb{P}^{2}\left(\mathbb{F}_{q^{6}}\right)$ such that P is not contained in any degree 2 curve C over \mathbb{F}_{q} [AGR24, Theorem 1.1]. Equivalently, no conic defined over \mathbb{F}_{q} contains the Galois orbit $S=\left\{P, P^{\sigma}, \ldots, P^{\sigma^{5}}\right\}$. Here, P^{σ} denotes the image of the point P under the Frobenius map $[x: y: z] \mapsto\left[x^{q}: y^{q}: z^{q}\right]$. For simplicity, let us write $P_{i}=P^{\sigma^{i}}$ so that $S=\left\{P_{0}, \ldots, P_{5}\right\}$.

Recall that the dimension of the \mathbb{F}_{q}-vector space of cubic forms in 3 variables is 10 . Imposing the condition that a cubic passes through a specific point imposes at most 1 linear condition on the coefficients. Since $S=\left\{P_{0}, \ldots, P_{5}\right\}$ has 6 points and S is defined over \mathbb{F}_{q} (despite P_{i} not individually defined over \mathbb{F}_{q}), the \mathbb{F}_{q}-vector subspace of all cubics passing through S has dimension at least $10-6=4$. Let $F_{0}, F_{1}, F_{2}, F_{3}$ denote four linearly independent cubic forms in $\mathbb{F}_{q}[x, y, z]$ each passing through all points of S.

Let $\mathcal{L}=\left\langle F_{0}, F_{1}, F_{2}, F_{3}\right\rangle \cong \mathbb{P}^{3}$ denote the 3-dimensional linear system of cubic curves passing through S. Let C be a reducible cubic curve (over $\overline{\mathbb{F}_{q}}$) which is an \mathbb{F}_{q}-member of \mathcal{L}. There are two ways in which a reducible cubic $C=L \cup Q$ can pass through the set S :
(a) Let $L_{i j}$ be the line joining P_{i} and P_{j} and Q can vary in \mathbb{P}^{1}-worth of conics passing through the remaining 4 points.
(b) Let Q_{i} be the conic passing through 5 points in the set $S \backslash\left\{P_{i}\right\}$. Then L can vary in \mathbb{P}^{1}-worth of lines passing through the remaining point P_{i}.
However, if C is defined over \mathbb{F}_{q}, it must be the case that C is a union of three $\mathbb{F}_{q^{3}}$-lines, Galois conjugated by $\operatorname{Gal}\left(\mathbb{F}_{q^{3}} / \mathbb{F}_{q}\right)$. It is straightforward to see that exactly one one of these curves, namely $\overline{P_{0} P_{3}} \cup \overline{P_{1} P_{4}} \cup \overline{P_{2} P_{5}}$, is defined over \mathbb{F}_{q}. Hence, all \mathbb{F}_{q}-members of \mathcal{L} are irreducible over \mathbb{F}_{q} and exactly one \mathbb{F}_{q}-member of \mathcal{L} fails to be geometrically irreducible.

3. Proof 2: Explicit Construction

The first proof relies on the existence of a point $P \in \mathbb{P}^{2}\left(\mathbb{F}_{q^{6}}\right)$ which does not lie on any conic defined over \mathbb{F}_{q}. The proof of this assertion in [AGR24, Theorem 1.1] was obtained by an intricate counting argument and hence is nonconstructive by its nature. In this section, we offer an alternative proof of Theorem 3 which has the advantage of providing an explicit construction.

We start with a lemma on reducible cubic curves containing only the monomials $x^{2} y, y^{2} z, z^{2} x, x y z$.
Lemma 6. Suppose $a x^{2} y+b y^{2} z+c z^{2} x+d x y z=0$ is a geometrically reducible cubic curve. Then abc $=0$.
Proof. The reducible cubic has a linear factor L. Without loss of generality, $L=x+\beta y+\gamma z$ for some scalars β, γ. If $a=0$, then we are done. Hence, we may assume $a=1$ after scaling. We have:

$$
\begin{equation*}
x^{2} y+b y^{2} z+c z^{2} x+d x y z=L Q \tag{3.1}
\end{equation*}
$$

for some quadratic factor Q. We match the coefficients on both sides of (3.1) to prove that $b=0$. We proceed in five steps:
(1) The cubic has no x^{3} term, so Q has no x^{2} term. The term $x^{2} y$ can only be constructed from multiplying x from L with a term in $x y$ from Q; thus, the coefficient of $x y$ in Q must be 1 .
(2) If $\beta \neq 0$, then Q has no y^{2} term; in that case, $L Q$ has the term $(\beta y) \cdot x y$ which leads to the term $x y^{2}$ in the cubic that cannot be canceled, a contradiction. Therefore, $\beta=0$.
(3) The cubic has no $x y^{2}$ term and $\beta=0$, so Q has no y^{2} term. The cubic has no $x^{2} z$ term and Q has no x^{2} term, so Q has no $x z$ term.
(4) So, $Q=x y+\delta_{1} y z+\delta_{2} z^{2}$ and $L=x+\gamma z$. From (3.1), we see $\gamma \delta_{1}=0$. If $\gamma=0$, then x divides the cubic, implying that $b=0$, as desired.
(5) If $\gamma \neq 0$, then we have $\delta_{1}=0$. In this case, (3.1) reads:

$$
(x+\gamma z)\left(x y+\delta_{2} z^{2}\right)=x^{2} y+b y^{2} z+c z^{2} x+d x y z
$$

We obtain $b=0$, as desired.
Thus, any geometrically reducible cubic of the form $a x^{2} y+b y^{2} z+c z^{2} x+d x y z=0$ satisfies $a b c=0$.
We will now present the second proof of our main theorem.
Proof of Theorem 3. Consider the linear system $\mathcal{L}_{1}=\left\langle x^{2} y, y^{2} z, z^{2} x, x y z\right\rangle$. By the Normal Basis Theorem, there exists an element $\alpha \in \mathbb{F}_{q^{3}}$ such that $\alpha, \alpha^{q}, \alpha^{q^{2}}$ forms a basis of $\mathbb{F}_{q^{3}}$ as an $\mathbb{F}_{q^{-}}$-vector space. We construct a new linear system from \mathcal{L}_{1} where x, y, and z are replaced by appropriate linear forms. Let

$$
\begin{aligned}
& F=\left(\alpha x+\alpha^{q} y+\alpha^{q^{2}} z\right)^{2}\left(\alpha^{q} x+\alpha^{q^{2}} y+\alpha z\right) \\
& G=\left(\alpha^{q} x+\alpha^{q^{2}} y+\alpha z\right)^{2}\left(\alpha^{q^{2}} x+\alpha y+\alpha^{q} z\right) \\
& H=\left(\alpha^{q^{2}} x+\alpha y+\alpha^{q} z\right)^{2}\left(\alpha x+\alpha^{q} y+\alpha^{q^{2}} z\right) \\
& T=\left(\alpha x+\alpha^{q} y+\alpha^{q^{2}} z\right)\left(\alpha^{q} x+\alpha^{q^{2}} y+\alpha z\right)\left(\alpha^{q^{2}} x+\alpha y+\alpha^{q} z\right)
\end{aligned}
$$

Consider the linear system $\mathcal{L}_{2}=\langle F, G, H, T\rangle$. The Frobenius map $t \mapsto t^{q}$ sends $F \mapsto G \mapsto H \mapsto F$ and fixes T. Thus, the linear system \mathcal{L}_{2} is defined over \mathbb{F}_{q}, meaning that we can find new generators $R_{0}, R_{1}, R_{2}, R_{3} \in \mathbb{F}_{q}[x, y, z]$ with $\operatorname{deg}\left(R_{i}\right)=3$ such that $\mathcal{L}_{2}=\left\langle R_{0}, R_{1}, R_{2}, R_{3}\right\rangle$. We claim that each $\mathbb{F}_{q^{-}}$ member of \mathcal{L}_{2} is geometrically irreducible except the member $T \in \mathcal{L}_{2}$ which is a union of three lines conjugated by $\operatorname{Gal}\left(\mathbb{F}_{q^{3}} / \mathbb{F}_{q}\right)$. Indeed, we have a new coordinate system induced by the linear transformation:

$$
\begin{aligned}
& x^{\prime}=\alpha x+\alpha^{q} y+\alpha^{q^{2}} z \\
& y^{\prime}=\alpha^{q} x+\alpha^{q^{2}} y+\alpha z \\
& z^{\prime}=\alpha^{q^{2}} x+\alpha y+\alpha^{q} z
\end{aligned}
$$

Applying Lemma 6 in the new coordinate system, we see that any geometrically reducible \mathbb{F}_{q}-member of \mathcal{L}_{2} given by

$$
a F+b G+c H+d T=0
$$

satisfies $a b c=0$. After applying the Frobenius map $t \mapsto t^{q}$ twice and using the fact that T is defined over \mathbb{F}_{q}, we get two additional equations:

$$
\begin{aligned}
& a G+b H+c F+d T=0 \\
& a H+b F+c G+d T=0
\end{aligned}
$$

Since $a b c=0$, at least one of a, b, c is zero. The three equations above and the linear independence of F, G, H, T imply $a=b=c=0$. Hence, the only geometrically reducible \mathbb{F}_{q}-member of \mathcal{L}_{2} is $\{T=0\}$. Note that $\{T=0\}$ is irreducible over \mathbb{F}_{q}. Thus, the linear system \mathcal{L}_{2} satisfies the desired properties.

Appendix A: computational evidence for the conjecture

We verified Conjecture 2 for all $q \leq 11$ using SageMath [Sage21]. It suffices to randomly generate a cubic linear system $\mathcal{L}=\left\langle F_{0}, F_{1}, F_{2}, F_{3}\right\rangle$ until all \mathbb{F}_{q}-members of \mathcal{L} are geometrically irreducible. The table below lists the successful linear systems for $q \in\{2,3,4,5,7,8,9,11\}$.

$q=2$	
$\begin{gathered} F_{0}=x^{2} y+x^{2} z+y^{2} z \\ F_{1}=x^{3}+y z^{2} \end{gathered}$	$\begin{aligned} & F_{2}=x y^{2}+y^{3}+x y z+x z^{2} \\ & F_{3}=x^{2} y+x y^{2}+x z^{2}+z^{3} \end{aligned}$
$q=3$	
$\begin{gathered} F_{0}=y^{3}+x^{2} z+y^{2} z+y z^{2}+z^{3} \\ F_{1}=x^{3}-x y^{2}+y^{2} z-x z^{2}+y z^{2}-z^{3} \end{gathered}$	$\begin{aligned} & F_{2}=x^{3}-x^{2} y-x y^{2}+x z^{2}-y z^{2} \\ & F_{3}=-x^{3}-x^{2} y+y^{3}+x^{2} z-x z^{2} \end{aligned}$
$q=4$	
$\begin{gathered} F_{0}=x^{2} y+y^{3}+x^{2} z+x y z+y z^{2} \\ F_{1}=x^{2} y+x y z+y^{2} z+z^{3} \end{gathered}$	$\begin{gathered} F_{2}=x^{3}+x y^{2}+y^{2} z+x z^{2}+y z^{2} \\ F_{3}=x^{3}+y z^{2} \end{gathered}$
$q=5$	
$\begin{gathered} F_{0}=2 x^{2} y+x y^{2}+y^{3}+x z^{2}+y z^{2} \\ F_{1}=x^{2} y+2 x y^{2}-2 y^{3}-2 x^{2} z+2 y^{2} z-2 x z^{2}-y z^{2} \end{gathered}$	$\begin{gathered} F_{2}=2 x^{3}+x^{2} y+x y^{2}+y^{3}-2 x^{2} z-x y z-y^{2} z+x z^{2}+2 y z^{2} \\ F_{3}=-2 x^{2} y-2 x y^{2}-x^{2} z-2 x y z+y^{2} z-x z^{2}+2 z^{3} \end{gathered}$
$q=7$	
$\begin{gathered} F_{0}=-x^{3}-3 x y^{2}+y^{3}+3 y^{2} z+x z^{2}-2 y z^{2}+3 z^{3} \\ F_{1}=3 x^{3}-3 x^{2} y-3 x y^{2}-3 y^{3}+x y z-2 y^{2} z-2 z^{3} \end{gathered}$	$\begin{gathered} F_{2}=x^{3}-2 x^{2} y+y^{3}-x^{2} z-3 x y z-2 y^{2} z+x z^{2}-3 z^{3} \\ F_{3}=-3 x^{3}-2 x^{2} y+2 x y^{2}+2 y^{3}-2 x^{2} z-2 y^{2} z-x z^{2}+3 z^{3} \end{gathered}$
$q=8$	
$\begin{gathered} F_{0}=x^{2} y+y^{2} z+x z^{2}+y z^{2} \\ F_{1}=x^{2} y+x y^{2}+x z^{2}+z^{3} \end{gathered}$	$\begin{gathered} F_{2}=x^{3}+x^{2} y+y^{2} z+x z^{2}+z^{3} \\ F_{3}=x^{2} y+y^{3}+x^{2} z+x y z+x z^{2}+y z^{2}+z^{3} \end{gathered}$
$q=9$	
$\begin{gathered} F_{0}=-x^{3}+x^{2} y+y^{3}+x^{2} z+x y z-y^{2} z+x z^{2}-y z^{2} \\ F_{1}=x y^{2}-x^{2} z-x y z-y^{2} z-z^{3} \end{gathered}$	$\begin{gathered} F_{2}=x^{2} y+x y^{2}+x^{2} z+x z^{2}+y z^{2}+z^{3} \\ F_{3}=x y^{2}-y^{3}-x^{2} z+y^{2} z-y z^{2} \end{gathered}$
$q=11$	
$\begin{gathered} F_{0}=-3 x^{3}-5 x y^{2}+2 x^{2} z+4 y^{2} z-2 x z^{2}-4 z^{3} \\ F_{1}=x^{3}+x y^{2}+2 y^{3}+3 x^{2} z+4 x y z-y^{2} z-3 x z^{2}+2 y z^{2}-z^{3} \end{gathered}$	$\begin{aligned} & F_{2}=5 x^{3}+3 x^{2} y+y^{3}-2 x^{2} z-5 x y z-y^{2} z-5 x z^{2}-3 y z^{2}-4 z^{3} \\ & F_{3}=2 x^{3}-3 x^{2} y+4 x y^{2}+2 y^{3}-5 x^{2} z+y^{2} z-2 x z^{2}-y z^{2}+z^{3} \end{aligned}$

References

[AGR23] Shamil Asgarli, Dragos Ghioca, and Zinovy Reichstein, Linear families of smooth hypersurfaces over finitely generated fields, Finite Fields Appl. 87 (2023), Paper No. 102169, 10.
[AGR24] , Linear system of hypersurfaces passing through a Galois orbit, arXiv e-prints (2024), available at https: //arxiv.org/abs/2310.10361.
[AGY23] Shamil Asgarli, Dragos Ghioca, and Chi Hoi Yip, Existence of pencils with nonblocking hypersurfaces, Finite Fields Appl. 92 (2023), Paper No. 102283, 11.
[Lor93] Dino Lorenzini, Reducibility of polynomials in two variables, J. Algebra 156 (1993), no. 1, 65-75.
[PY08] J. V. Pereira and S. Yuzvinsky, Completely reducible hypersurfaces in a pencil, Adv. Math. 219 (2008), no. 2, $672-688$.
[Sage21] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.4), 2021. https://www.sagemath.org.
[Vis93] Angelo Vistoli, The number of reducible hypersurfaces in a pencil, Invent. Math. 112 (1993), no. 2, $247-262$.
Department of Mathematics and Computer Science, Santa Clara University, 500 El Camino Real, USA 95053
Email address: sasgarli@scu.edu
Department of Mathematics, University of British Columbia, Vancouver, BC V6T $1 Z 2$
Email address: dghioca@math.ubc.ca

