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Abstract. We provide an explicit construction of the arboreal Galois group for the postcrit-
ically finite polynomial f(z) = z2 + c, where c belongs to some arbitrary field of characteristic
not equal to 2. In this first of two papers, we consider the case that the critical point is
periodic.

1. Introduction

Throughout our paper, we let K be a field of characteristic not equal to 2 with algebraic
closure K, and let f(z) ∈ K[z] be a polynomial of degree 2. After conjugating by a K-rational
change of coordinates, we may assume that f(z) = z2 + c for some c ∈ K.

1.1. Arboreal Galois groups. We consider the iterates fn of f under composition, where
f0(z) := z, and where fn+1 = f ◦ fn for each integer n ≥ 0. A point y ∈ K is said to be fixed
if f(y) = y, or periodic if fn(y) = y for some n ≥ 1, or preperiodic if fn(y) = fm(y) for some
n > m ≥ 0. If y is periodic, then its exact period is the smallest n ≥ 1 for which fn(y) = y. If
y is preperiodic but not periodic, then we say it is strictly preperiodic.

Given a point x0 ∈ K, then for every integer n ≥ 0, we define

Kn := Kx0,n := K(f−n(x0)) and Gn := Gx0,n := Gal(Kn/K)

to be the n-th preimage field and its associated Galois group. Note that · · ·K3/K2/K1/K is
a tower of field extensions, which we view as contained in K. Thus, we may further define

K∞ := Kx0,∞ :=
⋃
n≥0

Kx0,n and G∞ := Gx0,∞ := Gal(Kx0,∞/K) ∼= lim←−
n

Gx0,n.

If the backward orbit
Orb−f (x0) :=

⋃
n≥0

f−n(x0)

contains no critical values of f , then each f−n(x0) has exactly 2n elements. If, in addition,
x0 is not periodic under f , then the sets f−n(x0) are pairwise disjoint, and hence Orb−f (x0)

has the structure of an infinite binary rooted tree T∞, with x ∈ f−(n+1)(x0) connected to
f(x) ∈ f−n(x0) by an edge. Thus, the action of the Galois group G∞ on the backward orbit
induces an embedding of G∞ into the automorphism group Aut(T∞) of the tree. Similarly, for
each n ≥ 0, the action of Gn on f−n(x0) induces an embedding of Gn into the automorphism
group Aut(Tn) of the finite binary rooted tree Tn with n levels. For this reason, the groups
Gn and G∞ have come to be known as arboreal Galois groups. Moreover, given our interest in
this action, whenever we discuss homomorphisms or isomorphisms between groups acting on
trees, we always mean homomorphisms that are equivariant with respect to this action. We
note that the problem of fully understanding the arboreal Galois groups has generated a great
deal of research in the recent years; see [ABC+22, BDG+21, BFH+17, BGJT25, BHL17, BJ19,
AH, JKMT16, Juu19, Pin13], for example.
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1.2. Postcritically finite quadratic polynomials. In this paper, we consider the case that
f is postcritically finite, or PCF, meaning that all of the the critical points of f are preperiodic.
Since we have assumed f(z) = z2 +c, the critical points are 0 and∞, with∞ necessarily fixed;
thus, to say that f is PCF is equivalent to saying that 0 is preperiodic under f . In this case,
it is well known that G∞ is of infinite index in Aut(T∞).

If the critical point 0 is preperiodic, then the values f(0), f2(0), . . . , f r(0) are all distinct
for some maximal integer r ≥ 1, with f r+1(0) repeating one of these values. That is, we have
f r+1(0) = fs+1(0) for some minimal integers r > s ≥ 0. Equivalently, since the two preimages
of f(y) are ±y, we have f r(0) = −fs(0) for minimal integers r > s ≥ 0. Note that if s = 0,
then the point 0 is periodic, and r is the cardinality of the forward orbit

Orb+
f (0) := {f i(0) : i ≥ 0}

of 0 under f . Otherwise, if s ≥ 1, then 0 is strictly preperiodic, and |Orb+
f (0)| = r+ 1. In the

latter case, the point fs+1(0) = f r+1(0) is periodic of exact period r − s ≥ 1, preceded by a
tail {0, f(0), . . . , f s(0)} of cardinality s+ 1 ≥ 2.

1.3. Previous work on describing the arboreal Galois groups for PCF quadratic
polynomials. In [Pin13], Pink describes the group G∞ for each of the various choices of r, s
when the quadratic polynomial f is PCF, in the case that K = k(t) is a rational function field
over an algebraically closed field k, and that the root point of the preimage tree is x0 = t.
Pink denotes this group Ggeom, and he proves that it is isomorphic to a subgroup of Aut(T∞)
that he simply calls G, but which we denote GPink

r,s,∞. (When s = 0, we sometimes write simply

GPink
r,∞ .) He defines GPink

r,s,∞ via explicit (topological) generators, each arising from the action of
inertia in the context of Ggeom.

When K = k(t) for k not algebraically closed, Pink denotes the resulting group G∞ as
Garith, and he describes how it fits into a short exact sequence

1 −→ GPink
r,s,∞ −→ Garith −→ Gal(k/k)/N −→ 1,

for some normal subgroup N of Gal(k/k) depending on r, s, and k.

1.4. Our approach. This paper is the first of a pair of papers in which we have two main
goals. First, for each pair of integers r > s ≥ 0, we construct subgroups Br,s,∞ ⊆ Mr,s,∞
of Aut(T∞), coinciding with Pink’s groups GPink

r,s,∞
∼= Ggeom ⊆ Garith, and we show that the

arboreal Galois group G∞ is isomorphic to a subgroup of Mr,s,∞. Our arguments apply over
general fields with arbitrary base points, rather than restricting to the case K = k(t) with base
point t. Our approach to this problem is also more concrete than that of Pink; the groups
Br,s,∞ and Mr,s,∞ are defined not by generators but rather as the set of all σ ∈ Aut(T∞)
satisfying certain parity conditions, which are also used to describe how elements of G∞ act
on the roots of unity contained in K∞. One advantage of this approach is that it can allow us
to describe the intersections Kn ∩ k(µ2∞) with a great deal of precision (see Corollary 6.5).

Our second goal is to present and prove necessary and sufficient conditions for G∞ to be the
whole group Mr,s,∞ (see Theorem 1.5). Our results generalize those of [ABC+22], which gives
a similar description of B2,0,∞ and M2,0,∞. (This is the so-called Basilica map f(z) = z2 − 1,
for which r = 2 and s = 0, i.e., the critical point at 0 is periodic of period 2).

This paper handles the periodic case s = 0 for arbitrary r ≥ 1, for which we denote the above
groups simply as Mr,∞ and Br,∞ (see Definition 1.4). We handle the strictly preperiodic cases
s > 0 in a separate paper [BGJT]; nevertheless, even though additional technical complications
arise in the strictly preperiodic cases, the main ideas for all of our constructions already arise
in the periodic case considered here.
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Figure 1. A labeling of T3

Remark 1.1. More generally, for any d ≥ 2, the unicritical polynomial f(z) = zd + c is PCF
if and only if the critical point at 0 is preperiodic. There has been growing interest in the
associated arithmetic dynamics, for example in [BDG+21, Buf18, BEK22, Gok20, HT15], in-
cluding arboreal Galois investigations in [BGJT25, BHL17, AH]. In particular, in [BGJT25],
we considered the constant field extensions Kn ∩ k for PCF maps f(z) = zp + c with p prime,
as well as the relationship between the generic arboreal Galois groups (when K = k(t) and
x0 = t) and the corresponding groups when specializing the parameter t. It would be interest-
ing to find explicit descriptions of the resulting arboreal Galois groups for various PCF orbit
structures for zd + c. For now, however, we restrict our attention to the case d = 2, affording
us both Pink’s work and the relative simplicity of binary trees versus d-ary trees.

The next subsection is devoted to some further notation needed to state our main results.

1.5. Some fundamentals. It will be useful to assign labels to all of the nodes of the binary
rooted trees Tn and T∞, using the two symbols a, b to form words. That is, for each integer
m ≥ 0 and each node y at the m-th level of the tree, we assign y a label in the form of a word
w ∈ {a, b}m of length m, in such a way that for every such m and y, the two nodes lying above
y have labels wa,wb ∈ {a, b}m+1. (Of course, in the tree Tn, this latter restriction is vacuous
for nodes y in the top level m = n.) See Figure 1 for an example of a labeling of the tree T3.
Although the root node has the empty label (), we will often denote it as x0.

We usually consider the nodes of T∞ as corresponding to the backward orbit Orb−f (x0) ∈ K
of x0 ∈ K under f(z) = z2 + c ∈ K[z]. Thus, we will often conflate a point y ∈ f−n(x0)
with the corresponding node y of the tree. Having assigned a labeling to the tree, we will also
sometimes conflate a node y with its label. On the other hand, when further clarity is needed
for the backward orbit Orb−f (x0) ∈ K, viewed as a tree of preimages, we will often write the

value y ∈ f−n(x0) ⊆ K corresponding to the node with label w ∈ {a, b}n as y = [w].
Having labeled the tree, any tree automorphism σ ∈ Aut(T∞) or σ ∈ Aut(Tn) must satisfy

the following.

(1) For every level m ≥ 0 (up to m ≤ n for Tn), σ permutes the labels in {a, b}m, and
(2) For every level m ≥ 0 (up to m ≤ n− 1 for Tn), for each word s1 . . . sm ∈ {a, b}m, we

have either

σ(s1 · · · sma) = σ(s1 · · · sm)a and σ(s1 · · · smb) = σ(s1 · · · sm)b

or

σ(s1 · · · sma) = σ(s1 · · · sm)b and σ(s1 · · · sm)b = σ(s1 · · · sm)a.
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For any tree automorphism σ and m-tuple x ∈ {a, b}m, we define the parity Par(σ, x) of σ at
x to be

Par(σ, x) :=

{
0 if σ(xa) = σ(x)a and σ(xb) = σ(x)b

1 if σ(xa) = σ(x)b and σ(xb) = σ(x)a
.

Thus, any set of choices of Par(σ, x) for each node x of T∞ (respectively, Tn−1) determines a
unique automorphism σ ∈ Aut(T∞) (respectively, σ ∈ Aut(Tn)).

Note that if σ(x) = x, then Par(σ, x) is 0 if σ fixes the two nodes above x, or 1 if it transposes
them. However, Par(σ, x) is defined even if σ(x) 6= x, although in that case its value depends
also on the labeling of the tree.

We also define sgn(σ, x) = (−1)Par(σ,x). We have the following elementary relations:

(1) sgn(στ, x) = sgn
(
σ, τ(x)

)
· sgn(τ, x),

and hence

(2) Par(στ, x) = Par
(
σ, τ(x)

)
+ sgn

(
σ, τ(x)

)
Par(τ, x).

Equation (2) follows from equation (1) by writing Par(·, ·) = (1 − sgn(·, ·))/2, or simply by
checking the four possible choices of Par(τ, x) and Par(σ, τ(x)).

Definition 1.2. For each i ≥ 1, define W (r, i) to be the following set of words of length ri−1:

W (r, i) =
{
s1s2 · · · sri−1 : sj ∈ {a, b}, with sj = a if r|j

}
.

Definition 1.3. Fix a labeling of T∞, and let σ ∈ Aut(T∞). For any word x in the symbols
{a, b}, define

(3) Qr(σ, x) :=
∑
i≥1

2i
∑

w∈W (r,i)

Par(σ, xw) ∈ 2Z2,

and

(4) Pr(σ, x) := (−1)Par(σ,x) +Qr(σ, xb)−Qr(σ, xa) ∈ Z×2 .

Thus, Pr(σ, x) is ±1 plus a weighted sum of Par(σ, y) at certain nodes y. Specifically, the
sum counts half the nodes r levels above x, each with weight ±2; a quarter of the nodes 2r
levels above x, each with weight ±4, an eighth of the nodes 4r levels above x, each with weight
±8; and so on. (The + weights are for nodes above xb, and the − weights are for nodes above
xa.)

Definition 1.4. Fix a labeling a, b of T∞. Define Mr,∞ to be the subset of Aut(T∞) for which

(5) Pr(σ, x1) = Pr(σ, x2) for all nodes x1, x2 of T∞.

For σ ∈Mr,∞, define Pr(σ) to be this common value of Pr(σ, ·). Define

Br,∞ := {σ ∈Mr,∞ : Pr(σ) = 1}.

The map Pr from Mr,∞ to Z×2 is connected closely to the 2-adic cyclotomic character, as we
shall see in Theorem 5.1.

As a final item of notation before stating our main result (Theorem 1.5 in Subsection 1.6),
for 0 ≤ m ≤ n ≤ ∞, it will be convenient to define homomorphisms

Resn,m : Aut(Tn)→ Aut(Tm)

given by restricting elements of Aut(Tn) to the m-th level of the tree. In particular, for each
integer n ≥ 1, we may define Br,n := Res∞,n(Br,∞) and Mr,n := Res∞,n(Mr,∞).
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1.6. Statement of our main result.

Theorem 1.5. Let K be a field of characteristic not equal to 2, and let f(z) = z2 + c ∈ K[z]
with f r(0) = 0 for some minimal integer r ≥ 1. Let x0 ∈ K, and define Kx0,n = K(f−n(x0)),
Kx0,∞ =

⋃∞
n=1Kx0,n, Gx0,n = Gal(Kx0,n/K), and Gx0,∞ = Gal(Kx0,∞/K). Further define

D1, . . . , Dr ∈ K by

Di :=

{
x0 − c if i = 1,

f i(0)− x0 if i ≥ 2.

Then the following are equivalent.

(1) [K(ζ8,
√
D1, . . . ,

√
Dr) : K] = 2r+2

(2) [Kx0,2r+1 : K] = |Mr,2r+1|.
(3) Gx0,2r+1

∼= Mr,2r+1.
(4) Gx0,n

∼= Mr,n for all n ≥ 1.
(5) Gx0,∞

∼= Mr,∞.

Remark 1.6. When K contains
√
−1, the conditions of Theorem 1.5 can never hold, as con-

dition (1) necessarily fails. However, our methods can still be used to prove a slightly more
complicated result involving an appropriate subgroup of Mr,∞. Specifically, this subgroup is
the inverse image under Pr of the image in Z×2 of the 2-adic cyclotomic character of Gal(K̄/K).

1.7. Outline of the paper. Section 2 concerns a useful elementary result for general qua-
dratic polynomials that underlies many of our subsequent arguments. In Section 3 we present
explicit formulas yielding 2-power roots of unity as arithmetic combinations of preimages of an
arbitrary root point under our quadratic polynomial f(z) = z2 + c when the critical point is
periodic. Section 4 is devoted to proving that Mr,∞ is a subgroup of Aut(T∞) and that Pr is
a group homomorphism with kernel Br,∞ (this is done in Theorem 4.1), while Section 5 shows
how Mr,∞ and Br,∞ realize the arboreal Galois action. In Section 6, we prove that our group

Br,∞ concides with Pink’s group Ggeom, and that Pink’s larger group Garith is contained in

our Mr,∞. (Recall that Ggeom and Garith are special cases of G∞ for K = k(t) and K = k(t),
respectively, with x0 = t.) Finally, in Section 7, we prove Theorem 1.5, giving necessary and
sufficient conditions for the Galois group G∞ to be the full group Mr,∞.

2. An elementary lemma

The following result provides a simple but essential algebraic relationship among elements
of a backward orbit under a polynomial of the form f(z) = z2 + c. We have stated it with
the language of multiplicity, but in practice we will only apply it to backward orbits with no
critical points, for which the relevant equation fm(z) = y has no repeated roots. Note that in
this lemma, we do not make any assumptions about the polynomial f(z) beyond the fact that
it is of the form z2 + c, whereas in later sections, we will almost always work exclusively with
quadratic polynomials satisfying f r(0) = 0 for some r ≥ 1.

Proposition 2.1. Let K be a field of characteristic not equal to 2. Let c ∈ K, define f(z) =
z2 + c, let y ∈ K, and let m ≥ 1. Choose α1, . . . , α2(m−1) ∈ f−m(y) so that the roots of
fm(z) = y, repeated according to multiplicity, are precisely

(6) ± α1, . . . ,±α2(m−1) .

Then (
α1α2 · · ·α2(m−1)

)2
=

{
fm(0)− y if m ≥ 2,

y − f(0) if m = 1.
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Proof. We may write fm(z)−y = g(z2), where g ∈ K[z] is a polynomial of degree 2m−1. Thus,
the roots of fm(z) − y come in plus/minus pairs, justifying the description of the roots in
equation (6). Moreover, the roots of g are precisely α2

1, . . . , α
2
2m−1 , so that the constant term

of g is

(7) (±1)deg(g)(α1 · · ·α2m−1)2.

Since deg(g) = 2m−1, we have a − sign in equation (7) if m = 1, and a + sign if m ≥ 2. On the
other hand, by definition of g, the constant term of g is fm(0)− y, and the desired conclusion
is immediate. �

3. Roots of unity arising in backward orbits

Throughout the rest of the paper we assume f(z) = z2 + c with f r(0) = 0 for some minimal
integer r ≥ 1.

Lemma 3.1. Let x ∈ K not in the forward orbit of 0, and let ±y be its two immediate
preimages under f . Let A1 = {y} and B1 = {−y}. For each n ≥ 2, let An be a subset of
f−r(An−1) such that An contains exactly half of the elements of f−r(An−1) and f−r(An−1) =
{±α : α ∈ An}. Similarly, let Bn be a subset of f−r(Bn−1) containing exactly half of the
elements of f−r(Bn−1) such that f−r(Bn−1) = {±β : β ∈ Bn}. Then

γn :=

∏
α∈An α∏
β∈Bn β

is a primitive 2n-th root of unity.

Proof. Let x ∈ K not in the forward orbit of 0 and consider its two immediate preimages ±y.
First note

γ1 =
y

−y
= −1,

so the result holds in this case. Then by Proposition 2.1 and the fact that f r(0) = 0, we have

γ2
2 =

(∏
α∈A2

α
)2(∏

α∈B2
β
)2 =

(−1)2r−1
(−y)

(−1)2r−1y
= −1,

so that γ2 is a primitive fourth root of unity.
More generally, suppose γn−1 is a primitive 2n−1 root of unity for n ≥ 2. For any α′ ∈ An−1,

we have f−r(α′) = {±α : α ∈ f−r(α′) ∩An}. Hence

γ2
n =

(∏
α∈An α

)2(∏
β∈Bn β

)2 =

∏
α′∈An−1

(∏
α∈An∩f−r(α′) α

)2

∏
β′∈Bn−1

(∏
β∈Bn∩f−r(β′) β

)2

=

∏
α′∈An−1

(−1)2r−1
(−α′)∏

β′∈Bn−1
(−1)2r−1(−β′)

=

∏
α′∈An−1

α′∏
β′∈Bn−1

β′
= γn−1,

where the third equality follows from Proposition 2.1. Hence γn is a primitive 2n-th root of
unity. �

In the statement of our next result, recall Definition 1.2 of the set W (r, i) of words s1 · · · sri−1

of length ri − 1 with sj = a whenever r|j. In addition, observe that the nodes of T∞ with
labels [xawa] for w ∈ W (r, i) form a choice of a set Ai+1 as in Lemma 3.1, and those with
labels [xbwa] form a choice of a set Bi+1.
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Lemma 3.2. Let x0 ∈ K not in the forward orbit of 0, and choose a sequence of primitive
2n-th roots of unity ζ2, ζ4, ζ8, . . . such that ζ2 = −1 and ζ2

2n = ζ2n−1. It is possible to label
the tree T∞ of preimages Orb−f (x0) in a way such that for every node x of the tree and every

integer i ≥ 1, we have

(8)

∏
w∈W (r,i)[xawa]∏
w∈W (r,i)[xbwa]

= ζ2i+1 .

Proof. We will label the tree inductively, starting from the root point x0. Label the tree
arbitrarily up to level r + 1.

For each successive n ≥ r + 1, suppose that we have labeled Tn−1 so that for every node x
at every level 0 ≤ ` ≤ n − r − 2 of Tn−1, equation (8) holds for each 1 ≤ i ≤ b(n − ` − 2)/rc.
(Note that b(n− `−2)/rc is the maximum value of i so that the subtree of height ri+1 rooted
at x is contained in Tn−1. In particular, our supposition is vacuous for n ≤ r + 1.) For each
node y at level n − 1, label the two points of f−1(y) arbitrarily as ya and yb. We will now
adjust these labels that we have just applied at the n-th level of the tree.

Let m := b(n − 1)/rc ≥ 1, so that n = rm + t with 1 ≤ t ≤ r. Starting with i = m (and
counting down to i = 1), for each node x at level n− (ri+ 1) of the tree, consider the ratio

γ :=

∏
w∈W (r,i)[xawa]∏
w∈W (r,i)[xbwa]

of equation (8). Arguing as in the proof of Lemma 3.1, it follows from Proposition 2.1 that

γ2 =

∏
w∈W (r,i−1)[xawa]∏
w∈W (r,i−1)[xbwa]

if i ≥ 2, or γ2 =
[xa]

[xb]
= −1 if i = 1,

which is equal to ζ2i−1 by our induction hypothesis when i ≥ 2, and by definition of ζ2 when
i = 1. Thus, γ = ±ζ2i . If γ = −ζ2i , exchange the labels of the two level-n nodes xbari−1a
and xbari−1b, where aj denotes a string of j copies of the symbol a. Since these two nodes are
negatives of each other, we now have γ = ζ2i .

Repeat the process above for each x at level n− (ri+ 1) of the tree for successively smaller
i = m− 1,m− 2, . . . , 1. Note that for any node x at level n− (ri+ 1), the nodes xbari−1a and
xbari−1b have a b appearing as the (ri+ 1)st-to-last-symbol in their labels. On the other hand,
for any j > i, by definition of W (r, j), all of the nodes appearing in the analog of equation (8)
for j in place of i (and a node at level n − (rj + 1) in place of x) have the symbol a in that
position in their labels. Thus, exchanging the labels of the nodes xbari−1a and xbari−1b does
not affect the truth of equation (8) for nodes addressed in previous steps. �

4. A preliminary result regarding the associated arboreal subgroup

We now prove that the sets Br,∞ ⊆Mr,∞ ⊆ Aut(T∞) of Definition 1.4 are in fact groups.

Theorem 4.1. The following hold.

(1) Mr,∞ is a subgroup of Aut(T∞).
(2) The map Pr : Mr,∞ → Z×2 given by Pr : σ 7→ Pr(σ) is a group homomorphism with

kernel Br,∞.

Proof. Step 1. We begin with two simple observations that apply to any τ ∈ Aut(T∞) and
any node y of T∞. First, we have W (r, 1) = {a, b}r−1 is the set of all 2r−1 words of length
r − 1 in {a, b}, and hence

(9) {τ(y)w : w ∈W (r, 1)} = {τ(yw) : w ∈W (r, 1)}
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are precisely the same set of 2r−1 nodes of T∞. Second, we have

(10) Qr(τ, y) = 2
∑

w∈W (r,1)

(
Par(τ, yw) +Qr(τ, ywa)

)
,

by definition of Qr (see equation (3)), since for any i ≥ 2, we have

W (r, i) = {waw′ : w ∈W (r, 1) and w′ ∈W (r, i− 1)}.

Step 2. For any σ ∈Mr,∞, any τ ∈ Aut(T∞), and any node x of T∞, define

Zr(σ, τ, x) := Qr(σ, τ(x)) + Pr(σ)Qr(τ, x)−Qr(στ, x) ∈ Z2.

In Step 3 we will show that Zr is identically zero, but in this step we claim only that

(11) Zr(σ, τ, x) = 2
∑

w∈W (r,1)

Zr(σ, τ, xwa).

To prove the claim of equation (11), expand each appearance of Qr in the definition of Zr
according to equation (10), to obtain

Zr(σ, τ, x) = 2
∑

w∈W (r,1)

[
Par(σ, τ(x)w) + Pr(σ) Par(τ, xw)− Par(στ, xw)

+Qr(σ, τ(x)wa) + Pr(σ)Qr(τ, xwa)−Qr(στ, xwa)
]

= 2
∑

w∈W (r,1)

[
Par(σ, τ(xw)) + Pr(σ) Par(τ, xw)− Par(στ, xw)

+Qr(σ, τ(xw)a) + Pr(σ)Qr(τ, xwa)−Qr(στ, xwa)
]

by applying observation (9) in the second equality. Expanding the first appearance of Pr(σ)
here as Pr(σ, τ(xw)), we have

Zr(σ, τ, x) = 2
∑

w∈W (r,1)

[
Par(σ, τ(xw)) + (−1)Par(σ,τ(xw)) Par(τ, xw)− Par(στ, xw)

+ Par(τ, xw)
(
Qr(σ, τ(xw)b)−Qr(σ, τ(xw)a)

)
+Qr(σ, τ(xw)a) + Pr(σ)Qr(τ, xwa)−Qr(στ, xwa)

]
= 2

∑
w∈W (r,1)

Z̃r(σ, τ, x, w)

where, after applying equation (2) to Par(στ, xw), we define

Z̃r(σ, τ, x, w) := Par(τ, xw)
(
Qr(σ, τ(xw)b)−Qr(σ, τ(xw)a)

)
+Qr(σ, τ(xw)a) + Pr(σ)Qr(τ, xwa)−Qr(στ, xwa).

For each w ∈W (r, 1), we consider two cases. If Par(τ, xw) = 0, then τ(xw)a = τ(xwa), so

Z̃r(σ, τ, x, w) = 0 +Qr(σ, τ(xwa)) + Pr(σ)Qr(τ, xwa)−Qr(στ, xwa) = Z(σ, τ, xwa).

On the other hand, if Par(τ, xw) = 1, then τ(xw)b = τ(xwa), so

Z̃r(σ, τ, x, w) = Qr(σ, τ(xwa))−Qr(σ, τ(xw)a)

+Qr(σ, τ(xw)a) + Pr(σ)Qr(τ, xwa)−Qr(στ, xwa)

= Qr(σ, τ(xwa)) + Pr(σ)Qr(τ, xwa)−Qr(στ, xwa) = Z(σ, τ, xwa).
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That is, in all cases, we have Z̃r(σ, τ, x, w) = Z(σ, τ, xwa). Hence,

Zr(σ, τ, x) = 2
∑

w∈W (r,1)

Z̃r(σ, τ, x, w) = 2
∑

w∈W (r,1)

Zr(σ, τ, xwa),

proving the claim of equation (11).

Step 3. We will now show that Zr is indeed identically zero, and furthermore, with σ and
τ as in Step 2, that Pr(σ)Pr(τ, x) = Pr(στ, x).

For σ, τ, x as in Step 2, a straightforward induction on i ≥ 0 gives

Zr(σ, τ, x) = 2i
∑

w∈W (r,i)

Zr(σ, τ, xwa) ∈ 2iZ2 for every i ≥ 0.

Because
⋂
i≥0 2iZ2 = {0}, it follows that Zr(σ, τ, x) = 0.

Expanding Pr(τ, x) according to definition (4), we have

Pr(σ)Pr(τ, x) = (−1)Par(τ,x)Pr(σ) + Pr(σ)Qr(τ, xb)− Pr(σ)Qr(τ, xa)

= (−1)Par(τ,x)
(
(−1)Par(σ,τ(x)) +Qr(σ, τ(x)b)−Qr(σ, τ(x)a)

)
+ Pr(σ)Qr(τ, xb)− Pr(σ)Qr(τ, xa)

= (−1)Par(στ,x) +Qr(σ, τ(xb))−Qr(σ, τ(xa))

+ Pr(σ)Qr(τ, xb)− Pr(σ)Qr(τ, xa),

where in the second equality, we expanded the first appearance of Pr(σ) as Pr(σ, τ(x)), and in
the third equality, we applied both equation (2) and the fact that

(−1)Par(τ,x)
(
Qr(σ, τ(x)b)−Qr(σ, τ(x)a)

)
= Qr(σ, τ(xb))−Qr(σ, τ(xa)).

Therefore, we have

Pr(σ)Pr(τ, x) = (−1)Par(στ,x) +Qr(στ, xb)−Qr(στ, xa) + Zr(σ, τ, xb)− Zr(σ, τ, xa)

= Pr(στ, x) + 0− 0 = Pr(στ, x).

by definition of Pr and the fact that Zr = 0.

Step 4. We now show that Mr,∞ is a subgroup of Aut(T∞). The identity e ∈ Aut(T∞)
clearly satisfies Qr(e, x) = 0 and Par(e, x) = 0 for all nodes x, whence Pr(e, x) = 1, so that
e ∈Mr,∞. Given σ, τ ∈Mr,∞ and x1, x2 ∈ X, we have

Pr(στ, x1) = Pr(σ)Pr(τ, x1) = Pr(σ)Pr(τ, x2) = Pr(στ, x2),

where the first and third equalities are by Step 3, and the second is by the fact that τ ∈Mr,∞.
Thus, στ ∈Mr,∞. Applying Step 3 with σ−1 in the role of τ , we also have

Pr(σ)Pr(σ
−1, x1) = Pr(σσ

−1, x1) = Pr(e, x1) = Pr(e, x2)

= Pr(σσ
−1, x2) = Pr(σ)P (σ−1, x2).

Multiplying both sides on the left by Pr(σ)−1 ∈ Z×2 , it follows that

Pr(σ
−1, x1) = Pr(σ

−1, x2),

proving that σ−1 ∈Mr,∞. Thus, Mr,∞ is a subgroup of Aut(T∞).
Finally, the map Pr is a homomorphism by Step 3, and its kernel is clearly Br,∞. �
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5. The action of Galois on roots of unity

Our next result shows that Pr(σ, x) determines the action of σ ∈ Aut(T∞) on the roots of
unity ζ2n constructed in Lemma 3.2, thus explaining the otherwise mysterious Definition 1.3
of Pr(σ, x). In addition, a Galois element σ must of course act consistently on roots of unity,
thus explaining the defining condition (5) of Mr,∞, that Pr(σ, x) be independent of x. That
is, for σ ∈ Aut(T∞) to belong to Mr,∞, Definition 1.4 imposes only the rudimentary condition
that σ must act consistently on roots of unity ζ2n .

Theorem 5.1. Let x0 ∈ K not in the forward orbit of 0, and choose primitive 2n-th roots of
unity ζ2, ζ4, ζ8, · · · ∈ K such that ζ2

2n = ζ2n−1. Label the tree T∞ of preimages in Orb−f (x0) as

in Lemma 3.2. Then for any node x ∈ Orb−f (x0) and any σ ∈ G∞ = Gal(K∞/K), we have

(12) σ(ζ2n) = ζ
Pr(σ,x)
2n ,

for all n ≥ 1. In particular, the image of G∞ in Aut(T∞), induced by its action on Orb−f (x0)

via this labeling, is contained in Mr,∞. Furthermore, if ζ2n ∈ K for all n, then this Galois
image is contained in Br,∞.

Proof. If equation (12) holds for σ ∈ G∞ for every node x ∈ Orb−f (x0), and for all n ≥ 1, then

σ(ζ2n) = ζ
Pr(σ,x)
2n = ζ

Pr(σ,x0)
2n for all n ≥ 1. It follows that Pr(σ, x) ≡ Pr(σ, x0) mod 2n for all

n ≥ 1 and hence σ ∈Mr,∞. Further, if ζ2n ∈ K for all n, we must have σ(ζ2n) = ζ
Pr(σ,x)
2n = ζ2n

for all n, hence Pr(σ, x) = 1 and σ ∈ Br,∞.
Thus, it suffices to show equation (12) holds for an arbitrary σ ∈ G∞, arbitrary x ∈

Orb−f (x0), and arbitrary n ≥ 1. The desired equation is trivially true for n = 1, as ζ2 = −1

and Pr ≡ 1 (mod 2). Therefore, we may assume for the rest of the proof that n ≥ 2. By
Lemma 3.2, we can write

ζ2n =

∏
w∈W (r,n−1)[xawa]∏
w∈W (r,n−1)[xbwa]

,

and hence

(13) σ(ζ2n) =

∏
w∈W (r,n−1)[σ(xawa)]∏
w∈W (r,n−1)[σ(xbwa)]

.

We first claim for all i ≥ 0 and any word w (in the alphabet {a, b}), we have∏
w′∈W (r,i)

[σ(wa)w′a] = ζ
−Par(σ,w)

2i+1

∏
w′∈W (r,i)

[σ(w)aw′a],(14)

where for i = 0, we interpret this equation as saying [σ(wa)] = ζ
−Par(σ,w)
2 [σ(w)a]. When

Par(σ,w) = 1, we have σ(wa) = σ(w)b, so equation (14) follows from Lemma 3.2 applied to
σ(w). On the other hand, when Par(σ,w) = 0, we have σ(wa) = σ(w)a and hence the set of
words in product on the left of the equation is the same as that on the right hand side, so
equation (14) is vacuously true in this case.

We also observe for any words w,w′,

(15)
∏

w′′∈{a,b}r−1

[σ(ww′′)w′] =
∏

w′′∈{a,b}r−1

[σ(w)w′′w′],

since the set of words in each product is the same.
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Write Si :=
∑

w∈W (r,i) Par(σ, xaw). Note, any w ∈W (r, j) can be written as w1aw2a . . . wj

for w1, . . . , wj ∈ {a, b}r−1. Then alternately applying equation (14) and equation (15), we have∏
w∈W (r,n−1)

[σ(xawa)] =
∏

w1,...,wn−1∈{a,b}

[σ(xaw1aw2a . . . wn−1a)]

= ζ
−Sn−1

2

∏
w1,...,wn−1∈{a,b}r−1

[σ(xaw1a . . . wn−1)a]

= ζ
−Sn−1

2

∏
w1,...,wn−1∈{a,b}r−1

[σ(xaw1a . . . wn−2a)wn−1a]

= ζ
−Sn−1

2 ζ
−Sn−2

22

∏
w1,...,wn−1∈{a,b}r−1

[σ(xaw1a . . . wn−2)awn−1a]

...

= ζ
−Sn−1

2 ζ
−Sn−2

22
. . . ζ−S1

2n−1

∏
w1,...,wn−1∈{a,b}r−1

[σ(xaw1)aw2a . . . wn−1a]

= ζ
−Sn−1

2 ζ
−Sn−2

22
. . . ζ−S1

2n−1

∏
w1,...,wn−1∈{a,b}r−1

[σ(xa)w1aw2a . . . wn−1a]

Using the fact that ζ2n−i = (ζ2n)2i , we can rewrite

ζ
−Sn−1

2 ζ
−Sn−2

22
· · · ζ−S1

2n−1 = ζ
−(2S1+4S2+···+2n−1Sn−1)
2n = ζ

−Qr(σ,xa)
2n ,

where the last equation follows from the identity
∑n−1

i=1 2iSi ≡ Qr(σ, xa) (mod 2n). Thus, we
have

(16)
∏

w∈W (r,n−1)

[σ(xawa)] = ζ
−Qr(σ,xa)
2n

∏
w∈W (r,n−1)

[σ(xa)wa].

Similarly,

(17)
∏

w∈W (r,n−1)

[σ(xbwa)] = ζ
−Qr(σ,xb)
2n

∏
w∈W (r,n−1)

[σ(xb)wa].

Plugging equation (16) and equation (17) into equation (13), we see

σ(ζ2n) = ζ
−Qr(σ,xa)+Qr(σ,xb)
2n

∏
w∈W (r,n−1)[σ(xa)wa]∏
w∈W (r,n−1)[σ(xb)wa]

.

Finally, applying Lemma 3.2 one last time, we see∏
w∈W (r,n−1)[σ(xa)wa]∏
w∈W (r,n−1)[σ(xb)wa]

=

(∏
w∈W (r,n−1)[σ(x)awa]∏
w∈W (r,n−1)[σ(x)bwa]

)(−1)Par(σ,x)

= ζ
(−1)Par(σ,x)

2n .

Thus,

σ(ζ2n) = ζ
(−1)Par(σ,x)−Qr(σ,xa)+Qr(σ,xb)
2n = ζ

Pr(σ,x)
2n . �
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6. The arithmetic and geometric Galois groups

Let k be an arbitrary field not of characteristic 2. In this section, let K = k(t) where
t is transcendental over k, let x0 = t, let K∞ be the resulting arboreal extension of K, and
G∞ = Gal(K∞/K), the corresponding arboreal Galois group. In addition, let k be an algebraic
closure of k, let K ′ := k(t), let K ′∞ be the corresponding arboreal extension of K ′ (with root
point x0 = t), and let G′∞ := Gal(K ′∞/K

′) be the corresponding arboreal Galois group for this
extension. The groups G∞ and G′∞ are called the arithmetic and geometric arboreal Galois
groups for f over k, and they are denoted Garith and Ggeom respectively.

Note that K ′ = k(t) · k̄ and K ′∞ = K∞ · k̄. Hence, if we define k∞ := K∞ ∩ k̄, then the map
Ggeom → Gal(K∞/k∞(t)) given by restricting elements to K∞ is an isomorphism. Composing
this isomorphism with the injection Gal(K∞/k∞(t)) → Garith produces a natural injection
Ggeom → Garith with cokernel isomorphic to Gal(k∞/k). That is, we have an exact sequence

0 −→ Ggeom −→ Garith −→ Gal(k∞/k) −→ 0.

6.1. The geometric Galois group. In this subsection, we show that for each r ≥ 1, our
group Br,∞ coincides with Pink’s group GPink

r,∞ . Recall that in [Pin13], Pink proves that this
group (which he denotes simply as G) is isomorphic to Ggeom, for any field k as above.

In [Pin13, Equation (2.0.1)], Pink describes GPink
r,∞ as the closure of the subgroup of Aut(T∞)

generated by elements α1, . . . ,αr ∈ Aut(T∞) given by the recursive relations

(18) α1 = (αr, 1)τ , and αi = (αi−1, 1) for 2 ≤ i ≤ r.

Here, τ ∈ Aut(T∞) denotes the automorphism of order two swapping the subtrees based at a
and b, given by

τ (aw) = bw and τ (bw) = aw

for all words w ∈ {a, b}N. In addition, for any σa, σb ∈ Aut(T∞), the automorphism (σa, σb) is
the element σ ∈ Aut(T∞) given by

σ(aw) = aσa(w) and σ(bw) = bσb(w).

Let wr be the word of length r given by wr := bar−1, where an denotes n copies of the
symbol a. A straightforward induction shows that for each i = 1, . . . , r, the automorphism αi

of equation (18) is given by

(19) Par(αi, w) =

{
1 if w = ai−1wnr for some n ≥ 0,

0 otherwise,

for any word w, where wnr is the word wr · · ·wr of length nr consisting of n copies of wr. For
example, for r = 3 and i = 2, we have Par(α2, w) = 1 for

w = a, abaa, abaabaa, abaabaabaa, . . .

and Par(α2, w) = 0 otherwise.

Proposition 6.1. For every integer r ≥ 1, Pink’s subgroup GPink
r,∞ is contained in Br,∞.

Proof. Observe that for any node x of the tree, the map σ 7→ Pr(σ, x) is a continuous function
from Aut(T∞) to Z×2 . Indeed, if σ1, σ2 ∈ Aut(T∞) agree on the finite subtree extending nr
levels above x, then Pr(σ1, x) ≡ Pr(σ2, x) (mod 2n+1). It follows that Mr,∞ and Br,∞ are
closed subgroups of Aut(T∞). Thus, it suffices to prove that each of the generators α1, . . . ,αr

of Pink’s group belongs to Br,∞.
Fix a node x of the tree, and an integer i ∈ {1, . . . , r}. We must show that Pr(αi, x) = 1.

We consider two cases.
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First, suppose that Par(αi, x) = 1. By equation (19), we must have x = ai−1wmr for some
integer m ≥ 0. Thus, the nodes y above x for which Par(αi, y) = 1 are those of the form
y = xwnr for some n ≥ 0. On the other hand, according to Definition 1.3, the value of Pr(αi, x)

is (−1)Par(αi,x) = −1 plus a weighted sum of Par(αi, y
′) for nodes y′ of the form y′ = xaw

or y′ = xbw for w ∈ W (r, j) with j ≥ 1. However, none of the strings wnr begin with a, and
all the ones with n ≥ 2 have length greater than r, with b rather than a as their (r + 1)-st
symbol. Thus, the only string of the form wnr in the sets aW (r, j) or bW (r, j) is wr = bar−1

itself. Therefore,

Pr(αi, x) = (−1)Par(αi,x) +Qr(αi, xb)−Qr(αi, xa) = −1 + 2− 0 = 1.

Second, we are left with the case that Par(αi, x) = 0. By equation (19), x is not of the
form ai−1wmr , and therefore none of the nodes at any level nr above x are of this form, either.
Therefore, Par(αi, y) = 0 for all nodes y appearing in the formula for Pr(αi, x) in Definition 1.3,
and hence

Pr(αi, x) = (−1)Par(αi,x) +Qr(αi, xb)−Qr(αi, xa) = 1 + 0− 0 = 1. �

In fact, we wish to extend Proposition 6.1 to show that GPink
r,∞ = Br,∞. To this end, for each

integer n ≥ 1, define

Br,n := Res∞,n(Br,∞) and GPink
r,n := Res∞,n(GPink

r,∞ ),

as we did at the end of Subsection 1.5. We must show these subgroups of Aut(Tn) coincide.

Theorem 6.2. For every integer r ≥ 1, we have GPink
r,∞ = Br,∞.

Proof. For each integer n ≥ 1, define

B′r,n :=
{
σ ∈ Aut(Tn) : ∀m < n and ∀x ∈ {a, b}m, Pr(σ, x) ≡ 1 (mod 2e(m,n))

}
where e(m,n) := bn−1−m

r c + 1. (Here, working on the finite tree Tn, we understand the sum
defining Pr(σ, x) in Definition 1.4 to be truncated to include only those terms that make sense,
i.e., only those Par(σ, y) terms for y at level n−1 or below.) Observe, in light of Proposition 6.1
and Definition 1.4, that we have

GPink
r,n ⊆ Br,n ⊆ B′r,n.

Thus, it suffices to show that |B′r,n| ≤ |GPink
r,n | for all n ≥ 1.

We proceed by induction on n. For n ≤ r, we have e(m,n) = 1 for all m < n, and hence
B′r,n = Aut(Tn). Therefore,

log2 |B′r,n| = log2 |Aut(Tn)| = 2n − 1 = log2 |GPink
r,n |,

where the final equality is by [Pin13, Proposition 2.3.1].
Now let n ≥ r + 1, and suppose |B′r,n−1| ≤ |GPink

r,n−1|. Let Sr,n denote the kernel of the map

Resn,n−1 : B′r,n → B′r,n−1. Then

|B′r,n| = |Resn,n−1(B′r,n)| · |Sr,n| ≤ |B′r,n−1| · |Sr,n|.

Next, we compute the size of Sr,n. Define Yn to be the kernel of the map Resn,n−1 :
Aut(Tn) → Aut(Tn−1); that is, Yn is the set of σ ∈ Aut(Tn) for which Par(σ, y) = 0 for every
node y below level n− 1. Thus, Sr,n is the set of σ ∈ Yn for which

(20) Pr(σ, x) ≡ 1 (mod 2e(n,m))

for all 0 ≤ m < n and all x ∈ {a, b}m.
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Observe, for any σ ∈ Yn, any integer 0 ≤ m < n, and any node x at level m, we have

Pr(σ, x) ≡ 1 +

e(n,m)−1∑
i=1

2i
∑

w∈W (r,i)

[
Par(σ, xbw)− Par(σ, xaw)

]
(mod 2e(n,m)).

Note that unless m = n − ri − 1 for some i, then condition (20) is automatically satisfied by
the assumption that σ acts trivially on all of Tn−1.

Furthermore, even when m = n − ri − 1 for some i, then again for σ ∈ Yn, condition (20)
reduces to

Pr(σ, x) ≡ 1 + 2i
∑

w∈W (r,i)

[
Par(σ, xbw)− Par(σ, xaw)

]
≡ 1 (mod 2i+1).

Thus, for any σ ∈ Yn, we have σ ∈ Sr,n if and only if

(21)
∑

w∈W (r,i)

Par(σ, xbw)−
∑

w∈W (r,i)

Par(σ, xaw) is even

for each i = 1, 2, . . . , `, and for each node x at level n− 1− ri, where ` := bn−1
r c.

To determine whether a given σ ∈ Yn belongs to Sr,n, start with i = ` and count down
to i = 1. For each node x at level n − 1 − ri, the values of Par(σ, xbw) and Par(σ, xaw) for
w ∈W (r, i) can be arbitrary except for Par(σ, xbari−1), which must be chosen so that the sum
in condition (21) is even. Since there are 2n−1−ri nodes at this level, we have 2n−1−ri parity
restrictions arising from level i.

Furthermore, note that parity of σ at xbari−1 did not arise in the sum in condition (21) for
any previous values of i or x, because of the appearance of the symbol b in that particular
location. Thus, the parity restrictions noted above are all independent of one another. With
σ ∈ Yn determined by the parities Par(σ, y) for each of the 2n−1 nodes y at level n − 1, and
with 2n−1−ri such restrictions for each i = 1, 2, . . . , `, it follows that

log2 |Sr,n| = 2n−1 −
∑̀
i=1

2n−1−ir.

On the other hand, by [Pin13, Proposition 2.3.1], we have

log2 |GPink
r,n | = 2n − 1−

n−1∑
m=0

2n−1−m ·
⌊m
r

⌋
.

Therefore,

log2

∣∣GPink
r,n

∣∣− log2

∣∣GPink
r,n−1

∣∣
=

(
2n − 1−

n−1∑
m=0

2n−1−m ·
⌊m
r

⌋)
−

(
2n−1 − 1−

n−2∑
m=0

2n−2−m ·
⌊m
r

⌋)

= 2n−1 −
n−1∑
m=0

2n−1−m ·
⌊m
r

⌋
+

n−1∑
m=1

2n−2−(m−1) ·
⌊
m− 1

r

⌋

= 2n−1 − 2n−1−0

⌊
0

r

⌋
+

n−1∑
m=1

2n−1−m
(⌊

m− 1

r

⌋
−
⌊m
r

⌋)

= 2n−1 −
bn−1

r c∑
i=1

2n−1−ir = log2 |Sr,n|.
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It follows that log2 |GPink
r,n−1|+ log2 |Sr,n| = log2 |GPink

r,n |, and hence

log2

∣∣B′r,n∣∣ ≤ log2 |B′r,n−1|+ log2 |Sr,n| ≤ log2 |GPink
r,n−1|+ log2 |Sr,n| = log2 |GPink

r,n |. �

6.2. The arithmetic Galois group. For our field k not of characteristic 2, let µ2∞ denote
the set of all 2-power roots of unity in k.

Lemma 6.3. With notation as at the start of Section 6, for any polynomial f(z) = z2+c ∈ k[z]
with 0 periodic, we have k∞ = k(µ2∞).

Proof. By Theorem 5.1, there is an injective homomorphism ρ : Garith ↪→ Mr,∞. Moreover,
by Theorem 6.2, restricting this homomorphism to Gal(K∞/k∞(t)) ∼= Ggeom yields an isomor-
phism Ggeom ∼= Br,∞.

By Lemma 3.1, k∞ contains k(µ2∞). Hence we may consider the homomorphism

χ : Gal(k∞/k)→ Z×2
given by the 2-adic cyclotomic character. Moreover, by Theorem 4.1, we have a homomorphism
Pr : Mr,∞ → Z×2 which makes the following diagram commute:

(22)

0 Ggeom Garith Gal(k∞/k) 0

0 Br,∞ Mr,∞ Z×2

o ρ χ

Pr

Since Br,∞ is the kernel of Pr, the induced homomorphism P̄r : Mr,∞/Br,∞ → Z×2 is injective.

We also have an induced homomorphism ρ̄ : Garith/Ggeom →Mr,∞/Br,∞ given by

ρ̄(σGgeom) = ρ(σ)Br,∞.

We claim that ρ̄ is also injective. To see this, suppose ρ̄(σ1G
geom) = ρ̄(σ2G

geom). Then
ρ(σ1)Br,∞ = ρ(σ2)Br,∞, and hence ρ(σ1σ

−1
2 ) ∈ Br,∞. Because ρ is injective and ρ(Ggeom) =

Br,∞, it follows that ρ−1(Br,∞) = Ggeom, and hence σ1σ
−1
2 ∈ Ggeom. Now the following diagram

commutes:

Garith/Ggeom Gal(k∞/k)

Mr,∞/Br,∞ Z×2

∼

ρ̄ χ

P̄r

and since P̄r ◦ ρ̄ is injective, the homomorphism χ must be injective as well.
Finally, since χ is injective and kerχ = Gal(k∞/k(µ2∞)), the Galois group Gal(k∞/k(µ2∞))

must be trivial, and therefore k∞ = k(µ2∞). �

Note that in general, the maps ρ and χ in the above proof need not be surjective. We now
show for a field k, we have Garith ∼= Mr,∞ if and only if [k(ζ8) : k] = 4, and in particular, that
the number field k = Q(c) has this property.

Theorem 6.4. Suppose f(z) = z2 + c ∈ k[z] and 0 is a periodic point of f . Let K = k(t), let
x0 = t, let K∞ be the resulting arboreal extension of K, and let Garith := Gal(K∞/K). Then
the following are equivalent:

(1) Garith ∼= Mr,∞
(2) [k(ζ8) : k] = 4
(3) char k = 0 and k ∩Q(µ2∞) = Q.

Moreover, when k = Q(c), we have k ∩Q(µ2∞) = Q and hence Garith ∼= Mr,∞.
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Proof. We first prove the final statement: that for k = Q(c), we have k ∩Q(µ2∞) = Q. Since
f(z) = z2 + c satisfies f r(0) = 0, the parameter c is a root of the polynomial(

· · ·
((

(x2 + x)2 + x
)2

+ x
)2

+ · · ·+ x
)2

+ x ∈ Z[x],

which, reduced modulo 2, is the separable polynomial

x2r−1
+ x2r−2

+ · · ·+ x2 + x ∈ F2[x].

Therefore, the prime 2 is unramified in k = Q(c). It follows that k ∩Q(µ2∞) = Q, as desired.
Before proceeding to the equivalence of statements (1)–(3), we claim that

0 Br,∞ Mr,∞ Z×2 0
Pr

is a short exact sequence. To see this, still using k = Q(c), we have

Gal(k∞/k) ∼= Gal(Q(µ2∞)/Q) ∼= Z×2 ,
and the map χ : Gal(k∞/k) → Z×2 is an isomorphism. Thus, the map Pr : Mr,∞ → Z×2 is
surjective by the fact that the diagram (22) commutes, and our claim above follows.

Now let k be any field satisfying the hypotheses of the theorem. By the above claim, and
again by the fact that the diagram (22) commutes, we have that

0 Ggeom Garith Gal(k∞/k) 0

0 Br,∞ Mr,∞ Z×2 0

o ρ χ

Pr

commutes, with both rows exact.
The implication (3)⇒(2) is straightforward. To prove (2)⇒(3), observe that the condition

[k(ζ8) : k] = 4 forces char k = 0, because for any prime p, the root of unity ζ8 has degree at
most 2 over Fp. Furthermore, since Q(µ2∞) is a pro-2 extension of Q, the field k ∩ Q(µ2∞)
is strictly larger than Q if and only if k contains one of the three quadratic extensions of Q
contained in Q(µ2∞). (These three fields are Q(

√
−1), Q(

√
2), and Q(

√
−2), all of which are

contained in Q(ζ8).) However, because [k(ζ8) : k] = 4, the field k contains none of
√
−1,
√

2,√
−2. Hence, we have k ∩Q(µ2∞) = Q, as desired.
To prove (1)⇒(2), observe that the map ρ : Garith → Mr,∞ in the diagram above is an

isomorphism if and only if the cyclotomic character χ : Gal(k∞/k) → Z×2 is surjective, in
which case statement (2) follows immediately.

Finally, observe that statement (3) implies Gal(k∞/k) ∼= Gal(Q(µ2∞)/Q) ∼= Z×2 , and hence
χ is surjective. Therefore, ρ is also surjective in the diagram above, from which statement (1)
follows. �

Theorem 6.4 also allows us to specify when the various roots of unity ζ2n first appear in the
arboreal tower, as follows.

Corollary 6.5. If [k(ζ8) : k] = 4, then Kn ∩ k = k(ζ2e) for all n ≥ 1, where e = bn−1
r c+ 1. In

particular, ζ2n ∈ Kr(n−1)+1, and if n ≥ 2, then ζ2n /∈ Kr(n−1).

Proof. Let kn := k ∩Kn = k∞ ∩Kn. By Lemma 3.1, we have k(ζ2e) ⊆ kn, and our hypotheses
imply that [k(ζ2e) : k] = |(Z/2eZ)×|. Thus, it suffices to show [kn : k] = |(Z/2eZ)×|.

By Theorem 6.4, we have Garith ∼= Mr,∞, and hence

Garith
n := Gal(Kn/k(t)) ∼= Mr,n := Res∞,n(Mr,∞).

Define Pr,e : Mr,n −→ (Z/2eZ)× by setting Pr,e(σ) := Pr(τ) (mod 2e) for any τ ∈ Mr,∞ such
that Res∞,n(τ) = σ. Observe that if τ1, τ2 ∈ Mr,∞ satisfy Res∞,n(τ1) = Res∞,n(τ2), then it
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follows from the construction of Pr in Definition 1.3 that Pr(τ1) ≡ Pr(τ2) (mod 2e). Hence,
Pr,e is well-defined. It is clearly a homomorphism, and according to the proof of Theorem 6.2,
the kernel of Pr,e is Br,n. Therefore, the following diagram commutes.

0 Br,∞ Mr,∞ Z×2 0

0 Br,n Mr,n (Z/2eZ)× 0

Res∞,n

Pr

Res∞,n mod 2e

Pr,e

In particular, the bottom row is short exact, and

Gal(kn/k) ∼= Garith
n /Ggeom

n
∼= Mr,n/Br,n ∼= (Z/2eZ)×,

as desired. �

7. Obtaining the arboreal Galois groups

We need two more lemmas in order to prove our main result.

Lemma 7.1. Let k be any field with [k(ζ8) : k] = 4. Suppose f(z) = z2 + c ∈ k[z] with 0
periodic. Let K = k(t), let x0 = t, and let K∞ be the resulting arboreal extension of K. Let

A ∈ k such that
√
A ∈ K∞. Then

√
A ∈ k(ζ8).

Proof. Let k∞ := k ∩K∞. By Lemma 6.3, we have k∞ = k(µ2∞), and by hypothesis we have
[k(ζ8) : k] = 4. Thus,

Gal(k∞/k) ∼= Z×2 .
Since Z×2 has only three index 2 subgroups, k∞ contains only three quadratic extensions of k

(formed by adjoining one of
√
−1,
√

2, or
√
−2), all of which are contained in k(ζ8); therefore,√

A ∈ k(ζ8). �

The following argument has been presented in various degrees of generality in [Odo88,
Lemma 4.3], [Sto92, Lemmas 1.5 and 1.6], [Jon13, Section 2.2], [BD24, Proposition 5.3, Theo-
rem 6.5]. We include a proof here for completeness.

Lemma 7.2. Let f(z) = z2 + c ∈ K[z] and let Gn = Gal(K(f−n(x0))/K). Define Di ∈ K by

Di :=

{
x0 − c if i = 1,

f i(0)− x0 if i ≥ 2.

Then for n ≥ 1, the following are equivalent:

(1) Gn ∼= Aut(Tn).
(2) For all 1 ≤ i ≤ n, Di /∈ (K(

√
D1, . . . ,

√
Di−1))2. (For i = 1, this means D1 /∈ K2.)

Proof. First suppose statement (2) fails for some i ≤ n. Let ∆i be the polynomial discriminant
of f i(z)− x0. By [AHM05, Proposition 3.2], we have

∆i = (−1)2i−1
22i
(
f i(0)− x0

)
∆
(
f i−1(z)− x0

)2
.

Thus, we have ∆i = c2
iDi for some ci ∈ K, so ∆i is a square inK

(√
D1, . . . ,

√
Di−1

)
. Therefore,

every σ ∈ Gi acts as an even permutation in Gal(Ki/Ki−1); hence, Gi 6∼= Aut(Ti), and so,
Gn 6∼= Aut(Tn) for all n ≥ i.

Conversely, assume statement (2). For arbitrary 1 ≤ i ≤ n, suppose Gi−1
∼= Aut(Ti−1),

which is trivially true when i = 1. We claim that Di is not a square in Ki−1. Let

Li := K(
√
D1, . . . ,

√
Di),
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which is an abelian extension of K. It follows from statement (2) that Gal(Li/K) ∼= {±1}i.
On the other hand, we have

K(
√
D1, . . . ,

√
Di−1) ⊆ Ki−1.

In particular, if
√
Di ∈ Ki−1, then we would have Li ⊆ Ki−1. Because Li/K is abelian, it

would follow that Gal(Li/K) ⊆ Gab
i−1. That is, we would have

{±1}i ∼= Gal(Li/K) ⊆ Gab
i−1
∼= Aut(Ti−1)ab ∼= {±1}i−1,

since the abelianization of a wreath product G1 o G2 is Gab
1 × Gab

2 . This contradiction proves
our claim, that Di is not a square in Ki−1.

Armed with this claim, we now show that [Ki : Ki−1] = 22i−1
. (Together with our assump-

tion that Gi−1
∼= Aut(Ti−1), it will then follow that Gi ∼= Aut(Ti), from which statement (1)

follows inductively.) Let β1, . . . β2i−1 denote the roots of f i−1(z) − x0, and note that Ki is
formed by adjoining √

β1 − c, . . . ,
√
β2i−1 − c

to Ki−1. By Kummer theory, the degree [Ki : Ki−1] is the order of the group generated by the

classes of the elements βj − c in K×i−1/(K
×
i−1)2. This order is 22i−1

/|V |, where

V =
{

(ε1, . . . , ε2i−1) ∈ F2i−1

2 :
∏
j

(βj − c)εj ∈ (K×i−1)2
}
.

Hence, to prove [Ki : Ki−1] = 22i−1
, it suffices to show that V = {0}.

Note that V is an F2-vector space, and that Gi−1 acts on V through its action on the βj .
That is, for any σ ∈ Gi−1, we may write σ as a permutation in S2i−1 given by its action on the
indices of the βj . For any v = (ε1, . . . , ε2i−1) ∈ V , we have

∏
j(βj − c)εj ∈ (K×i−1)2, and hence

σ

(∏
j

(βj − c)εj
)

=
∏
j

(
βσ(j) − c

)εj ∈ (K×i−1)2.

The action is given by σv = (εσ−1(1), . . . , εσ−1(22i−1 )
) ∈ V , making V an F2[Gi−1]-module.

By the orbit-stabilizer theorem, every Gi−1-orbit in F2i−1

2 has cardinality a power of 2, since
this cardinality must divide |Gi−1|. Because Gi−1 acts transitively on the βj , there are only
two singleton orbits, and hence only two orbits of any odd cardinality: (0, . . . , 0) and (1, . . . , 1).

Since V is an F2-vector space, it contains 0 = (0, . . . , 0). If V 6= {0}, then |V | is even, and
hence V must contain a second Gi−1-orbit of odd order, meaning that (1, . . . , 1) ∈ V . In that
case, therefore, we have

∏
j(βj − c) ∈ (K×i−1)2. However,∏

j

(βj − c) = (−1)2i−1
∏
j

(c− βj) = (−1)2i−1
(f i−1(c)− x0) = (−1)2i−1

(f i(0)− x0) = Di,

which is a contradiction. Hence V = {0}, as desired. �

We are finally ready to prove Theorem 1.5.

Proof of Theorem 1.5. The implications (5)⇔(4)⇒(3)⇔(2) are trivial. Thus, it suffices to
show (1)⇒(5) and (3)⇒(1). Define

L := K(
√
D1, . . . ,

√
Dr).

First assume statement (1), that [L(ζ8) : K] = 2r+2. Then we have [K(ζ8) : K] = 4 and
[L(ζ8) : K(ζ8)] = 2r. Consider the arboreal extension K(t)t,∞ of the function field K(t) for the
root point t in place of x0, and define K ′ to be the compositum of the degree 2 extensions of
K contained in K(t)t,∞. By Lemma 3.1, we have ζ8 ∈ K(t)t,∞, and hence ζ8 ∈ K ′. Therefore,
by Lemma 7.1, we in fact have K ′ = K(ζ8).
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Since we now have [L(ζ8) : K ′] = 2r, Lemma 7.2 implies that

Gal(Kx0,r ·K ′/K ′) ∼= Aut(Tr) ∼= Mr,r.

Therefore,

(23) |Gal(Kx0,r ·K ′/K)| = |Gal(Kx0,r ·K ′/K ′)| · [K ′ : K] = |Mr,r| · [K ′ : K].

Noting that the forward orbit of 0 has cardinality r, we now apply [BGJT25, Theorem 4.6]
(whose hypotheses assume K is a number field, but only to ensure that [K ′ : K] is finite, a
fact which is evident in our case). This result says, given the length r of the forward orbit of
0, along with condition (23), that Gx0,∞

∼= Mr,∞, i.e., that statement (5) holds.
Finally, assume statement (3), which implies that Gx0,r

∼= Mr,r
∼= Aut(Tr), and hence, by

Lemma 7.2, that [L : K] ≥ 2r.
We claim that statement (3) also implies [Kx0,r(ζ8) : Kx0,r] = 4. To see this, define H ⊆

Mr,2r+1 to be the subgroup consisting of all σ ∈Mr,2r+1 fixing level r of the tree, and let H̃ ⊆
Gx0,2r+1 be the image of H under the assumed isomorphism Mr,2r+1

∼= Gx0,2r+1. Combining
Theorem 6.4 for k = Q(c) with Corollary 6.5, the orbit of ζ8 under H ⊆ Mr,2r+1 must have
cardinality 4. (Recall that this action of Mr,∞ on ζ8 is given by Theorem 5.1.) Since ζ8 ∈
Kx0,2r+1 by Lemma 3.1, the orbit of ζ8 under H̃ ⊆ Gx0,2r+1 must also have cardinality 4. But

H̃ = Gal(Kx0,2r+1/Kx0,r), and hence [Kx0,r(ζ8) : Kx0,r] = 4, proving our claim.
Because L ⊆ Kx0,r, it follows that [L(ζ8) : L] ≥ 4. Thus, recalling our observation above

that [L : K] ≥ 2r, we have

2r+2 ≥ [L(ζ8) : K] = [L(ζ8) : L] · [L : K] ≥ 4 · 2r = 2r+2,

proving statement (1). �
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