LINEAR SYSTEM OF GEOMETRICALLY IRREDUCIBLE PLANE CUBICS OVER FINITE FIELDS

SHAMIL ASGARLI AND DRAGOS GHIOCA

ABSTRACT. We examine the maximum dimension of a linear system of plane cubic curves whose \mathbb{F}_q -members are all geometrically irreducible. Computational evidence suggests that such a system has a maximum (projective) dimension of 3. As a step towards the conjecture, we prove that there exists a 3-dimensional linear system \mathcal{L} with at most one geometrically reducible \mathbb{F}_q -member.

1. INTRODUCTION

Let \mathcal{P} describe a property of a degree d algebraic hypersurface in \mathbb{P}^n . In algebraic geometry and adjacent fields, we are often interested in measuring the likelihood of the property \mathcal{P} for a "randomly chosen" hypersurface. When working over an infinite field, we can use Zariski dense open sets to show that property \mathcal{P} holds generically. However, the situation over finite fields is more subtle since open sets in the relevant parameter space may not have any \mathbb{F}_q -points (despite being Zariski dense over $\overline{\mathbb{F}_q}$).

There are alternative methods to quantify how widespread a property \mathcal{P} holds for hypersurfaces over finite fields. One method is to count the proportion of degree d hypersurfaces over \mathbb{F}_q satisfying \mathcal{P} , and consider the asymptotic proportion (either as $d \to \infty$ or $q \to \infty$). As another natural metric, we can ask for the maximum size of a linear family \mathcal{P} can carry. More precisely, we can pose the following question for each finite field \mathbb{F}_q , and positive integers d and n.

Question 1. What is the maximum value of $t \in \mathbb{N}$ for which there exist $\{F_i = 0\}$ for i = 0, 1, ..., t such that $X_{[a_0:\cdots:a_t]} = \{a_0F_0 + \cdots + a_tF_t = 0\}$ satisfies the property \mathcal{P} for all choices $[a_0:a_1:\ldots:a_t] \in \mathbb{P}^t(\mathbb{F}_q)$?

The question can be rephrased in the language of linear systems: what is the largest (projective) dimension of a linear system $\mathcal{L} \cong \mathbb{P}^t$ of degree d hypersurfaces in \mathbb{P}^n such that each \mathbb{F}_q -member of \mathcal{L} satisfies \mathcal{P} ? An answer to Question 1 measures the extent to which the property \mathcal{P} linearly propagates in the parameter space of all degree d hypersurfaces in \mathbb{P}^n . Larger values of t indicate higher levels of prevalence for \mathcal{P} .

Question 1 has been addressed in recent works for several specific choices of \mathcal{P} . For instance, \mathcal{P} may correspond to the property of being smooth [AGR23], irreducible over \mathbb{F}_q [AGR24], reducible over \mathbb{F}_q [AGR24], or nonblocking with respect to \mathbb{F}_q -lines [AGY23]. To illustrate some of these results, we specialize to the setting of cubic plane curves, that is, d = 3 and n = 2. Below are two concrete examples from the recent literature where Question 1 has a known answer.

Theorem 2 ([AGR23]). Let \mathbb{F}_q be a finite field with characteristic $p \neq 3$. Then there is a 2-dimensional linear system $\mathcal{L}_{smo} = \langle F_0, F_1, F_2 \rangle \cong \mathbb{P}^2$ of cubic plane curves such that every \mathbb{F}_q -member of \mathcal{L}_{smo} is smooth. Moreover, no such 3-dimensional system exists.

Theorem 3 ([AGR24]). Let \mathbb{F}_q be a finite field. Then there is a 3-dimensional linear system $\mathcal{L}_{irr} = \langle F_0, F_1, F_2, F_3 \rangle \cong \mathbb{P}^3$ of cubic plane curves such that every \mathbb{F}_q -member of \mathcal{L}_{irr} is irreducible over \mathbb{F}_q . Moreover, no such 4-dimensional system exists.

Let us compare the two properties in Theorems 2 and 3. The smoothness condition refers to geometric smoothness, while irreducibility over \mathbb{F}_q does not necessarily imply geometric irreducibility (i.e., irreducibility over $\overline{\mathbb{F}_q}$). This distinction naturally raises the goal of establishing a version of Theorem 3 where the conclusion is strengthened from irreducibility over \mathbb{F}_q to irreducibility over $\overline{\mathbb{F}_q}$. The purpose of the present paper is to address this objective.

²⁰²⁰ Mathematics Subject Classification. Primary 14N05; Secondary 14C21, 14H50, 14G15.

Key words and phrases. linear system, cubic curves, geometric irreducibility, finite fields.

To summarize, we address Question 1 when \mathcal{P} stands for "is geometrically irreducible" (that is, irreducible over $\overline{\mathbb{F}_q}$) for cubic plane curves: d = 3 and n = 2. In this special case, every linear system \mathcal{L} of (projective) dimension 4 has an \mathbb{F}_q -member that is a reducible plane cubic over \mathbb{F}_q by Theorem 3; see [AGR24, Theorem 1.3(d)] for further details. Hence, the answer to Question 1 in this setting is at most 3. We predict that the answer is exactly 3.

Conjecture 4. There exists a linear system $\mathcal{L} = \langle F_0, F_1, F_2, F_3 \rangle \cong \mathbb{P}^3$ of cubic plane curves where each \mathbb{F}_q -member of \mathcal{L} is geometrically irreducible.

As mentioned earlier, Conjecture 4 strengthens Theorem 3. As partial progress, we establish the following.

Theorem 5. There exists a linear system $\mathcal{L} = \langle F_0, F_1, F_2, F_3 \rangle$ of cubic plane curves where each \mathbb{F}_q -member of \mathcal{L} is irreducible over \mathbb{F}_q and there is at most one geometrically reducible \mathbb{F}_q -member of \mathcal{L} .

To further motivate the problem and explain its arithmetic origin, we explain why the analogue of Conjecture 4 fails when the base field \mathbb{F}_q is replaced by an algebraically closed field \mathbb{K} . Since a cubic form in three variables is described by 10 coefficients, the parameter space of cubic plane curves is $\mathbb{P}^9(\mathbb{K})$. Let $\mathcal{L} = \langle F_0, F_1, F_2, F_3 \rangle$ be a linear system where each $F_i \in \mathbb{K}[x, y, z]$ is a homogeneous polynomial of degree 3.

The set of reducible cubic curves forms a 7-dimensional subvariety Y of $\mathbb{P}^{9}(\mathbb{K})$. This can be seen as follows: any reducible cubic polynomial can be factored as

$$(1.1) (a_0x + a_1y + a_2z)(b_0x^2 + b_1y^2 + b_2z^2 + b_3xy + b_4yz + b_5zx)$$

The variety Y is the image of the natural map $\mathbb{P}^2 \times \mathbb{P}^5 \to \mathbb{P}^9$ induced by the multiplication from (1.1). Since $\dim(Y) + \dim(\mathcal{L}) = 7 + 3 = 10$, the intersection $C := Y \cap \mathcal{L}$ has dimension at least 1 in \mathbb{P}^9 . Because \mathbb{K} is algebraically closed, we have $C(\mathbb{K}) \neq \emptyset$, meaning that \mathcal{L} has at least one reducible \mathbb{K} -member. In particular, Conjecture 4 does *not* hold over \mathbb{K} .

For example, if we take $\mathbb{K} = \overline{\mathbb{F}_q}$, then any 3-dimensional linear system $\mathcal{L} = \langle F_0, F_1, F_2, F_3 \rangle \cong \mathbb{P}^3$ contains a reducible $\overline{\mathbb{F}_q}$ -member. The subtlety of Conjecture 4 lies in the fact that, when \mathcal{L} is defined over \mathbb{F}_q , the variety C, which is generically a curve, may lack \mathbb{F}_q -points. In fact, Conjecture 4 is equivalent to the following statement: there exists an \mathbb{F}_q -linear subspace $\mathcal{L} \cong \mathbb{P}^3$ in the parameter space \mathbb{P}^9 such that $Y \cap \mathcal{L}$ has no \mathbb{F}_q -points, where Y is the locus of reducible cubics. Viewed through this lens, the difficulty of Conjecture 4 is tied to finding a specific "pointless" curve inside a large-dimensional projective space. Furthermore, the above analysis also shows that the proportion of geometrically irreducible cubic plane curves defined over \mathbb{F}_q tends to 1 as $q \to \infty$ (since the number of geometrically *reducible* plane cubics defined over \mathbb{F}_q is $O(q^7)$, while we have $O(q^9)$ plane cubics defined over \mathbb{F}_q).

While we focus on the case of cubic plane curves in the present paper, the same question applies to hypersurfaces of degree d in \mathbb{P}^n for any d and n.

Problem 6. Determine the maximum (projective) dimension of a linear system \mathcal{L} of degree d hypersurfaces in \mathbb{P}^n such that each \mathbb{F}_q -member is geometrically irreducible.

By [AGR24, Theorem 1.3(d)], every linear system of dimension $\binom{n+d-1}{n-1}$ has an \mathbb{F}_q -member that is reducible over \mathbb{F}_q . Hence, the answer to Problem 6 is at most $\binom{n+d-1}{n-1} - 1$. On the other hand, by [AGR23, Theorem 2], when $p = \operatorname{char}(\mathbb{F}_q) \nmid \operatorname{gcd}(d, n+1)$, there exists an *n*-dimensional linear system whose \mathbb{F}_q -members are all smooth, hence geometrically irreducible. Hence, the answer to Problem 6 is at least *n*. We expect the true answer to Problem 6 to be closer to the upper bound $\binom{n+d-1}{n-1} - 1$. After all, we expect most geometrically reducible hypersurfaces defined over \mathbb{F}_q to be reducible over \mathbb{F}_q .

We also have a related open problem with the condition "geometrically irreducible" relaxed to "not containing a linear component over $\overline{\mathbb{F}_q}$."

Problem 7. Determine the maximum (projective) dimension of a linear system \mathcal{L} of degree d hypersurfaces in \mathbb{P}^n such that each \mathbb{F}_q -member has no linear factor.

By definition, the answer to Problem 6 is less than or equal to the answer to Problem 7. It is reasonable to expect that the two answers agree, at least for all sufficiently large q (as a function of n and d). The heuristic is that most reducible hypersurfaces (over $\overline{\mathbb{F}_q}$) have a linear factor. Note that Conjecture 4 concerns the case n = 2 and d = 3 for which Problems 6 and 7 coincide.

While these open problems are new, we note that the study of reducible members in a linear system of algebraic hypersurfaces is rich in literature. One case that has been investigated thoroughly is the number of reducible (or totally reducible) hypersurfaces in a pencil of hypersurfaces [Lor93, Vis93, PY08]. The setting between the cited work and the present work differs in a few places. We only consider \mathbb{F}_q -members while the previous work is about controlling reducibility over $\overline{\mathbb{F}_q}$ -members. On the other hand, we do not restrict our attention to pencils and allow large-dimensional linear systems.

Structure of the paper. We provide two proofs for Theorem 5. In Section 2, we provide a nonconstructive proof in the spirit of the work done in [AGR24], while in Section 3 we provide an explicit construction of a 3-dimensional linear system as desired for the conclusion of Theorem 5. We believe both proofs (which are quite different in their approach) could be useful for pursuing Conjecture 4. Appendix A provides numerical evidence (computed using SageMath) that supports Conjecture 4 for all $q \leq 11$.

Acknowledgments. We thank Dino Lorenzini and the referee for valuable comments on the paper.

2. A non-constructive proof

In this section, we discuss the construction in our previous paper [AGR24] joint with Reichstein in the special case of plane cubic curves; this allows us to provide a first (non-constructive) proof of our Theorem 5.

We begin by recalling the motivation behind the main result of [AGR24] specialized to our context. Recall that the parameter space of plane conics corresponds to the projective space \mathbb{P}^5 , as each conic can be represented by the equation

$$b_0x^2 + b_1y^2 + b_2z^2 + b_3xy + b_4yz + b_5zx = 0$$

for some coefficients b_0, \ldots, b_5 . Imposing the additional condition that the conic passes through a specific point $Q_1 = [x_1 : y_1 : z_1]$ introduces one linear constraint on the coefficients b_0, \ldots, b_5 . As a result, the space of conics passing through Q_1 forms a projective subspace of dimension 4, namely \mathbb{P}^4 . Each time we require the conic to pass through a new point Q, we add another linear constraint on the coefficients. However, it is not guaranteed that these constraints will be linearly independent. We say that the points Q_1, \ldots, Q_s (with s < 6) are in general position with respect to conics if the \mathbb{F}_q -vector space dimension of the space of conics passing through Q_1, \ldots, Q_s is exactly 6 - s. Over the algebraic closure, the set of such s-tuples forms a Zariski-dense open subset. In particular, when s = 6, if the six points are chosen from $\mathbb{P}^2(\overline{\mathbb{F}_q})$ in general position, then no conic passes through all of them. The main contribution of [AGR24] is to show that points in general position can be modeled as Galois orbits in a suitable sense. In the specific case of conics, it is possible to construct a set of six points in general position as the Galois orbit of a single point of degree 6, that is, a point with coordinates in \mathbb{F}_q^6 .

More precisely, [AGR24, Theorem 1.1] asserts the existence of a point $P \in \mathbb{P}^2(\mathbb{F}_{q^6})$ such that P is not contained in any degree 2 curve C over \mathbb{F}_q [AGR24, Theorem 1.1]. Equivalently, no conic defined over \mathbb{F}_q contains the Galois orbit $S = \{P, P^{\sigma}, \ldots, P^{\sigma^5}\}$. Here, P^{σ} denotes the image of the point P under the Frobenius map $[x:y:z] \mapsto [x^q:y^q:z^q]$. For simplicity, let us write $P_i = P^{\sigma^i}$ so that $S = \{P_0, \ldots, P_5\}$.

Next, we follow [AGR24, Theorem 1.3(c)] to construct a linear system of cubics $\mathcal{L} \cong \mathbb{P}^3$ where each \mathbb{F}_q member of \mathcal{L} is irreducible over \mathbb{F}_q . We will show that the same linear system \mathcal{L} has at most one geometrically reducible \mathbb{F}_q -members, establishing a proof of Theorem 5. To construct \mathcal{L} , recall that the dimension of the \mathbb{F}_q -vector space of cubic forms in 3 variables is 10. Imposing the condition that a cubic passes through a specific point imposes at most 1 linear condition on the coefficients. Since $S = \{P_0, ..., P_5\}$ has 6 points and S is defined over \mathbb{F}_q (despite the fact that each P_i is not individually defined over \mathbb{F}_q), the \mathbb{F}_q -vector subspace of all cubics passing through S has dimension at least 10 - 6 = 4. Let F_0, F_1, F_2, F_3 denote four linearly independent cubic forms in $\mathbb{F}_q[x, y, z]$ each passing through all points of S. Let $\mathcal{L} = \langle F_0, F_1, F_2, F_3 \rangle \cong \mathbb{P}^3$ denote the 3-dimensional linear system of cubic curves passing through S.

Let C be a reducible cubic curve (over $\overline{\mathbb{F}_q}$) which is an \mathbb{F}_q -member of \mathcal{L} . There are two ways in which a reducible cubic $C = L \cup Q$ can pass through the set S:

- (a) Let L_{ij} be the line joining P_i and P_j and Q can vary in \mathbb{P}^1 -worth of conics passing through the remaining 4 points.
- (b) Let Q_i be the conic passing through 5 points in the set $S \setminus \{P_i\}$. Then L can vary in \mathbb{P}^1 -worth of lines passing through the remaining point P_i .

However, if C is defined over \mathbb{F}_q , it must be the case that C is a union of three \mathbb{F}_{q^3} -lines, Galois conjugated by $\operatorname{Gal}(\mathbb{F}_{q^3}/\mathbb{F}_q)$; note that C is assumed to be geometrically reducible, while on the other hand, by [AGR24, Theorem 1.3(c)], C is irreducible over \mathbb{F}_q since the entire \mathbb{F}_q -linear space \mathcal{L} consists of \mathbb{F}_q -irreducible plane cubics. It is straightforward to see that *exactly one* one of these curves, namely $\overline{P_0P_3} \cup \overline{P_1P_4} \cup \overline{P_2P_5}$, is defined over \mathbb{F}_q . Hence, all \mathbb{F}_q -members of \mathcal{L} are irreducible over \mathbb{F}_q and exactly one \mathbb{F}_q -member of \mathcal{L} fails to be geometrically irreducible. This completes the proof of Theorem 5.

3. An explicit construction

The first proof of Theorem 5 relies on the existence of a point $P \in \mathbb{P}^2(\mathbb{F}_{q^6})$ which does not lie on any conic defined over \mathbb{F}_q . The proof of this assertion in [AGR24, Theorem 1.1] was obtained by an intricate counting argument and hence is nonconstructive by its nature. In this section, we offer an alternative proof of Theorem 5 which has the advantage of providing an explicit construction. This latter method offers a new perspective on the problem and suggests future avenues for addressing higher-degree systems (as in Problems 6 and 7) through explicit methods.

We start with a lemma on reducible cubic curves containing only the monomials x^2y, y^2z, z^2x, xyz .

Lemma 8. Suppose $ax^2y + by^2z + cz^2x + dxyz = 0$ is a geometrically reducible cubic curve. Then abc = 0.

Proof. The reducible cubic has a linear factor L. Without loss of generality, $L = x + \beta y + \gamma z$ for some scalars β, γ . If a = 0, then we are done. Hence, we may assume a = 1 after scaling. We have:

$$(3.1) x2y + by2z + cz2x + dxyz = LQ$$

for some quadratic factor Q. We match the coefficients on both sides of (3.1) to prove that b = 0. We proceed in five steps:

- (1) The cubic has no x^3 term, so Q has no x^2 term. The term x^2y can only be constructed from multiplying x from L with a term in xy from Q; thus, the coefficient of xy in Q must be 1.
- (2) If $\beta \neq 0$, then Q has no y^2 term; in that case, LQ has the term $(\beta y) \cdot xy$ which leads to the term xy^2 in the cubic that cannot be canceled, a contradiction. Therefore, $\beta = 0$.
- (3) The cubic has no xy^2 term and $\beta = 0$, so Q has no y^2 term. The cubic has no x^2z term and Q has no x^2 term, so Q has no xz term.
- (4) So, $Q = xy + \delta_1 yz + \delta_2 z^2$ and $L = x + \gamma z$. From (3.1), we see $\gamma \delta_1 = 0$. If $\gamma = 0$, then x divides the cubic, implying that b = 0, as desired.
- (5) If $\gamma \neq 0$, then we have $\delta_1 = 0$. In this case, (3.1) reads:

$$(x+\gamma z)(xy+\delta_2 z^2) = x^2y + by^2z + cz^2x + dxyz.$$

We obtain b = 0, as desired.

Thus, any geometrically reducible cubic of the form $ax^2y + by^2z + cz^2x + dxyz = 0$ satisfies abc = 0.

We will now present the second proof of our main theorem.

Proof of Theorem 5. Consider the linear system $\mathcal{L}_1 = \langle x^2 y, y^2 z, z^2 x, xyz \rangle$. By the Normal Basis Theorem, there exists an element $\alpha \in \mathbb{F}_{q^3}$ such that $\alpha, \alpha^q, \alpha^{q^2}$ forms a basis of \mathbb{F}_{q^3} as an \mathbb{F}_q -vector space. We construct a new linear system from \mathcal{L}_1 where x, y, and z are replaced by appropriate linear forms. Let

$$F = (\alpha x + \alpha^{q} y + \alpha^{q^{2}} z)^{2} (\alpha^{q} x + \alpha^{q^{2}} y + \alpha z),$$

$$G = (\alpha^{q} x + \alpha^{q^{2}} y + \alpha z)^{2} (\alpha^{q^{2}} x + \alpha y + \alpha^{q} z),$$

$$H = (\alpha^{q^{2}} x + \alpha y + \alpha^{q} z)^{2} (\alpha x + \alpha^{q} y + \alpha^{q^{2}} z),$$

$$T = (\alpha x + \alpha^{q} y + \alpha^{q^{2}} z) (\alpha^{q} x + \alpha^{q^{2}} y + \alpha z) (\alpha^{q^{2}} x + \alpha y + \alpha^{q} z).$$

Consider the linear system $\mathcal{L}_2 = \langle F, G, H, T \rangle$. The Frobenius map $t \mapsto t^q$ sends $F \mapsto G \mapsto H \mapsto F$ and fixes T. Thus, the linear system \mathcal{L}_2 is defined over \mathbb{F}_q , meaning that we can find new generators $R_0, R_1, R_2, R_3 \in \mathbb{F}_q[x, y, z]$ with deg $(R_i) = 3$ such that $\mathcal{L}_2 = \langle R_0, R_1, R_2, R_3 \rangle$. We claim that each \mathbb{F}_q member of \mathcal{L}_2 is geometrically irreducible except the member $T \in \mathcal{L}_2$ which is a union of three lines
conjugated by $\operatorname{Gal}(\mathbb{F}_{q^3}/\mathbb{F}_q)$. Indeed, we have a new coordinate system induced by the linear transformation:

$$x' = \alpha x + \alpha^{q} y + \alpha^{q^{2}} z$$
$$y' = \alpha^{q} x + \alpha^{q^{2}} y + \alpha z$$
$$z' = \alpha^{q^{2}} x + \alpha y + \alpha^{q} z$$

Applying Lemma 8 in the new coordinate system, we see that any geometrically reducible \mathbb{F}_q -member of \mathcal{L}_2 given by

$$aF + bG + cH + dT = 0,$$

satisfies abc = 0. After applying the Frobenius map $t \mapsto t^q$ twice and using the fact that T is defined over \mathbb{F}_q , we get two additional equations:

$$aG + bH + cF + dT = 0,$$

$$aH + bF + cG + dT = 0$$

Since abc = 0, at least one of a, b, c is zero. The three equations above and the linear independence of F, G, H, T imply a = b = c = 0. Hence, the only geometrically reducible \mathbb{F}_q -member of \mathcal{L}_2 is $\{T = 0\}$. Note that $\{T = 0\}$ is irreducible over \mathbb{F}_q . Thus, the linear system \mathcal{L}_2 satisfies the desired properties. \Box

APPENDIX A: COMPUTATIONAL EVIDENCE FOR THE CONJECTURE

We verified Conjecture 4 for all $q \leq 11$ using SageMath [Sage21]. It suffices to randomly generate a cubic linear system $\mathcal{L} = \langle F_0, F_1, F_2, F_3 \rangle$ until all \mathbb{F}_q -members of \mathcal{L} are geometrically irreducible. The following algorithm formalizes this procedure.

Algorithm 1: Verifying Conjecture 4 for
$$q \leq 11$$

1 Input: Prime power q, the base field \mathbb{F}_q .

- **2** Output: A cubic linear system $\mathcal{L} = \langle F_0, F_1, F_2, F_3 \rangle$ such that all \mathbb{F}_q -members are geometrically irreducible.
- **3** Repeat until all \mathbb{F}_q -members of \mathcal{L} are geometrically irreducible:
- 4 Randomly generate coefficients $c_0, \ldots, c_9 \in \mathbb{F}_q$ to define a cubic form

$$F = c_0 x^3 + c_1 y^3 + c_2 z^3 + c_3 x^2 y + c_4 x y^2 + c_5 y^2 z + c_6 y z^2 + c_7 z^2 x + c_8 z x^2 + c_9 x y z$$

Construct four independent forms F_0, F_1, F_2, F_3 as above.

- 5 Define $\mathcal{L} = \langle F_0, F_1, F_2, F_3 \rangle$.
- 6 For each \mathbb{F}_q -member of \mathcal{L} parametrized by $\vec{a} = (a_0, a_1, a_2, a_3)$ with $a_i \in \mathbb{F}_q$, set:

$$F_{\vec{a}} = a_0 F_0 + a_1 F_1 + a_2 F_2 + a_3 F_3$$
 where $a_0, a_1, a_2, a_3 \in \mathbb{F}_q$:

If
$$\{F_{\vec{a}} = 0\}$$
 is geometrically reducible, discard \mathcal{L} and return to Step 4.

 τ Return ${\cal L}.$

The following table lists the successful linear systems for $q \in \{2, 3, 4, 5, 7, 8, 9, 11\}$.

q = 2	
$F_0 = x^2y + x^2z + y^2z$	$F_2 = xy^2 + y^3 + xyz + xz^2$
$F_1 = x^3 + yz^2$	$F_3 = x^2y + xy^2 + xz^2 + z^3$
q = 3	
$F_0 = y^3 + x^2 z + y^2 z + y z^2 + z^3$	$F_2 = x^3 - x^2y - xy^2 + xz^2 - yz^2$
$F_1 = x^3 - xy^2 + y^2z - xz^2 + yz^2 - z^3$	$F_3 = -x^3 - x^2y + y^3 + x^2z - xz^2$

q = 4	
$F_0 = x^2y + y^3 + x^2z + xyz + yz^2$	$F_2 = x^3 + xy^2 + y^2z + xz^2 + yz^2$
$F_1 = x^2y + xyz + y^2z + z^3$	$F_3 = x^3 + yz^2$
q = 5	
$F_0 = 2x^2y + xy^2 + y^3 + xz^2 + yz^2$	$F_2 = 2x^3 + x^2y + xy^2 + y^3 - 2x^2z - xyz - y^2z + xz^2 + 2yz^2$
$F_1 = x^2y + 2xy^2 - 2y^3 - 2x^2z + 2y^2z - 2xz^2 - yz^2$	$F_3 = -2x^2y - 2xy^2 - x^2z - 2xyz + y^2z - xz^2 + 2z^3$
q = 7	
$F_0 = -x^3 - 3xy^2 + y^3 + 3y^2z + xz^2 - 2yz^2 + 3z^3$	$F_2 = x^3 - 2x^2y + y^3 - x^2z - 3xyz - 2y^2z + xz^2 - 3z^3$
$F_1 = 3x^3 - 3x^2y - 3xy^2 - 3y^3 + xyz - 2y^2z - 2z^3$	$F_3 = -3x^3 - 2x^2y + 2xy^2 + 2y^3 - 2x^2z - 2y^2z - xz^2 + 3z^3$
q = 8	
$F_0 = x^2 y + y^2 z + xz^2 + yz^2$	$F_2 = x^3 + x^2y + y^2z + xz^2 + z^3$
$F_1 = x^2y + xy^2 + xz^2 + z^3$	$F_3 = x^2y + y^3 + x^2z + xyz + xz^2 + yz^2 + z^3$
q = 9	
$F_0 = -x^3 + x^2y + y^3 + x^2z + xyz - y^2z + xz^2 - yz^2$	$F_2 = x^2y + xy^2 + x^2z + xz^2 + yz^2 + z^3$
$F_1 = xy^2 - x^2z - xyz - y^2z - z^3$	$F_3 = xy^2 - y^3 - x^2z + y^2z - yz^2$
q = 11	
$F_0 = -3x^3 - 5xy^2 + 2x^2z + 4y^2z - 2xz^2 - 4z^3$	$F_2 = 5x^3 + 3x^2y + y^3 - 2x^2z - 5xyz - y^2z - 5xz^2 - 3yz^2 - 4z^3$
$F_1 = x^3 + xy^2 + 2y^3 + 3x^2z + 4xyz - y^2z - 3xz^2 + 2yz^2 - z^3$	$F_3 = 2x^3 - 3x^2y + 4xy^2 + 2y^3 - 5x^2z + y^2z - 2xz^2 - yz^2 + z^3$

Interestingly, the linear system we found for \mathbb{F}_8 has coefficients in $\mathbb{F}_2 = \{0, 1\}$, which means that the table entry corresponding to q = 8 also supports Conjecture 4 for q = 2, 4, 8. An intriguing question arises: for how large values of k can we find a linear system over \mathbb{F}_q whose \mathbb{F}_{q^k} -members (not just \mathbb{F}_q -members) are geometrically irreducible? Such a result would provide an even stronger conclusion than Conjecture 4.

References

- [AGR23] Shamil Asgarli, Dragos Ghioca, and Zinovy Reichstein, Linear families of smooth hypersurfaces over finitely generated fields, Finite Fields Appl. 87 (2023), Paper No. 102169, 10.
- [AGR24] _____, Linear system of hypersurfaces passing through a Galois orbit, Res. Number Theory 10 (2024), no. 4, Paper No. 84, 16.
- [AGY23] Shamil Asgarli, Dragos Ghioca, and Chi Hoi Yip, Existence of pencils with nonblocking hypersurfaces, Finite Fields Appl. 92 (2023), Paper No. 102283, 11.
- [Lor93] Dino Lorenzini, Reducibility of polynomials in two variables, J. Algebra 156 (1993), no. 1, 65-75.
- [PY08] J. V. Pereira and S. Yuzvinsky, Completely reducible hypersurfaces in a pencil, Adv. Math. 219 (2008), no. 2, 672–688.
- [Sage21] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.4), 2021. https://www.sagemath.org.
- [Vis93] Angelo Vistoli, The number of reducible hypersurfaces in a pencil, Invent. Math. 112 (1993), no. 2, 247-262.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, SANTA CLARA UNIVERSITY, 500 EL CAMINO REAL, USA 95053 Email address: sasgarli@scu.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z2 $\mathit{Email}\ address: \texttt{dghioca@math.ubc.ca}$