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ABSTRACT. We provide an explicit construction of the arboreal Galois group for the postcrit-
ically finite polynomial f(z) = 2% + ¢, where ¢ belongs to some arbitrary field of characteristic
not equal to 2. In this first of two papers, we consider the case that the critical point is
periodic.

1. INTRODUCTION

Throughout our paper, we let K be a field of characteristic not equal to 2 with algebraic
closure K, and let f(z) € K|[z] be a polynomial of degree 2. After conjugating by a K-rational
change of coordinates, we may assume that f(z) = 22 4 ¢ for some ¢ € K.

1.1. Arboreal Galois groups. We consider the iterates f™ of f under composition, where
f°(2) := 2, and where f"*t! = f o f" for each integer n > 0. A point y € K is said to be fized
if f(y) =y, or periodic if f"(y) =y for some n > 1, or preperiodic if f™*(y) = f™(y) for some
n >m > 0. If y is periodic, then its exact period is the smallest n > 1 for which f"(y) = y. If
y is preperiodic but not periodic, then we say it is strictly preperiodic.

Given a point g € K, then for every integer n > 0, we define

K, = Kyon = K(f"(20)) and Gy = Gy = Gal(K,, /K)

to be the n-th preimage field and its associated Galois group. Note that --- K3/Ky /K1 /K is
a tower of field extensions, which we view as contained in K. Thus, we may further define

Koo = Kypoo = | Kugn ~ and  Goo 1= Gag oo i= Gal(Kyg 0/ K) 2 im Gy -
n>0 n
If the backward orbit
Orb (z0) := | J /" (wo)
n>1
contains no critical values of f, then each f~"(xg) has exactly 2" elements. If, in addition, z
is not periodic under f, then the sets f~"(xz¢) are pairwise disjoint, and hence Orby (o) has

the structure of an infinite binary rooted tree Tho, with 2 € £~ (z4) connected to f(z) €
f7™(x0) by an edge. Thus, the action of the Galois group G, on the backward orbit induces
an embedding of G into the automorphism group Aut(7) of the tree. Similarly, for each
n > 0, the action of Gy, on f~"(zp) induces an embedding of G, into the automorphism group
Aut(T,,) of the finite binary rooted tree T, with n levels. For this reason, the groups G,, and G,
have come to be known as arboreal Galois groups. Moreover, given our interest in this action,
whenever we discuss homomorphisms or isomorphisms between groups acting on trees, we
always mean homomorphisms that are equivariant with respect to this action. We note that the
problem of fully understanding the arboreal Galois groups has generated a great deal of research
in the recent years; see | ) , , , ) , , ],
for example.
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1.2. Postcritically finite quadratic polynomials. In this paper, we consider the case that
f is postcritically finite, or PCF, meaning that all of the the critical points of f are preperiodic.
Since we have assumed f(z) = 22+ ¢, the critical points are 0 and oo, with oo necessarily fixed;
thus, to say that f is PCF is equivalent to saying that 0 is preperiodic under f. In this case,
it is well known that G is of infinite index in Aut(7T%).

If the critical point 0 is preperiodic, then the values f(0), f2(0),..., f7(0) are all distinct
for some maximal integer r > 1, with f"1(0) repeating one of these values. That is, we have
FrH0) = £571(0) for some minimal integers r > s > 0. Equivalently, since the two preimages
of f(y) are +y, we have f"(0) = —f*(0) for minimal integers » > s > 0. Note that if s = 0,
then the point 0 is periodic, and r is the cardinality of the forward orbit

Orb}(0) == {f'(0) : i > 0}

of 0 under f. Otherwise, if s > 1, then 0 is strictly preperiodic, and | Orb;f(O)] =r+1. In the

latter case, the point f571(0) = f7t1(0) is periodic of exact period r — s > 1, preceded by a
tail {0, £(0),..., f°(0)} of cardinality s +1 > 2.

1.3. Previous work on describing the arboreal Galois groups for PCF quadratic
polynomials. In | |, Pink describes the group G, for each of the various choices of r, s
when the quadratic polynomial f is PCF, in the case that K = k(t) is a rational function field
over an algebraically closed field k, and that the root point of the preimage tree is xy = t.
Pink denotes this group G&*°™, and he proves that it is isomorphic to a subgroup of Aut(7%)
that he simply calls G, but which we denote Gf’ fsné‘o (When s = 0, we sometimes write simply
Gl,?gk.) He defines G}?;n};o via explicit (topological) generators, each arising from the action of
inertia in the context of G&°°™.

When K = k(t) for k not algebraically closed, Pink denotes the resulting group G as

Gt and he describes how it fits into a short exact sequence

1 — GFink __, garith __, Gal(k/k)/N — 1,

T,8,00

for some normal subgroup N of Gal(k/k) depending on r, s, and k.

1.4. Our approach. This paper is the first of a series of two papers in which we have two
main goals. First, for each pair of integers r > s > 0, we construct subgroups By 5 o0 C M s o0

of Aut(T), coinciding with Pink’s group Gflsn}jo ~ Geeom C Garith - and we show that the
arboreal Galois group G« is isomorphic to a subgroup of M, ;. Our arguments apply over
general fields with arbitrary base points, rather than restricting to the case K = k(t) with base
point . Our approach to this problem is also more concrete than that of Pink; the groups
B, s and M, s« are defined not by generators but rather as the set of all 0 € Aut(Tx)
satisfying certain parity conditions, which are also used to describe how elements of G, act
on the roots of unity contained in K.,. One advantage of this approach is that it can allow us
to describe the intersections K, N k(u2-) with a great deal of precision (see Corollary 6.5).

Our second goal is to present and prove necessary and sufficient conditions for G, to be the
whole group M, s o (see Theorem 1.4). Our results generalize those of | ], which gives
a similar description of By and Mg . (This is the so-called Basilica map f(z) = 22 —1,
for which r = 2 and s = 0, i.e., the critical point at 0 is periodic of period 2).

This paper handles the periodic case s = 0 for arbitrary » > 1, for which we denote the
above groups simply as M, o, and B, » (see Definition 1.3). We handle the strictly preperiodic
cases s > () in a separate paper; nevertheless, even though additional technical complications
arise in the strictly preperiodic cases, the main ideas for all of our constructions already arise
in the periodic case considered here.

The next subsection is devoted to some further notation needed to state our main results.
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FIGURE 1. A labeling of T3

1.5. Some fundamentals. It will be useful to assign labels to all of the nodes of the binary
rooted trees T;, and T, using the two symbols a, b to form words. That is, for each integer
m > 0 and each node y at the m-th level of the tree, we assign y a label in the form of a word
w € {a,b}™ of length m, in such a way that for every such m and y, the two nodes lying above
y have labels wa, wb € {a,b}™ L. (Of course, in the tree T}, this latter restriction is vacuous
for nodes y in the top level m = n.) See Figure 1 for an example of a labeling of the tree T5.
Although the root node has the empty label (), we will often denote it as zg.

We usually consider the nodes of T, as corresponding to the backward orbit Orb;(acg) €K
of zg € K under f(z) = 22 + ¢ € K|[z]. Thus, we will often conflate a point y € f~"(zo)
with the corresponding node y of the tree. Having assigned a labeling to the tree, we will also
sometimes conflate a node y with its label. On the other hand, when further clarity is needed
for the backward orbit Orby () € K, viewed as a tree of preimages, we will often write the
value y € f~"(z9) C K corresponding to the node with label w € {a,b}" as y = [w].

Having labeled the tree, any tree automorphism o € Aut(Tx) or o € Aut(7},) must satisfy
the following.

(1) For every level m > 0 (up to m < n for T,,), o permutes the labels in {a, b}, and
(2) For every level m >0 (up to m < n — 1 for T,,), for each word s;...s,, € {a,b}"™, we
have either

o(s1+--sma) =0(s1---Sm)a and o(s1---Smb) = o(s1--5m)b
or
o(s1+-8ma) =0(s1-+-$m)b and o(s1---S$m)b=0(s1--5p)a.

For any tree automorphism o and m-tuple = € {a,b}"™, we define the parity Par(c,x) of o at
x to be

Par(0, 1) = {0 %f o(zxa) = o(z)a and o(zb) = o(x)b .

1 if o(za) = o(x)b and o(xb) = o(z)a
Thus, any set of choices of Par(o, x) for each node x of Ty, (respectively, T),—1) determines a
unique automorphism o € Aut(T) (respectively, o € Aut(T5,)).

Note that if o(x) = z, then Par(co, z) is 0 if o fixes the two nodes above x, or 1 if it transposes
them. However, Par(c,z) is defined even if o(x) # x, although in that case its value depends
also on the labeling of the tree.

We also define sgn(o, z) = (—1)P2'(%%) We have the following elementary relations:

(1) sgn(oT,x) = sgn (O’, T(x)) -sgn(T, x),
and hence

(2) Par(o7,z) = Par (0, 7(z)) + sgn (0, 7(z)) Par(7, z).



4 R. L. BENEDETTO, D. GHIOCA, J. JUUL, AND T. J. TUCKER

Equation (2) follows from equation (1) by writing Par(-,-) = (1 — sgn(+,-))/2, or simply by
checking the four possible choices of Par(7,z) and Par(o, 7(x)).

Definition 1.1. For each i > 1, define W(r, i) to be the following set of words of length ri — 1:
W(r,i) = {5132 - Spi—1 ¢ 85 € {a,b}, with s; =a ifr\j}.

Definition 1.2. Fix a labeling of T, and let 0 € Aut(T). For any word z in the symbols
{a, b}, define

(3) Qr(o,x) = ZQi Z Par(o, zw) € 2Zs,
P>l weW(ri)
and
(4) Py(o,z) := (—1)P2(@2) £ Q (0, 2D) — Q,(0,xa) € L.

Thus, P,(o,z) is £1 plus a weighted sum of Par(o,y) at certain nodes y. Specifically, the
sum counts half the nodes r levels above x, each with weight +2; a quarter of the nodes 2r
levels above x, each with weight +4, an eighth of the nodes 4r levels above x, each with weight
+8; and so on. (The + weights are for nodes above xb, and the — weights are for nodes above
xa.)

Definition 1.3. Fix a labeling a, b of T'x,. Define M, o, to be the subset of Aut(7%,) for which
(5) P.(o,x1) = P.(0,22) for all nodes x1,x2 of To.
For o € M, o, define P,(o) to be this common value of P,(c,-). Define

By oo :={0 € My o : P.(0) =1}.

The map P, from M, o to Z is connected closely to the 2-adic cyclotomic character, as we
shall see in Theorem 5.1.

As a final item of notation before stating our main result (Theorem 1.4 in Subsection 1.6),
for 0 < m < n < o0, it will be convenient to define homomorphisms

Resy m : Aut(T},) — Aut(Th,)

given by restricting elements of Aut(7,) to the m-th level of the tree. In particular, for each
integer n > 1, we may define B,.,, := ReSoo n(Br,00) and M., := Resoo n( My 00 ).

1.6. Statement of our main result.

Theorem 1.4. Let k be a field of characteristic not equal to 2, and let f(z) = 2> + ¢ € k[Z]
with f7(0) = 0 for some minimal integer r > 1. Let xg € k, and define Ky = k(f~"(x0)),
Keooo = Unei Kaomy Gaoon = Gal(Kzn/k), and Gy oo = Gal(Kyy0/k). Further define

Dy,....D. €k by
pimfose il
fY0)—xo ifi>2.
Then the following are equivalent.

(1) [k(C87 \/E7 (RN \/D>T‘) : k] = 2T+2
(2) [Kug2r+1 : k] = | My 2ri1].

(3) Gzo,2r+1 = Mr,2r+1-

(4) Guon = My, for alln > 1.

(5) Gxo,oo = Mr,oo-

Remark 1.5. When k contains 4, the conditions of Theorem 1.4 can never hold, as condition (1)
necessarily fails. However, our methods can still be used to prove a slightly more complicated
result involving an appropriate subgroup of M, . Specifically, this subgroup is the inverse
image under P, of the image in Z of the 2-adic cyclotomic character of Gal(k/k).
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1.7. Outline of the paper. Section 2 concerns a useful elementary result for general qua-
dratic polynomials that underlies many of our subsequent arguments. In Section 3 we present
explicit formulas yielding 2-power roots of unity as arithmetic combinations of preimages of an
arbitrary root point under our quadratic polynomial f(z) = 2% + ¢ when the critical point is
periodic. Section 4 is devoted to proving that M, o is a subgroup of Aut(7T) and that B,
is simply the kernel of P, (this is done in Theorem 4.1), while Section 5 shows how M, », and
B,  realize the arboreal Galois action. In Section 6, we prove that our group B, o concides
with Pink’s group G&%°™, and that Pink’s larger group G*t! is contained in our M, . Finally,
in Section 7, we prove Theorem 1.4, giving necessary and sufficient conditions for the Galois
group Go to be the full group M, o, = G¥ith,

2. AN ELEMENTARY LEMMA

The following result provides a simple but essential algebraic relationship among elements
of a backward orbit under a polynomial of the form f(z) = z? + c. We have stated it with
the language of multiplicity, but in practice we will only apply it to backward orbits with no
critical points, for which the relevant equation f™(z) = y has no repeated roots. Note that in
this lemma, we do not make any assumptions about the polynomial f(z) beyond the fact that
it is of the form 2% + ¢, whereas in later sections, we will almost always work exclusively with
quadratic polynomials satisfying f"(0) = 0 for some r > 1.

Proposition 2.1. Let K be a field of characteristic not equal to 2. Let ¢ € K, define f(z) =
22+c, lety € K, and let m > 1. Choose 1, ...,0ym-1) € f ™(y) so that the roots of
f™(2) =y, repeated according to multiplicity, are precisely

(6) toq,. .., taymo).
Then
(s agem-n)” = {fm(o) Y Z:fm =2
y — f(0) ifm=1.

Proof. We may write f™(z) —y = g(z?), where g € K|[z] is a polynomial of degree 2™ ~!. Thus,
the roots of f™(z) — y come in plus/minus pairs, justifying the description of the roots in

equation (6). Moreover, the roots of g are precisely a2, ..., agm,l, so that the constant term
of g is
(7) (£1)389) (o) -+ - vgm—1).

Since deg(g) = 2™, we have a — sign in equation (7) if m = 1, and a + sign if m > 2. On the
other hand, by definition of g, the constant term of g is f™(0) — y, and the desired conclusion
is immediate. 0

3. ROOTS OF UNITY ARISING IN BACKWARD ORBITS

Throughout the rest of the paper we assume f(z) = 22 + ¢ with f7(0) = 0 for some minimal
integer 7 > 1.

Lemma 3.1. Let x € K not in the forward orbit of 0, and let +y be its two immediate
preimages under f. Let Ay = {y} and By = {—y}. For each n > 2, let A, be a subset of
f7"(An-1) such that A,, contains exactly half of the elements of f~"(An—1) and f~"(Ap—1) =
{ta : a € A,}. Similarly, let B, be a subset of f~"(Bp—1) containing exactly half of the
elements of f~"(Bp—1) such that f~"(B,—1) ={x8: 8 € Bp}. Then

Y 1= HozEAn o
n +—
sen, P
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18 a primitive 2"-th root of unity.

Proof. Let x € K not in the forward orbit of 0 and consider its two immediate preimages %y.

First note

T = i = _17
Y
so the result holds in this case. Then by Proposition 2.1 and the fact that f7(0) = 0, we have
2 r—1
22 = (Maea, @)™ _ (=¥ ' (=y)
- 2 r—1
(Maes, B) (=1

so that =9 is a primitive fourth root of unity.
More generally, suppose Y,_1 is a primitive 2"~! root of unity for n > 2. For any o/ € A,,_1,
we have f[77(o/) ={*a:a € f"(¢/) N A,}. Hence

=1,

,Y2 _ (HaeAn 0‘)2 _ Ha’eAn_l (HaeAnﬂf—r(al) a>2
(H,BGBn 5)2 [ses, (Hﬁegnmfﬂ(ﬁ,) 5)2

r—1
Ha'eAn,l(—l)Q (—a) Ho/eAn,lal N
= P = = Yn—1,
Hoep, V¥ ' (=8)  pes, . 8"

where the third equality follows from Proposition 2.1. Hence 7, is a primitive 2"-th root of
unity. ]

In the statement of our next result, recall Definition 1.1 of the set of words W (r, ) of length
ri — 1 satisfying a certain restriction.

Lemma 3.2. Let xg € K not in the forward orbit of 0, and choose a sequence of primitive
2"-th roots of unity (a,Ca,Cs, ... such that (o = —1 and (3 = Con-1. It is possible to label
the tree T of preimages Orb; (z9) in a way such that for every node x of the tree and every
integer i > 1, we have

(8)

HwEW(’r,i) [IL‘CLU/CL}
HweW(r,i) [xbwal

Proof. We will label the tree inductively, starting from the root point zy. Label the tree
arbitrarily up to level r + 1.

For each successive n > r + 1, suppose that we have labeled T},_1 so that for every node x
at every level 0 < ¢ <mn —r — 2 of T},_;, equation (8) holds for each 1 <i < [(n — ¢ —2)/r].
(Note that |(n—¢—2)/r] is the maximum value of 7 so that the subtree of height ri+ 1 rooted
at x is contained in 7T),_;. In particular, our supposition is vacuous for n < r + 1.) For each
node y at level n — 1, label the two points of f~!(y) arbitrarily as ya and yb. We will now
adjust these labels that we have just applied at the n-th level of the tree.

Let m := [(n—1)/r] > 1, so that n = rm + ¢ with 1 < ¢ < r. Starting with ¢ = m (and
counting down to i = 1), for each node x at level n — (ri + 1) of the tree, consider the ratio

B HweW(m’) [zxawal]
HweW(r,i) [xbwal]

of equation (8). Arguing as in the proof of Lemma 3.1, it follows from Proposition 2.1 that

= C2i+1 .

- Jrawa
WQ:H“JGW(” plrawa ifi>2 or At=n— 1 ifi=1,

HwEW(r,ifl) [a;bwa]
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which is equal to (4i-1 by our induction hypothesis when ¢ > 2, and by definition of (o when
i = 1. Thus, v = +(y. If ¥ = —(y, exchange the labels of the two level-n nodes zba™'a
and zba""1b, where o/ denotes a string of j copies of the symbol a. Since these two nodes are
negatives of each other, we now have v = (y:.

Repeat the process above for each z at level n — (i 4+ 1) of the tree for successively smaller
i=m—1,m—2,...,1. Note that for any node z at level n — (i 4 1), the nodes zba"*~'a and
xba"~1b have a b appearing as the (7i + 1)%'-to-last-symbol in their labels. On the other hand,
for any j > ¢, by definition of W (r, j), all of the nodes appearing in the analog of equation (8)
for j in place of i (and a node at level n — (rj + 1) in place of x) have the symbol a in that
position in their labels. Thus, exchanging the labels of the nodes zba’"'a and xba"*~'b does
not affect the truth of equation (8) for nodes addressed in previous steps. O

4. A PRELIMINARY RESULT REGARDING THE ASSOCIATED ARBOREAL SUBGROUP
We now prove that the sets By oo € M, o C Aut(T) of Definition 1.3 are in fact groups.

Theorem 4.1. The following hold.
(1) M, is a subgroup of Aut(Tx).
(2) The map P, : M, — Z5 given by P, : 0 — P.(0) is a group homomorphism with
kernel By .

Proof. Step 1. We begin with two simple observations that apply to any 7 € Aut(7%) and
any node y of Th,. First, we have W(r,1) = {a,b}"~! is the set of all 2"~! words of length
r —1in {a,b}, and hence

(9) {rly)w:weW((rl)}={r(yw) :we W(r1)}

are precisely the same set of 2" ! nodes of T,,. Second, we have

(10) Qr(ry) =2 Y (Par(r,yw) + Q,(r, ywa)),
weW (r,1)

by definition of @, (see equation (3)), since for any i > 2, we have

W(r,i) = {waw’ : w € W(r,1) and w’ € W(r,i —1)}.

Step 2. For any 0 € M, o, any 7 € Aut(T), and any node x of T, define
Zp(o,1,2) = Qp(0,7(x)) + P-(0)Qr(1,2) — Qr(oT,x) € Zs.
In Step 3 we will show that Z, is identically zero, but in this step we claim only that
(11) Zp(o,T,x) =2 Z Zy(o, 7, zwa).
weW (r,1)

To prove the claim of equation (11), expand each appearance of @, in the definition of Z,
according to equation (10), to obtain

Z(o,1,2) =2 Z [Par(a, 7(z)w) + Py(0) Par(r, zw) — Par(oT, xw)
weW (r,1)

+ Qr (o, 7(x)wa) + P.(0)Qr (1, zwa) — Qr(oT, :cwa)}

=2 Z [Par(a, 7(zw)) + Pr(0) Par(r,zw) — Par(oT, zw)
weW (r,1)

+ Qr(o,7(zw)a) + P.(0)Qy (1, zwa) — Q. (o, ZL'U)CL):|
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by applying observation (9) in the second equality. Expanding the first appearance of P,.(0)
here as P,.(o, 7(zw)), we have

Zp(o,1,2) =2 Z [Par(a, r(zw)) + (—1)P2@7@) par(r, zw) — Par(oT, zw)
weW (r,1)
+ Par(7, zw) (Qr(a, T(zw)b) — Qr (o, T(:cw)a))
+ Qr(o,7(zw)a) + P.(0)Qy (1, xwa) — Q, (o, xwa)}
=2 Z Zr(a, T, T, W)
weW (r,1)
where, after applying equation (2) to Par(o7,zw), we define
ZT(O', T,z,w) := Par(r, xw)(Qr(a, T(zw)b) — Q (o, T(fcw)a))
+ Qr(o, T(zw)a) + P (0)Qr (T, zwa) — Qr (o7, zwa).

For each w € W (r, 1), we consider two cases. If Par(7,zw) = 0, then 7(zw)a = 7(zwa), so

Zp(o,m,x,w) =04 Qr (0, 7(zwa)) + P (0)Qr (1, zwa) — Q (o7, zwa) = Z(o, 7, xwa).

On the other hand, if Par(r,zw) = 1, then 7(zw)b = 7(zwa), so

Zp(o,m,x,w) = Qp(o, T(xwa)) — Qr (o, T(xw)a)
+ Qr (o, 7(zw)a) + Pr(0)Qr (T, zwa) — Qr (o7, zwa)
= Qr(o,7(zwa)) + P (0)Qy (1, zwa) — Q (o7, zwa) = Z(o, 7, zwAa).
That is, in all cases, we have Z,(o, 7,2z, w) = Z(o, 7, zwa). Hence,
Zy(o,T,2) =2 Z ZT(O', T, T, w) = 2 Z Zy(o, 7, xwa),
weW (r,1) weW (r,1)
proving the claim of equation (11).
Step 3. For o, 7,z as in Step 2, a straightforward induction on ¢ > 0 gives
Zp(o,1,2) = 2° Z Z.(0,T,zwa) € 2'Zy  for every i > 0.
weW (i)
Because (5 279 = {0}, it follows that Z,(o,7,2) = 0.
Expanding P, (7, z) according to definition (4), we have
Po(0)Pr(r,2) = ()P TP (o) + Po(0)Qr (T, 2b) — Pr(0)Qr (7, za)
= (—)Po) ((—1)Perlom@) 4 Q, (0, 7(2)b) — Qr(0, 7(z)a))
+ Pr(0)@Qr (7, 2b) — Pr(0)Qr(7, a)
= (=)P) 4 Q. (0, T(ab)) — Qv (0, 7(za))
+ Pr(0)Qr(7, 2b) — B (0)Qr (7, 2a),

where in the second equality, we expanded the first appearance of P,(o) as P.(o,7(z)), and in
the third equality, we applied both equation (2) and the fact that

(—1)P>TD(Qu (o, 7(2)b) — Qp(0,7(x)a)) = Qp(o, 7(xb)) — Qp(0, 7(wa)).
Therefore, we have
P.(0)Pu(1,2) = (=12 L Q(or, 2b) — Q(oT, xa) + Z, (0, T, 2b) — Zy(0, T, Ta)

P.(or,2)+0—0= P.(oT,x).
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by definition of P, and the fact that Z, = 0.

Step 4. We now show that M, o, is a subgroup of Aut(7Ts). The identity e € Aut(Tx)
clearly satisfies @,(e,z) = 0 and Par(e,x) = 0 for all nodes x, whence P(e,z) = 1, so that
e € M, . Given 0,7 € M, o, and 1,22 € X, we have

P.(o1,21) = P.(0)P.(1,21) = Pr(0)P-(1,22) = P(0T,x2),
where the first and third equalities are by Step 3, and the second is by the fact that 7 € M, .
Thus, o7 € M, . Applying Step 3 with o~ in the role of 7, we also have
P.(0)P. (67, 1) = P.(co™ Y, 21) = Pr(e, 1) = Py(e, 9)
= PT(UU_la 1'2) = PT(J)P(U_17 $2)-
Multiplying both sides on the left by P,.(0)~! € ZJ, it follows that
P’/‘(Uilv «731) = PT(O'ily 1'2);

proving that o~1 € M, «. Thus, M, « is a subgroup of Aut(T).
Finally, the map P, is a homomorphism by Step 3, and its kernel is clearly B, . ([l

5. THE ACTION OF (GALOIS ON ROOTS OF UNITY

The following result shows that the group M,  is determined solely by the restriction that
a Galois element o must act consistently on every instance of any root of unity (on.

Theorem 5.1. Let z9 € K not in the forward orbit of 0, and choose primitive 2"-th roots of
unity (o, (s, (s, -+ € K such that (3, = Con—1. Label the tree T, of preimages in Orb; (x0) as

in Lemma 3.2. Then for any node z € Orb, (o) and any 0 € Goo = Gal(Koo/K), we have

Pr (o,
(12) g(@n) = Qn(acr)7
for allm = 1. In particular, the image of Goo in Aut(Tso), induced by its action on Orb (zo)
via this labeling, is contained in M, . Furthermore, if (on € K for all n, then this Galois
image is contained in B .

Proof. If equation (12) holds for o € G, for every node x € Orbj? (x0), and for all n > 1, then

o(Con) = (L) = ¢L@0) gor all n > 1. Tt follows that Py(o,x) = Pr(0,20) mod 2" for all
n > 1 and hence o € M, . Further, if (o € K for all n, we must have o((on) = Q(U’x) = (on
for all n, hence P,(o,z) =1 and 0 € By .

Thus, it suffices to show equation (12) holds for an arbitrary o € G, arbitrary z €
Orb; (o), and arbitrary n > 1. The desired equation is trivially true for n = 1, as (o = —1
and P. = 1 (mod 2). Therefore, we may assume for the rest of the proof that n > 2. By
Lemma 3.2, we can write
HweW(r,n—l) [IECLU}CL]

HwEW(r,nfl) [xbwa]

Con =

Y

and hence
_plo(zawa
(13> U(CQH) _ HweW(r,n 1)[ ( )] .
HwGW(r,n—l) [o(acbwa)]
We first claim for all 4 > 0 and any finite word w (in the alphabet {a,b}), we have
(14) [[ l@awe=gi™™ I lowawd,

w'eW (r,i) w' €W (r,i)
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where for ¢ = 0, we interpret this equation as saying o(wa) = (, Par(a’w)a(w)a. When
Par(o,w) = 1, we have o(wa) = o(w)b, so equation (14) follows from Lemma 3.2 applied
to o(w). On the other hand, when Par(o,w) = 0, we have o(wa) = o(w)a and hence the set
of words in product on the left of the equation is the same as that on the right hand side, so
equation (14) is vacuously true in this case.

We also observe for any words w, w’,

(15) [I lewu = [ [o(ww v,
wlle{mb}'r'fl w”G{a,b}r71
since the set of words in each product is the same.
Write S; := szW(r,i) Par(o, raw). Note, any w € W, ;) can be written as wjawsa. .. w;
for wy,...,w; € {a,b}""!. Then alternately applying equation (14) and equation (15), we have

H [o(zawa)] = H [o(zawiawaa . . . wy—1a)]

weW (r,n—1) W1 ,...,wn—1€{a,b}

=t H [o(zawia. .. wy—_1)ad]

w1,...,wn—1€{a,b}r 1

—_ CQ_ n—1 H I:O'("L'CL’U_}la e wn72a)wnfla]
W1, Wy —1€{a,b}" 1

—Sp_1 —Sn_
=Gy " H [o(zawia. .. w,_9)awy,_1a]

wl?"'7wn*1€{a’b}r71

—Sn—1 —Sn— —
=Gy " M ..anslll H [0 (zaw )awsa . . . wy_14]
w11 €{a b}
7S7L7 7Sn7 —
=G e 427{5:11 H [o(xa)wiawsa . .. wy_1a]

Wiy Wn—1 e{avb}T_l

Using the fact that (on—: = (an)Qi, we can rewrite

_Sn—l _Sn—2 *Sl _ _(251+432+"'+2n715n71) I T‘(U,(Ea)
(2 C22 ' CQ"

T 8on—1 = L2n - )

where the last equation follows from the identity Z?;ll 21S; = Q,(0,za) (mod 2"). Thus, we
have

(16) H [o(zawa)] = (on r(o.wa) H [o(xa)wal.

weW (r,n—1) weW (r,n—1)

Similarly,

(17) [T lo@bwa)] = 2 (o (zb)wal.
weW (r,n—1) weW (r,n—1)

Plugging equation (16) and equation (17) into equation (13), we see

HwEW(r,n—l) [U(xa)wa]
H'wEW(r,nfl) [U(xb)wa] '

U(CQ”) _ (2—71 r(o,xa)+Qr(o,xb)
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Finally, applying Lemma 3.2 one last time, we see

_1)Par(o,x)
Huewin nlo@awa  (Thewqn ylo@awd ) ™7 e
HweW(r,nfl)[a(xb)wa} HwEW(r,nfl)[U(x)bwa] > ‘
Thus,
—1)Par(oz) _ o,xa r(o,x - (o,x
o (Con) = <§n1) Qr(o,wa)+Qr(oab) _ ;( ) 0

6. THE ARITHMETIC AND GEOMETRIC GALOIS GROUPS

Let k be an arbitrary field not of characteristic 2. In this section, let K = k(t) where
t is transcendental over k, let xg = t, let K, be the resulting arboreal extension of K, and
G = Gal(Ks/K), the corresponding arboreal Galois group. In addition, let k be an algebraic
closure of k, let K’ := k(t), let K’ be the corresponding arboreal extension of K’ (with root
point 2o = t), and let G := Gal(K._ /K’) be the corresponding arboreal Galois group for this
extension. The groups G, and G/ are called the arithmetic and geometric arboreal Galois
groups for f over k, and they are denoted G**" and G&°°™ respectively.

Note that K’ = k(t) -k and K/, = K - k. Hence, if we define ko, := Ko Nk, then the map
G&°™ — Gal(K/keo(t)) given by restricting elements to Ko, is an isomorphism. Composing
this isomorphism with the injection Gal(Ks/koo(t)) — G produces a natural injection
GEeom —y GATth with cokernel isomorphic to Gal(keo/k). That is, we have an exact sequence

0 — Geeom 5 GMith __, Gal(ky /k) — 0.

6.1. The geometric Galois group. In this subsection, we show that for each r > 1, our
group B, o, coincides with Pink’s group GE g;k. Recall that in [ |, Pink proves that this
group (which he denotes simply as G) is isomorphic to G8*°™ for any field k as above.

In | , Equation (2.0.1)], Pink describes GEL’}}( as the closure of the subgroup of Aut(7%)
generated by elements ay, ..., a, € Aut(Ty) given by the recursive relations

(18) a; = (o, )T, and a; = (a_1,1) for2<i<r.

Here, 7 € Aut(T%) denotes the automorphism of order two swapping the subtrees based at a
and b, given by

T(aw) =bw and 7T(bw) = aw

for all infinite words w € {a,b}". In addition, for any 04,03, € Aut(Ts), the automorphism
(04, 0p) is the element o € Aut(T) given by

o(law) = aoq(w) and o(bw) = bop(w).

Let w, be the word of length r given by w, := ba"~!, where a” denotes n copies of the
symbol a. A straightforward induction shows that for each ¢ = 1,...,r, the automorphism «;
of equation (18) is given by

1 if w=a""tw? for some n >0,

0 otherwise,

(19) Par(ay, w) = {
for any word w, where w!" is the word w, - - - w, of length nr consisting of n copies of w,. For
example, for r = 3 and ¢ = 2, we have Par(ag,w) =1 for

w = a, abaa, abaabaa, abaabaabaa, . ..

and Par(awg,w) = 0 otherwise.

Proposition 6.1. For every integer r > 1, Pink’s subgroup G,lzic;‘)k is contained in By .



12 R. L. BENEDETTO, D. GHIOCA, J. JUUL, AND T. J. TUCKER

Proof. Observe that for any node x of the tree, the map o — P,.(o, x) is a continuous function
from Aut(Tw) to Z5. Indeed, if 01,09 € Aut(T) agree on the finite subtree extending nr
levels above =, then P.(c1,7) = P,(02,2) (mod 2"*1). Tt follows that M, ~ and B, are
closed subgroups of Aut(7T,). Thus, it suffices to prove that each of the generators ey, ..., a,
of Pink’s group belongs to B, .

Fix a node z of the tree, and an integer ¢ € {1,...,r}. We must show that P,(ay,z) = 1.
We consider two cases.

First, suppose that Par(a;,z) = 1. By equation (19), we must have x = o'~ 'w™ for some
integer m > 0. Thus, the nodes y above z for which Par(a;,y) = 1 are those of the form
y = zw] for some n > 0. On the other hand, according to Definition 1.2, the value of P, (o, z)
is (—1)Par(@i®) — _1 plus a weighted sum of Par(ey,y’) for nodes 3’ of the form ' = zaw
or y = xzbw for w € W(r,j) with j > 1. However, none of the strings w! begin with a, and
all the ones with n > 2 have length greater than r, with b rather than a as their (r + 1)-st
symbol. Thus, the only string of the form w? in the sets aW (r, j) or bW (r,7) is w, = ba"*
itself. Therefore,

Py(ai,x) = (=) 1+ Q (e, 2b) — Qp(ai, ma) = —1+2 -0 = 1.

Second, we are left with the case that Par(a;,z) = 0. By equation (19), = is not of the
form a’~'w™, and therefore none of the nodes at any level nr above x are of this form, either.
Therefore, Par(az, y) = 0 for all nodes y appearing in the formula for P, (e, ) in Definition 1.2,
and hence

Pr(aiam) = (_I)Par(ai,x) + Qr(ahxb) - Qr(ai7$a) =1+0-0=1 u

In fact, we wish to extend Proposition 6.1 to show that GPmk B, . To this end, for each
integer n > 1, define

By, := Reseon(Broo) and Gfiﬁlk = Resso n(Gfi;k),
as we did at the end of Subsection 1.5. We must show these subgroups of Aut(7;,) coincide.
Theorem 6.2. For every integer r > 1, we have GPmk =B -
Proof. For each integer n > 1, define
B, = {0 € Aut(T},) : Vm < n and Vz € {a,b}", P.(0,2) =1 (mod 26(’”’”))}

where e(m, n) := [2=2="| 4+ 1. (Here, working on the finite tree 7}, we understand the sum
defining P, (o, x) in Definition 1.3 to be truncated to include only those terms that make sense,
i.e., only those Par (o, y) terms for y at level n—1 or below.) Observe, in light of Proposition 6.1
and Definition 1.3, that we have

P' k
Gy € Brn € B,

Thus, it suffices to show that |B; | < |GPmk| for all n > 1.
We proceed by induction on n. For n < r, we have e(m,n) = 1 for all m < n, and hence
!, = Aut(T,). Therefore,
logs | By, = logy | Aut(Ty)| = 2" — 1 = log, |G,

where the final equality is by | , Proposition 2.3.1].
Now let n > r + 1, and suppose |B,,, ;| < |GL2¥,|. Let S,, denote the kernel of the map
Res,n-1: B, = B, ;. Then

’B;”,n| = ‘Resn,n—l(Bvln,n)’ : ‘Sr,n| < ‘B;gn—ll Sl
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Next, we compute the size of S,,. Define Y, to be the kernel of the map Res, -1 :
Aut(T,,) — Aut(T),—1); that is, Y;, is the set of o € Aut(7},) for which Par(o,y) = 0 for every
node y below level n — 1. Thus, S, , is the set of o € Y,, for which

(20) P.(o,z)=1 (mod 2¢(™™)

for all 0 <m < n and all z € {a, b}™.
Observe, for any o € Y, any integer 0 < m < n, and any node « at level m, we have

P.(o,z) =1+ Z 2Z Z [ Par(o, zbw) — Par(o, zaw)]  (mod ge(nm)y,
weW (r,3)

Note that unless m = n — ri — 1 for some 4, then condition (20) is automatically satisfied by
the assumption that o acts trivially on all of T}, _;.

Furthermore, even when m = n — ri — 1 for some 4, then again for o € Y,,, condition (20)
reduces to

Pi(o,x) =142 Z [ Par(o, zbw) — Par(o,zaw)] =1 (mod 2'*1).
weW (r,i)

Thus, for any o € Y;,, we have o € S,.,, if and only if

(21) Z Par(o, xbw) — Z Par(o, xzaw) is even

weW (r,3) weW (r,i)

for each 2 =1,2,...,¢, and for each node z at level n — 1 — 7, where £ := L"T_lj

To determine whether a given o € Y,, belongs to S, ,, start with ¢ = £ and count down
to i = 1. For each node z at level n — 1 — ri, the values of Par(o,zbw) and Par(c, zaw) for
w € W (r,i) can be arbitrary except for Par(o, rba™ 1), which must be chosen so that the sum
in condition (21) is even. Since there are 27177 21~ 1= parity
restrictions arising from level 1.

Furthermore, note that parity of o at xba”~! did not arise in the sum in condition (21) for
any previous values of ¢ or x, because of the appearance of the symbol b in that particular
location. Thus, the parity restrictions noted above are all independent of one another. With
o €Y, determined by the parities Par(c,y) for each of the 2"~! nodes y at level n — 1, and
with 277177 such restrictions for each i = 1,2, ..., ¢, it follows that

nodes at this level, we have

14
10g2 ‘Sr,n’ —on—1 _ Z gn—1l—ir
i=1

On the other hand, by | , Proposition 2.3.1], we have

10g2 |GP1nk’ —9on _1_ Z gn—1-m {TJ '
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Therefore,

log, ‘G,]ii?k‘ — log, ‘Gfink

n—1

= <2” —1- :22”—1—”1 : [’:J) _ (2"—1 - 22"—2—7% . VZ}J)
R TR LIES R =
srter B e (122 7))

m=1
=
— 2n—1 - Z 2n—1—zr — logQ |Sr,n|‘
=1

It follows that log, |GEIUK, | 4 log, | S, .| = logy |GEMK| and hence

rmn—1 N
logy | B,.,,| <logy B, 1| +10gy |Srnl < logy |GERE | +log, [Syn| = logy [GERK|. O

6.2. The arithmetic Galois group. For our field k£ not of characteristic 2, let pg~ denote
the set of all 2-power roots of unity in k.

Lemma 6.3. With notation as at the start of Section 6, for any polynomial f(z) = 2*+c € k[2]
with 0 periodic, we have koo = k(fig00).

Proof. By Theorem 5.1, there is an equivariant injective homomorphism p : G&ith — M, .
Moreover, by Theorem 6.2, restricting this homomorphism to Gal(K s /kso(t)) = G8°™ yields
an isomorphism G&*°™ = B, .
By Lemma 3.1, ko contains k(ua~). Hence we may consider the homomorphism
X : Gal(kso /k) — Z5

given by the 2-adic cyclotomic character. Moreover, by Theorem 4.1, we have a homomorphism
P.: M — ZQX which makes the following diagram commute:

0 — Geeom 5 Gatith — Gal(kyo/k) — 0

(22) J j x

X
0 —— Broo —— My oo ——— 7Z;

Since B, « is the kernel of P,, the induced homomorphism P, : M, o/ By oo — ZQX is injective.
We also have an induced homomorphism p : G2ith /Geeom _y M, « /By o given by

FOGE™) = () By .
We claim that p is also injective. To see this, suppose p(c1G8*°™) = p(02G8°™). Then
p(01)Byr.o = p(02)Br 00, and hence p(o’lagl) € B, . Because p is injective and p(G5°™) =

B, «, it follows that p_l(Br,oo) = G&°™ and hence 0105 L'e @geom | Now the following diagram
commutes:

Garith/Ggeom — Gal(ko/k)

g 1 I

M, oo/Broo ——— 73

and since P, o p is injective, the homomorphism Y must be injective as well.
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Finally, since x is injective and ker x = Gal(koo/k(p2e)), the Galois group Gal(kso /k(p2))
must be trivial, and therefore koo = k(2 ). O

Note that in general, the maps p and x in the above proof need not be surjective. We now
show for a field k, we have G¥th = A7, if and only if [k((g) : k] = 4, and in particular, that
the number field £ = Q(c) has this property.

Theorem 6.4. Suppose f(z) = 22 + ¢ € k[z] and 0 is a periodic point of f. Let K = k(t), let
xo = t, let Ko be the resulting arboreal extension of K, and let G .= Gal(Ko/K). Then
the following are equivalent:

(1) Garith oY) Mr,oo

(2) [k(Cs) : k] =4
(8) chark =0 and kN Q(u2=) = Q.

Moreover, when k = Q(c), we have kN Q(u2=) = Q and hence G¥ith =~ M, .
Proof. We first prove the final statement: that for k¥ = Q(c), we have kN Q(u2~) = Q. Since
f(z) = 2% + c satisfies f7(0) = 0, the parameter c is a root of the polynomial
) ) 9 2 2
( (((a: + z)* + z) +x) +~-+x) +x € Zx],
which, reduced modulo 2, is the separable polynomial
2 42 T 12 b e Pzl

Therefore, the prime 2 is unramified in k = Q(c). It follows that £ N Q(uge) = Q, as desired.
Before proceeding to the equivalence of statements (1)—(3), we claim that

P
0—— Br,oo E— Mr,oo -

Zy > 0
is a short exact sequence. To see this, still using k = Q(c), we have

Gal(koo/k) =2 Gal(Q(u2)/Q) = Z,

and the map x : Gal(ks/k) — ZJ is an isomorphism. Thus, the map P, : M, o — Z is
surjective by the fact that the diagram (22) commutes, and our claim above follows.

Now let k£ be any field satisfying the hypotheses of the theorem. By the above claim, and
again by the fact that the diagram (22) commutes, we have that

0 —— Geeom — Gaith —» Gal(ky /k) —— 0

bk b

0 — Broo — Mypo —— Zf 0

commutes, with both rows exact.

The implication (3)=(2) is straightforward. To prove (2)=(3), observe that the condition
[k((s) : k] = 4 forces char k = 0, because for any prime p, the root of unity (s has degree at
most 2 over F,. Furthermore, since Q(pu2~) is a pro-2 extension of Q, the field £ N Q(pa~)
is strictly larger than Q if and only if £ contains one of the three quadratic extensions of Q
contained in Q(p2x). (These three fields are Q(v/—1), Q(v/2), and Q(y/—2), all of which are
contained in Q((g).) However, because [k(Cg) : k] = 4, the field k& contains none of v/—1, /2,
v/—2. Hence, we have kN Q(u2~) = Q, as desired.

To prove (1)=-(2), observe that the map p : G¥" — M, . in the diagram above is an
isomorphism if and only if the cyclotomic character x : Gal(koo/k) — ZJ is surjective, in
which case statement (2) follows immediately.
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Finally, observe that statement (3) implies Gal(koo/k) = Gal(Q(pu2~)/Q) = Z5, and hence
X is surjective. Therefore, p is also surjective in the diagram above, from which statement (1)
follows. 0

Theorem 6.4 also allows us to specify when the various roots of unity (on first appear in the
arboreal tower, as follows.

Corollary 6.5. If [k(Cs) : k] = 4, then K, Nk = k((a¢) for alln > 1, where e = || +1. In
particular, (on € Kypi1, and if n > 2, then (on & Kp,.

Proof. Let k,, := kN K, = koo N K,,. By Lemma 3.1, we have k((a¢) C k,, and our hypotheses
imply that [k(C2e) : k] = [(Z/2°Z)*|. Thus, it suffices to show [ky : k] = [(Z/2°Z)*|.
By Theorem 6.4, we have G¥ith = )/, . and hence

Garlth Gal( n/k(t)) &~ MT,TL = Resoom(Mr,oo).

Define P, : M, — (Z/2°Z)* by setting Py (o) := P.(7) (mod 2°) for any 7 € M, o such
that Resoon(7) = 0. Observe that if 71,7 € M, o satisfy Resoon(71) = Reseon(m2), then it
follows from the construction of P, in Definition 1.2 that P,(71) = P,(72) (mod 2¢). Hence,
P, . is well-defined. It is clearly a homomorphism, and according to the proof of Theorem 6.2,
the kernel of P, . is B, . Therefore, the following diagram commutes.

00— Broo — Mo —2 0
lResoo,n lReSoo n lmod 2¢
P
0 Brn My 255 (2)2°2)% —— 0

In particular, the bottom row is short exact, and
Gal(k,/k) = foith/G%eom ~ My pn/Brn = (Z)2°7)%,
as desired. O

7. OBTAINING THE ARBOREAL GALOIS GROUPS

We need two more lemmas in order to prove our main result.

Lemma 7.1. Let k be any field with [k((s) : k] = 4. Suppose f(z) = 2> + ¢ € k[z] is PCF. Let
K =k(t), let xg =t, and let K be the resulting arboreal extension of K. Let A € k such that

VA e Ky. Then VA € k(G).

Proof. Let koo := kN Ks. By Lemma 6.3, we have ko, = k(2 ), and by hypothesis we have
[k(¢s) : k] = 4. Thus,

Gal(koo /k) = Z5
Since Z5 has only three index 2 subgroups, koo contains only three quadratic extensions of

k (formed by adjoining one of v/—1, v/2, or \/=2), all of which are contained in k((g), there
are similarly only three quadratic extensions of k in k(ug~), all contained in k((g). Thus,

VA € k(). O

The following argument has been presented in various degrees of generality in [ ,
Lemma 4.2], | , Lemmas 1.5 and 1.6], | , Section 2.2], | , Proposition 5.3, Theo-
rem 6.5]. We include a proof here for completeness.
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Lemma 7.2. Let f(z) = 22 + c € K[2] and let G, = Gal(K(f"(x0))/K). Forn > 1, define

D; e K by
.
f10)—zo  ifi =2
Then the following are equivalent.
(1) G, = Aut(T,).
(2) For all1<i<mn, D; ¢ (K(\/D1,...,~/Di_1))?. (Fori =1, this means D1 ¢ K2.)

Proof. First suppose statement (2) fails for some ¢ < n. Let A; be the polynomial discriminant
of f*(z) — xo. By | , Proposition 3.2], we have

Ai = (—1)% 22 (f(0) — 20) A(f1(2) — w0)”.

Thus, we have A; = c%DZ- for some ¢; € K, so A; is a square in K. Therefore, every o € G;
acts as an even permutation of the elements of f~%(xg), so that G; % Aut(T}), and hence
G 2 Aut(T,) for all n > i.

Conversely, assume statement (2). For arbitrary 1 < ¢ < n, suppose G;—1 = Aut(T;—1),
which is trivially true when ¢ = 1. We claim that D; is not a square in K;_1. Let

L; ::K(ma'--v\/ﬁi)a

which is an abelian extension of K. It follows from statement (2) that Gal(L;/K) = {41}’
On the other hand, we have

K(\/Dy,...,v/Di_1) C K;_1.

In particular, if v/D; € K;_1, then we would have L; C K,;_;. Because L;/K is abelian, it
would follow that Gal(L;/K) C G2,. That is, we would have

+1} = Gal(Li/K) € G2y = Aut(T;1)™ = {£1}7 1,
i—1

since the abelianization of a wreath product G ¢ Gs is G3P x G3P. This contradiction proves
our claim, that D; is not a square in K;_1.

Armed with this claim, we now show that [K; : K;_1] = 22" '. (Together with our assump-
tion that G;—1 = Aut(7;_1), it will then follow that G; = Aut(T;), from which statement (1)
follows inductively.) Let f31,...[-1 denote the roots of fi~'(z) — zg, and note that K; is

formed by adjoining
\/61—07...,\/521'71 —C

to K;—1. By Kummer theory, the degree [K; : K;_1] is the order of the group generated by the
classes of the elements §; — ¢ in KX, /(KX )2 This order is 22" ' /#V, where

V= {(q, cvein) €3 [y — o) € (Kiil)Q}.

J

Hence, to prove [K; : K;_1] = 22", it suffices to show that V = {0}.

Note that V' is an Fa-vector space, and that G;_1 acts on V' through its action on the §;.
That is, for any ¢ € G;_1, we may write ¢ as a permutation in Ssi-1 given by its action on the
indices of the ;. For any v = (e1,...,€i-1) € V, we have [[;(8; — )9 € (K ,)?, and hence

U(H(/Bj - C)€j> =TI (Boyy — )7 € (K1)
J J

The action is given by ov = (€,-1(1),-- -, € _1(221-_1)) € V, making V an Fo[G;_1]-module.

(e
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By the orbit-stabilizer theorem, every G;_1-orbit in F%Z_l has cardinality a power of 2, since
this cardinality must divide |G;_1|. Because G;_1 acts transitively on the j;, there are only
two singleton orbits, and hence only two orbits of any odd cardinality: (0,...,0) and (1,...,1).

Since V' is an Fa-vector space, it contains 0 = (0,...,0). If V # {0}, then |V is even, and
hence V' must contain a second G;_1-orbit of odd order, meaning that (1,...,1) € V. In that
case, therefore, we have [];(8; —¢) € (K ;). However,

[18 -0 = 1 TIe=8) = (1 (7 (e) = 20) = (=1)* (F(0) — 20) = D,

J J

which is a contradiction. Hence V' = {0}, as desired. O
We are finally ready to prove Theorem 1.4.

Proof of Theorem 1.4. The implications (5)<(4)=-(3)<(2) are trivial. Thus, it suffices to
show (1)=(5) and (2)=(1). Define

L:=k(/Di,...,\/Dr).
First assume statement (1), that [L(¢g) : K] = 272, Then we have [k(Cg) : k] = 4 and
[L(Cs) : k(Cg)] = 2". As at the start of Section 6, let ks := Ko Nk be the constant field
extension in the setting of the function field k(t) with root point ¢ in place of xg. Let &k’ denote

the compositum of the degree 2 extensions of k contained in k. By Lemma 7.1, we have
k' = k((s). Moreover, since [L((g) : k'] = 2", Lemma 7.2 implies that

Gal(Ky, - K'/K') =2 Aut(T)) & M,

Therefore,
(23) | Gal(Kyy - k' JK)| = | Gal(Kyyr - K /K| - [K' : k] = | My | - [K 2 K]
Noting that the forward orbit of 0 has cardinality r, we now apply | , Theorem 4.6]

(whose hypotheses assumes k is a number field, but only to ensure that [k’ : k1] is finite, a fact
which is evident in our case). This result says, given the length r of the forward orbit of 0,
along with condition (23), that Gy 00 = M, oo, i.€., that statement (5) holds.

Finally, assume statement (2), which implies both that |G, ,| = |M, .| = | Aut(T;)| and that
[Kz0.r(C8) : Kypr] =4. Since |Gy r| = | Aut(7T})|, Lemma 7.2 implies that [L : k] > 2". On the
other hand, because L C Ky ,, we have [L((g) : L] > [Kz,+((s) : Ky r] = 4. Therefore,

242 > (L(Gs) £ K] = [L(Gs) < I) - [L £ K] > 2772,
proving statement (1). O
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