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Abstract. We prove the Zariski dense orbit conjecture in positive characteristic for endo-
morphisms of GNa defined over Fp.

1. Introduction

1.1. Notation. We let N0 := N ∪ {0} denote the set of nonnegative integers.

For any morphism Φ on a variety X and for any integer n ≥ 0, we let Φn be the n-th
iterate of Φ (where Φ0 is the identity map id := idX , by definition). For a point x ∈ X, we
denote by OΦ(x) the orbit of x under Φ, i.e., the set of all Φn(x) for n ≥ 0. When Φ is only a
rational self-map of X, the orbit OΦ(x) of the point x ∈ X is well-defined if each Φn(x) lies
outside the indeterminacy locus of Φ. For any self-map Φ on a variety X, we say that x ∈ X
is preperiodic if its orbit OΦ(x) is finite.

We denote by Mm,n(R) the set of m× n-matrices with entries in the ring R; we denote by
Im the identity m×m-matrix.

1.2. The classical Zariski dense orbit conjecture. The following conjecture was moti-
vated by a similar question raised by Zhang [Zha06], and it was formulated independently by
Medvedev and Scanlon [MS14] and by Amerik and Campana [AC08].

Conjecture 1.1. Let X be a quasiprojective variety defined over an algebraically closed field
K of characteristic 0 and let Φ : X 99K X be a dominant rational self-map. Then either there
exists α ∈ X(K) whose orbit under Φ is well-defined and Zariski dense in X, or there exists
a non-constant rational function f : X 99K P1 such that f ◦ Φ = f .

There are several partial results known towards Conjecture 1.1 (for example, see [AC08,
BGRS17, BGR17, GH18, GSa, GS19, GS17, GX18, MS14]).

1.3. The picture in positive characteristic. If K has characteristic p > 0, then Con-
jecture 1.1 does not hold due to the presence of the Frobenius endomorphism (see [BGR17,
Example 6.2] and also, [GS21, Remark 1.2]). Based on the discussion from [GS21], the authors
proposed the following conjecture as a variant of Conjecture 1.1 in positive characteristic.
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Conjecture 1.2. Let K be an algebraically closed field of positive transcendence degree over
Fp, let X be a quasiprojective variety defined over K, and let Φ : X 99K X be a dominant
rational self-map defined over K as well. Then at least one of the following three statements
must hold:

(A) There exists α ∈ X(K) whose orbit OΦ(α) is Zariski dense in X.
(B) There exists a non-constant rational function f : X 99K P1 such that f ◦ Φ = f .
(C) There exist positive integers m and r, there exists a variety Y defined over a finite

subfield Fq of K such that dim(Y ) ≥ trdegFpK + 1 and there exists a dominant

rational map τ : X 99K Y such that

τ ◦ Φm = F r ◦ τ,

where F is the Frobenius endomorphism of Y corresponding to the field Fq.

Conjecture 1.2 has been proven in the case of algebraic tori in [GS21] and more generally
in the case of all split semiabelian varieties defined over Fp in [GSb]. For an illustration of the
trichotomy in the conclusion of Conjecture 1.2, we refer the reader to [GS21, Example 1.6].
Also, we note that one definitely requires the hypothesis that trdegFpK ≥ 1 in Conjecture 1.2

since for any self-map Φ defined over Fp, each point of X(Fp) is preperiodic and therefore,
condition (A) cannot hold; on the other hand, there are plenty of examples of maps Φ defined
over Fp for which neither condition (B) nor condition (C) would hold.

1.4. Our results. We prove the following more precise version of Conjecture 1.2 in the case
of group endomorphisms of GN

a defined over Fp.

Theorem 1.3. Let N ∈ N and let L be an algebraically closed field of characteristic p such
that trdegFpL ≥ 1. Let Φ : GN

a −→ GN
a be a dominant group endomorphism defined over Fp.

Then at least one of the following statements must hold.

(A) There exists α ∈ GN
a (L) whose orbit under Φ is Zariski dense in GN

a .
(B) There exists a non-constant rational function f : GN

a 99K P1 such that f ◦ Φ = f .
(C) There exist positive integers m and r, a positive integer N0 greater than or equal to

trdegFpL+ 1 and a dominant group homomorphism τ : GN
a −→ GN0

a such that

(1.3.1) τ ◦ Φm = F r ◦ τ,

where F is the usual Frobenius endomorphism of GN0
a induced by the field automor-

phism x 7→ xp.

1.5. Discussion of our proof. The strategy of our proof for Theorem 1.3 is as follows.
Suppose we have a group endomorphism Φ : GN

a −→ GN
a defined over Fq where q = p` for

some ` ∈ N. As shown in [Pog17, Proposition 3.9], the endomorphism Φ is given by an N -
by-N matrix A (acting linearly on GN

a ) whose entries are one-variable additive polynomials
in the variables x1, . . . , xN (corresponding to the N coordinate axes of GN

a ), i.e.,

(1.3.2) A = (fi,j(xj))1≤i,j≤N ,
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where a polynomial f(x) is additive if it is of the form

(1.3.3)
r∑

k=0

cix
pi ;

furthermore, since Φ is defined over Fq, then each coefficient of each additive polynomial
fi(xj) belongs to Fq. We denote by F the Frobenius endomorphism (of L) corresponding to
the finite field Fp (i.e., x 7→ xp). So, the action of Φ is given by a matrix of polynomials (with
coefficients in Fq) in the Frobenius operator, i.e., the entries of our matrix A live in Fq[F ].
We will study technical properties of Fq[F ] and of the ring of matrices with entries in Fq[F ]
in Section 3.

Now, for any given point α ∈ GN
a (L), the orbit OΦ(α) is contained in a finitely generated

Fp[F ]-submodule Γ of GN
a . If we assume that OΦ(α) is not Zariski dense, then it must be

contained in some proper subvariety V of GN
a . Then, we can describe the structure of V (L)∩Γ

using [Ghi08, Theorem 2.6]; for more details, see Section 3.3. Then we will use the fact that Φ
is integral over the commutative ring Fp[F `]; for more details, see Section 3. We also employ
several reductions discussed in Section 4 which allow us to split the action of Φ into (Φ1,Φ2)
where Φ1 is given by the diagonal action of powers of the Frobenius endomorphism, while the
minimal polynomial of Φ2 over Fp[F `] has roots that are multiplicatively independent with
respect to F . This helps us reduce Theorem 1.3 into two separate extreme cases which are
much more convenient to deal with; the general case in Theorem 1.3 then follows.

1.6. Discussion of possible extensions. We note that our approach does not generalize to
the case the endomorphism Φ of GN

a is defined over an arbitrary field L of characteristic p. The
reason is that in the case of general group endomorphisms of GN

a , the orbit will not necessarily
be contained in a finitely generated Fp[F ]-submodule of GN

a , and thus, we cannot use the F -
structure theorem proven in [Ghi08, Theorem 2.6] anymore. In the special case when for each
1 ≤ i, j ≤ N , the linear term c0 of fi(xj) (i.e., c0 = f ′i(xj) from equations (1.3.2) and (1.3.3)) is
transcendental over Fp, then one can reformulate Conjecture 1.2 for (GN

a ,Φ) in the context of
Drinfeld modules of generic characteristic. Even though there is a very rich arithmetic theory
for Drinfeld modules of generic characteristic built in parallel to the classical Diophantine
geometry questions in characteristic 0 (see, for example, [Bre05, CG20, GT07, GT08, Sca02]),
there are still several technical difficulties to overcome in this case alone. Furthermore, when
we deal with the most general case of an endomorphism of GN

a (defined over a field L of
characteristic p), in which case some of the derivatives of the polynomials fi(xj) are in a finite
field, while others are transcendental over Fp, then there are significant more complications
since then we would be dealing with a mixed arithmetic structure coming from the action of
Drinfeld modules of both generic characteristic and also of special characteristic (see [Ghi05]
for a sample of difficulties arising in the context of Drinfeld modules of special characteristic).

1.7. Plan for our paper. In Section 4 we use the technical results proven in Sections 2 and 3
to show that instead of proving Theorem 1.3 for the dynamical system (GN

a ,Φ), we can instead
prove it for the dynamical system (GN1

a ×GN2
a , (Φ1,Φ2)) where N = N1 +N2, Φ1 is a group

endomorphism of GN1
a given by the coordinate-wise action of powers of the Frobenius endo-

morphism, and the minimal polynomial of Φ2 over Fp[F `] has roots that are multiplicatively
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independent with respect to F . In other words, we reduce Theorem 1.3 to Proposition 5.2.
We conclude our paper by proving Proposition 5.2 in Section 5.

2. Technical Background

In this Section we gather some useful results for our proofs which come from two dif-
ferent sources: the theory of skew fields (see Section 2.1 and more generally [Coh95]) and
the F -structure theorem proven by Moosa-Scanlon [MS04] in order to describe intersections

of subvarieties of GN
m with finitely generated subgroups of GN

m

(
Fp(t)

)
(see Lemma 2.4 in

Section 2.2).

2.1. Some results about splitting matrices over skew fields. In this Section we state
useful results about splitting matrices over skew fields which will be used later in our proofs;
for more details about skew fields, we refer the reader to [Coh95].

Fact 2.1. Let K be a skew field with centre k. Suppose that A is a matrix in Mn,n(K) which
is algebraic over k. Let f(x) = f0(x)f1(x) be the minimal polynomial of A over k where
f0, f1 ∈ k[x] are coprime. Then, A has a conjugate of the form

A0 ⊕A1

such that the minimal polynomials of A0 and A1 over k are equal to f0 and f1, respectively.

Proof. Using the arguments after [Coh95, Corollary 8.3.4, p. 381–382], A must have a conju-
gate of the form

B1 ⊕ · · · ⊕Br,
where each Bi corresponds to an elementary divisor, say qi. Since f0 and f1 are coprime, each
qi must divide exactly one of f0 and f1 and be coprime with respect to the other one. So,
assume without loss of generality that for some i ≥ 0 we have

qj | f0 and (qj , f1) = 1,

for all j ≤ i and
qj | f1 and (qj , f0) = 1,

for j > i. Letting
A0 = B1 ⊕ · · · ⊕Bi, and A1 := Bi+1 ⊕ · · · ⊕Br,

gives us the desired conclusion. �

Fact 2.2. Let K be a skew field with centre k and A ∈Mn,n(K) be a matrix with a minimal
polynomial equal to (x−α)r for some α ∈ k and r ∈ N. Then, there exist an invertible matrix
P ∈Mn,n(K) such that

P−1AP = Jα,r1
⊕
· · ·
⊕

Jα,rm ,

where Jα,s is the s-by-s Jordan canonical matrix having unique eigenvalue α and its only
nonzero entries away from the diagonal being the entries in positions (i, i+1) (for i = 1, . . . , s−
1), which are all equal to 1.

Proof. This is a consequence of the the discussion after [Coh95, Corollary 8.3.4, p. 381–384];
also, see [Coh95, Theorem 8.3.6]. �
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2.2. A special type of Diophantine equation. In this Section we prove Lemma 2.4 that
gives an asymptotic upper bound on the number of solutions of a special type of equation
given by equation (2.4.1). This bound will be instrumental in our proof Theorem 1.3. We
start with an easy result which will be used in our proof for Lemma 2.4. The result is actually
a consequence of Vandermonde determinants and still holds if we know that the equation
(2.3.1) holds for r consecutive n’s.

Lemma 2.3. Let K be a field. Suppose that distinct non-zero elements λ1, . . . , λr ∈ K are
given. Moreover, suppose that for some N > 0 and c1, . . . , cr ∈ K we have

(2.3.1) c1λ
n
1 + · · ·+ crλ

n
r = 0,

for every n ≥ N . Then, c1 = · · · = cr = 0.

Before proving the main result of this Section, we recall that for a subset S ⊆ N, the (upper
asymptotic) density (also called natural density) of S is defined as

µ(S) := lim sup
n→∞

#{m ∈ S : m ≤ n}
n

.

Lemma 2.4. Let K = Fp(t), let r ∈ N and let c0, c1, . . . , cr ∈ K. Suppose that λ ∈ K \ {0}
is multiplicatively independent with respect to t. Let S be the set of positive integers m for
which there exist positive integers n1, . . . , nr such that

(2.4.1) λm = c0 +
r∑
i=1

cit
ni .

Then the natural density of S is equal to zero.

Proof. Solving equation (2.4.1) is equivalent with analyzing the intersection of the hyperplane
V ⊂ G1+r

m given by the equation:

y = c0 +
r∑
i=1

cixi

with the subgroup Γ of G1+r
m spanned by (λ, 1, . . . , 1), (1, t, 1, . . . , 1), . . . , (1, . . . , 1, t). Then

by Moosa-Scanlon’s F -structure theorem (see [MS04, Theorem B]), we know the intersection
is a union of finitely many sets R1, . . . , Ru; furthermore, each set R from the list R1, . . . , Ru
is of the form

R := γ0 · S(γ1, . . . , γs; δ1, . . . , δs) ·H,
where H is a subgroup of Γ, while γi ∈ G1+r

m (K) for each i = 0, . . . , s and δj ∈ N for each
j = 1, . . . , s, and the set S(γ1, . . . , γs; δ1, . . . , δs) is defined as follows:

S(γ1, . . . , γs; δ1, . . . , δs) :=


s∏
j=1

γp
kiδi

i : ki ∈ N for i = 1, . . . , s

 .

So, the set R consists of points of the form

(2.4.2) γ0 ·
s∏
j=1

γp
kiδi

i · ε,
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where ε is in the subgroup H; moreover, there exists a positive integer ` such that γ`i ∈ Γ
for each i = 0, . . . ,m. For more details regarding the F -sets structure for the intersection of
a subvariety of a semiabelian variety with a finitely generated subgroup, we refer the reader
both to [MS04] and also to [Ghi08], for further refinements of Moosa-Scanlon’s original result.

Now, in order to show that the set of all positive integers m for which equation (2.4.1)
is solvable has natural density equal to 0 (as a subset of N), it suffices to prove that the
projection of H on the first coordinate of G1+r

m is trivial; this way, the set of those m’s that
satisfy equation (2.4.1) would be a sum of powers of p (due to equation (2.4.2)) and thus, it
would have natural density zero.

Let us assume, for the sake of contradiction, that H projects non-trivially on the first
coordinate of G1+r

m . This means that there exists some tuple

(m0, `1, . . . , `r)

with m0 6= 0 such that a coset of the cyclic subgroup H0 spanned by

(λm0 , t`1 , . . . , t`r)

would be contained in the intersection of V with the subgroup Γ.

So, letting `0 := 0, there must exist some constants di ∈ Fp(t) (depending on the ci’s) such
that for all positive integers n, we have

(2.4.3) λm0n =
r∑
i=0

dit
`in.

Combining the terms with the same exponent, we may assume without loss of generality that
the powers `1, . . . , `r are distinct. Using equation (2.4.3) and Lemma 2.3 we get that λm0

must be equal to t`i for some i = 0, 1, . . . , r (note that not all of the di’s could equal 0 since
λ 6= 0), which means that λ is multiplicative dependent with respect to t. This contradicts
our hypothesis and thus delivers the conclusion of Lemma 2.4. �

3. Arithmetic and algebraic properties for rings involving the Frobenius
operator

From now on in this paper, we let p be a prime number and let F be the Frobenius operator
corresponding to the field Fp.

3.1. Operators involving the Frobenius operator. We consider the polynomial ring
Fp[F ] whose elements are operators of the form

∑n
i=0 aiF

i which act on any field L of char-
acteristic p as follows:

(3.0.1)

(
n∑
i=0

aiF
i

)
(x) =

n∑
i=0

aix
pi for x ∈ L.

Since F leaves invariant each element of Fp, we can identify Fp[F ] with a polynomial ring in
one variable over Fp; in particular, we can consider its fraction field, denoted Fp(F ). For an
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algebraically closed field L (of characteristic p), the action of an element u of Fp(F ), which is
of the form

(3.0.2) u :=

∑n
i=0 aiF

i∑m
j=0 bjF

j

(for some non-negative integers m and n and moreover, the denominator in equation (3.0.2) is
nonzero and is coprime with respect to the numerator) can be interpreted as a finite-to-finite
map ϕu : L −→ L which has the property that to each element x ∈ L, it associates the finitely
many elements y ∈ L for which

(3.0.3)

 m∑
j=0

bjF
j

 (y) =

(
n∑
i=0

aiF
i

)
(x).

3.2. Linearly independent elements with respect to the maps from the polynomial
ring in the Frobenius operator. In this Section, we let L be an algebraically closed
field of positive transcendence degree over Fp. The following notion is used in our proof of
Proposition 5.2, which is a key technical step in deriving our main result (Theorem 1.3). First,
we note that similar to our construction of the ring of operators Fp[F ] from Section 3.1, we

can construct the non-commutative ring of operators Fp[F ].

Definition 3.1. Given elements δ1, . . . , δ` and γ1, . . . , γk in L, we say that γ1, . . . , γk are
linearly independent from δ1, . . . , δ` over Fp[F ] if whenever there exist polynomial operators

P1(F ), . . . , Pk(F ) ∈ Fp[F ] and Q1(F ), . . . , Q`(F ) ∈ Fp[F ] such that

k∑
i=1

Pi(F )(γi) =
∑̀
j=1

Qj(F )(δj),

then we must have that P1(F ) = · · · = Pk(F ) = 0.

Moreover, in the special case ` = 1 and δ1 = {0}, then the above condition simply translates
into asking that the points γ1, . . . , γk are linearly independent over Fp[F ].

The following result will be used in our proof of Proposition 5.2.

Proposition 3.2. For any positive integers k and `, and any given elements δ1, . . . , δ` ∈ L,
there exist γ1, . . . , γk ∈ L which are linearly independent from δ1, . . . , δ` over Fp[F ].

Proof. We let L0 ⊂ L be a finitely generated extension of Fp containing δ1, . . . , δ`. Then we

view L0 as the function field of a projective, smooth variety V defined over Fp. We let ΩV be
the set of inequivalent absolute values corresponding to the irreducible divisors of V . Since
there are only finitely many places of V where the δj ’s have poles, we can choose k elements
γi ∈ L0 (for i = 1, . . . , k) such that there exist absolute values | · |vi ∈ ΩV (for i = 1, . . . , k)
satisfying the following properties:

(i) |δj |vi ≤ 1 for each 1 ≤ j ≤ ` and each 1 ≤ i ≤ k;
(ii) |γi|vi > 1 for each i = 1, . . . , k; and
(iii) |γi|vj ≤ 1 for each j 6= i.
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Conditions (i)-(iii) can be achieved since there exist infinitely many absolute values in ΩV

and so, we can proceed inductively on k, each time choosing an element γi which has a pole
at some place of V where none of the δj ’s and also none of the γ1, . . . , γi−1 have poles.

Now, we claim that the elements γ1, . . . , γk are linearly independent from δ1, . . . , δ` over
Fp[F ]. Indeed, if there exist polynomial operators P1(F ), . . . , Pk(F ) ∈ Fp[F ] andQ1(F ), . . . , Q`(F ) ∈
Fp[F ] such that

(3.2.1)

k∑
i=1

Pi(F )(γi) =
∑̀
j=1

Qj(F )(δj),

then we assume there exists some i0 ∈ {1, . . . , k} such that Pi0(F ) 6= 0 and we will derive a
contradiction. Indeed, using conditions (ii)-(iii) above, we get that

(3.2.2)

∣∣∣∣∣
k∑
i=1

Pi(F )(γi)

∣∣∣∣∣
vi0

= |Pi0(F ) (γi0)|vi0 > 1.

Note that in order to derive inequality (3.2.2), we use the fact that if |γ|v > 1, then for any
nonzero polynomial operator P (F ) ∈ Fp[F ] of degree D ≥ 0 (in the operator F ), we have that

|P (F )(γ)|v = |γ|pDv .

On the other hand, using condition (i) above, we get that

(3.2.3)

∣∣∣∣∣∣
∑̀
j=1

Qj(F )(δj)

∣∣∣∣∣∣
vi0

≤ 1.

Inequalities (3.2.2) and (3.2.3) yield a contradiction along with equality (3.2.1). This shows
that indeed, the elements γ1, . . . , γk must be linearly independent from δ1, . . . , δ` over Fp[F ],
which concludes our proof for Proposition 3.2. �

3.3. A Mordell-Lang type theorem for the additive group scheme. We will employ in
our proof of Proposition 5.2 a Mordell-Lang type theorem for the additive group scheme, which
was proven in [Ghi08, Theorem 2.6]. Before stating our technical result (see Proposition 3.3),
we need to introduce some notation.

Let N be a positive integer and we extend the action of the ring of operators Fp[F ] on
GN
a acting diagonally. Let L be an algebraically closed field of characteristic p. Inspired by

the definition of F -sets introduced by Moosa and Scanlon in [MS04], we define the following
subsets of GN

a (L). So, for points γ1, . . . , γr ∈ GN
a (L) and positive integers k1, . . . , kr, we define

(3.2.4) S(γ1, . . . , γr; k1, . . . , kr) :=

{
r∑
i=1

Fniki(γi) : ni ∈ N for i = 1, . . . , r

}
.

The following result is proven in [Ghi08, Theorem 2.6].

Proposition 3.3. Let X ⊆ GN
a be an affine variety defined over an algebraically closed field

L of characteristic p. Let F be the usual Frobenius map x 7→ xp and we extend the action
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of Fp[F ] to GN
a acting diagonally. Let Γ ⊂ GN

a (L) be a finitely generated Fp[F ]-submodule.
Then the intersection X(L) ∩ Γ is a finite union of sets of the form

(3.3.1) γ0 + S(γ1, . . . , γr; k1, . . . , kr) +H,

for some points γ0, γ1, . . . , γr ∈ GN
a (L) and positive integers k1, . . . , kr, where S(γ1, . . . , γr; k1, . . . , kr)

is defined as in equation (3.2.4), while H is an Fp[F ]-submodule of Γ.

Proposition 3.3 can be viewed as a Mordell-Lang type statement for the additive group
scheme, in the same spirit as Moosa-Scanlon’s main result from [MS04] (which is a Mordell-
Lang theorem for semiabelian varieties defined over finite fields). Actually, the proof of [Ghi08,
Theorem 2.6] followed the exact strategy employed by Moosa-Scanlon for proving [MS04,
Theorem 7.8]. Both [Ghi08, Theorem 2.6] and [MS04, Theorem B] (and also their common
generalization for arbitrary commutative algebraic groups proven in [BGM]) are extensions in
positive characteristic of the classical Mordell-Lang Theorem proven by Faltings [Fal94] (for
abelian varieties) and by Vojta [Voj96] (for semiabelian varieties).

Remark 3.4. We make a couple of important observations regarding Proposition 3.3. First, the
statement in [Ghi08, Theorem 2.6] assumed the points in Γ live in a finitely generated, regular
extension of some given finite field; this can always be achieved and also it is not essential for
the proof, as observed in [MS04, Remark 7.11] (and also noted before the statement of [BGM,
Theorem 2.2]).

Second, just as shown in [MS04, Lemma 2.7], one can prove that the points γ0, γ1, . . . , γr
corresponding to an F -set as appearing in the intersection of X(L) ∩ Γ from equation (3.3.1)
live in the Fp[F ]-division hull of Γ, i.e., there exists some nonzero polynomial P (F ) ∈ Fp[F ]
such that

(3.4.1) P (F )(γi) ∈ Γ for i = 0, 1, . . . , r.

3.4. A non-commutative ring of operators. From now on, we fix q = p` for some given
` ∈ N. Then the polynomial ring of operators Fq[F ] acting as in equation (3.0.1) is no longer
a commutative ring since for some c ∈ Fq \ Fp, we have that cp 6= c.

From now on, we define K := Fq[F ]⊗Fp[F `]Fp(F `) and so, any element in K can be written
as

(3.4.2)

`−1∑
i=0

aiF
i,

where ai ∈ Fq[F `] ⊗Fp[F `] Fp(F `) ⊆ Fq(F `); note that Fq(F `) is a field since F` fixes each
element of Fq.

3.5. Matrices of operators. In this Section, we study matrices whose entries are themselves
operators from K (see the notation from Section 3.4).

Notation 3.5. Let A be a matrix in Mn,n(K) for some n ∈ N. Using equation (3.4.2), we

can find unique matrices A0, . . . , A`−1 ∈Mn,n(Fq(F `)) such that

A =

`−1∑
i=0

AiF
i.
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From now on, we will use the matrices A0, . . . , A`−1 each one of them belonging to Mn,n(Fq(F `))
in order to identify the matrix A ∈Mn,n(K). Furthermore, for convenience, we will often use

the n× n`-matrix (A0, . . . , A`−1) ∈Mn,n`(Fq(F `)) to identify the matrix A ∈Mn,n(K).

The next result is a simple consequence of multiplying matrices from Mn,n(K) and keeping
track of the decomposition of their action as given in Notation 3.5.

Proposition 3.6. Given a matrix A ∈Mn,n(K) there exists a unique matrix Ã ∈Mn`,n`(Fq(F `))
such that for every matrix B ∈Mn,n(K) we have

(3.6.1) ((BA)0, . . . , (BA)`−1) = (B0, . . . , B`−1) · Ã.

Proof. The uniqueness of Ã is obvious due to equation (3.6.1) since we can take each matrix
Bi to be any arbitrary matrix in Mn,n(Fq(F `)).

Now, we identify as in Notation 3.5 the matrix A ∈ Mn,n(K) with the vector of matrices

(A0, . . . , A`−1), each one of them in Mn,n(Fq(F `)). We define the function red : {0, . . . , ` −
1} × {0, . . . , `− 1} −→ {0, . . . , `− 1} to be the map given by

(i, j) 7→ (i− j) (mod `)

We define then
Ã =

(
F jAred(i,j)F

red(i,j)−i
)

0≤i,j≤`−1
,

which we view as an ` × `-matrix whose entries are themselves matrices from Mn,n(Fq[F ]).

The fact that the entries of Ã lie inside Fq(F `) is clear from the fact that

F jAred(i,j)F
red(i,j)−i =

(
F jAred(i,j)F

−j)F j+red(i,j)−i.

Indeed, the entries of F jAred(i,j)F
−j all lie inside Fq(F `) since the entries of Ared(i,j) lie inside

Fq(F `); furthermore, F j+red(i,j)−i is a non-negative power of F `. �

The following result is an immediate consequence of the definition of Ã ∈ Mn`,n`(Fq(F `))
for any given matrix A ∈Mn,n(K) satisfying the conclusion of Proposition 3.6.

Proposition 3.7. The map Mn,n(K) −→Mn`,n`(Fq(F `)) given by

A 7→ Ã

is an embedding of Fp[F `]-algebras.

3.6. A skew field. Finally, in this Section we prove that K is a skew field with center Fp(F `).

The next result is an easy consequence of Proposition 3.7.

Corollary 3.8. For every A ∈Mn,n(Fq[F ]) there exists a monic polynomial Q(x) ∈ Fp[F `][x]
such that Q(A) = 0.

Proof. Since the n` × n`-matrix Ã has its entries in the commutative ring Fq[F `], then the
classical Cayley-Hamilton’s theorem yields the existence of a monic polynomial with coeffi-
cients in Fq[F `] which kills the matrix Ã. Because Fq[F `] is itself integral over Fp[F `], then

we can find a monic polynomial Q(x) ∈ Fp[F `][x] such that Q(Ã) = 0. Then, Proposition 3.7
yields that Q(A) = 0 as well. �
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Proposition 3.9. For any P (F ) ∈ Fq[F ] there exists a nonzero polynomial Q(F ) ∈ Fq[F ]

such that Q(F )P (F ) ∈ Fp[F `].

Proof. We regard P (F ) as a matrix in M1,1(Fq[F ]). Since P is non-zero, then Proposition 3.7

yields that P̃ must be an invertible `×`-matrix. Therefore, there exists a vector (Q0, . . . , Q`−1)
with coordinates in Fq[F `] such that

(3.9.1) (Q0, . . . , Q`−1) · P̃ = (α, 0, . . . , 0).

for some non-zero α ∈ Fq[F `]. If we let Q be the (nonzero) polynomial in Fq[F `] corresponding

to (Q0, . . . , Q`−1), then equation (3.9.1) implies that Q1(F `) := Q(F )P (F ) ∈ Fq[F `]. Since

Fq is a finite extension of Fp, there must exist another nonzero polynomial Q2 ∈ Fq[F `] such

that Q2(F `)Q1(F `) ∈ Fp[F `]. So,

Q2(F `)Q(F )P (F ) ∈ Fp[F `]
as desired. �

Finally, the desired conclusion about K being a skew field with center Fp(F `) follows as an
immediate consequence of Proposition 3.9.

Corollary 3.10. Fq[F ]⊗Fp[F `] Fp(F `) is a skew field and Fp(F `) is its centre.

4. Reductions for our main result

Proposition 4.1. In order to prove Theorem 1.3 for the dynamical system (GN
a ,Φ), it suffices

to prove Theorem 1.3 for the dynamical system (GN
a ,Φ

n) for some n ∈ N.

Proof. It is clear that if condition (C) holds for an iterate of Φ then it also holds for Φ. The
fact that if conditions (A) and (B) hold for an iterate of Φ then they also hold for Φn follows
from [BGRS17, Lemma 2.1]. �

Notation 4.2. Let h be an element in Fp[F ] and let N be a positive integer. We let [h] denote
the group endomorphism of GN

a given by the coordinate-wise action of h.

Also, as a matter of notation thoughout our paper, we will often use ~x to denote the point
x ∈ GN

a just so it would be more convenient when using a group endomorphism Φ of GN
a

corresponding to some matrix A ∈MN,N (Fp[F ]), because then we would write A~x to denote
Ψ(~x).

Definition 4.3. We call Ψ : GN
a −→ GN

a a finite-to-finite map (defined over Fp) if there

exists a nonzero element h ∈ Fp[F ] with the property that [h] ◦Ψ is a group endomorphism of

GN
a . In other words, there exists a matrix B ∈MN,N (Fp[F ]) such that for each point x ∈ GN

a ,

the finite-to-finite map Ψ associates to the point x the finitely many points y ∈ GN
a such that

[h](~y) = B~x.

Proposition 4.4. Let K = Fq[F ] ⊗Fp[F `] Fp(F `) where q = p` for some ` ∈ N (see also

Section 3.4). Let Φ : GN
a −→ GN

a be a dominant group endomorphism of GN
a defined over

Fq. Then, there exists n ∈ N and there exist non-negative integers N0 and N1 such that
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N = N0 +N1, along with a dominant group endomorphism Φ0 : GN0
a −→ GN0

a corresponding
to the matrix

(4.4.1) A0 := JFn1`,m1

⊕
· · ·
⊕

JFns`,ms ,

and a finite-to-finite map Φ1 : GN1
a −→ GN1

a (see also Definition 4.3) corresponding to a
matrix A1 ∈ MN1,N1(K), where the minimal polynomial of A1 over Fp[F `] has roots that are

multiplicatively independent with respect to F `, there exists a dominant group endomorphism
g : GN

a −→ GN0
a × GN1

a defined over Fq, and there exists a nonzero element h ∈ Fp[F `] such
that the next diagram commutes

(4.4.2)

GN
a GN

a

GN0
a ×GN1

a GN0
a ×GN1

a ,

[h] ◦ Φmn

g g

[h] ◦ (Φm0 ,Φ
m
1 )

for all m ∈ N. In particular, [h] ◦ (Φm
0 ,Φ

m
1 ) is a well-defined group endomorphism for all

m ∈ N.

Proof. Suppose that Φ corresponds to a matrix A ∈MN,N (Fq[F ]). For some suitable power Φn

of Φ we have that the roots of the minimal polynomial of An over Fp(F `), say r(x) ∈ Fp(F `)[x],

are either a non-negative integer power of F ` or multiplicatively independent with respect to
F . Indeed, note that the roots of the minimal polynomial of A are integral over Fp[F `] (see

also Section 3.6) and so, if a root u0 is multplicatively dependent with respect to F `, then a
power un0 (for n ∈ N) must be of the form F `j0 for some non-negative integer j0.

So, with the above assumption regarding An and its minimal polynomial r(x), then we can
write r(x) = r0(x)r1(x) where r0(x) is a polynomial whose roots are (non-negative integer)
powers of F ` and r1(x) is a polynomial whose roots are multiplicatively independent with
respect to F . Using Facts 2.1 and 2.2 (see Section 2.1) along with Corollary 3.10, there must
exist an invertible matrix P ∈MN,N (K) such that

(4.4.3) PAnP−1 = A0 ⊕A1

where A0 corresponds to a matrix of the form (4.4.1) and the minimal polynomial of A1 over
Fp(F `) is r1. Using Equation (4.4.3) we have

(4.4.4) PAmnP−1 = Am0 ⊕Am1 ,

for every positive integer m. Due to the definition of K there exists a nonzero u ∈ Fp[F `]
such that uP ∈ Fq[F ]; also, because A1 is integral over Fp[F `], there exists a nonzero h ∈
Fp[F `] such that each hAm1 (for m ∈ N) has entries in Fq[F ]. Therefore, if we let g be the
group endomorphism corresponding to the matrix uP , using equation (4.4.4) we will get a
commutative diagram of the form (4.4.2). This concludes our proof of Proposition 4.4. �

The following result is an easy consequence of Proposition 4.4 and of the fact that for any
positive integer a, we have that

(
pa

i

)
= 0 in Fp whenever 0 < i < pa.

Corollary 4.5. In Proposition 4.4, at the expense of replacing the positive integer n by a
multiple, we may assume without loss of generality that Φ0 corresponds to a diagonal matrix
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of the form

A0 = Fn1`Im1

⊕
· · ·
⊕

Fns`Ims

where, n1, . . . , ns are distinct non-negative integers and m1, . . . ,ms are non-negative integers.

Proof. Let pa be a power of p that is greater than all m1, . . . ,ms in the statement of Propo-
sition 4.4. Then, replacing n by npa and combining the Jordan blocks corresponding to the
same power of F will deliver the desired conclusion. �

Let Φ be a dominant endomorphism of GN
a , let n ∈ N, let h ∈ Fp[F `] and Φ1 : GN1

a −→ GN1
a

be as in the statement of Proposition 4.4, while Φ0 : GN0
a −→ GN0

a has the form as in
Corollary 4.5. With the above notation, we prove the next three technical lemmas.

Lemma 4.6. Suppose that there exists some i ∈ {1, . . . , s} such that ni = 0, and also mi > 0;
in particular, this means that N0 ≥ 1 with the notation as in Corollary 4.5. Then there exists
a non-constant rational function f : GN

a −→ P1 such that f ◦ Φn = f .

Proof. Suppose without loss of generality that n1 = 0. Let π : GN
a −→ Ga be the projection

onto the first coordinate. Then, using Equation (4.4.2) we must have

π ◦ g ◦ [h] ◦ Φn = [h] ◦ π ◦ g.

However, since π and g are both defined over Fq, the map [h] commutes with both of them.
So, we have

π ◦ g ◦ [h] ◦ Φn = π ◦ g ◦ [h].

Hence, π ◦ g ◦ [h] defines a non-constant rational function that is left invariant by Φn. �

Lemma 4.7. Suppose that the numbers n1, . . . , ns are all positive and max{m1, . . . ,ms} ≥
trdegFpL + 1. Then there exist integers r ≥ 1 and M ≥ trdegFpL + 1, and there exists a

dominant group homomorphism τ : GN
a −→ GM

a such that τ ◦ Φn = F r ◦ τ .

Proof. Suppose without loss of generality that m1 ≥ trdegFpL + 1. Let π be the projection

map onto the first m1 coordinates of GN
a . Using the equation (4.4.2) we must have

π ◦ g ◦ [h] ◦ Φn = [h] ◦ Fn1` ◦ π ◦ g.

Since g, and π are defined over Fq, they must commute with [h]; also, they all commute with

Fn1`. Hence, we have

π ◦ g ◦ [h] ◦ Φn = Fn1` ◦ π ◦ g ◦ [h].

So, the map τ := π ◦ g ◦ [h] has the desired property. �

Lemma 4.8. Let L be an algebraically closed field of characteristic p. If there exists a point
α := (α0, α1) with α0 ∈ GN0

a (L) and α1 ∈ GN1
a (L) such that

O := {([h] ◦ (Φm
0 ,Φ

m
1 )) (α0, α1) : m ≥ 0}

is Zariski dense in GN0+N1
a , then there also exists a point β ∈ GN

a (L) such that OΦ(β) is
Zariski dense in GN

a .
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Proof. Choose β such that g(β) = α (note that g is a dominant group endomorphism). Then
the commutative diagram (4.4.2) along with the fact that g and [h] are dominant group
endomorphisms yields that the orbit of β under Φn must be Zariski dense in GN

a . Since
OΦn(β) ⊆ OΦ(β), we obtain the desired conclusion in Lemma 4.8. �

Lemmas 4.6, 4.7, and 4.8 along with Proposition 4.1 will reduce Theorem 1.3 to Proposition
5.2 stated and proved in the next Section.

5. Proof of Theorem 1.3

In this Section we conclude the proof of our main result. We work under the hypotheses of
Theorem 1.3. We start by stating a useful result, which is a special case of [GS21, Proposition
4.1].

Proposition 5.1. Let L be an algebraically closed field of transcendence degree d > 0 over
Fp. Let Φ : GN

a −→ GN
a be a dominant group endomorphism corresponding to the matrix

A = Fn1Im1

⊕
· · ·
⊕

FnsIms

where m1, . . . ,ms, n1, . . . , ns are positive integers and n1, . . . , ns are distinct. Then there exists
a point α ∈ GN

a (L) such that every infinite subset of OΦ(α) is Zariski dense in GN
a if and

only if

(5.1.1) max{m1, . . . ,ms} ≤ d.

Finally, we can state the technical reformulation of Theorem 1.3, which will allow us to
prove the desired conclusion in our main result.

Proposition 5.2. Let N0 and N1 be non-negative integers, let q := p`, let L be an algebraically
closed field which has transcendence degree over Fp equal to d > 0, and let K = Fq[F ]⊗Fp[F `]

Fp(F `). Let Φ0 : GN0
a −→ GN0

a be a dominant group endomorphism corresponding to the
matrix

(5.2.1) A := Fn1Im1

⊕
· · ·
⊕

FnsIms ,

(for some non-negative integers s, n1, . . . , ns, while N0 =
∑s

i=1mi) and Φ1 : GN1
a −→ GN1

a be a
finite-to-finite map corresponding to a matrix A1 ∈MN1,N1(K), where the minimal polynomial

of A1 over Fp[F `] has roots that are multiplicatively independent with respect to F `. Suppose

there exists a non-zero element h ∈ Fp[F `] such that [h] ◦ (Φn
0 ,Φ

n
1 ) is a well-defined dominant

group endomorphism of GN0+N1
a for each n ∈ N. Then, one of the following statements must

hold:

(i) N0 ≥ 1 and one of the numbers n1, . . . , ns is equal to zero.
(ii) The numbers n1, . . . , ns are all positive and max{m1, . . . ,ms} > d.

(iii) There exists a point α := (α0, α1) with α0 ∈ GN0
a (L) and α1 ∈ GN1

a (L) such that

(5.2.2) O := {([h] ◦ (Φn
0 ,Φ

n
1 )) (α0, α1) : n ≥ 0}

is Zariski dense in GN0+N1
a .
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As noted at the end of Section 4, lemmas 4.6, 4.7, 4.8 reduce Theorem 1.3 to Proposition
5.2, which we will prove next.

Proof of Proposition 5.2. First of all, as noted also in Section 4, for a point γ ∈ Gk
a(L) (for

some non-negative integer k), we will use the notation ~γ in order to emphasize that the point
~γ ∈ Gk

a(L) is a vector consisting of k elements from L.

We will prove Proposition 5.2 by assuming that if conditions (i) and (ii) do not hold, then
condition (iii) must hold. If we assume that conditions (i) and (ii) do not hold, then by
Proposition 5.1 there must exist a point ~α0 ∈ GN0

a (L) such that any infinite subset of

OΦ0(~α0) := {Φn
0 (~α0) : n ≥ 0},

is Zariski dense in GN0
a . Now, choose a point ~α1 ∈ GN1

a (L) whose coordinates are linearly
independent with respect to the coordinates of ~α0 over Fp[F ] (see Proposition 3.2). Note that
if N0 = 0, then our only requirement is that the coordinates of ~α1 are linearly independent
over Fp[F ] (see the second part of Definition 3.1).

We let ~α := (~α0, ~α1). Suppose for the sake of contradiction that the Zariski closure of O
(from equation (5.2.2)) in GN0+N1

a is a proper subvariety, say V . Let

Γ := {(B0~α0, B1~α1) : B0 ∈MN0,N0(Fq[F ]) and B1 ∈MN1,N1(Fq[F ])} .

Then Γ is a finitely generated Fp[F ]-module that contains O. Therefore, according to Propo-
sition 3.3, the intersection V (L) ∩ Γ is contained in the union of finitely many sets of the
form

(5.2.3) ~β + S (~γ1, . . . , ~γr; δ1, . . . , δr) +H,

where H is an Fp[F ]-submodule of Γ, and S (~γ1, . . . , ~γr; δ1, . . . , δr) is a sum of F -orbits of the
points ~γi ∈ GN0+N1

a (L) (for some given positive integers δi, as in equation (3.2.4)), i.e.,

S (~γ1, . . . , ~γr; δ1, . . . , δr) =

{
r∑
i=1

Fniδi (~γi) : ni ∈ N for i = 1, . . . , r

}
.

Furthermore, as noted in Remark 3.4 (see equation (3.4.1)), there exists a nonzero polynomial
P (F ) ∈ Fp[F ] such that

(5.2.4) P (F )
(
~β
)

:= (B0~α0, B1~α1) ,

and for each i = 1, . . . , r, we have

(5.2.5) P (F ) (~αi) := (C0,i~α0, C1,i~α1) ,

for some B0, C0,1, . . . , C0,r ∈MN0,N0(Fq[F ]) and B1, C1,1, . . . , C1,r ∈MN1,N1(Fq[F ]). Further-

more, since Fp[F ] is a finite integral extension of Fp[F `], then (at the expense of multiplying
P (F ) by a suitable nonzero element of Fp[F ], which would only replace the matrices Bi and

Ci,j by other matrices with entries in Fq[F ]) we may assume that P (F ) ∈ Fp[F `].

We let U be a set of the form (5.2.3) that contains the subset

(5.2.6) OS := {([h] ◦ (Φn
0 ,Φ

n
1 )) (α0, α1) : n ∈ S} ,

of O where S is a subset of N that has a positive natural density.
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Now, since H is an Fp[F ]-submodule of GN0+N1
a , then its Zariski closure H is an algebraic

subgroup of GN0+N1
a defined over Fp. So, let ~v = (~v0, ~v1) with ~v0 ∈ Fp[F ]N0 and ~v1 ∈ Fp[F ]N1

such that

(5.2.7) ~vT0 ~x0 + ~vT1 ~x1 = 0,

for all (~x0, ~x1) ∈ H (where always ~vT denotes the transpose of ~v). Note that since H is
an algebraic subgroup of GN0+N1

a defined over Fp, then H is the zero locus of finitely many
equations of the form (5.2.7). Using both equations (5.2.7) and (5.2.3) along with equa-
tions (5.2.4) and (5.2.5) and with the fact that the operator P (F ) leaves invariant the entries
in both ~v0 and ~v1, we obtain that

(5.2.8)
1∑
i=0

P (F )
(
~vTi · ([h] ◦ Φn

i ) (~αi)
)

=
1∑
i=0

~vTi Bi~αi +
r∑
j=1

~vTi F
njδjCi,j~αj

 .

for all n ∈ S. Since for each j = 0, 1, we have that Φj corresponds to the matrix Aj ∈
MNj ,Nj (K), and then using that the set of the coordinates of ~α1 are linearly independent

from the set of coordinates of ~α0 over Fp[F ], then writing h1 := P (F ) · h ∈ Fp[F `], we get:

(5.2.9) ~vT1

h1A
n
1 −B1 −

r∑
j=1

FnjδjC1,j

 = ~0 ∈MN1,1(K) for all n ∈ S.

At the expense of replacing S with a subset of S with a positive natural density, we may
assume that each njδj (for j = 1, . . . , r) has the same remainder modulo ` for all n ∈ S. This
allows us to rewrite equation (5.2.9) as an equation of the form

(5.2.10) ~vT1

h1A
n
1 −B1 −

r∑
j=1

Fmj`C ′1,j

 = ~0,

for some matrices C ′1,j ∈MN1,N1(Fq[F ]) depending on the matrices C1,j . Let V be the N1×N1-

matrix whose rows are all equal to ~vT1 . So, we have

(5.2.11) V

h1A
n
1 −B1 −

r∑
j=1

Fmj`C ′1,j

 = 0 ∈MN1,N1(K).

Applying the operator ∼ (defined as in Notation 3.5 from Section 3.5) to equation (5.2.11)
and also using the fact that h1 ∈ Fp[F `], we get

(5.2.12) Ṽ

h1Ã
n
1 − B̃1 −

r∑
j=1

Fmj`C̃ ′1,j

 = 0.

Now suppose that V is non-zero. Then we must have some nonzero row ~uT in Ṽ; so, we get

(5.2.13) ~uT

h1Ã
n
1 − B̃1 −

r∑
j=1

Fmj`C̃ ′1,j

 = 0.

We note that equation (5.2.13) is similar to [GS21, Lemma 4.5, equation (4.5.1)] (after trans-
posing both sides). So, by proceeding exactly as in the proof of [GS21, Lemma 4.5], and
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using the fact that the roots of the minimal polynomial of A1 (and thus, also of Ã1) are
multiplicatively independent with respect to F `, equation (5.2.13) leads to an equation of the
form

(5.2.14) aλn = c0 +
r∑
j=1

cjF
mj`,

for some a, c0, c1, . . . , cr ∈ Fp(F `) with a 6= 0 and some eigenvalue λ of A1, which is thus

multiplicatively independent with respect to F `. Note that Fp(F `) is isomorphic to Fp(t) for

some transcendental element t since Fp(F `) is naturally isomorphic to Fp(t). However, by
Lemma 2.4, the set of n’s for which equation (5.2.14) is solvable for some positive integers mj

must have a natural density equal to zero which contradicts our choice of the subset S.

This means that for any vector ~v = (~v0, ~v1) with ~v0 ∈ Fp[F ]N0 and ~v1 ∈ Fp[F ]N1 such that

~vT0 ~x0 + ~vT1 ~x1 = 0, for all (~x0, ~x1) ∈ H we must have ~v1 = ~0. Hence, H := G0 ×GN1
a for some

algebraic subgroup G0 ⊆ GN0
a .

Thus, U (the Zariski closure of the set U containing the elements from equation (5.2.6)),
which is itself a subset of V , must be a set of the form W × GN1

a for some closed subset
W ⊆ GN0

a since {0} × GN1
a is contained in the stabilizer of U (because H = G0 × GN1

a ). On
the other hand, note that W contains

{([h] ◦ Φn
0 ) (~α0) : n ∈ S} ,

which must be Zariski dense in GN0
a because of our choice of ~α0 and the fact that [h] is a

dominant endomorphism of GN0
a . So, we conclude that U = GN0

a ×GN1
a which contradicts the

fact that V is a proper subvariety of GN0
a ×GN1

a . This contradiction completes our proof for
Proposition 5.2. �

Since we proved that Theorem 1.3 reduces to Proposition 5.2, this concludes our proof for
Theorem 1.3.
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