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ABSTRACT. Motivated by a question of Erdős on blocking sets in a projective plane that intersect
every line only a few times, several authors have used unions of algebraic curves to construct such
sets in P2(Fq). In this paper, we provide new constructions of blocking sets in P2(Fq) from a union
of geometrically irreducible curves of a fixed degree d. We also establish lower bounds on the
number of such curves required to form a blocking set. Our proofs combine tools from arithmetic
geometry and combinatorics.

1. INTRODUCTION

Throughout the paper, p denotes a prime, q denotes a power of p, Fq denotes the finite field with
q elements, and Fq denotes the algebraic closure of Fq. A set of pointsB ⊆ P2(Fq) is a blocking set
if it intersects every Fq-line. A blocking set is called trivial if it contains all q + 1 points of an Fq-
line; otherwise, it is nontrivial. The smallest trivial blocking sets are lines themselves, consisting
of q + 1 points.

The study of blocking sets is a central topic in finite geometry and design theory [7, 18]. In this
paper, we study blocking sets arising from a union of plane curves. Our motivation comes from
the literature on a question of Erdős [12] and from our previous work [3], which treated the case
of a single irreducible plane curve.

Inspired by questions related to intersection properties of set families, Erdős [12] considered the
case in which the set family consists of the lines in a projective plane; this naturally led him to
study blocking sets that meet each line only a few times.1 More precisely, let k = k(n) denote
the least positive integer such that in any projective plane of order n, there exists a blocking set
B of points such that |B ∩ L| < k for every line L. Erdős asked whether k(n) is bounded by a
universal constant. Using the probabilistic method, Erdős–Silverman–Stein [12] showed that for
any constant c > 2e, we have k(n) < c log n for all sufficiently large n. In the same paper, they
also provided a constructive approach to show k(n) < n−c′

√
n for some absolute constant c′ > 0.

For the exposition of how the approaches used in [12] can be extended to construct blocking sets
and other objects in finite geometry, we refer to the surveys by Szőnyi [21] and Gács–Szőnyi [13].

Erdős’ question is still wide open, and much of the subsequent work has focused on the case of
a projective plane P2(Fq) over a finite field of order q. In this setting, the algebraic and geometric
structure of projective Galois planes provides tools unavailable for general projective planes. In
particular, it is natural to look for constructions of blocking sets arising from algebraic curves; see,
for example, [1, 21, 22, 23]. This is partly because the number of intersections between irreducible
plane curves and lines is controlled by Bézout’s theorem. We introduce the following definition to
formalize the construction of blocking sets from collections of plane curves.
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1This question is attributed to Erdős in the introduction of the paper by Erdős–Silverman–Stein [12].
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Definition 1.1. A blocking set B in P2(Fq) is constructed from a union of plane curves if B =⋃ℓ
i=1Ci(Fq) for some plane curves C1, . . . , Cℓ defined over Fq, where Ci is geometrically irre-

ducible (that is, irreducible over Fq) and has degree di = deg(Ci) > 1 for each i. We also say that
C1, . . . , Cℓ form a blocking family of degree (d1, . . . , dℓ).

The hypothesis di > 1 in Definition 1.1 is necessary to produce nontrivial blocking sets. The
geometric irreducibility condition is also natural, as one could otherwise replace a reducible curve
with its irreducible components. Moreover, if Ci were irreducible over Fq, but not geometrically
irreducible, a standard application of Bézout’s theorem shows that |Ci(Fq)| ≤ d2i

4
(see, for example,

[3, Lemma 3.1]); consequently, Ci(Fq) blocks at most d2i
4
(q + 1) lines (which is not efficient for

constructing blocking sets). In contrast, geometrically irreducible curves have q + O(
√
q) points

by the Hasse–Weil bound (see [6] for a version that applies to singular curves).
In our previous work [2, 3, 4, 5], we studied blocking sets arising from points of an irreducible

plane curve, which corresponds to the case ℓ = 1. In particular, we showed in [3] that irreducible
blocking curves of low degree d ≥ 2 (specifically, d < q1/6) do not exist; we also provided various
constructions of irreducible blocking curves.

Let B be a blocking set constructed from C1, . . . , Cℓ as in Definition 1.1. By Bézout’s theorem,
we have |B ∩ L| ≤

∑ℓ
i=1 deg(Ci) for each Fq-line L. This implies k ≤

∑ℓ
i=1 deg(Ci) for Erdős’

question, though this bound is often not sharp. Next, we discuss past work using such constructions
and state our new contributions.

Let q be an odd prime power. Abbott and Liu [1] constructed a blocking set in P2(Fq) from
a union of around log2 q conics. For any constant c > 2/ log 2, their construction produces a
set with k < c log q in Erdős’ question (while their bound c > 2/ log 2 improves c > 2e from
Erdős–Silverman–Stein [12], it is specific to projective Galois planes). A similar construction
was independently discovered by Ughi [23]. She also proved that the number of nonsingular
(equivalently, geometrically irreducible) conics required to form a blocking set must tend to infinity
as q → ∞. In a related work, Szőnyi [22] constructed minimal blocking sets in P2(Fq) from
a subset of a pencil of conics Ca parametrized by a ∈ Fq; the values of a that realize minimal
blocking sets correspond to maximal independent sets in the Paley graph over Fq (here q ≡ 1
(mod 4)). In the same paper, he also deduced that at least c log q conics from this specific pencil
{Ca}a∈Fq are required to form a blocking set. Our first result shows that this logarithmic lower
bound holds for a blocking set formed by any collection of geometrically irreducible conics.

Theorem 1.2. Let q be an odd prime power. There is a constant c0 > 0 such that no blocking set
in P2(Fq) can be constructed from a union of fewer than c0 log q conics.

For an odd prime power q, let f(q) be the minimum integer ℓ such that there is a blocking set in
P2(Fq) constructed from ℓ conics. By the discussion above, we know c1 log q ≤ f(q) ≤ c2 log q
for some absolute constants c1, c2 > 0. Determining an asymptotically sharp bound on f(q) seems
out of reach.

As we were finalizing the paper, we discovered that Szőnyi [21] proved an analogous lower
bound for blocking sets in inversive planes constructed from a union of circles. In the final remark
of the same paper, he mentioned that the same proof idea applies to conics in P2(Fq), so we believe
that Theorem 1.2 is known to some experts. We will present our own proof of Theorem 1.2 in
Section 2, and briefly explain Szőnyi’s suggested proof in Remark 2.3.

2



The hypothesis that q is odd in Theorem 1.2 is necessary. Indeed, Illés, Szőnyi, and Ferenc [15]
showed that for Erdős’ question in P2(F2r), the bound k ≤ 6 holds if r is even, and k ≤ 7 holds if
r is odd. Their construction still employs a union of nonsingular conics.

For curves of higher degree, our next result generalizes Ughi’s result [23, Proposition 2] on the
number of geometically irreducible conics needed to form a blocking set in odd characteristic.

Theorem 1.3. Let d ≥ 3. Let ℓ(q) be the minimum integer ℓ such that there exists a blocking set in
P2(Fq) constructed from a union of ℓ plane curves each having degree at most d. Let Qd be the set
of prime powers q such that p = char(Fq) > d. Then for q ∈ Qd, we have ℓ(q) → ∞ as q → ∞.

We prove Theorem 1.3 in Section 3. The key ingredient of the proof is a version of Chebotarev
density theorem due to Entin [11]. The hypothesis p = char(Fq) > d in Theorem 1.3 is necessary.
Indeed, Bruen and Fisher [9] found a blocking set in P2(F3r) formed by taking a union of geo-
metrically irreducible cubic curves and showing that k ≤ 5 for Erdős’ question. More generally,
Boros [8] proved that if q = pr with a prime p ≥ 3, then k ≤ p + 2 for Erdős’ question; this
was achieved by considering the union of two carefully chosen geometrically irreducible degree p
curves together with a single point. Thus, the hypothesis p > d in Theorem 1.3 is sharp.

Our final result is a counterpart to these lower bounds by demonstrating that a blocking family
can indeed be formed from approximately cd log q geometrically irreducible curves of degree d.

Theorem 1.4. Let d ≥ 3. There exists a constant cd > 0 such that for any prime power q and any
integer ℓ ≥ cd log q, there exists a blocking family of degree (d, d, . . . , d)︸ ︷︷ ︸

ℓ times

over Fq.

We will give two proofs of Theorem 1.4, one probabilistic in Section 4 and one through explicit
equations in Section 5. In the first proof, we use a randomized construction which produces a better
constant, namely, cd = 4− o(1) as q → ∞. The randomized construction is also more flexible, as
it can produce multiple blocking sets; see Remark 4.5. The more precise statement for the second
proof appears as Theorem 5.1, which gives cd = O(d). On the other hand, the second proof has the
advantage that, when gcd(d, q − 1) > 1 and we restrict to a certain pencil of curves, it is optimal
up to a constant multiplicative factor; see the end of Section 5 for discussion.

2. CONSTRUCTIONS FROM CONICS

In this section, we prove Theorem 1.2. Throughout the section, we assume that q is an odd prime
power.

A key ingredient in our proof is an effective version of the Lang–Weil bound [16]. A standard
application of Weil’s bound gives an asymptotic formula for the number of x ∈ Fq such that fi(x)
is a square in Fq for all i, where f1, f2, . . . , fℓ ∈ Fq[x] are “independent”; see, for example, [22,
Lemma 1]. Recently, Slavov [19] extended this result to multivariable polynomials with the help
of an explicit version of the Lang–Weil bound by Cafure and Matera [10]. The following lemma
is a special case of his result [19, Theorem 3 and Remark 13].

Lemma 2.1 (Slavov). Let n, ℓ, d be positive integers and q be an odd prime power. Let f1, f2, . . . , fℓ
be polynomials in Fq[x1, x2, . . . , xn] with degree d. Suppose that for any nonempty subset I ⊆
{1, 2, . . . , ℓ}, the product

∏
i∈I fi is not a constant multiple of the square of a polynomial in

Fq[x1, . . . , xn]. Then the number of (a1, a2, . . . , an) ∈ Fn
q such that fi(a1, a2, . . . , an) is a nonzero

square in Fq for all 1 ≤ i ≤ ℓ is
qn

2ℓ
+O((2d)2ℓqn−1/2 + (2d)13ℓ/3qn−1),

3



where the implied constant in the error term is absolute.

Our proof also uses the concept of dual curves. Recall that the points of the dual projective plane
(P2)∗ correspond to lines in P2. Given a geometrically irreducible plane curve C, the dual curve
C∗ ⊂ (P2)∗ parametrizes tangent lines to C. The set of Fq-points on this curve, C∗(Fq), therefore
represents those Fq-lines that are tangent to C at some point P ∈ C(Fq).

The proof of Theorem 1.2 combines these two tools.

Proof of Theorem 1.2. Suppose {C1, C2, . . . , Cℓ} is a collection of geometrically irreducible con-
ics that block all lines in P2(Fq). In particular, the union of these conics intersects with lines of the
form bx+ cy − z = 0 with b, c ∈ Fq. The following claim provides a simple criterion for whether
such a line is skew to a given conic.

Claim 2.2. Let C be a geometrically irreducible conic defined over Fq:

C : a200x
2 + a020y

2 + a002z
2 + a110xy + a101xz + a011yz = 0.

Consider the polynomial D(α, β) ∈ Fq[α, β] defined by:

D = (2a002αβ + a110 + a101β + a011α)
2 − 4(a200 + a002α

2 + a101α)(a020 + a002β
2 + a011β).

Then for each b, c ∈ Fq, C does not intersect the line L : bx+ cy − z = 0 at an Fq-point provided
the following two conditions hold:

(1) (a200 + a002b
2 + a101b)(a020 + a002c

2 + a011c) ̸= 0.
(2) D(b, c) is a non-square in Fq.

In particular, for all but at most 4q pairs (b, c) ∈ Fq ×Fq, the line L : bx + cy − z = 0 is skew to
C if D(b, c) is a non-square in Fq.

Proof of claim. First, note that the equation a200 + a002α
2 + a101α = 0 has at most two solutions

in Fq. Otherwise, the polynomial in α would be identically zero, so a200 = a002 = a101 = 0; in
this case C is reducible with a factor of y. Similarly, the equation a020 + a002β

2 + a011β = 0 has
at most two solutions in Fq. Thus, condition (1) holds for all but at most 4q pairs (b, c) ∈ Fq ×Fq.

Next, we compute C ∩ L. Substituting z = bx+ cy into the equation of C gives:

a200x
2 + a020y

2 + a002(bx+ cy)2 + a110xy + a101x(bx+ cy) + a011y(bx+ cy) = 0,

which simplifies to

(a200+a002b
2+a101b)x

2+(2a002bc+a110+a101c+a011b)xy+(a020+a002c
2+a011c)y

2 = 0. (2.1)

If (a200 + a002b
2 + a101b)(a020 + a002c

2 + a011c) ̸= 0, then equation (2.1) has a solution over Fq

only when its discriminant

(2a002bc+ a110 + a101c+ a011b)
2 − 4(a200 + a002b

2 + a101b)(a020 + a002c
2 + a011c)

is a square in Fq. This proves the claim. ■

For each 1 ≤ i ≤ ℓ, let Di(α, β) be the corresponding polynomial of the conic Ci defined in the
above claim. A point [t0 : t1 : t2] ∈ (P2)∗ in the dual plane corresponds to the line with equation
t0x+t1y+t2z = 0 in P2. From the theory of dual curves, Di(α, β) = 0 represents the affine model
of the dual curve C∗

i . More precisely, {Di(α, β) = 0} ⊆ A2
α,β is the restriction of C∗

i to the affine
chart t2 = 1. In particular, Di ∈ Fq[α, β] is an irreducible polynomial of degree 2. Moreover, for
1 ≤ i < j ≤ ℓ, Ci and Cj are distinct conics, so their dual curves are also distinct, that is, C∗

i

and C∗
j are distinct and thus Di and Dj are distinct in the sense that Dj ̸= λDi for any λ ∈ Fq.
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Therefore, for any nonempty subset I ⊆ {1, 2, . . . , ℓ}, the polynomial
∏

i∈I Di is not a constant
multiple of the square of a polynomial in Fq[α, β].

Thus, Lemma 2.1 implies that the number of pairs (b, c) ∈ Fq ×Fq such that Di(b, c) is a non-
square for all 1 ≤ i ≤ ℓ is at least

q2

2ℓ
−K(42ℓq3/2 + 413ℓ/3q),

where K is an absolute constant. It follows from Claim 2.2 that the number of pairs (b, c) ∈
Fq ×Fq for which the line L : bx+ cy− z = 0 is simultaneously skew to the conics C1, C2, . . . , Cℓ

is at least
q2

2ℓ
−K(42ℓq3/2 + 413ℓ/3q)− 4qℓ;

however, by the blocking set assumption, no such line exists. It follows that
q2

2ℓ
−K(42ℓq3/2 + 413ℓ/3q)− 4qℓ ≤ 0,

that is, ℓ ≥ c log q for some absolute positive constant c. □

Remark 2.3. In the final remark of [21], Szőnyi suggested a proof along the following lines, which
shares some similarities with our proof. We now explain the details implicit in his remark. We fix
a point P ∈ P2(Fq) (to be specified) and consider all the q + 1 Fq-lines in P2 that pass through P .
Call these lines L1, L2, . . . , Lq+1. The condition that Li is skew to a given conic can be expressed
as a certain single-variable quadratic function achieving a nonsquare value (this step requires some
verification). Using Weil’s bound, one can show that if the collection contains fewer than c0 log q
conics, then at least one line Li through P is skew to all of them. To apply Weil’s bound, one needs
to be careful that no nonempty subcollection of these single-variable polynomials has a product
equal to a constant multiple of a square of a polynomial. To rule out this scenario, one needs to
find a point P such that none of the q + 1 lines through P is tangent to more than one conic. The
difference between Szőnyi’s method and our proof is that we need not reduce to a single-variable
polynomial, as we can rely on Lemma 2.1.

3. BLOCKING FAMILIES AND CHEBOTAREV DENSITY THEOREM

This section is devoted to proving Theorem 1.3. Throughout the section, we assume that q is odd.
We establish a more general result (Theorem 3.1 below), showing that under a mild hypothesis,
any bounded collection of curves fails to form a blocking set for sufficiently large q. Theorem 1.3
will then follow as a corollary.

Theorem 3.1. Let C ⊂ P2 be a plane curve of degree d̃ defined over Fq. Suppose each geomet-
rically irreducible component of C has degree at least 2 and is reflexive. Then C(Fq) is not a
blocking set in P2(Fq) for q sufficiently large with respect to d̃.

To prove that C(Fq) is not a blocking set, it suffices to demonstrate the existence of at least one
Fq-line L that is skew to C, meaning (L ∩ C)(Fq) = ∅. The existence of such a skew line is an
arithmetic question over Fq, but it can be studied by analyzing the geometry of the intersection
over the algebraic closure Fq.

To build this connection, let us first consider the case where C is a single geometrically irre-
ducible curve of degree d. For a transverse Fq-line L, the intersection L ∩ C consists of d distinct
points in P2(Fq). The geometric Frobenius map, σ : [x : y : z] 7→ [xq : yq : zq], permutes these d
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points because both L and C are defined over Fq. This permutation partitions the set of intersection
points into orbits. Each orbit corresponds to a set of roots of an irreducible polynomial over Fq,
and the size of the orbit is the degree of that polynomial. The partition of the integer d into the
sizes of these orbits is the cycle type of the permutation, which defines a unique conjugacy class in
the symmetric group Sd. We denote this class by Frob(C ∩ L).

This framework extends naturally to a reducible curve whose Fq-irreducible components are
geometrically irreducible. Let C =

⋃m
i=1Ci be a plane curve with geometrically irreducible com-

ponents Ci of degree di. For a transverse Fq-line L, the Frobenius map again permutes the inter-
section points. Since each Ci is defined over Fq, the action preserves the subsets L ∩ Ci. We can
therefore analyze the permutation on each subset independently. The action on the di points of
L ∩ Ci defines a conjugacy class in Sdi as described above. Taken together, the total permutation
defines a conjugacy class in the product group Sd1 × · · · × Sdm .

Crucially, a point in the intersection C ∩ L is defined over Fq if and only if it is a fixed point of
the Frobenius permutation. Therefore, a line L is skew to C if and only if its associated Frobenius
action is a derangement (a permutation with no fixed points). Our task is now translated into an
arithmetic-geometric one: counting lines whose Frobenius action corresponds to a derangement.

To count these lines, we use a version of the Chebotarev density theorem, due to Entin [11, The-
orem 1]. The hypothesis of Entin’s theorem depends on a technical condition known as reflexivity.
A plane curve C is called reflexive if a generic tangent line to C has contact of order exactly 2 (i.e.,
is not a flex) and is tangent at a unique point (i.e., not bitangent). Every geometrically irreducible
plane curve of degree d is reflexive when the characteristic p satisfies p > d (see [14, p. 5]). This
motivates the hypothesis in Theorem 1.3. Entin’s theorem is stated for the slightly more general
condition of quasireflexivity to handle cases in characteristic 2, but since we assume q is odd in this
section, the reflexivity condition is sufficient for our purposes. Indeed, when char(Fq) is odd, the
notions of reflexivity and quasireflexivity are equivalent [11, Proposition 2.1].

Theorem 3.2 (Entin). Let C ⊂ P2 be a reflexive plane curve of degree d̃ defined over Fq. Suppose
the irreducible components of C are C1, . . . , Cm where each Ci is geometrically irreducible and
deg(Ci) = di for 1 ≤ i ≤ m. Let U ⊆ (P2)∗ denote the open subset of lines not tangent to C. Let
C be a conjugacy class in the product group Sd1 × · · · × Sdm . Then

|{L ∈ U(Fq) : Frob(C ∩ L) = C}| = |C|
|Sd1 × Sd2 × · · · × Sdm|

q2
(
1 +Od̃(q

−1/2)
)
.

We illustrate Theorem 3.2 in the special case where the conjugacy class in Sd1 × · · · × Sdm

corresponds to special derangements. More precisely, let C be the conjugacy class of derangements
corresponding to a product of cycles of full length, i.e., a di-cycle in each component Sdi . The size
of this conjugacy class is |C| =

∏m
i=1(di − 1)!. Applying Theorem 3.2, the number of transverse

Fq-lines L for which Frob(C ∩ L) = C is

|C|
d1! · d2! · · · dm!

q2
(
1 +Od̃(q

−1/2)
)
=

(
m∏
i=1

1

di

)
q2
(
1 +Od̃(q

−1/2)
)
. (3.1)

Since this quantity is positive for sufficiently large q, there must exist at least one line that is skew
to all geometrically irreducible components C1, . . . , Cm. In particular, for q sufficiently large, we
see that a positive fraction of Fq-lines are skew to C. We now have the tools to prove the main
technical result of this section.
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Proof of Theorem 3.1. DecomposeC into its irreducible components over Fq in the following way:

C = C1 ∪ · · · ∪ Cm ∪ Cm+1 ∪ · · · ∪ Cr,

where
• Ci is irreducible over Fq and di = deg(Ci) ≥ 2 for each i ≥ 1.
• Ci is irreducible over Fq for each i ≤ m, and Ci is not irreducible over Fq for each i > m.

By hypothesis, Ci is reflexive for each 1 ≤ i ≤ m. By the above discussion, the number of Fq-lines
that are skew to Ci for each 1 ≤ i ≤ m is at least the quantity given by equation (3.1). On the other
hand, for each m+1 ≤ i ≤ r, the curve Ci is irreducible over Fq but not geometrically irreducible.
For these curves, a standard application of Bézout’s theorem shows that |Ci(Fq)| ≤ d2i

4
(see, for

example, [3, Lemma 3.1]). Consequently, for each m + 1 ≤ i ≤ r, all but at most d2i
4
(q + 1) lines

are skew to the curve Ci. Thus, the number of skew lines to C is at least:(
m∏
i=1

1

di

)
q2
(
1 +Od̃(q

−1/2)
)
− q + 1

4

r∑
i=m+1

d2i ≥
1

d̃m
q2
(
1 +Od̃(q

−1/2)
)
− (q + 1)d̃2

4
. (3.2)

For q sufficiently large with respect to d̃, the lower bound (3.2) yields a positive fraction of Fq-lines
L for which (L ∩ C)(Fq) = ∅. In particular, C(Fq) is not a blocking set. □

We are now equipped to prove Theorem 1.3.

Proof of Theorem 1.3. The result is a direct consequence of Theorem 3.1. If ℓ(q) were bounded by
a constant, then the corresponding union of curves would have a total degree bounded by a constant.
The condition q ∈ Qd ensures that each component curve is reflexive, so for q sufficiently large,
Theorem 3.1 implies this union cannot be a blocking set, a contradiction. □

Remark 3.3. The hypothesis p > d in Theorem 1.3 ensures that the component curves are re-
flexive. This condition p > d can be relaxed for families of nonsingular curves. By a result of
Pardini [17], a nonsingular curve of degree d is nonreflexive only if d ≡ 1 (mod p). Thus, the
weaker condition p ∤ (d− 1) is sufficient to guarantee reflexivity for nonsingular curves. The con-
clusion of Theorem 1.3 therefore holds if each curve Ci is nonsingular and its degree di satisfies
p ∤ (di − 1).

4. FIRST PROOF OF THEOREM 1.4: RANDOMIZED CONSTRUCTION

In this section, we give a non-constructive proof of Theorem 1.4. We rely on a covering lemma
due to S. K. Stein [20], stated as in [13, Lemma 2.3], whose proof uses a randomized construction.

Lemma 4.1 (Stein). Consider a bipartite graph with bipartition A ∪ B. Let δ be the minimum
degree of a vertex in A. If |A| ≥ 2, then there is a set B′ ⊆ B such that

|B′| ≤
⌈
|B| log |A|

δ

⌉
(4.1)

and B′ dominates A (that is, for each a ∈ A, there is b ∈ B′ such that a and b are adjacent).

As preparation, we need a few lemmas. The first lemma is about an estimate on binomial
coefficients.

Lemma 4.2. Let d ≥ 2. If D | d, then we have D
(
d/D+2

2

)
≤
(
d+2
2

)
.
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Proof. Observe that the function
(
t+2
2

)
is strictly convex for real t > 0. It follows that for all

positive integers n and m, we have
(
n+m+2

2

)
−
(
n+2
2

)
>
(
m+2
2

)
−
(
0+2
2

)
=
(
m+2
2

)
− 1, that is,(

n+m+2
2

)
≥
(
n+2
2

)
+
(
m+2
2

)
. Repeatedly applying this inequality, we obtainD

(
d/D+2

2

)
≤
(
d+2
2

)
. □

The next lemma is a standard interpolation lemma; see, for example, [4, Proposition 3.1].

Lemma 4.3. Fix a finite field Fq, and consider any k distinct Fq-points P1, P2, . . . , Pk in P2. If
d ≥ k − 1, then passing through P1, P2, . . . , Pk imposes linearly independent conditions in the
vector space of degree d plane curves over Fq.

Next, we deduce the following corollary.

Corollary 4.4. Let d ≥ 3 and N =
(
d+2
2

)
. Uniformly for all P ∈ P2(Fq), the number of geometri-

cally irreducible degree d plane curves defined over Fq that pass through P is qN−1−Od(q
N−2)

q−1
.

Proof. Fix a point P ∈ P2(Fq). For each 1 ≤ j ≤ d, let Sj denote the set of degree j homogeneous
polynomials in Fq[x, y, z] (together with the zero polynomial) and let Tj ⊆ Sj denote the subset of
polynomials F in Sj such that the curve {F = 0} passes through P . Note that for each 1 ≤ j ≤ d,
we have |Sj| = q(

j+2
2 ) and |Tj| = q(

j+2
2 )−1 by Lemma 4.3.

Let Rd ⊆ Td \ {0} denote the set of polynomials in Td \ {0} that are reducible over Fq. If
F ∈ Rd, then we can write F = GH for some nonconstant polynomials G,H such that the curve
{G = 0} passes through P . It follows that

|Rd| ≤
d−1∑
j=1

|Tj||Sd−j| =
d−1∑
j=1

q(
j+2
2 )+(

d−j+2
2 )−1 ≤ 2

⌈(d−1)/2⌉∑
j=1

q(
j+2
2 )+(

d−j+2
2 )−1

Since the function
(
t+2
2

)
is strictly convex for real t > 0, for each 1 ≤ j ≤ d − 2, we have(

d+2
2

)
−
(
d−j+2

2

)
≥
(
j+2
2

)
−
(
0+2
2

)
+ d− j, which implies that N =

(
d+2
2

)
≥
(
j+2
2

)
+
(
d−j+2

2

)
+ 1.

Since d− 2 ≥ ⌈(d− 1)/2⌉ for d ≥ 3, it follows that

|Rd| ≤ 2

⌈(d−1)/2⌉∑
j=1

q(
j+2
2 )+(

d−j+2
2 )−1 ≤ dqN−2.

Let Gd ⊆ Td \ {0} denote the set of polynomials in Td \ {0} that are irreducible over Fq but
geometrically reducible. Note that if F ∈ Gd, then necessarily F = NormF

qD
/Fq(G) for some

D | d with D ≥ 2 and some polynomial G with degree d/D defined over FqD such that the curve
{G = 0} passes through P . It follows from Lemma 4.2 and Lemma 4.3 that

|Gd| ≤
∑

D|d,D≥2

(qD)(
d/D+2

2 )−1 ≤ q−2
∑

D|d,D≥2

qD(
d/D+2

2 ) ≤ q−2
∑

D|d,D≥2

q(
d+2
2 ) ≤ (d− 1)qN−2.

Combining the two estimates above, the corollary follows. □

We are now ready to present our first proof of Theorem 1.4. The proof shows that cd can be
taken arbitrarily close to 4 when q is sufficiently large.

Proof of Theorem 1.4. We build a bipartite graph with bipartition A ∪ B as in Lemma 4.1, where
A is the set of all q2 + q + 1 lines in P2 defined over Fq and B is the set of all geometrically
irreducible curves defined over Fq with degree d. We draw an edge between a vertex L ∈ A and a
vertex C ∈ B if the intersection C ∩ L contains an Fq-point.

8



Next, we give a lower bound on the minimum degree δ of a vertex in A. By definition, we fix an
Fq-line L and count the number of geometrically irreducible curvesC ∈ B such that (C∩L)(Fq) ̸=
∅. As each Fq-line has q + 1 points, we can express L(Fq) = {P1, P2, . . . , Pq+1}. For each subset
S ⊆ P2(Fq), define

ψ(S) = #{geometrically irreducible curves C of degree d such that S ⊆ C(Fq)}.
By the principle of inclusion-exclusion, the degree of the vertex L in the bipartite graph is at least:∑

1≤i≤q+1

ψ({Pi})−
∑

1≤i<j≤q+1

ψ({Pi, Pj}). (4.2)

Let N =
(
d+2
2

)
denote the dimension of the Fq-vector space parameterizing all degree d homoge-

neous polynomials in three variables. By Lemma 4.3 and Corollary 4.4, we have

ψ({P}) = qN−1 −Od(q
N−2)

q − 1
, ψ({P,Q}) ≤ qN−2 − 1

q − 1

for any two distinct points P,Q ∈ P2(Fq). The lower bound (4.2) for the degree of L thus becomes:

(q + 1) · q
N−1 −Od(q

N−2)

q − 1
−
(
q + 1

2

)
· q

N−2 − 1

q − 1
=

1

2
qN−1 −Od(q

N−2).

This allows us to conclude that δ ≥ 1
2
qN−1 − Od(q

N−2) for the minimum degree of a vertex in A.
Applying inequality (4.1), we find a subset B′ ⊆ B dominating A with

|B′| ≤ |B| log(|A|)
δ

+ 1 ≤ qN − 1

q − 1
· log(q2 + q + 1)

1
2
qN−1 −Od(qN−2)

+ 1

≤ (4 + o(1)) log q,

as q → ∞. Equivalently, we can find a blocking set constructed from (4+o(1)) log q geometrically
irreducible curves of degree d, as required. □

Remark 4.5. It is straightforward to modify the above proof to construct multiple blocking sets
using a union of geometrically irreducible degree d curves. Recall that for each positive integer
t, a t-fold blocking set in P2(Fq) is a subset of P2(Fq) such that it intersects each Fq-line with at
least t points. To form a t-fold blocking set in P2(Fq), a similar computation shows that (2(t+1)!

t
+

o(1)) log q curves are sufficient if d ≥ min{t, 3}.

5. SECOND PROOF OF THEOREM 1.4: EXPLICIT CONSTRUCTION

Let d ≥ 3 be an integer and consider the curves Cα (parametrized by α ∈ Fq) given by

yzd−1 = xd − αzd. (5.1)

Each Cα is geometrically irreducible: the defining equation (5.1) is linear in y, so any nontrivial
factorization of yzd−1 − xd + αzd in Fq[x, y, z] would involve a nonconstant factor from Fq[x, z];
however, this is impossible since zd−1 and xd − αzd share no common factor in Fq[x, z].

Theorem 5.1. There exists a subset S ⊆ Fq of size at most 1 +
⌊

2 log q

log( d
d−1)

⌋
with the property that

U :=
⋃
α∈S

Cα(Fq) (5.2)
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is a blocking set in P2(Fq).

Proof. We will choose a subset S ⊆ Fq and set U :=
⋃

α∈S Cα(Fq). The goal is to select S so that
U meets each Fq-line of P2. Our strategy is to include Fq-points of curves Cα for suitable values
of α, chosen sequentially to block as many new lines as possible at each step.

Let L ⊆ P2 be an Fq-line; so, the equation of L is ax + by + cz = 0 for some [a : b : c] ∈
P2(Fq). Since [0 : 1 : 0] ∈ Cα for each α, we may assume from now on that b ̸= 0 (otherwise
[0 : 1 : 0] ∈ L(Fq) already). Moreover, if α ∈ Fq and [x0 : y0 : z0] ∈ Cα(Fq) with z0 = 0, then
necessarily [x0 : y0 : z0] = [0 : 1 : 0] and hence [x0 : y0 : z0] /∈ L(Fq). Thus, it suffices to compute
L(Fq) ∩ {[x0 : y0 : z0] ∈ P2(Fq) : z0 ̸= 0}. Writing u := a/b and v := c/b, this set is given by
{[x : −ux − v : 1] : x ∈ Fq}. Consequently, U ∩ L(Fq) ̸= ∅ if and only if there is some α ∈ S,
such that there is x ∈ Fq with [x : −ux− v : 1] ∈ Cα(Fq), that is, xd + ux+ v = α.

To this end, for each (u, v) ∈ Fq ×Fq, define

Tu,v :=
{
ad + ua+ v : a ∈ Fq

}
⊆ Fq . (5.3)

By the discussion above, U is a blocking set if and only if

S ∩ Tu,v ̸= ∅ for each (u, v) ∈ Fq ×Fq . (5.4)

Since fu,v(x) := xd + ux + v is a polynomial of degree d, every value b ∈ Fq has at most d
preimages in Fq. Therefore,

|Tu,v| ≥
q

d
for each (u, v) ∈ Fq ×Fq . (5.5)

We construct, by induction on ℓ, a sequence of elements α1, . . . , αℓ ∈ Fq together with sets
S
(i)
αi ⊆ Fq ×Fq (for i = 1, . . . , ℓ) satisfying the following properties:

(I) for each i = 1, . . . , ℓ and each (u, v) ∈ S
(i)
αi , we have αi ∈ Tu,v. Moreover, for each

(u, v) ∈ Fq ×Fq, if αi ∈ Tu,v, then (u, v) ∈ S
(j)
αj for some 1 ≤ j ≤ i.

(II) the sets S(i)
αi are disjoint and

ℓ∑
i=1

∣∣S(i)
αi

∣∣ ≥ q2 ·

(
1−

(
d− 1

d

)ℓ
)
. (5.6)

We first prove the base case ℓ = 1 of the construction satisfying the conditions (I)-(II). For each
β ∈ Fq, we define:

S
(1)
β := {(u, v) ∈ Fq ×Fq : β ∈ Tu,v} . (5.7)

A simple counting argument, coupled with inequality (5.5), yields:∑
β∈Fq

∣∣∣S(1)
β

∣∣∣ = ∑
(u,v)∈Fq ×Fq

|Tu,v| ≥ q2 · q
d
. (5.8)

Choose α1 ∈ Fq such that ∣∣S(1)
α1

∣∣ ≥ ∣∣∣S(1)
β

∣∣∣ for each β ∈ Fq . (5.9)

Inequalities (5.8) and (5.9) yield:∣∣S(1)
α1

∣∣ ≥ q2

d
= q2 ·

(
1− d− 1

d

)
. (5.10)
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This completes the proof of the base case ℓ = 1 for the construction of the points α1, . . . , αℓ along
with the sets S(1)

α1 , . . . , S
(ℓ)
αℓ satisfying the properties (I)-(II) above.

We continue with the inductive step. Suppose we have constructed α1, . . . , αk ∈ Fq (for some
k ≥ 1) along with some sets S(1)

α1 , . . . , S
(k)
αk ⊆ Fq ×Fq satisfying the properties (I)-(II). We now

construct another set S(k+1)
αk+1 ⊆ Fq ×Fq corresponding to another point αk+1 ∈ Fq still satisfying

properties (I)-(II). In particular, the sets S(1)
α1 , . . . , S

(k)
αk are disjoint and

k∑
i=1

∣∣S(i)
αi

∣∣ ≥ q2 ·

(
1−

(
d− 1

d

)k
)
. (5.11)

By the inductive hypothesis (I), we know that for each i = 1, . . . , k and each (u, v) ∈ Fq ×Fq,

if αi ∈ Tu,v, then (u, v) ∈ S(j)
αj

for some j ≤ i; (5.12)

also, the inductive hypothesis (I) yields

for each i = 1, . . . , k and for each (u, v) ∈ S(i)
αi

, we have αi ∈ Tu,v. (5.13)

We let

W := (Fq ×Fq) \

(
k⋃

i=1

S(i)
αi

)
. (5.14)

Also, we let V := Fq \{α1, . . . , αk}. Using equations (5.12) and (5.14), we have that

Tu,v ⊆ V for each (u, v) ∈W. (5.15)

Then we define for each β ∈ V the set:

S
(k+1)
β := {(u, v) ∈ W : β ∈ Tu,v} ;

according to equations (5.15) and (5.13), we have that

S
(k+1)
β ∩ S(i)

αi
= ∅ for each i = 1, . . . , k. (5.16)

Due to the definition of each set S(k+1)
β , we get that if β ∈ Tu,v (for any (u, v) ∈ Fq ×Fq), then

either (u, v) ∈ S
(i)
αi for some i = 1, . . . , k, or (u, v) ∈ S

(k+1)
β . Using again (5.15), we obtain:∑

β∈V

∣∣∣S(k+1)
β

∣∣∣ = ∑
(u,v)∈W

|Tu,v| ≥ |W | · q
d
. (5.17)

In the last inequality from (5.17), we also employed (5.5). Then we pick αk+1 ∈ V (clearly,
αk+1 ̸= αi for i = 1, . . . , k due to the definition of V ) such that∣∣∣S(k+1)

αk+1

∣∣∣ ≥ ∣∣∣S(k+1)
β

∣∣∣ for each β ∈ V. (5.18)

Therefore, equations (5.17) and (5.18) yield∣∣∣S(k+1)
αk+1

∣∣∣ ≥ |W | · q
d · |V |

>
|W |
d
. (5.19)
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We note that the sets S(i)
αi are all disjoint for i = 1, . . . , k + 1 (by the inductive hypothesis coupled

with equation (5.16)); furthermore, condition (I) above is satisfied for the points α1, . . . , αk+1.
Combining the equations (5.19), (5.14) and (5.11), we obtain that

k+1∑
i=1

∣∣S(i)
αi

∣∣ ≥ ∣∣∣∣∣
k⋃

i=1

S(i)
αi

∣∣∣∣∣+ q2 −
∑k

i=1

∣∣∣S(i)
αi

∣∣∣
d

≥ q2

d
+ q2 ·

(
1−

(
d− 1

d

)k
)

· d− 1

d
≥ q2 ·

(
1−

(
d− 1

d

)k+1
)
,

as desired for proving that also condition (II) holds for S(1)
α1 , . . . , S

(k+1)
αk+1 .

So, inductively, we obtain the construction of points α1, . . . , αℓ ∈ Fq such that for the corre-
sponding (disjoint) sets S(i)

αi ⊆ Fq ×Fq, we have the inequality∣∣∣∣∣
ℓ⋃

i=1

S(i)
αi

∣∣∣∣∣ ≥ q2 ·

(
1−

(
d− 1

d

)ℓ
)
. (5.20)

Furthermore, by construction, for each (u, v) ∈
⋃ℓ

i=1 S
(i)
αi , there exists some i ∈ {1, . . . , ℓ} such

that αi ∈ Tu,v. Our construction stops when we achieve that
ℓ⋃

i=1

S(i)
αi

= Fq ×Fq (5.21)

because then the corresponding set S := {α1, . . . , αℓ} will have the desired property (5.4). So, in
order to obtain (5.21), it suffices to have that∣∣∣∣∣

ℓ⋃
i=1

S(i)
αi

∣∣∣∣∣ > q2 − 1. (5.22)

Using inequality (5.20), we see that inequality (5.22) is achieved once we have:(
d− 1

d

)ℓ

<
1

q2
. (5.23)

So, indeed, we can find a set S such that |S| ≤ 1 +

⌊
2 log q

log( d
d−1)

⌋
, as required. □

Remark 5.2. Assume that d′ = gcd(d, q − 1) > 1. In this case, we can show that if
⋃

α∈S Cα(Fq)

is a blocking set in P2(Fq), then necessarily |S| ≥ cd′ log q for some constant cd′ depending on d′.
Indeed, by equation (5.4), we have S∩Tu,v ̸= ∅ for all u, v ∈ Fq; in particular, for each v ∈ Fq, we
have S ∩ T0,v = S ∩ {ad′ + v : a ∈ Fq} ̸= ∅. Now, if |S| < cd′ log q, then a standard application of
Weil’s bound (see for example [3, Lemma 2.1]) shows that there is x ∈ Fq, such that s − x is not
a d′-th power in Fq for each s ∈ S, that is, S ∩ T0,x = ∅, contradicting to the above assumption on
S. Thus, it follows that |S| ≥ cd′ log q.

We end the paper with the following open question regarding the family of curves Cα ⊂ P2

defined by yzd−1 = xd − αzd.

Question 5.3. Given q and d, what is the smallest possible size of S ⊂ Fq such that
⋃

α∈S Cα(Fq)

is a blocking set in P2(Fq)?
12



When gcd(d, q− 1) > 1, we have shown that the answer to Question 5.3 is between c1 log q and
c2 log q, where c1 is a constant depending only on gcd(d, q−1) and c2 is a constant depending only
on d. Getting an asymptotically sharp answer in this case seems challenging.

By contrast, if gcd(d, q − 1) = 1, then our argument for the lower bound no longer applies.
Indeed, the map Fq → Fq given by x 7→ xd is a permutation, and so, it is not useful to consider
d-th power residues. It would be interesting to establish the asymptotic behavior of the answer to
Question 5.3 in this case.
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