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ABSTRACT. We examine the maximum dimension of a linear system of plane cubic curves whose Fg-members
are all geometrically irreducible. Computational evidence suggests that such a system has a maximum
(projective) dimension of 3. As a step towards the conjecture, we prove that there exists a 3-dimensional
linear system £ with at most one geometrically reducible F4-member.

1. INTRODUCTION

Let P describe a property of a degree d algebraic hypersurface in P". In algebraic geometry and adja-
cent fields, we are often interested in measuring the likelihood of the property P for a “randomly chosen”
hypersurface. When working over an infinite field, we can use Zariski dense open sets to show that property
‘P holds generically. However, the situation over finite fields is more subtle since open sets in the relevant
parameter space may not have any F,-points (despite being Zariski dense over F,).

There are alternative methods to quantify how widespread a property P holds for hypersurfaces over finite
fields. One method is to count the proportion of degree d hypersurfaces over F, satisfying P, and consider
the asymptotic proportion (either as d — oo or ¢ — 00). As another natural metric, we can ask for the
maximum size of a linear family P can carry. More precisely, we can pose the following question for each
finite field Fy, and positive integers d and n.

Question 1. What is the maximum value of ¢ € N for which there exist {F; = 0} for ¢ = 0,1, ..., ¢ such that
Xapiiar] = {aoFo + - + a¢Fy = 0} satisfies the property P for all choices [ag : a1 : ... : a;] € PY(Fy)?

The question can be rephrased in the language of linear systems: what is the largest (projective) dimension
of a linear system £ = P* of degree d hypersurfaces in P" such that each F,-member of £ satisfies P? An
answer to Question 1 measures how much the property P linearly propagates in the parameter space of all
degree d hypersurfaces in P”. Larger values of ¢ indicate higher levels of prevalence for P. Question 1 has
been addressed in recent papers when P stands for “is smooth” [AGR23], “is irreducible over F,” [AGR24],
“is reducible over F,” [AGR24], or “nonblocking with respect to F,-lines” [AGY23].

In this paper, we address Question 1 when P stands for “is geometrically irreducible” (that is, irreducible
over E) for cubic plane curves: d = 3 and n = 2. In this special case, every linear system £ of (projective)
dimension 4 has an F,-member that is a reducible plane cubic over F, by [AGR24, Theorem 1.3(d)]. Hence,
the answer to Question 1 in this setting is at most 3. We predict that the answer is exactly 3.

Conjecture 2. There exists a linear system £ = (Fy, F1, F», F3) of cubic plane curves where each F,-member
of L is geometrically irreducible.

As partial progress, we establish the following result.

Theorem 3. There ezists a linear system L = (Fy, F1, Fa, F3) of cubic plane curves where each Fy-member
of L is irreducible over F, and there is at most one geometrically reducible F,-member of L.

While we focus on the case of cubic plane curves in the present paper, the same question applies to
hypersurfaces of degree d in P” for any d and n.

Problem 4. Determine the maximum (projective) dimension of a linear system L of degree d hypersurfaces
in P" such that each IF,-member is geometrically irreducible.
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By [AGR24, Theorem 1.3(d)], every linear system of dimension (":i;l) has an F,-member that is reducible

over . Hence, the answer to Problem 4 is at most ("1%]') — 1. On the other hand, by [AGR23, Theorem
2], when p = char(F,)  ged(d, n + 1), there exists an n-dimensional linear system whose F-members are all
smooth, hence geometrically irreducible. Hence, the answer to Problem 4 is at least n. We expect the true
answer to Problem 4 to be closer to the upper bound (":i;l) — 1. After all, we expect most geometrically
reducible hypersurfaces defined over IF; to be reducible over F,,.

We also have a related open problem with the condition “geometrically irreducible” relaxed to “not

containing a linear component over [F,.”

Problem 5. Determine the maximum (projective) dimension of a linear system L of degree d hypersurfaces
in P" such that each IF,-member has no linear factor.

By definition, the answer to Problem 4 is less than or equal to the answer to Problem 5. It is reasonable
to expect that the two answers agree, at least for all sufficiently large ¢ (as a function of n and d). The
heuristic is that most reducible hypersurfaces (over IF,) have a linear factor. Note that Conjecture 2 concerns
the case n = 2 and d = 3 for which Problems 4 and 5 coincide.

While these open problems are new, we note that the study of reducible members in a linear system of
algebraic hypersurfaces is rich in literature. One case that has been investigated thoroughly is the number of
reducible (or totally reducible) hypersurfaces in a pencil of hypersurfaces [Lor93, Vis93, PY08]. The setting
between the cited work and the present work differs in a few places. We only consider F,-members while the
previous work is about controlling reducibility over F,-members. On the other hand, we do not restrict our
attention to pencils and allow large-dimensional linear systems.

Structure of the paper. We provide two proofs for Theorem 3. In Section 2, we provide a non-
constructive proof in the spirit of the work done in [AGR24|, while in Section 3 we provide an explicit
construction of a 3-dimensional linear system as desired for the conclusion of Theorem 3. Appendix A
provides numerical evidence (computed using SageMath) that supports Conjecture 2 for all ¢ < 11.

2. PROOF 1: GALOIS ORBITS

In this section, we discuss the construction in our previous paper [AGR24] joint with Reichstein in the
special case of plane cubic curves. Note that [AGR24, Theorem 1.3(c)] provides a linear system of cubics
L = P3 where each F,-member of £ is irreducible over F,. We will show that the same linear system £ has at
most one geometrically reducible F,-members, establishing a proof of Theorem 3. We begin with reviewing
the construction of L.

The proof of [AGR24, Theorem 1.3(c)] is based on the existence of a point P € P?(Fy) such that P is
not contained in any degree 2 curve C over F, [AGR24, Theorem 1.1]. Equivalently, no conic defined over
[F, contains the Galois orbit S = {P, P, ...,PUS}. Here, P? denotes the image of the point P under the
Frobenius map [z : y : 2] = [27 : 7 : 29]. For simplicity, let us write P; = P? so that S = {Py, ..., Ps}.

Recall that the dimension of the IF -vector space of cubic forms in 3 variables is 10. Imposing the condition
that a cubic passes through a specific point imposes at most 1 linear condition on the coefficients. Since
S = {P,..., Ps} has 6 points and S is defined over F, (despite P, not individually defined over F,), the
F,-vector subspace of all cubics passing through S has dimension at least 10 — 6 = 4. Let Fy, Fi, Fb, F3
denote four linearly independent cubic forms in F[x,y, ] each passing through all points of S.

Let £ = (Fy, Fy, F», F3) = P3? denote the 3-dimensional linear system of cubic curves passing through S.
Let C be a reducible cubic curve (over F,) which is an F,-member of £. There are two ways in which a
reducible cubic C' = L U @ can pass through the set S:

(a) Let L;; be the line joining P; and P; and @ can vary in P'-worth of conics passing through the
remaining 4 points.
(b) Let Q; be the conic passing through 5 points in the set S\ {P;}. Then L can vary in P!-worth of
lines passing through the remaining point F;.
However, if C' is defined over Iy, it must be the case that C is a union of three F s-lines, Galois conjugated
by Gal(Fqs /F,). It is straightforward to see that exactly one one of these curves, namely Py PsUP; PyU P Ps,
is defined over F,. Hence, all F,-members of L are irreducible over F, and exactly one F,-member of L fails
to be geometrically irreducible.




3. PROOF 2: EXpLICIT CONSTRUCTION

The first proof relies on the existence of a point P € P?(F ) which does not lie on any conic defined over
F,. The proof of this assertion in [AGR24, Theorem 1.1] was obtained by an intricate counting argument
and hence is nonconstructive by its nature. In this section, we offer an alternative proof of Theorem 3 which
has the advantage of providing an explicit construction.

We start with a lemma on reducible cubic curves containing only the monomials z2y, y?z, 2%z, 2yz.

Lemma 6. Suppose ax?y + by?z + cz%x + dryz = 0 is a geometrically reducible cubic curve. Then abc = 0.

Proof. The reducible cubic has a linear factor L. Without loss of generality, L = x+ Sy 4z for some scalars
B,7v. If a =0, then we are done. Hence, we may assume a = 1 after scaling. We have:

(3.1) 22y + by?z + cz’z + deyz = LQ

for some quadratic factor Q). We match the coefficients on both sides of (3.1) to prove that b = 0. We
proceed in five steps:

(1) The cubic has no 23 term, so @ has no x? term. The term 2%y can only be constructed from
multiplying x from L with a term in zy from @Q; thus, the coefficient of xy in  must be 1.

(2) If B # 0, then @Q has no y? term; in that case, LQ has the term (Sy) - xy which leads to the term
xy? in the cubic that cannot be canceled, a contradiction. Therefore, 5 = 0.

(3) The cubic has no xy? term and 3 = 0, so Q has no y? term. The cubic has no 22z term and @ has
no z? term, so Q@ has no zz term.

(4) So, Q = zy + 61yz + 0222 and L = x + vz. From (3.1), we see v6; = 0. If v = 0, then z divides the
cubic, implying that b = 0, as desired.

(5) If v # 0, then we have 6; = 0. In this case, (3.1) reads:

(z +y2)(zy + 622%) = 2%y + by?z + c2’x + dayz.
We obtain b = 0, as desired.
Thus, any geometrically reducible cubic of the form az?y + by?z + cz?x + dryz = 0 satisfies abc = 0. O

We will now present the second proof of our main theorem.

Proof of Theorem 3. Consider the linear system £; = (2%y,y?z, 222, vyz). By the Normal Basis Theorem,

there exists an element o € Fgs such that o, a9, a9 forms a basis of Fgs as an Fg-vector space. We construct
a new linear system from £ where x, y, and z are replaced by appropriate linear forms. Let

= (az + oy +a?z )2(aqx+aq2y+az),
= (« 97 4+ o y+ az) (aq2x+ay+aqz),
(oﬂ x4 ay+alz )Z(Ozx—l—ozqy—i—oﬂzz),

T=(azx+aly+ a? z)(alx 4+ aqzy + az)(aq2x +ay + alz).

Consider the linear system Lo = (F,G, H,T). The Frobenius map ¢t — t?¢ sends F — G — H — F
and fixes T'. Thus, the linear system Ly is defined over F,, meaning that we can find new generators
Ry, R1,Rs, R3 € Fylr,y, 2] with deg(R;) = 3 such that Lo = (Ro, R1, R2, R3). We claim that ecach F,-
member of L, is geometrically irreducible except the member T € L5 which is a union of three lines
conjugated by Gal(Fys/F,). Indeed, we have a new coordinate system induced by the linear transformation:

2 =az+aly+a? 2
Y =a%z+a% y+ oz
Y=oz +ay+alz

Applying Lemma 6 in the new coordinate system, we see that any geometrically reducible F,-member of L
given by

aF +bG 4+ cH +dT =0,
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satisfies abc = 0. After applying the Frobenius map ¢ — t¢ twice and using the fact that T is defined over
F,, we get two additional equations:

aG +bH + cF +dT =0,

aH +bF +cG+dl'=0
Since abc = 0, at least one of a,b,c is zero. The three equations above and the linear independence of

F,G,H,T imply a = b = ¢ = 0. Hence, the only geometrically reducible F,-member of £ is {T' = 0}. Note
that {T" = 0} is irreducible over F,. Thus, the lincar system L, satisfies the desired properties. |

APPENDIX A: COMPUTATIONAL EVIDENCE FOR THE CONJECTURE

We verified Conjecture 2 for all ¢ < 11 using SageMath [Sage21]. It suffices to randomly generate a cubic
linear system £ = (Fy, Iy, Fy, F3) until all F,-members of £ are geometrically irreducible. The table below
lists the successful linear systems for ¢ € {2,3,4,5,7,8,9,11}.

q=2
Fy = 2%y + 2%z + y°2 Fy = ay® + 4% + zyz + x2°
Fy =28 4 y2? F3 =2y +aoy? + 222 + 22
q=3
Fo=y*+ 2224+ y2 2+ y22 + 2° Fy =a® — 2y — xy® + 22?2 — y2?
F=a% —ay? +y?z —a2® +y2? - 22 F3 = —a2® — 2%y + ¢ 4+ 222 — 22
q=4
Fo =22y +9° + 222+ 2yz + y2° Fy = 2® + ay? + 22 + 222 + y22
F = 2%y + zyz + 422 + 2° Fs = 2% + y2°
q=5
Fy = 222y + xy® + ¢ + 222 + y2? Fy =222 + 2%y + zy? + y° — 2222 — wyz — y22 + 222 + 2y22
Fy = 2%y + 2zy? — 2% — 20%2 + 292 — 2022 — y2? Fs = —22%y — 2zy” — 222 — 2zyz + 922 — x2® 4 22°
q=1
Fo = —a2® — 3zy® + 9% + 3y%2 + 222 — 2y2% + 328 Fy =23 — 22%y +y® — 2%z — 3zyz — 2y%2 + 222 — 32°
Fy =323 — 32%y — 3zy? — 3y° + xyz — 2%z — 22° Fs = =323 — 22%y + 229% + 2y° — 2222 — 29%2 — 12?2 4 32°
q=38
Fo = 2%y 4+ 22 + 222 + y2? Fy =23 + 2%y + %2 + 22 4 2°
=22y + x>+ 222+ 23 F=xy+>+222+ayz+ 222 +yz2 +2°
Y Y yTy Yy Yy
q=9
Fo=—2%+ xzy + y3 + 2%z + Yz — y22 + a2 — y22 Fy = x2y + ny +alz+x2? + yz2 + 23
Fl=ay? — 2%z —ayz —y?z — 28 Fs =ay? —y® — 2?2+ y?2 — y2?
qg=11
Fo = =323 — 5ay® + 22%2 + 4y°2 — 2w2% — 423 Fy =52% +32%y + y® — 2222 — bayz — y?z — bx2® — 3yz® — 42°
Fi = 2% + ay? + 20 + 3222 + dayz — 22 — 3222 + 2y2? — 28 | Fy = 22% — 322y + day® + 2% — 522z + %z — 202% — y2? 4+ 28
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