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Abstract. We obtain a non-abelian variant of both the classical Mordell-Lang conjecture
and of the dynamical Mordell-Lang problem in the context of finite-dimensional division
algebras.

1. Introduction

Throughout this paper, we let N0 := N ∪ {0}. Also, in this paper, any subvariety of an
algebraic variety is a closed subvariety.

1.1. The Mordell-Lang conjecture. This classical problem was settled in the case of alge-
braic tori by Laurent [Lau84] and then in the case of abelian varieties by Faltings [Fal91]. We
state below the result of Vojta [Voj96, Theorem 0.2] which covers all semiabelian varieties.
Note that a semiabelian variety is a commutative algebraic group, which is an extension of
an abelian variety by an algebraic torus.

Theorem 1.1. Let G be a semiabelian variety defined over a field K of characteristic 0, let
Γ ⊆ G(K) be a finitely generated subgroup, and let V ⊆ G be a K-subvariety. Then Γ∩V (K)
is a finite union of cosets of subgroups of Γ.

It is worth noting that the structure of the intersection of a subvariety V of G with a finitely
generated subgroup of G becomes significantly wilder when G is an arbitrary algebraic group
(even the case of an extension of an abelian variety by a copy of Ga is difficult); for more
details, see [GHSZ19].

Theorem 1.1 can be reformulated as follows. Consider a finite set of generators γ1, . . . , γr
for Γ; then the set of all r-tuples (n1, . . . , nr) ∈ Zr with the property that

(1.1) n1γ1 + n2γ2 + · · ·+ nrγr ∈ V (K)

is a finite union of cosets of subgroups of Zr (see also Theorem 3.1 and its proof for a similar
reformulation in the case of algebraic tori). This alternative reformulation of the classical
Mordell-Lang conjecture suggests a more general dynamical question.

1.2. The dynamical Mordell-Lang problem. First, we note that in arithmetic dynamics,
given a quasiprojective variety X endowed with a self-map Φ, for any n ∈ N0, one uses the
notation Φn to denote the n-th compositional iterate of Φ (where Φ0 is the identity map).
For any point x ∈ X, we define the orbit of x under Φ as follows:

OΦ(x) = {Φn(x) : n ∈ N0} .

One can view the finitely generated subgroup Γ ⊆ G(K) from Theorem 1.1 as the image of
the identity 0 ∈ G under the action of the subgroup of automorphisms of the quasiprojective
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varietyG spanned by the finitely many translation maps x 7→ x+γi, where the points γ1, . . . , γr
generate Γ. Therefore, replacing now the semiabelian varietyG by an arbitrary quasiprojective
variety X and working with the semigroup spanned by finitely many endomorphisms of X,
one could formulate a very broad question, which is coined in arithmetic dynamics as the
dynamical Mordell-Lang problem.

Question 1.2. Let X be a quasiprojective variety defined over a field K of characteristic 0,
let V ⊆ X be a subvariety, let α ∈ X(K), let r ∈ N and let ϕ1, . . . , ϕr be endomorphisms of
X. Is it true that the set S of all r-tuples (n1, . . . , nr) ∈ Nr0 for which

(1.2) (ϕn1
1 ◦ ϕ

n2
2 ◦ · · · ◦ ϕ

nr
r ) (α) ∈ V (K)

is a finite union of cosets of subsemigroups of Nr0?

Theorem 1.1 (see also equation (1.1)) yields a positive answer to Question 1.2 when X is a
semiabelian variety and each ϕi is translation map on X; also, there are a few other known
instances when Question 1.2 has a positive answer (see [Mel21, Mel22], for example). An
important special case of Question 1.2 is when X = Y ×Y (for another quasiprojective variety
Y ), V is the diagonal subvariety of X, while r = 2 and the corresponding endomorphisms are
of the form

ϕ1 = (f1, idY ) and ϕ2 = (idY , f2) ,

for some endomorphisms f1 and f2 of Y . Then considering a point α := (α1, α2) ∈ Y ×Y , then
the dynamical Mordell-Lang problem in this case reduces to understanding the intersection of
the two orbits Of1(α1) and Of2(α2). The problem of intersection of orbits attracted a great
deal of interest and several important special cases were settled (see [GN17, GTZ08, GTZ12,
Rou20, SV13]).

However, as shown in [GTZ11, Section 6], the dynamical Mordell-Lang problem has a neg-
ative answer for arbitrary regular self-maps ϕi on an abelian variety X (even when the maps
ϕi are commuting group endomorphisms). Furthermore, in [SY14], Scanlon and Yasufuku
construct a broad class of examples showing that the structure of the set S from Question 1.2
can be quite wild in the case the maps ϕi are endomorphisms of semiabelian varieties.

On the other hand, in the special case r = 1, Question 1.2 is known to hold in several
instances (see [BGT10, BGKT12, Fak14, GT09, Xie17], among many other results). There
are known even partial results regarding quantitative versions of this problem (see [BGKT10,
OS15]); most importantly, there are no known counterexamples to Question 1.2 when r = 1.
In this special case of the orbit of a point under a single endomorphism Φ, Question 1.2 is
widely believed to be true for all dynamical systems (X,Φ) and it is known as the dynamical
Mordell-Lang conjecture (see [BGT16], for more details on this problem).

Furthermore, both the problem of intersection of orbits and the dynamical Mordell-Lang
conjecture have either applications or variants appearing in quite diverse settings (sometimes
going beyond the world of algebraic dynamics), such as:

• inclusion of ideals of K-algebras under the iterated action of an automorphism (see
[BL15]);
• homologically transverse subvarieties of a variety endowed with a given endomorphism

(see [BSS17]);
• p-adic analytic maps (see [BGKT10, Section 7]);
• orbits of subvarieties of a given variety endowed with an endomorphism (see [LL19]);
• finitely presented k-algebras of linear growth (see [Pio19]);
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• trajectories of balls inside rectangular billiards (see [CZ23]);
• real analytic dynamical systems (see [Sca11]);
• intersection of orbits of points under the action of two non-linear endomorphisms of

the Riemann sphere (see [Wan17]).

The goal of our paper is to prove a variant of Question 1.2 in the context of division
algebras, i.e., we prove that the dynamical Mordell-Lang problem has a positive answer in the
context of division algebras. On the other hand, it is worth noting that the examples from
[GTZ11, Section 6] show that the dynamical Mordell-Lang problem has a negative answer
for the matrix algebra over an arbitrary field; hence, it is somewhat surprising that we can
establish a positive result for a nonabelian variant of the dynamical Mordell-Lang problem.

Next, we introduce the necessary notation for our main result.

1.3. Basic notation for division algebras. Throughout this paper, let K be a field of
characteristic 0, and D be a finite-dimensional division algebra over K. For each element
f ∈ D, we define its norm by

(1.3) ‖f‖ = NormD/K(f) := NormK(f)/K(f)[D:K(f)] ∈ K.

In this subsection only, let m := [D : K]. Then D can be (non-canonically) identified with
the K-points of the m-dimensional affine space Am(K). Indeed, we let y1, . . . , ym be a given
K-basis for D and then each point x ∈ D is written uniquely as x =

∑m
i=1 xi · yi for some

xi ∈ K; thus, x ∈ D can also be viewed as the point (x1, . . . , xm) ∈ Am(K). Therefore, a
(closed) K-subvariety V of D is cut out by a system of polynomial equations

(1.4) P1(x1, . . . , xm) = · · · = P`(x1, . . . , xm) = 0

for some given polynomials P1, . . . , P` ∈ K[t1, . . . , tm]. A point of D, written as
∑m

i=1 xi · yi
(for some x1, . . . , xm ∈ K), lies on V if and only if (x1, . . . , xm) satisfies equation (1.4).

We set up some notions that are independent of the choice of a K-basis for D. A map
P : D → K is said to be a homogeneous K-polynomial of degree d if there is a K-multilinear
map

Θ : D × · · · ×D︸ ︷︷ ︸
d

→ K

such that P (x) = Θ(x, . . . , x) for all x ∈ D.1 A map F : D → K is said to be a K-polynomial
if F is a pointwise sum of finitely many homogeneous K-polynomials of various degrees. More
concretely, given any choice of (ordered) basis {y1, . . . , ym} for D/K and a map F : D → K,
there is a unique function f : Km → K such that

F

(
m∑
i=1

xiyi

)
= f(x1, . . . , xm) for all x1, . . . , xm ∈ K.

Then it can be directly verified that F is a K-polynomial if and only if there is a polynomial
P ∈ K[t1, . . . , tm] such that f(x1, . . . , xm) = P (x1, . . . , xm) for all x1, . . . , xm ∈ K, and note
that P is necessarily unique since K is of characteristic zero. Moreover, F is homogeneous of
degree d if and only if P (t1, . . . , tm) is homogeneous of degree d. With these notions set up,

1The choice of Θ is not unique unless we impose symmetry condition, but we do not need this consideration
for this paper.
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we can simply say that a closed K-subvariety V of D is by definition a subset of D cut out
by a system of equations

(1.5) F (1)(x) = · · · = F (l)(x) = 0,

where F (j) : D → K are K-polynomials. We will crucially use this rephrasing in Subsec-
tion 4.1.

1.4. Our results. We prove the following result.

Theorem 1.3. Let K be a field of characteristic 0, let D be a finite-dimensional division
algebra over K, let r ∈ N and f1, . . . , fr ∈ D×. Then for any K-subvariety V of D, we have
that

(1.6) S := {(n1, . . . , nr) ∈ Zr : fn1
1 fn2

2 · · · f
nr
r ∈ V }

is a finite union of cosets of subgroups of Zr.

Theorem 1.3 is a variant of the dynamical Mordell-Lang problem since once could consider
for each fi from Theorem 1.3 the corresponding translation map ϕi onD given by ϕi(x) = fi·x;
then the set S from (1.6) is precisely the set

(1.7) {(n1, . . . , nr) ∈ Zr : (ϕn1
1 ◦ ϕ

n2
2 · · · ◦ ϕ

nr
r ) (1) ∈ V } .

Also, in the special case D is itself a field, then due to the commutativity of the field, we
have that the set of all elements fn1

1 fn2
2 · · · fnr

r is actually the subgroup of D× generated by
f1, . . . , fr, thus connecting our result to the classical Mordell-Lang conjecture.

We also prove several finiteness results in our context, i.e., under additional hypotheses on
the elements f1, . . . , fr ∈ D× and the variety V from Theorem 1.3, we prove the set S from
(1.6) is finite (see our Theorems 2.2 and 6.4). Furthermore, in Section 6 we obtain another
finiteness result (see Theorem 6.2), which was raised naturally in the previous work of the
second author [Hua20].

1.5. Plan for our paper. We start in Section 2 by stating Theorem 2.2 in which (under
suitable hypotheses) we obtain that the set S of r-tuples from equation (1.6) is finite. Also,
in Section 2, we present several examples, which show the relevance of the hypotheses in our
Theorem 2.2. In addition, we show (see Proposition 2.5) that we cannot obtain a variant of the
Mordell-Lang theorem for intersections of finitely generated subgroups of D× with subvarieties
V of D.

We continue by proving several useful results in Section 3, which will later be employed
in our proofs. Our technical propositions range from a re-statement of Laurent’s [Lau84,
Théorème 2] classical result (see Theorem 3.1) to a general result regarding an infinite system
of equations over a field of characteristic 0 (see Lemma 3.3). We also state and prove an ele-
mentary combinatorial result regarding elements in cosets of subgroups of Zr (see Lemma 3.2).

We prove Theorem 1.3 in Section 4. Our strategy is to translate the condition from Theo-
rem 1.3 that

fn1
1 fn2

2 · · · f
nr
r ∈ V

to an exponential equation (see Subsection 4.1, especially equation (4.4)). Then the conclusion
in Theorem 1.3 follows using Theorem 3.1.

We continue by proving Theorem 2.2 in Section 5. Our proof strategy is similar to the
one employed for deducing Theorem 1.3. Furthermore, under the additional hypotheses from
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Theorem 2.2, we show that the set S from equation (1.6) cannot contain a coset of an infinite
subgroup of Zr; though elementary, Lemma 3.2 is instrumental for our argument.

We conclude by stating and proving two additional finiteness results (Theorems 6.4 and 6.2)
in Section 6. Theorem 6.4 follows along a similar approach as the one used in the proof of
Theorem 2.2. Finally, Theorem 6.2 follows by combining the results of [Hua20, Theorem 1.2]
with our Theorem 6.4.

Acknowledgments. We thank the anonymous referee for numerous very useful comments
and suggestions.

2. Another theorem and further remarks regarding our results

In Subsection 2.1 we will state our second main result (Theorem 2.2). Then we introduce
the classical quaternions in Subsection 2.2 and we present various examples in Subsection 2.3
showing the relevance of the hypotheses in our results.

2.1. Our second main result. Before stating our result, we need a definition.

Definition 2.1. (i) We say a collection of elements s1, . . . , sr ∈ K× is multiplicatively
independent if n1, . . . , nr ∈ Z and sn1

1 · · · · · snr
r = 1 imply n1 = · · · = nr = 0.

(ii) We say a collection of elements f1, . . . , fr ∈ D× has multiplicatively independent
norms if ‖f1‖, . . . , ‖fr‖ are multiplicatively independent.

Theorem 2.2. Let D be a finite-dimensional division algebra over a field K of characteristic
0, let V be a K-subvariety of D not passing through zero, let f1, . . . , fr ∈ D×, and let S be
the set:

(2.1) S = {(n1, . . . , nr) ∈ Zr : fn1
1 · · · · · f

nr
r ∈ V } .

If f1, . . . , fr have multiplicatively independent norms, then S is finite.

Theorem 2.2 was inspired by the work of the second author [Hua20], who searched for
variants of the S-unit equation in a nonabelian setting (see [Sch90] for the classical setting of
the S-unit equation). We will see in Examples 2.3 and 2.4 that the conclusion in Theorem 2.2
fails if we remove its hypotheses. Our examples live in the world of the classical quaternions,
which we will introduce next.

2.2. The quaternions. We denote by H the usual quaternion algebra over R, i.e., H :=
R⊕ R · i⊕ R · j ⊕ R · k, with the standard multiplication law

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

We also denote by Ha the subring of algebraic quaternions, i.e., the set of all elements a+ b ·
i+ c · j + d · k ∈ H with a, b, c, d ∈ Q ∩ R. Note that in our notation (1.3),

(2.2) ‖a+ bi+ cj + dk‖ = (a2 + b2 + c2 + d2)2.

In the following examples, we work with the usual Euclidean norm |f | := ‖f‖1/4. This is purely
for the sake of convenience, as we note that |f1|, . . . , |fr| are multiplicatively independent if
and only if ‖f1‖, . . . , ‖fr‖ are.
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2.3. Examples. We first note that the conclusion in Theorem 2.2 fails if V were to pass
through 0.

Example 2.3. We can take D = Ha, Γ be the cyclic subgroup generated by 2, and V be the
hyperplane consisting of all points x1 +x2 · i+x3 · j+x4 · k ∈ Ha with x2 = 0; then the entire
group Γ is contained in V .

Furthermore, the norm condition (or a version thereof) is necessary in Theorem 2.2, as
shown by the following example.

Example 2.4. Take K = R, D = H, V = {a + bi + cj + dk : a + d = 1}, f1 = 3 + 4i, and
f2 = (3+4j)/25. An easy computation (employing the fact that i2 = −1) shows that for each
positive integer n, we have:

fn1 =

 ∑
0≤`≤n/2

(
n

2`

)
(−1)`3n−2`42`

+

 ∑
0≤s≤(n−1)/2

(
n

2s+ 1

)
(−1)s3n−2s−142s+1

 · i.
Therefore, letting

an =
∑

0≤`≤n/2

(
n

2`

)
(−1)`3n−2`42` and bn =

∑
0≤s≤(n−1)/2

(
n

2s+ 1

)
(−1)s3n−2s−142s+1,

we obtain that fn1 = an+bn · i. Furthermore, using that the norm of f1 equals 5 and therefore,
the norm of fn1 equals 5n, we get that

(2.3) 52n = |fn1 |2 = a2
n + b2n.

An identical computation (employing this time that j2 = −1) yields that fn2 = an+bnj
52n

. Then
a simple computation inside the quaternion ring yields that

(2.4) fn1 · fn2 =
a2
n + anbni+ anbnj + b2nk

52n
.

Equation (2.3) yields that fn1 f
n
2 ∈ V for all n ∈ N0; furthermore, these elements are all

distinct. Indeed, if fn1 f
n
2 = fm1 f

m
2 for some integers n > m ≥ 0, then we would get that

f `1f
`
2 = 1 for ` := n−m.

However, inspecting the computation of the general form of fn1 f
n
2 from equation (2.4), we see

that f `1f
`
2 = 1 would yield a2

` = 52` and b` = 0, i.e., f `1 = ±5`. However, g1 := 3+4i
5 is not a

root of unity since the minimal polynomial of g1 over Z is 5x2 − 6x+ 5, which cannot divide
a cyclotomic polynomial (in Z[x]) since it is not a monic polynomial.

So, there exist indeed infinitely many elements in V of the form fn1 f
n
2 . On the other hand,

we also note that the hypothesis from Theorem 2.2 is not verified since |f1| · |f2| = 1, i.e., f1

and f2 do not have multiplicatively independent norms.

The following result shows that Example 2.4 provides also an example in which the inter-
section between a subgroup Γ of D× with a K-subvariety of D is not a finite union of cosets
of subgroups of Γ.

Proposition 2.5. Let K = R and D = H, V = {a + bi + cj + dk : a + d = 1}, f1 = 3 + 4i,
and f2 = (3 + 4j)/25. Let Γ be the subgroup of D× generated by f1 and f2. Then Γ ∩ V is
not a finite union of cosets of subgroups of Γ.
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Proposition 2.5 shows that one cannot expect the same conclusion (of Mordell-Lang type)
when we intersect a finitely generated subgroup of the multiplicative group of a K-division
algebra with a K-subvariety of D. Therefore, our Theorem 1.3 is the most one can expect
towards a variant of the classical Mordell-Lang problem in the context of division algebras.

Proof of Proposition 2.5. Let U := Γ ∩ V . We argue by contradiction and therefore, assume
U is a union of finitely many right-cosets of subgroups of Γ along with finitely many left-
cosets of subgroups of Γ. Since fn1 f

n
2 ∈ U for each n ∈ N0 (according to Example 2.4), then

there exists such a right-coset, or a left-coset of a subgroup of Γ which contains two distinct
elements fn1 f

n
2 and fm1 f

m
2 (with n > m > 0). Without loss of generality (the exact same

argument works also considering a left-coset), we may assume

fn1 f
n
2 , fm1 f

m
2 ∈ γ ·H for some γ ·H ⊆ U.

But then f−m2 f−m1 · fn1 fn2 ∈ H and therefore,

fn1 f
n
2 · (f−m2 f−m1 · fn1 fn2 ) ∈ γ ·H.

We let ` := n−m; note that n > ` > 0. So, we have that

(2.5) fn1 f
`
2f

`
1f

n
2 ∈ V.

We compute (exactly as in Example 2.4) that

(2.6) fn1 = an + i · bn with a2
n + b2n = 52n

(2.7) fn2 =
an + j · bn

52n

(2.8) f `1 = a` + i · b` with a2
` + b2` = 52`

(2.9) f `2 =
a` + j · b`

52`
.

Then equations (2.6) and (2.7) yield

(2.10) fn1 f
`
2 =

ana` + i · bna` + j · anb` + k · bnb`
52`

,

while equations (2.8) and (2.9) yield

(2.11) f `1f
n
2 =

a`an + i · b`an + j · bna` + k · b`bn
52n

.

In order to check equation (2.5), we need to compute the components for 1 and for k, when
we multiply fn1 f

`
2 with f `1f

n
2 ; note that each quaternion is uniquely defined by the components

of the 4 elements: 1, i, j, k, but due to the definition of the variety V , only the components
for 1 and k are relevant for checking that some element of Γ lands in V . So, the component
corresponding to 1 in fn1 f

`
2f

`
1f

n
2 equals

(2.12)
a2
na

2
` − b2nb2` − 2anbna`b`

52(n+`)
,

while the component corresponding to k in fn1 f
`
2f

`
1f

n
2 equals

(2.13)
b2na

2
` − a2

nb
2
` + 2anbna`b`

52(n+`)
.
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Using equations (2.12) and (2.13), we get that fn1 f
`
2f

`
1f

n
2 ∈ V if and only if

(2.14)
(
a2
na

2
` − b2nb2` − 2anbna`b`

)
+
(
b2na

2
` − a2

nb
2
` + 2anbna`b`

)
= 52(n+`),

which yields

(2.15) a2
na

2
` − b2nb2` + b2na

2
` − a2

nb
2
` = 52(n+`),

and factoring the left-hand side yields

(2.16) (a2
n + b2n)(a2

` − b2` ) = 52(n+`),

Since a2
n + b2n = 52n from equation (2.6), we have

(2.17) a2
` − b2` = 52`.

But since a2
` + b2` = 52` from equation (2.8), we get b` = 0.

However, this is impossible because it would mean that (3 + 4i)` = a` ∈ R (note that ` > 0
and also the fact that in Example 2.4, we explained that (3 + 4i)/5 is not a root of unity).
This contradiction shows that indeed, the intersection between Γ and V is not a finite union
of cosets of subgroups of Γ. This concludes our proof of Proposition 2.5. �

We conclude this Section by noting that in the context of subgroups of D×, it is also very
difficult to formulate a general finiteness statement similar to our Theorem 2.2. In particular,
we cannot expect the same conclusion in Theorem 2.2 if we replace the set of all elements

fn1
1 · · · f

nr
r (as we vary n1, . . . , nr ∈ Z)

with the group Γ spanned by f1, . . . , fr (even if f1, . . . , fr have multiplicatively independent
norms); this is shown in our next Example.

Example 2.6. Again working inside D := H and considering the R-subvariety V = {a+ bi+
cj + dk : a + d = 1}, we let now Γ be the subgroup of D× spanned by f1 = 3 + 4i and by
g = 1 + i + j − k. We note that f1 and g have multiplicatively independent norms (since 5
and 2 are multiplicatively independent). However, we show next that the intersection of V
with Γ is actually infinite.

Indeed, letting f2 := 3 + 4j, we observe first that

f1g = gf2 because i · g = g · j.

This means that f2 = g−1f1g ∈ Γ. But then, as shown by Example 2.4, we obtain that V ∩Γ
is infinite (since fn1 f

n
2 ∈ Γ ∩ V for each n ∈ N0).

3. Preliminary results

In this Section 3, we gather three technical results to be employed in our proofs.

3.1. The classical Mordell-Lang. One of our key tools is the classical Mordell-Lang the-
orem for tori, proven by Laurent [Lau84, Théorème 2]; we state a slight reformulation of
Theorem 1.1, which is better suited for our application.

Theorem 3.1 (Mordell-Lang). Let N, r ∈ N, let L be a field of characteristic 0, let V be an
algebraic subvariety of GN

m, and ϕ : Zr → GN
m(L) be a group homomorphism. Then the set

{(n1, . . . , nr) ∈ Zr : ϕ(n1, . . . , nr) ∈ V (L)} is a finite union of cosets of subgroups of Zr.
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Proof. Let Γ = ϕ(Zr). By [Lau84, Théorème 2], V ∩ Γ is a finite union of sets of the form
γi(Hi(K) ∩ Γ), where γi are elements of Γ and Hi are algebraic subtori of T . Let νi be any
element of ϕ−1(γi). Then the desired set is

ϕ−1(V ) = ϕ−1(V ∩ Γ) = ϕ−1

(⋃
i

γi(Hi ∩ Γ)

)
(3.1)

=
⋃
i

ϕ−1(γi(Hi ∩ Γ))(3.2)

=
⋃
i

(νi + ϕ−1(Hi ∩ Γ)),(3.3)

so we are done since ϕ−1(Hi ∩ Γ) is a subgroup of Zr. �

3.2. Cosets of subgroups of Zm. The following result shows that the infinite intersection
of Nm with a coset of a subgroup H of Zm is always explained by the existence of a nontrivial
element in H ∩ Nm.

Lemma 3.2. If H is a subgroup of Zm such that a coset of it c+H has infinite intersection
with Nm, then H must contain a nontrivial element from Nm.

Proof. The proof is by induction on m, where the case m = 1 is trivial. So we assume the
statement is true for m and then prove it for m+ 1.

We pick an element x1 ∈ (c+H)∩Nm+1. If there exists another element x2 ∈ (c+H)∩Nm+1

such that each entry of x2 is not less than the corresponding entry of x1, then the difference
x2 − x1 is in H and as desired. So, let us assume that for each element x2 6= x1 from
(c+H) ∩Nm+1, there exists some entry in x2 less than the corresponding entry from x1. By
the pigeonhole principle, we may assume that there exist infinitely many elements x2, x3, · · · ∈
(c+H)∩Nm+1 such that the first entry in xi (for i ≥ 2) is smaller than the first entry in x1.
Then by another application of the pigeonhole principle, we may assume x2, x3, . . . have the
same first entry, which we denote by j.

Now, consider the intersection (c+H)∩ ({j} × Zm); this is another coset of a subgroup of
Zm+1 (because it is the intersection of two cosets of subgroups), which we call c1 +H1. More
precisely, H1 is the subgroup of H consisting of all elements of H whose first entry equals 0.
Also, (c1 +H1)∩Nm+1 lies in {j}×Nm and contains infinitely many elements since it contains
x2, x3, . . . . Thus letting π : Zm+1 → Zm be the projection onto the last m coordinates, we
can apply the inductive hypothesis to π(c1 + H1), which is a coset c2 + H2 of a subgroup in
Zm, and conclude that H2 contains a nontrivial element in Nm. In particular, H1 contains
an element x0 whose last m coordinates are nonnegative integers, not all equal to 0. But
elements of H1 all have their first coordinate equal to 0, so x0 ∈ H1 ⊆ H is as desired in the
conclusion of Lemma 3.2. �

3.3. A general result regarding an infinite system of equations. We will use the
following Lemma in the proof of Theorem 2.2.

Lemma 3.3. Let L be a field of characteristic 0. Let m ∈ N and let a1, . . . , am, δ1, . . . , δm ∈ L
such that

(3.4)

m∑
i=1

aiδ
n
i = 1 for each n ∈ N.
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Then δi = 1 for some i ∈ {1, . . . ,m}.

Proof. We employ [GS23, Lemma 2.3], which states that for any distinct γ1, . . . , γ` ∈ L (for
some ` ∈ N) and for any a1, . . . , a` ∈ L, if we have that∑̀

i=1

aiγ
n
i = 0 for each n ∈ N,

then a1 = a2 = · · · = a` = 0.

Now, we let λ1, . . . , λk (for some k ≤ m) be the distinct elements appearing in δ1, . . . , δm
(so, if the δi’s are all distinct, then k = m, while if the δi’s are all equal to each other, then
k = 1). Next, for each i = 1, . . . , k, we let Ai be the sum of the aj ’s for which δj = λi. Then
our hypothesis (3.4) yields that

(−1) · 1n +
k∑
i=1

Aiλ
n
i = 0 for all n ∈ N.

So, [GS23, Lemma 2.3] yields that one of the λi’s must equal to 1 (note that the λi’s are
already distinct). Thus, there exists j ∈ {1, . . . ,m} such that δj = 1, as desired in the
conclusion of Lemma 3.3. �

4. Proof of Theorem 1.3

In this Section 4, we work under the hypotheses of Theorem 1.3.

The main part of our proof lies in Subsection 4.1, in which we obtain a very useful refor-
mulation of the condition that

(4.1) fn1
1 fn2

2 · · · f
nr
r ∈ V

to an exponential equation (see (4.4)). It is important to note that while the condition (4.1)
lives in a non-abelian setting, the exponential equation (4.4) lives in an abelian setting, which
will allow us later to apply Theorem 3.1.

4.1. Conversion to an exponential equation in the hypersurface case. In this Sub-
section, we work under the additional hypothesis that V is a K-hypersurface of D. So, D is
a finite-dimensional division algebra over a field K of characteristic 0, V is a hypersurface of
D cut out by one equation F (x) = 0 with F : D → K a K-polynomial (see Subsection 1.3),
while f1, . . . , fr ∈ D×.

For each i = 1, . . . , r, we have that Li := K(fi) is a finite-dimensional commutative algebra
over K (since K(fi) ⊆ D and D is finite-dimensional). As D is a division algebra, Li is an
integral domain with [Li : K] < ∞, and hence a field by Nullstellensatz. In other words,
Li/K is a finite extension of fields, though not canonically embedded in an algebraic closure
of K.

For each d ≥ 0, let Fd be the degree d homogeneous part of F , and we choose a d-multilinear
form (over K, as always) Θd : D×d → K such that Fd(x) = Θd(x, . . . , x). Choose M � 0
such that Fd = 0 for all d > M . By setting α = −F0 ∈ K (the value of the constant function),
the defining equation for V can be rewritten as

(4.2) Θ1(z) + Θ2(z, z) + · · ·+ ΘM (z, . . . , z) = α.
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For each 1 ≤ d ≤M , define a dr-multilinear map θd : (L1 × · · · × Lr)×d → K by

(4.3) θd(z
(1)
1 , . . . , z(1)

r , . . . , z
(d)
1 , . . . , z(d)

r ) := Θd(z
(1)
1 · · · z

(1)
r , . . . , z

(d)
1 · · · z

(d)
r ),

where the multiplication in the right-hand side takes place in D. Then the equation (4.1)
becomes
(4.4)
θ1(fn1

1 , . . . , fnr
r )+θ2(fn1

1 , . . . , fnr
r , fn1

1 , . . . , fnr
r )+ · · ·+θM (fn1

1 , . . . , fnr
r , . . . , fn1

1 , . . . , fnr
r ) = α.

To better understand the exponential equation (4.4), we rewrite the multilinear maps θd
more explicitly. Fix an algebraic closure K of K. For 1 ≤ i ≤ r, let Gi be the set of all K-
embeddings σ : Li → K; we have |Gi| = [Li : K]. From basic Galois theory, Gi forms aK-basis
of the K-vector space of K-linear maps HomK(Li,K). In other words, we have a direct sum
decomposition and canonical isomorphism HomK(Li,K) =

⊕
σ∈Gi

Kσ ' KGi. On the other
hand, by the tensor-hom adjunction HomA(V ⊗A W,B) ' HomA(V,B) ⊗B HomA(W,B) for
any commutative ring homomorphism A→ B and any B-modules V,W , we have a canonical
isomorphism of K-vector spaces

(4.5) HomK((L1 ⊗K · · · ⊗K Lr)
⊗Kd,K) ' (HomK(L1,K)⊗K · · · ⊗K HomK(Lr,K))⊗K d,

where (·)⊗Kd means d-fold tensor power over K. As a result, we have canonical isomorphisms

HomK((L1 ⊗K · · · ⊗K Lr)
⊗Kd,K) ' (HomK(L1,K)⊗K · · · ⊗K HomK(Lr,K))⊗K d

' (KG1 ⊗K · · · ⊗K KGr)
⊗K d ' K(G1 × · · · ×Gr)×d,

where the last expression is the K-vector space with basis Gd = G× · · · ×G︸ ︷︷ ︸
d

, where G :=

G1×· · ·×Gr. As a result, the dr-multilinear form θd ∈ HomK((L1⊗K · · ·⊗K Lr)⊗Kd,K) can
be canonically interpreted as an element of KGd. In particular, there are elements aσ(1),...,σ(d)

indexed by (σ(1), . . . , σ(d)) ∈ Gd, uniquely determined by θd, such that we have for zi ∈ Li
(4.6) θd(z1, . . . , zr, . . . , z1, . . . , zr) =

∑
σ(1),...,σ(d)∈G

aσ(1),...,σ(d)zσ
(1) · · · zσ(d)

,

where for any σ = (σ1, . . . , σr) ∈ G, we define zσ := σ1(z1) · · ·σr(zr). (The product takes
place in a fixed copy of K, which importantly, is commutative.) If n = (n1, . . . , nr) is in Zr,
then (4.6) gives

(4.7) θd(f
n1
1 , . . . , fnr

r , . . . , fn1
1 , . . . , fnr

r ) =
∑

σ(1),...,σ(d)∈G

aσ(1),...,σ(d)fn,σ
(1) · · · fn,σ(d)

,

where

(4.8) fn,σ :=

r∏
i=1

σi(fi)
ni ∈ K.

So, we converted the equation (4.1) into an exponential equation

(4.9)

M∑
d=1

∑
σ(d,1),...,σ(d,d)∈G

aσ(d,1),...,σ(d,d)fn,σ
(d,1) · · · fn,σ(d,d)

= α

for some coefficients aσ(d,1),...,σ(d,d) ∈ K that are determined by the equation of the hypersurface

V . Of course, aσ(d,1),...,σ(d,d) cannot be arbitrary: since θd actually lands in K rather than K,



12 DRAGOS GHIOCA AND YIFENG HUANG

the collection {aσ(d,1),...,σ(d,d)}σ(d,j)∈G must be “Galois invariant” in a suitable sense for each
d. However, we will not need it in this paper.

For future convenience, we further compactify the notation. Let G := G tG2 t · · · tGM ,
a formal disjoint union, so a typical element of G can be viewed as a pair (d,σ), where

1 ≤ d ≤M and σ = (σ(d,1), . . . , σ(d,d)) ∈ Gd. For σ ∈ Gd, define

(4.10) fn,σ := fn,σ
(d,1) · · · fn,σ(d,d)

.

Then we may rewrite (4.9) compactly as

(4.11)
∑
σ∈G

aσf
n,σ = α.

Remark 4.1. Also, we note that in the case D/K is a finite field extension, we have an
even simpler counterpart of (4.11), by working with (4.2) directly. Let G simply be the set
of K-embeddings from D to K. Then HomK(D,K) = KG and

HomK(D⊗Kd,K) ' HomK(D⊗Kd,K)⊗K d ' KGd,
so by applying the argument leading to (4.6) directly to Θd (instead of θd), we get

(4.12) Θd(z, . . . , z) =
∑

σ(1),...,σ(d)∈G

aσ(1),...,σ(d)σ(1)(z) · · ·σ(d)(z),

for some scalars aσ(1),...,σ(d) ∈ K. Therefore, the counterpart of equation (4.7) is simply the
equation:

(4.13) Θd(f
n1
1 , . . . , fnr

r ) =
∑

σ(1),...,σ(d)∈G

aσ(1),...,σ(d)fn,σ
(1) · · · fn,σ(d)

,

where fn,σ :=
∏r
i=1 σ(fi)

ni . As a result, the equation (4.1) is equivalent to

(4.14)
∑
σ∈G

aσf
n,σ = α,

where G := G tG2 t · · · tGM as before.

4.2. Conclusion of our proof for Theorem 1.3. We re-state the conclusion in Theorem 1.3
as follows.

Lemma 4.2. Let K be a field of characteristic zero, D be a finite-dimensional division algebra
over K, V be a K-subvariety of D, and ϕ : Zr → D× be a given map of the form

(4.15) ϕ(n1, . . . , nr) = fn1
1 · · · f

nr
r ,

where r ≥ 1 is fixed and f1, . . . , fr are also fixed elements of D×. Then ϕ−1(V ) is a finite
union of cosets of subgroups of Zr.

Proof. Since V is the intersection of finitely many hypersurfaces, and the intersection of
cosets of subgroups of Zr is a coset of some subgroup, it suffices to prove the case where V is
a hypersurface. Using the re-statement of equation (4.1) into an exponential equation (4.4)
(see also equation (4.11) from the construction done in Subsection 4.1), ϕ−1(V ) is the set of
n = (n1, . . . , nr) that solves the equation

(4.16)
∑
σ∈G

aσf
n,σ = α,
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with the notation G, aσ, and fn,σ as in Subsection 4.1 (and α ∈ K). Consider the torus

T := (K
×

)|G| with coordinates indexed by G, and the map ψ : Zr → T defined by

(4.17) ψ(n) := (fn,σ)σ∈G.

Then it is clear from the definition that ψ is a group homomorphism because

(4.18) fn,σ = fn,σ
(d,1) · · · fn,σ(d,d)

from equation (4.10)

and for each σ = (σ1, . . . , σr) ∈
{
σ(d,1), . . . , σ(d,d)

}
, we have

(4.19) fn,σ =
r∏
i=1

σi(fi)
ni from equation (4.8).

Since each σi is a homomorphism of fields, then equations (4.18) and (4.19) show that indeed,
ψ is a group homomorphism. Now, consider a K-subvariety of T defined by

(4.20) W :=

{
(zσ)σ∈G :

∑
σ

aσzσ = α

}
∩ T.

The construction implies ϕ−1(V ) = ψ−1(W ), so the desired conclusion in Lemma 4.2 follows
from Theorem 3.1. �

This concludes our proof for Theorem 1.3.

5. Our proof for Theorem 2.2

In this Section, we work under the hypotheses from Theorem 2.2. So, as before, D is a
finite-dimensional division algebra over a field K of characteristic 0, and we let f1, . . . , fr ∈ D×
be elements which have multiplicatively independent norms (see Definition 2.1). Also, we let
V be a K-subvariety of D, which does not contain 0.

We start with a simple reduction (done in the next Subsection), in which we show that we
may assume V is a hypersurface.

5.1. Reduction of Theorem 2.2 to the hypersurface case.

Lemma 5.1. Let K be a field, A`(K) be the `-dimensional affine space, and V be a K-
subvariety of A`(K) not passing through 0 = (0, . . . , 0). Then there is a K-hypersurface of
A`(K) not passing through 0 that contains V .

Proof. Say (1.4) is the finite system of equations that cut out the K-variety V . Since 0 /∈ V ,
there is 1 ≤ j ≤ m such that Pj(0) 6= 0. The hypersurface cut out by Pj(x1, . . . , xl) = 0 then
does the job. �

In the next Subsection we bring back the re-statement of the equation (4.1) to the exponen-
tial equation (4.4) (see also the construction from Subsection 4.1, including the notation (4.8)).
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5.2. Back to the conversion of our question to an exponential equation. Recall from
Subsection 4.1 that the equation fn1

1 . . . fnr
r ∈ V can be rewritten as

(5.1)
∑
σ

aσf
n,σ = 1.

Note that we can safely assume the right-hand side of equation (5.1) equals 1 since the
assumption we have that the hypersurface V does not pass through 0 yields that the right-
hand side of (5.1) is a nonzero element α ∈ K; then dividing by α yields the above form of
equation (5.1). Moreover, the conclusion of Lemma 4.2 states that the set of n ∈ Zr that
solve (5.1) is a finite union of cosets of Zr.

Assume the contrary of the conclusion of Theorem 2.2, i.e., |V ∩ Γ| = ∞. Then (5.1) is
solved by infinitely many n ∈ Zr, so one of the aforementioned cosets, say c + H, must be
infinite. Hence, H contains a nonzero element x ∈ Zr. Thus (5.1) restricted to c+ Zx yields

(5.2)
∑
σ

aσf
c+nx,σ = 1 for all n ∈ Z,

or (restricting only to n ∈ N)

(5.3)
∑
σ

aσf
c,σ(fx,σ)n = 1 for all n ∈ N.

So, combining equation (5.3) with Lemma 3.3 yields that there exists σ ∈ G such that

(5.4) fx,σ = 1.

Now, we know that

(5.5) fx,σ = fx,σ
(d,1) · · · fx,σ(d,d)

from equation (4.10),

for some d ∈ {1, . . . ,M} and some σ(d,1), . . . , σ(d,d) ∈ G. Also, for each σ ∈
{
σ(d,1), . . . , σ(d,d)

}
,

we have that

(5.6) fx,σ =

r∏
i=1

σi(fi)
xi from equation (4.8).

Combining equations (5.4), (5.5) and (5.6), we obtain

(5.7)

d∏
j=1

r∏
i=1

σ
(d,j)
i (fi)

xi = 1.

The next lemma provides the desired contradiction; we will state and prove the key
Lemma 5.2 in Subsection 5.3.

5.3. Conclusion of our proof for Theorem 2.2. This next result will also be used in our
proof of Theorem 6.4.

Lemma 5.2. With the above notation, assume equation (5.7) holds for some x1, . . . , xr ∈ Z.
Then there exists a positive integer b such that

(5.8)

r∏
i=1

‖fi‖bxi = 1.
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Proof of Lemma 5.2. We identify Li = K(fi) with its image under a choice of K-embedding
Li → K, and fix a large enough finite extension L/K in K such that L ⊇ Li and [L : K] is
divisible by [D : K]; say that [L : K] = m · [D : K] for some positive integer m. Taking the
norm NormL/K on both sides of (5.7) yields

(5.9) 1 =

r∏
i=1

NormL/K(fi)
dxi =

r∏
i=1

NormLi/K(fi)
[D:Li]dmxi .

Using Definition 1.3 and setting b = dm (note that ‖fi‖ = NormLi/K(fi)
[D:Li]), we obtain the

desired equation (5.8). �

Now, we finish our proof of Theorem 2.2. Since not all integers xi from equation (5.8) (see
Lemma 5.2) are equal to 0 (while b is a positive integer), we see that equation (5.8) contradicts
the assumption that f1, . . . , fr have multiplicatively independent norms.

This concludes our proof for Theorem 2.2.

6. Proofs of two other results related to Theorem 2.2

Using a result of the second author [Hua20, Thm. 1.2], a slight variant of our Theorem 2.2
(see Theorem 6.4) yields the following result on a unit equation, which also proves another
special case of [Hua20, Conj. 1.4]. In order to state our Theorem 6.2, we introduce the
following notation.

Notation 6.1. For a division algebra D over a field K of characteristic 0, given f1, . . . , fr ∈
D×, we let 〈f1, . . . , fr〉 denote the subsemigroup of D× generated by f1, . . . , fr, and let Γf1,...,fr
be the subset:

{fn1
1 · · · · · f

nr
r : n1, . . . , nr ∈ N} ⊆ 〈f1, . . . , fr〉.

Theorem 6.2. Let Ha be the ring of algebraic quaternions, let a, a′, b, b′ be fixed nonzero
algebraic quaternions, let f1, . . . , fk ∈ D× and g1, . . . , g` ∈ D× be elements of norm greater
than 1. Then the unit equation

(6.1) afa′ + bgb′ = 1

has only finitely many solutions with f ∈ Γf1,...,fk and g ∈ 〈g1, . . . , g`〉.

In Section 6.1, we state and prove Theorem 6.4; then in Section 6.2, we derive Theorem 6.2
as a consequence of Theorem 6.4.

6.1. A variant of Theorem 2.2. In order to state Theorem 6.4, we need the following
definition.

Definition 6.3. We say a collection of elements f1, . . . , fr ∈ D× has semimultiplicatively
independent norms if whenever ‖f1‖n1 · · · ‖fr‖nr = 1 for some n1, . . . , nr ∈ N0, then we
must have n1 = · · · = nr = 0.

Note that Definition 6.3 asks for a weaker condition than Definition 2.1 (ii). Furthermore,
the condition from Definition 6.3 that the elements fi have semimultiplicatively independent
norms generalizes the following setting. Let K = R, and D = H be the usual Hamilton
quaternions. Then ‖·‖ is the fourth power of the Euclidean norm on H (see (2.2)). A collection
f1, . . . , fr ∈ H× then automatically has semimultiplicatively independent norms as long as
their Euclidean norms are all > 1. This condition already shows up in [Hua20].
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Theorem 6.4. Let D be a finite-dimensional division algebra over the field K of characteristic
0, let V be a K-subvariety of D not passing through the origin, let f1, . . . , fr ∈ D× have
semimultiplicatively independent norms, and let Γ := Γf1,...,fr be the set:

(6.2) Γ = {fn1
1 . . . fnr

r : n1, . . . , nr ∈ N} ⊆ D×.

Then |V ∩ Γ| <∞.

Since both the hypothesis but also the conclusion in Theorem 6.4 are weaker than their
counterparts from Theorem 2.2, neither theorem implies the other one.

Proof of Theorem 6.4. Our proof follows the exact same steps as the proof of Theorem 2.2
from Section 4. In particular, we re-state the condition that

∏r
i=1 f

ni
i ∈ V for some (n1, . . . , nr) ∈

Nr as the equation:

(6.3)
∑
σ

aσf
n,σ = 1,

for some suitable aσ ∈ K, where fn,σ is defined as in equation (4.10) (see Section 4.1). Then
assuming there exist infinitely many n = (n1, . . . , nr) ∈ Nr such that equation (6.3) holds,
once again using Lemma 4.2 (as in Section 5) we derive the existence of a coset c + H of a
subgroup H ⊆ Zr with the property that for each of the infinitely many n ∈ (c + H) ∩ Nr,
we have that equation (6.3) holds. An application of Lemma 3.2 yields then the existence of
some nontrivial x := (x1, . . . , xr) ∈ Nr0 with the property that for each n ∈ N, we have that

(6.4)
∑
σ

aσf
c,σ(fx,σ)n = 1.

Once again applying Lemma 3.3 (similar to its use in Subsection 5.2), we obtain that

(6.5)
r∏
i=1

d∏
j=1

σ
(d,j)
i (fi)

xi = 1,

for some 1 ≤ d ≤M and suitable maps σ
(d,j)
i as in Section 4.1. Finally, using Lemma 5.2, we

conclude that there exists a positive integer b such that

(6.6)
r∏
i=1

‖fi‖bxi = 1.

Since each xi ∈ N0, but not all of them are equal to 0, equation (6.6) yields a contradiction
to our hypothesis that f1, . . . , fr have semimultiplicatively independent norms. This contra-
diction shows that we must have finitely many r-tuples (n1, . . . , nr) ∈ Nr with the property
that fn1

1 · · · fnr
r ∈ V , thus concluding our proof of Theorem 6.4. �

6.2. Proof of Theorem 6.2. Finally, we can prove Theorem 6.2 as a consequence of Theo-
rem 6.4. We need to use:

Theorem 6.5 ([Hua20, Theorem 1.2]). Let Γ1,Γ2 be semigroups of H×a generated by finitely
many elements of norms greater than 1, and fix a, a′, b, b′ ∈ H×a . Then the equation

afa′ + bgb′ = 1

has only finitely many solutions with f ∈ Γ1 and g ∈ Γ2 such that |1− afa′| 6= |afa′|.



A NON-ABELIAN VARIANT OF THE CLASSICAL MORDELL-LANG CONJECTURE 17

Proof of Theorem 6.2. We work under the hypotheses of Theorem 6.2. We claim that |afa′| =
|1− afa′| has only finitely many solutions with f ∈ Γf1,...,fk . But we have seen in [Hua20, §5]
that |afa′| = |1− afa′| is equivalent to f ∈ V for a certain (R ∩ Q̄)-hyperplane V of Ha not
passing through 0. Indeed, we may take

V = a−1 · {1/2 + βi+ γj + δk : β, γ, δ ∈ R ∩ Q̄} · a′−1.

Now by Theorem 6.4 and the fact that f1, . . . , fk have norms > 1 (and thus have semimulti-
plicatively independent norms), the claim follows.

Now let Γ1 = 〈f1, . . . , fk〉 and Γ2 = 〈g1, . . . , g`〉, and note that Γf1,...,fk ⊆ Γ1 as sets. By
[Hua20, Theorem 1.2] above, afa′+bgb′ = 1 has only finitely many solutions with f ∈ Γf1,...,fk ,
g ∈ Γ2, and |1−afa′| 6= |afa′|. On the other hand, the claim above implies that afa′+bgb′ = 1
has only finitely many solutions with f ∈ Γf1,...,fk , g ∈ Γ2, and |1 − afa′| = |afa′|. (Indeed,
f ∈ Γf1,...,fk , |1 − afa′| = |afa′| have only finitely many solutions, and the equation afa′ +
bgb′ = 1 determines g uniquely once f is given.) Combining the above, the desired finiteness
follows. �
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