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Preface

This book originated from the authors’ desire to give an explanation of several
recent applications of p-adic analysis to number theory and especially to arithmetic
geometry. Central to this end has been the work done by several people (including
the authors) to prove the Dynamical Mordell-Lang conjecture, which gives predic-
tions about how the orbits of points in a variety under self-maps should intersect
subvarieties. As the name suggests, this can be interpreted as a dynamical analogue
of the classical Mordell-Lang Conjecture (proved by Faltings and Vojta) concerning
intersections between finitely generated subgroups and subvarieties in a semiabelian
variety.

Many results working towards this conjecture have used p-adic analysis, and we
describe all known (to us) partial results up to this point in time—both those using
p-adic analysis and those using alternative approaches—towards the Dynamical
Mordell-Lang Conjecture. In some cases, we present entire proofs of results, while
in other cases only a sketch is given, and in certain cases only a brief overview of the
idea of the proof is provided. Our choice should not be interpreted as our opinion
about the relative importance of the included results, but is instead an editorial
choice regarding which material we thought best fits the overarching theme of this
book.

We also give other applications of p-adic analysis to number theory and arith-
metic geometry. In these cases, our list of applications is not meant to be exhaustive,
but rather our goal is to show the wide reach of applications and potential appli-
cations of p-adic analysis to arithmetic geometry. While the uses of p-adic analytic
methods we give do not always explicitly relate to the Dynamical Mordell-Lang
Conjecture, we have generally favored applications of p-adic analysis to problems
with some relation to the Dynamical Mordell-Lang Conjecture.

We thank all our colleagues with whom we wrote many of the papers whose
results are detailed in this book; obviously, without the joint efforts we put towards
solving the Dynamical Mordell-Lang Conjecture we would not have had a topic for
this book. So, we thank Rob Benedetto, Ben Hutz, Par Kurlberg, Jeff Lagarias,
Tom Scanlon, Yu Yasufuku, Umberto Zannier, and Mike Zieve. We are also grateful
to the referees for their careful reading of a previous version of this book, and for
suggesting many improvements for our work. Last, but definitely not least, we
thank our families for their love and support while writing this book.

xi
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xii PREFACE

Notation

We let Z, Q, R and C be the sets of integer, rational, real, respectively, complex
numbers. N0 is the set of all nonnegative integers, while N is the set of all positive
integers.

An arithmetic progression is a set of the form {a+rn}n∈N0
, where the common

difference r may be equal to 0 (in which case the set consists of a single element).
If the common difference r is nonzero, then the arithmetic progression is infinite.
Note that in the literature, sometimes one calls such a sequence a one-sided arith-
metic progression in order to distinguish it from a two-sided arithmetic progression,
which is a set of the form {a + rn}n∈Z. However, since in this book we mainly
encounter one-sided arithmetic progressions and only occasionally encounter two-
sided arithmetic progressions, our convention is to call arithmetic progression a
sequence {a + rn}n∈N0

, while a sequence {a + rn}n∈Z is called a two-sided arith-
metic progression.

For a matrix A, we denote by At its transpose.
For a set U , we denote by idU the identity function on U .
For any field K, we denote by char(K) its characteristic. By K we denote a

fixed algebraic closure of K.
For any subfield K ⊆ Q, we denote by oK the ring of algebraic integers con-

tained in K. If K is a number field, and p is a prime ideal of K, then kp is the

residue field corresponding to p, i.e., kp
∼→ oK/p.

The usual affine space of dimension m is denoted by Am; for any field K, we
have that Am(K) consists of all m-tuples of points with coordinates inK. Similarly,
we denote by Pm the projective space of dimension m; for any field K, we have that
Pm(K) consists of all equivalence classes of (m+1)-tuples of points with coordinates
in K not all equal to 0, under the equivalence relation

[x0 : x1 · · · : xm] ∼ [y0 : y1 : · · · : ym]

if and only if there exists a nonzero scalar c ∈ K such that

yi = cxi for all i = 1, . . . ,m.

By affine variety we mean a subset of an affine space defined by a set of algebraic
equations. Note that we do not ask a priori the variety be irreducible. Similarly,
by projective variety we mean a subset of a projective space defined by a set of
algebraic equations. We endow both the affine space and the projective space with
the Zariski topology where the closed sets are precisely the (affine, respectively
projective) varieties. We say that X is a quasiprojective variety if it is the open
subset of a projective subvariety of some projective space. We say that a variety X
is defined over a field K if it may be defined by a set of equations with coefficients in
K. For a variety X defined over a field K, we denote by X(K) the set of K-rational
points of X.

We denote by Ga the affine line A1 endowed with the additive group law; we
extend this law coordinatewise to Gn

a . We denote by Gm the (Zariski open subset
of the affine line) A1 \ {0}, i.e., the affine line without the origin, endowed with the
multiplicative group law. Similarly to Gn

a , we extend the multiplicative group law
to Gn

m.
An abelian variety is an irreducible projective variety which has the structure

of an algebraic group.
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NOTATION xiii

For a set X, a map Φ : X −→ X is called a self-map. In general, for a self-map
Φ : X −→ X and for any integer n ≥ 0, we denote by Φn the n-th compositional
iterate of Φ, i.e. Φn = Φ ◦ · · · ◦ Φ (n times), with the convention that Φ0 is the
identity map. The orbit of a point x ∈ X is denoted as OΦ(x) and it is the set of
all Φn(x) for n ∈ N0.

A dynamical system consists of a topological space X endowed with a contin-
uous self-map Φ.

For two real-valued functions f and g, we write f(x) = o(g(x)) if limx→∞ f(x)/
g(x) = 0. Similarly, we write f(x) = O(g(x)) if the function x 	→ f(x)/g(x) is
bounded as x→∞.

In a metric space (X, d(·, ·)), for x ∈ X and r ∈ R>0 we denote by D(x, r) the
open disk

D(x, r) = {y ∈ X : d(x, y) < r}.
We denote by D(x, r) the closure of D(x, r).

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.
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CHAPTER 1

Introduction

In this chapter we describe various instances of the Dynamical Mordell-Lang
Conjecture which appear in seemingly different areas. We conclude our Introduction
by giving a brief overview of the rest of the book.

1.1. Overview of the problem

We start by presenting several arithmetic questions which are all connected,
though this may not be so obvious a priori. All these questions have in common
the following theme: we have a dynamical system Φ on a topological space X, and
then for a point α ∈ X and a closed subset V of X, we ask for what values of
n ∈ N0 we have Φn(α) ∈ V ? The underlying theme of this book is that all the
questions we consider have, or are conjectured to have, the same answer to the above
question: finitely many arithmetic progressions. We also recall our convention that
an arithmetic progression of common difference equal to 0 is simply a singleton.

The cases we consider are the following ones:

(1) Find all n ∈ N0 such that an = 0 where {an}n∈N0
is a linear recurrence

sequence. Say that the recurrence relation verified by the sequence is given
for all n ≥ 0 by

an+m = c1an+m−1 + · · ·+ cman,

for some given complex numbers c1, . . . , cm. Then the ambient space is
the affine space Am with the Zariski topology, while the dynamical system
is the one given by

Φ ((x1, . . . , xm)) = (x2, . . . , xm, c1xm + · · ·+ cmx1),

the starting point of the iteration is

x := (a0, . . . , am−1),

and V ⊂ Am is the hyperplane given by the equation x1 = 0. In Sec-
tion 1.2 and Subsection 2.5.1, we explain this example in greater detail.
In Section 2.5 we prove that the answer to this question is always a finite
union of arithmetic progressions. A related, but more general problem in-
volving (multi-dimensional) polynomial-exponential equations is discussed
in Section 1.3.

(2) Find all n ∈ N0 such that given a matrix A ∈Mn(C) acting on the complex
affine space An(C), a point α ∈ An(C), and a subvariety V ⊂ An, then
Anα ∈ V (C). This case is discussed in Section 1.4 and it turns out to
be equivalent with the problem (1) discussed above (see the equivalence
proven in Proposition 2.5.1.4).

1
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2 1. INTRODUCTION

(3) Find all n ∈ N0 such that given an endomorphism Φ of a quasiprojective
variety X defined over C, a point α ∈ X(C), and a subvariety V of X,
then Φn(x) ∈ V (C). This problem, called the Dynamical Mordell-Lang
Conjecture generalizes both of the above problems described above (see
Section 1.5 for a first discussion of this conjecture). It is expected the
answer to this question is again finitely many arithmetic progressions.

(4) Given a power series

f(z) :=

∞∑
n=0

anz
n

which satisfies a linear differential equation with polynomial coefficients,
describe the set

Sf := {n ∈ N0 : an = 0}.
Rubel [Rub83, Problem 16] conjectured that Sf is a finite union of arith-
metic progressions. We discuss this problem in Subsection 3.2.1, and show
that a positive answer for an extension of the above Dynamical Mordell-
Lang Conjecture to rational maps would solve Rubel’s question.

1.2. Linear recurrence sequences

Let {Fn}n≥0 be the Fibonacci sequence defined by

F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for all n ≥ 0.

Also, let {an}n≥0 be the sequence defined recursively by

an+2 = 5an+1 − 6an,

where a0 = 7
12 and a1 = 3

2 .

Question 1.2.0.1. What are the numbers which appear in both of the sequences
{Fm}m∈N0

and {an}n∈N0
?

We can compute easily the first elements in both sequences:

F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, F7 = 13, . . .

and

a0 =
7

12
, a1 =

3

2
, a2 = 4, a3 = 11, a4 = 31, a5 = 89, a6 = 259 . . . .

One observes that F11 = 89 = a5, and it is a reasonable question to ask whether
this is the only answer to Question 1.2.0.1. This is a hard question since one would
have to solve the equation Fm = an in nonnegative integers m and n (for more
details, see [Eve95]). Moreover, since it is easy to find a formula for the general
term of both of these sequences (see Proposition 2.5.1.4), Question 1.2.0.1 reduces
to finding m,n ∈ N such that

1√
5
·
((

1 +
√
5

2

)m

−
(
1−

√
5

2

)m)
= 2n−2 + 3n−1.

On the other hand, if we were to ask the easier question of when the above equal-
ity holds when m = n, the answer would be never since (by a simple inductive
argument) one can show that ak > Fk for all k ∈ N.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



1.3. POLYNOMIAL-EXPONENTIAL DIOPHANTINE EQUATIONS 3

In general, given two linear recurrence sequences {am}m∈N0
and {bn}n∈N0

, one
would like to understand whether there exists an underlying structure for the solu-
tions (m,n) ∈ N×N for which am = bn. Or, at least, for the easier case, one would
like to understand the structure of the set of all n ∈ N such that an = bn. It is
immediate to see that this last case reduces to understanding when a given linear
recurrence sequence {cn}n∈N0

(in this case, cn = an − bn) takes the value 0. Then
the answer is that if there exist infinitely many n ∈ N such that cn = 0, then there
exists an infinite arithmetic progression {� + nk}n∈N0

such that c�+nk = 0. This
will be proven in Section 2.5. As described in Section 1.1, the proper dynamical
setting for this example is as follows: given a linear recurrence sequence

{am}m∈N0
⊂ C

which satisfies the relation

an+m = c1an+m−1 + · · ·+ cman,

for some given complex numbers c1, . . . , cm, then the dynamical system is the one
given by the map

Φ((x1, . . . , xm)) = (x2, . . . , xm, c1xm + · · ·+ cmx1)

acting on the m-dimensional affine complex space Am. Then finding all n ∈ N0

such that an = 0 is equivalent with finding all n ∈ N0 such that

Φn((a0, . . . , am−1)) ∈ V (C),

where V ⊂ Am is the hyperplane given by the equation x1 = 0.

1.3. Polynomial-exponential Diophantine equations

Let m, k ∈ N, let F ∈ Z[x1, . . . , xm, y1, . . . , yk], and let r1, . . . , rk ∈ Z. A
polynomial-exponential equation has the form

F (j1, . . . , jm; rn1
1 , . . . , rnk

k ) = 0,

where the variables j1, . . . , jm ∈ Z, respectively r1, . . . , rk ∈ N0. In general, there
might be many solutions to the above equation, especially if the degree of f in xi is
1 for at least one variable xi. But, even if degxi

f = 1, there might be no solutions
due to some local constraints such as in the following case:

(1.3.0.1) 21x3
1x3 − 7 · 3n1x2 + 14 · 5n2x2

3 − 49x1x3 + 2 = 0,

when there are no solutions x1, x2, x3 ∈ Z and n1, n2 ∈ N0 by considering the
congruence modulo 7 for the equation (1.3.0.1). Now, even if one assumes j1 = j2 =
· · · = jm = j, and that the polynomial f has the variables xi and yj separated, the
problem is not easier. Even also assuming that r1 = r2 · · · = rk does not simplify
the problem much. For example, we discuss in Chapter 13 the following special
case:

g(x) =
k∑

i=1

cip
ni ,

where g ∈ Z[x], c1, . . . , ck ∈ Z and p is a prime number. Essentially, one expects
that if g(x) has few nonzero p-adic digits, then x (or a linear function evaluated at
x) would also have few p-adic digits. However, this is far from being proven even in
simple cases such as g(x) = x2 and k ≥ 5 (for more details, see [BBM13, CZ00,
CZ13] and the references therein).
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4 1. INTRODUCTION

On the other hand, if one assumes that

j1 = · · · = jm = n1 = n2 = · · · = nk,

then the problem reduces essentially to the one discussed in Section 1.2 (see also
Section 2.5). Thus one obtains that if there exist infinitely many n ∈ Z such that

(1.3.0.2) H (n, rn1 , r
n
2 . . . , rnk ) = 0,

where H ∈ Z[z0, z1, z2, . . . , zk], then there exists an infinite arithmetic progression
{�+ nk}n∈N0

such that each element of it is a solution to (1.3.0.2).

1.4. Linear algebra

Let A be an invertible matrix in GLr(C), let V be a linear subspace of Cr, and
let z ∈ Cr.

Question 1.4.0.1. Is there a simple description of the set of positive integers
n such that Anz ∈ V ?

We note that the problem discussed in this section could easily be asked for
an arbitrary subvariety defined over C of the affine space Ar; however this more
general question reduces to the case V is a linear subvariety.

If V is a line passing through the origin of Cr, then once there exist two distinct
nonnegative integers m < n such that

(1.4.0.2) Amz ∈ V and Anz ∈ V,

then we immediately conclude that V is fixed by An−m and therefore

Am+�(n−m)z ∈ V for all � ∈ N0.

In particular, if k0 is the smallest positive integer k such that Ak fixes V , and if
m0 is the smallest nonnegative integer m such that Amz ∈ V , then Anz ∈ V if and
only if n = m0 + �k0 for some nonnegative integer �.

Things are not so simple in general. For example, when V is a line that does
not pass through the origin, it is easy to see that you can have distinct m and n
such that (1.4.0.2) holds without getting an entire arithmetic progression of such
integers, just by choosing a line V which passes through two arbitrary points Amz
and Anz. But in the case of lines not passing through the origin, once you have a
large finite number of integers n such that

(1.4.0.3) Anz ∈ V,

you must have an infinite arithmetic progression of such n. There is even an explicit
bound on that number due to Beukers-Schlickewei [BS96], which is likely nowhere
near sharp. In fact, under the assumption that each eigenvalue of A is either equal
to 1 or is not a root of unity, and furthermore for each two distinct eigenvalues λi

and λj of A we have that λi/λj is not a root of unity, Beukers-Schlickewei [BS96]
show that there are at most 61 integers n ∈ N0 such that (1.4.0.3) holds. The
general case of an arbitrary matrix A follows easily from this special case.
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1.5. ARITHMETIC GEOMETRY 5

1.5. Arithmetic geometry

The subject of this book is a geometric generalization (see Conjecture 1.5.0.1)
of all of the above problems, and it is also connected to the classical Mordell-
Lang Conjecture (see Chapter 3). In each of the three problems discussed in Sec-
tions 1.2 to 1.4, we deal with a geometric object: the line V in Section 1.4, or the
hypersurface F = 0 in Section 1.3, or the hyperplane x1 = 0 in the affine space
Am as in Section 1.2. And we want to understand when an arithmetic dynamical
system intersects the geometric object. The arithmetic dynamical system is the
iteration of the matrix A in Section 1.4, or the input of an integer number into the
equation F = 0 (which is a discrete dynamical system simply because all integers
are obtained from 0 by repeated operations of either z 	→ z + 1 or z 	→ z − 1), or
a linear recurrence sequence as in Section 1.2. And in each case one obtains that
once there exist infinitely many instances of the intersection between the geomet-
ric object and the arithmetic dynamical object, then there is a structure for the
intersection which is given by finitely many arithmetic progressions. This principle
is formally stated in the Dynamical Mordell-Lang Conjecture (for more details, see
Chapter 3).

Conjecture 1.5.0.1 (Dynamical Mordell-Lang Conjecture). Let X be a quasi-
projective variety defined over C, let Φ be any endomorphism of X, let α ∈ X(C),
and let V ⊆ X be any subvariety. Then the set of all n ∈ N0 such that Φn(α) ∈ V (C)
is a union of finitely many arithmetic progressions.

We note that the Dynamical Mordell-Lang Conjecture can be formulated over
any field K of characteristic 0 (see Conjecture 3.1.1.1); however such a formulation
reduces to proving the case when K = C (see Proposition 3.1.2.1).

A special case of Conjecture 1.5.0.1 that is known is when X is an abelian
variety, and Φ is the translation-by-P endomorphism of X for some point P ∈
X(C). In this latter case we encounter the cyclic case of the classical Mordell-Lang
Conjecture (for more details, see Section 3.4).

We present below a few cases of Conjecture 1.5.0.1; all our examples are set in
the ambient space X = A3 in which case there is at this time no general proof of
the Dynamical Mordell-Lang Conjecture.

Example 1.5.0.2. Consider the endomorphism

Φ : A3 −→ A3

given by

Φ(x, y, z) = (x2 + x, y2 + y, z2 + z).

Let V ⊂ A3 be the plane given by the equation

x+ y + z = 1.

Then for most points α ∈ A3(Q), the set

S := {n ∈ N0 : Φ
n(α) ∈ V (Q)}

is finite. For example, this can be seen immediately if all three coordinates of α
are integers (in which case, at the very most, S has 1 element). However, if α
is an arbitrary point in A3(Q), then it is much harder to prove that S is always
a finite union of arithmetic progressions (possibly with common difference equal
to 0). However, we will see later (see Corollary 7.0.0.1) that for any subvariety
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V ⊆ A3, the set S is a finite union of artihmetic progressions. Furthermore, using
the classification of periodic curves under the coordinatewise action of a polynomial
done by Medvedev-Scanlon [MS14], one can show that in the case of the above
plane V , the set S is finite assuming α is not preperiodic. Now, if α is preperiodic,
the question of whether S contains an infinite arithmetic progression is equivalent
with finding three preperiodic points a, b and c for the action of the polynomial

f(z) := z2 + z,

such that

a+ b+ c = 1.

This last question is a deep question related to the problem of unlikely intersections
in dynamics which we discuss in Subsection 14.2.2.

Example 1.5.0.3. Consider the endomorphism

Φ : A3 −→ A3

given by

Φ(x, y, z) = (x5, y3, z5).

Let α = (0, i, 0) and let V ⊂ A3 be the surface given by the equation

x3 + y + z3 = i.

We easily see that α is periodic under the action of Φ and moreover, Φn(α) ∈ V
if and only if n is an even nonnegative integer. Actually, using Theorem 9.3.0.1
one can show that for any α ∈ A3(C) and for any complex subvariety V ⊆ A3,
the set S of all n ∈ N0 such that Φn(α) ∈ V (C) is a finite union of arithmetic
progressions. Furthermore, according to the classical Mordell-Lang conjecture for
an algebraic torus (proven by Laurent [Lau84]; see also Section 3.4), one obtains
that the above set S is finite unless V contains a translate of a positive dimensional
algebraic torus.

Example 1.5.0.4. Consider the endomorphism

Φ : A3 −→ A3

given by

Φ(x, y, z) = (x2 + y, y2 + z, z2 + x).

Let α = (1, 1, 1) and S ⊂ A3 be the surface given by the equation

x+ y2 + z3 = x2 + y3 + z.

It is immediate to see that the entire orbit OΦ(α) is contained in the surface S,
and the reason for this is that V contains the line L given by the equation

x = y = z,

which is fixed by the action of Φ. However, if V is an arbitrary subvariety of A3,
and also α is an arbitrary point in A3(C), then it is not known whether Conjec-
ture 1.5.0.1 holds. In some sense, the endomorphism Φ from this Example lies
outside all the presently known cases of the Dynamical Mordell-Lang Conjecture
(see Chapter 3 for more details).
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Examples 1.5.0.2 to 1.5.0.4 give us a glimpse into the philosophy behind the
Dynamical Mordell-Lang Conjecture. With the notation as in Conjecture 1.5.0.1,
the set

S := S(Φ, V, α) := {n ∈ N0 : Φ
n(α) ∈ V }

is finite unless one of the following two conditions holds:

(1) α is preperiodic under the action of Φ and V contains a point from the
periodic cycle of OΦ(α); or

(2) V contains a positive dimensional subvariety W which is periodic under
the action of Φ, and moreover, W intersects OΦ(α) (for the definition of
periodic subvarieties, see Section 2.2).

It is easy to see that either (1) or (2) above yield a corresponding infinite set
S = S(Φ, V, α). Moreover, it is also clear that if either case (1) holds, or V itself is
a periodic variety, then the set S consists of finitely many arithmetic progressions.
So, the content of the Dynamical Mordell-Lang Conjecture is to prove that when
α is not preperiodic, then the only possibility for the set S to be infinite is when
condition (2) holds.

1.6. Plan of the book

We sketch here the contents of the remaining chapters of our book. Also, at
the end of this section, we suggest several plans for studying from this book.

1.6.1. Description of each chapter. In Chapter 2 we present the necessary
background material for the rest of the book, focusing on the notions from algebraic
and arithmetic geometry, valuation theory, p-adic analysis and their applications
to the problems studied in our book. Of special importance for our study is The-
orem 2.5.4.1, which also constituted the starting point for our p-adic approach to
the Dynamical Mordell-Lang Conjecture. Theorem 2.5.4.1 is the classical result
of Skolem [Sko34] (later generalized by Mahler [Mah35] and Lech [Lec53]) that
solves the problem discussed in Section 1.2: given a linear recurrence sequence
{an} ⊂ C, the set of nonnegative integers n such that an = 0 is a finite union of
arithmetic progressions.

In Chapter 3 we discuss Conjecture 1.5.0.1 and its connection to the classical
Mordell-Lang conjecture (proven by Faltings [Fal83]) and to the Denis-Mordell-
Lang Conjecture (see [Den92a]). We also discuss a multi-dimensional problem
stemming from the Dynamical Mordell-Lang Conjecture, which turns out to be false
in general, but sometimes, in outstanding cases, such as the classical Mordell-Lang
conjecture itself, it has a positive answer. We explore in more depth this multi-
dimensional analogue of the Dynamical Mordell-Lang Conjecture in Chapter 5.
Also, in Chapter 5 we prove an interesting instance of Conjecture 1.5.0.1 when
X = A2, V is the diagonal line, and

Φ(x, y) := (f(x), g(y))

for arbitrary polynomials f, g ∈ C[z] (see [GTZ08, GTZ12]). The proof of the
main result from Chapter 5 is one of the very few instances when a special case of
the Dynamical Mordell-Lang Conjecture is proven without using a p-adic approach;
other special cases of Conjecture 1.5.0.1 proven without the explicit use of p-adic
analysis are the works of Ng and Wang [NW13] and Xie [Xie14, Xieb].
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In Chapter 4 we expand on the discussion from Section 2.5 by giving a geometric
twist of the classical result of Skolem-Mahler-Lech regarding the occurrence of zeros
in an arithmetic progression; essentially, Theorem 2.5.4.1 can be easily reformulated
in terms of automorphisms of Pn (see Denis [Den94]). In particular, we show that
given an étale endomorphism Φ of a quasiprojective variety X defined over C, and
given a point α ∈ X(C) there exists a prime number p, a suitable embedding
into Qp, and a positive integer k such that the map n 	→ Φ(kn) is p-adic analytic
(see [BGT10] whose main result builds on previous work of Bell [Bel06]). This
method of finding a p-adic analytic parametrization of the orbit of a point is called
the p-adic arc lemma.

In Chapter 6 we present the main results from p-adic dynamics which allow
us to parametrize the orbit of a point under a non-étale endomorphism Φ of a
quasiprojective variety X. The main results are for rational maps Φ acting on
X = P1, and they are due to Rivera-Letelier [RL03]. As an application of these
p-adic analytic parametrizations we obtain several interesting results in Chapters 7
and 11 (see [BGKT10, BGKT12, BGHKST13]). In Chapter 8 we present
heuristics regarding the general case of the Dynamical Mordell-Lang Conjecture
(for more details, see [BGHKST13]). In particular, these heuristics suggest that
the p-adic approach might not work to prove the general case of Conjecture 1.5.0.1.

There are fewer instances of p-adic analytic parametrizations of orbits under
endomorphisms Φ of higher dimensional varieties X; the main result in this area
is an older theorem of Herman and Yoccoz [HY83]. However, this last result
is sufficient for us to prove certain special cases of the Dynamical Mordell-Lang
Conjecture in Chapter 9.

In Chapter 10 we present two results of Scanlon [Sca, Sca11] towards the
Dynamical Mordell-Lang Conjecture which both use analytic parametrizations of
the orbit – one of the parametrizations using p-adic analysis, and the other one
using real analytic functions. In Chapter 10, we also discuss briefly Xie’s proofs
[Xie14, Xieb] of the special cases of the Dynamical Mordell-Lang Conjecture for
endomorphisms of A2. We point out right from the beginning that Xie proved
one of the most outstanding open case of the dynamical Mordell-Lang Conjecture
– the case of endomorphisms of A2 – however, due to our emphasis in this book
for the p-adic analytic approach to the Dynamical Mordell-Lang Conjecture and
also due to the fact that Xie’s results are very recent (actually, [Xieb] was not
even released when we submitted our first draft of our book), we do not include
a thorough description of Xie’s theorems. But we encourage the reader interested
in the problem we study in this book to consult Xie’s almost 100 pages preprint
[Xieb] (which uses a previously released almost equally long preprint [Xiea]); in a
way, together [Xiea] and [Xieb] contain enough material for another book on the
topic of the Dynamical Mordell-Lang Conjecture!

In Chapter 11 we prove a weaker version of the Dynamical Mordell-Lang Con-
jecture. In the highest possible generality (even surpassing the world of algebraic
geometry and dealing with continuous self-maps Φ on Noetherian spaces X), we
prove in Theorem 11.4.2.2 that for any closed subset Y ⊆ X and for any α ∈ X,
the set

S := {n ∈ N0 : Φ
n(α) ∈ Y }

is a union of finitely many arithmetic progressions along with a set of Banach
density 0. In other words, we prove that if X contains no closed subset which is
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both periodic under Φ and also intersects the orbit of α, then the set S has Banach
density 0. The Dynamical Mordell-Lang Conjecture (when Φ is an endomorphism
of a quasiprojective variety X) asks that S must be finite in this case. Nevertheless,
Theorem 11.4.2.2 (see also [BGT15b] where this result was first published) presents
very strong evidence towards Conjecture 1.5.0.1. Furthermore, also in Chapter 11
we present various strengthenings of Theorem 11.4.2.2 for various special cases of
the Dynamical Mordell-Lang Conjecture (for more details, we refer the reader to
[BGKT10] and [BGT15b]).

In Chapter 12 we discuss the Denis-Mordell-Lang Conjecture which may be
viewed as a hybrid between the classical Mordell-Lang problem and Conjecture
1.5.0.1 over a field of positive characteristic. We continue the exploration of the
Dynamical Mordell-Lang Conjecture in characteristic p in Chapter 13; very lit-
tle is known for the characteristic p analogue of Conjecture 1.5.0.1 (see Conjec-
ture 13.2.0.1) even for the case of endomorphisms of Gn

m.
In Chapter 14 we discuss various other questions in arithmetic geometry whose

solution was obtained (or it might be obtained) using a p-adic analytic approach.
Among these questions we mention the Dynamical Manin-Mumford Conjecture and
the unlikely intersection problem in dynamics (see also [Zan12] for more details on
related problems in arithmetic geometry). In Chapter 15 we conclude by speculating
on the future of the Dynamical Mordell-Lang Conjecture.

1.6.2. Suggested plans for studying. Of course, we hope the interested
reader will find time to read our entire book, but in case one wants to read only a
subset of our book in order to gain understanding to some of the more important
results and methods discussed in the book, we present in each of the following
Subsections a possible reading plan. We leave out from our suggested reading plans
most of the background Chapter 2 and also the Chapters 14 and 15 which talk about
related questions to the Dynamical Mordell-Lang Conjecture and also speculate
about its future. Obviously, we encourage all readers to read Chapter 2 in its
entirety to familiarize with the notions from algebraic geometry and number theory
that we use in our book. Also, we hope Chapters 14 and 15 will motivate the reader
to study in the future various cases of the Dynamical Mordell-Lang Conjecture or
related questions from arithmetic dynamics. On the other hand, we encourage
all readers to include Chapter 3 in their study of our book since it provides a
comprehensive introduction into the Dynamical Mordell-Lang Conjecture and its
connection to other important questions from arithmetic geometry.

The plans listed in the subsequent Subsections are given a name that informally
describes the goal of each such reading plan.

1.6.3. The p-adic arc lemma. The central method used in this book for
attacking the Dynamical Mordell-Lang Conjecture is the p-adic arc lemma, which
is formally introduced in Chapter 4. So, if a reader wants to understand this
important tool, we recommend one to read first Section 2.5 (where a very special
case of the p-adic arc lemma, known as the Skolem’s method, is introduced) and
then to proceed to Chapter 4. Then, the reader could study Chapters 6 and 7,
and also Sections 11.5 and 11.11 for more examples of use of the p-adic arc lemma
and of similar p-adic uniformization techniques for an orbit of a point. Finally, the
reader should read Chapter 8 to understand the limitations one encounters in the
use of the p-adic arc lemma for the Dynamical Mordell-Lang Conjecture.
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1.6.4. The Dynamical Mordell-Lang for algebraic groups. The moti-
vation for Conjecture 1.5.0.1 comes from the classical Mordell-Lang Conjecture; for
more details, see Chapter 3. So, a reader could focus on the connection between
these two conjectures, in particular on the special case of Conjecture 1.5.0.1 when
the ambient variety is a semiabelian variety. Hence, one can read in Chapter 9
the proof of the Dynamical Mordell-Lang Conjecture for endomorphisms of semia-
belian varieties. This proof from chapter 9, which avoids the use of the p-adic arc
lemma (after all, an alternative proof of the Dynamical Mordell-Lang Conjecture
for all semiabelian varieties is found in Chapter 4; see Corollary 4.4.1.2) has the
advantage of extending to proving some special cases of Question 3.6.0.1, which is a
question generalizing both the classical Mordell-Lang conjecture and the Dynamical
Mordell-Lang Conjecture.

Then one can read about a hybrid version of the classical Mordell-Lang conjec-
ture and the Dynamical Mordell-Lang Conjecture, which is the Denis-Mordell-Lang
conjecture in the context of Drinfeld modules. Actually, this conjecture of Denis
[Den92a] was the starting point for formulating Conjecture 1.5.0.1 in [GT09]. Fi-
nally, one can read in Chapter 13 about a characteristic p version of the Dynamical
Mordell-Lang Conjecture, and also read about partial results on this conjecture in
the context of semiabelian varieties using the same approach as in Chapter 9 but
also using an alternative approach coming from the theory of automata.

1.6.5. The intersection of orbits. While trying to prove a very special
case of Conjecture 1.5.0.1 for lines in the plane under the coordinatewise action of
two one-variable polynomials, the authors of [GTZ08] discovered a more general
result regarding the intersection of two orbits under the action of two polynomials.
Briefly, the results of [GTZ08] (and their extension from [GTZ12]) say that if two
polynomials f, g ∈ C[z] of degrees larger than 1 have the property that there exist
α, β ∈ C such that

Of (α) ∩Og(β) is infinite,

then there exist linear polynomials μ, ν ∈ C[z], some polynomial h ∈ C[z] of degree
larger than 1, and positive integers m and n such that

f = μ ◦ hm and g = ν ◦ hn.

These results can be viewed as a possible bridge towards Question 3.6.0.1, which
is presented in Chapter 3. The interested reader will find all about these questions
and results in Chapter 5, which is mainly self-contained.
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CHAPTER 2

Background material

In this chapter we present the basic definitions, notation, and conventions that
we use from algebraic geometry and number theory.

2.1. Algebraic geometry

In this section we recall briefly the basic notions of algebraic geometry which
we will use in the book; for more details see the classical textbooks of Hartshorne
[Har77], of Hindry and Silverman [HS00, Part A] and of Shafarevich [Sha74].

2.1.1. Varieties. Let K be a field, let K be a fixed algebraic closure of it,
and let N be a positive integer.

We denote by AN = AN
K the N -dimensional affine space (over K) which is the

set of all tuples (x1, . . . , xN ) with xi ∈ K. We let PN = PN
K be the set of equivalence

classes of
(
AN+1 \ {(0, . . . , 0)}

)
/ ∼, where we have

[x0 : x1 : · · · : xN ] ∼ [y0 : y1 · · · : yN ]

if there exists a nonzero scalar c ∈ K such that yi = cxi for each i = 0, . . . , N .
An affine subvariety V of AN defined over K is the set of all points

(x1, . . . , xN ) ∈ AN

which is the common zero set of all polynomials in a given ideal I of K[z1, . . . , zN ],
i.e., for each polynomial f ∈ I, we have

f(x1, . . . , xN ) = 0.

For any variety V ⊂ An, we let the vanishing ideal I(V ) of V be the set of all
polynomials f ∈ K[x1, . . . , xN ] such that f(α) = 0 for each α ∈ V (K). We define its
affine coordinate ring K[V ] be K[x1, . . . , xN ]/I(V ). We define the Zariski topology
on AN as the topology for which the closed sets are the affine subvarieties of AN .

A projective subvariety V of PN defined over K is the set of all

[x0 : x1 : · · · : xN ] ∈ PN ,

which is the common zero set of all homogeneous polynomials in a given ideal I of
K[z0, z1, . . . , zN ]. Note that if f is a homogeneous polynomial in I, then for any
other representation [y0 : y1 : · · · : yN ] in PN of the point [x0 : x1 : · · · : xN ] we
have

f(y0, . . . , yN ) = 0.

We define the Zariski topology on PN for which the closed sets are the projective
subvarieties of PN .

Either in Pn or in An, the zero locus of a single polynomial equation F = 0 is
called a hypersurface; if F is a linear polynomial, then it is called a hyperplane.

11
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A (quasiprojective) variety is a Zariski open subset of a projective variety. If
X ⊂ Pm is a quasiprojective variety, for any subfield L ⊂ K, we denote by

X(L) ⊂ Pm(L) ∩X

the set of L-valued (or L-rational) points of X. Sometimes we identify X with the
set of its K-points. We endow X with the inherited Zariski topology from Pm.
A subvariety Y of X is a quasiprojective variety contained in X. In particular,
we allow for the possibility that Y is either an open or a closed subset of X with
respect to the Zariski topology; however, unless otherwise stated, all subvarieties of
a (quasiprojective) variety X are closed. If Y ⊂ X is a possibly non-closed subset,
its Zariski closure (in X) is denoted by Y .

Inside a variety X endowed with the Zariski topology, we say that a subvariety
Y defined over K is irreducible (over K) if it cannot be expressed as a union of two
proper closed subsets, i.e., if

Y = Y1 ∪ Y2,

with Y1 and Y2 closed subvarieties defined over K, then either

Y = Y1 or Y = Y2.

If K is algebraically closed, then we say that Y is geometrically irreducible. Each
quasiprojective variety is a finite union of irreducible quasiprojective varieties. Since
Pm can be covered by (m+1) copies of Am, then each (quasiprojective) variety can
be covered by finitely many (possibly non-closed) affine subvarieties. This allows us
to define various local properties for varieties by restricting ourselves to irreducible
affine varieties. In Subsection 2.1.2, in order to define maps between varieties, we
use that each variety can be covered by finitely many affine subsets.

2.1.2. Rational and regular functions. Let X ⊂ Pn be an irreducible
quasiprojective variety defined over K, and let L ⊂ K be a subfield. We say
that a function

f : X −→ A1

is regular (defined over L) at the point α ∈ X if there exists an affine open set
U ⊂ X containing α and homogeneous polynomials

A,B ∈ K[x0, . . . , xn]

(respectively in L[x0, . . . , xn]) of the same degree such that

B(x) �= 0 for all x ∈ U

and

f(x) =
A(x)

B(x)
for all x ∈ U.

It is immediate to see that once a function is regular at a point, then it is regular
on a Zariski open subset of X, and moreover, if X is irreducible, then it is regular
on a dense Zariski open subset of X. If

f : X −→ A1

is regular at each point of X, then it is called a regular map, or regular function
(or a morphism to A1); the set of all regular functions on X is denoted by OX . If
X ⊂ An is an affine variety, then

OX
∼→ K[X].
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We call

f : X −→ Am

regular at the point α ∈ X, if

f = (f1, . . . , fm)

and each fi is regular at α. We say that

f : X −→ Am

is regular if it is regular at each point of X.
If Y ⊆ X is an irreducible subvariety of the irreducible quasiprojective variety

X defined over K, then the local ring of X along Y , denoted OX,Y is the set of
pairs (U, f) where U is an open subset of X such that

Y ∩ U �= ∅
and f is a regular function on U modulo the equivalence relation where we identify

(f1, U1) ∼ (f2, U2)

if

f1 = f2 on U1 ∩ U2.

If Y = X we obtain the (rational) function field of X, also denoted

K(X) := OX,X ;

if we restrict to functions defined over a subfield K ⊂ L ⊂ K, then the correspond-
ing function field is L(X). If Y = {α} is a point, then we obtain the local ring
OX,α of X at α.

2.1.3. Morphisms and rational maps between varieties. Let X ⊂ Pn

and Y ⊂ Pm be quasiprojective varieties. We call a map Φ : X −→ Y regular (or
a morphism) if for each point α ∈ X, there exists an affine open subset V which
contains f(x), and there exists an affine open subset U of X containing α such that
Φ restricts on U to a map

Φ : U −→ V

which is regular. We say that Φ is an isomorphism if there exists another morphism
of varieties

Ψ : Y −→ X

such that
Φ ◦Ψ and Ψ ◦ Φ

are the corresponding identity maps. If

Φ : X −→ X

is a morphism, then it is called an endomorphism.
A rational map Φ between two quasiprojective varieties X and Y is a map

which restricts to a morphism on an open subset U of X, i.e.,

Φ : U −→ Y

is a morphism. We say that Φ is birational if it has a rational inverse, i.e. there
exist open subsets U ⊂ X and V ⊂ Y and a rational map Ψ from Y to X such that
Φ : U −→ V and Ψ : V −→ U are morphisms and Φ is the inverse of Φ, i.e.,

Φ ◦Ψ = idV and Ψ ◦ Φ = idU .
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Two varieties X and Y are birationally equivalent if there exists a birational map
between them. Two irreducible varieties X and Y defined over the same field K are
birationally equivalent if and only their function fields are isomorphic asK-algebras.

Let Φ : X −→ Y be a morphism of varieties, let x ∈ X, and let y = Φ(x).
Then we have an induced morphism on the rings of regular functions, i.e.

Φ∗ : OY,y −→ OX,x given by Φ∗(f) = f ◦ Φ.

Similarly, we get an induced morphism

Φ∗ : OY −→ OX

and a morphism between the corresponding function fields

Φ∗ : K(Y ) −→ K(X)

in the case that the image of Φ is dense.
In the special case of a rational map

Φ : P1 −→ P1

defined over a field K, we have two equivalent representations of it, either as

(1) Φ([X : Y ]) = [F (X,Y ) : G(X,Y )] for two coprime homogeneous polyno-
mials F and G with coefficients in K of degree d; or

(2) Φ(t) = f(t)/g(t) for coprime polynomials f(t), g(t) ∈ K[t] where the poly-
nomials F and G from (1) are defined by

F (X,Y ) = Y df(X/Y ) and G(X,Y ) = Y dg(X/Y ).

Then the degree of Φ is d.

2.1.4. Properties of morphisms and of rational maps. Let Φ be a ratio-
nal map between two quasiprojective irreducible varieties X and Y . We define the
indeterminacy locus I(Φ) of Φ be the intersection of all closed subsets Z ⊂ X with
the property that Φ is defined on X \Z. Clearly, I(Φ) is a closed subset of X. Now,
let U ⊂ X be an open (dense) subset such that Φ : U −→ Y is a morphism. We
say that Φ is dominant if Φ(U) (or equivalently, Φ(U ′) for any other open subset
of X on which Φ restricts to a morphism) is Zariski dense in Y .

LetX and Y be affine varieties defined overK and Φ : X −→ Y be a morphism.
Let

Φ∗ : K[Y ] −→ K[X]

be the induced morphism of K-algebra, which endows K[X] with a structure of
K[Y ]-module. We call the morphism Φ finite, if K[X] is a finitely generated K[Y ]-
module. More generally, if X and Y are quasiprojective varieties and

Φ : X −→ Y

is a morphism, then we say that Φ is finite if for each open affine subset V ⊂ Y ,
the set U := Φ−1(V ) is also affine and the restriction map

Φ : U −→ V

is finite (as defined above).
If Φ : X −→ Y is a finite and dominant morphism, then there exists a dense

open subset U of Y such that for each y ∈ U , the fiber Φ−1(y) has precisely
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d := [K(X) : K(Y )] points (where we view K(X) embedded into K(Y ) through
the map

Φ∗ : K(Y ) −→ K(X),

which is injective since Φ is dominant). A finite map is closed, i.e. the image of
any closed subvariety is also closed.

2.1.5. Dimension. Let X be an irreducible quasiprojective variety defined
over K. The dimension of X (denoted dim(X)) is the transcendence degree over K
of the function field K(X). If Y ⊂ X is a subvariety, we say that its codimension
is d, where

d := dim(X)− dim(Y ).

The degree of a subvariety V ⊆ Pn (denoted deg(V )) is the number of points
(over an algebraically closed fieldK) contained in the intersection of V with dim(V )
generic hyperplanes in Pn. In particular, if V is a hypersurface given by the equation
f = 0, where f ∈ K[X0, . . . , Xn] is a homogeneous polynomial of degree d, then

deg(V ) = d

and if V is a finite collection of points, then deg(V ) is the cardinality of V .

2.1.6. Tangent subspace, nonsingular points and morphisms between
varieties. Let X be an irreducible quasiprojective variety defined over K, and let
α ∈ X(K). We denote by Oα := OX,α the ring of all functions on X regular at α.
We let mα := mX,α be the maximal ideal of Oα containing all f ∈ Oα such that
f(α) = 0. Then the tangent space of X at α (denoted TX,α) is isomorphic to the

dual of mα/m
2
α (i.e., the space of K-linear functions defined on mα/m

2
α). We say

that the point α ∈ X is smooth (or nonsingular) if

dim
K
mα/m

2
α = dim(X).

Since each point belongs to an open affine subset V , the notion of smoothness
agrees with the classical notion of smoothness from differential geometry, i.e. if V
is defined by the (independent) equations

f1(x1, . . . , xn) = · · · = fm(x1, . . . , xn) = 0,

then the point x ∈ V is smooth if and only if the rank of the Jacobian(
dfj
dxi

(x)

)
is n−m, which is also the dimension of V (and therefore of X since X is irreducible
and V is dense in X). To see that

dim(V ) = n−m,

note that V is an affine variety defined by m independent equations in n variables.
The set of all smooth points on X is denoted by Xsmooth, and it is a dense Zariski
open subset of X. A variety X is smooth if

Xsmooth = X.

Let α be a nonsingular point on the variety X of dimension n. Functions
u1, . . . , un ∈ Oα are called local parameters for α if they form a K-basis for the
vector space mα/m

2
α. Then each f ∈ Oα (defined over K) is uniquely represented
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as a power series in variables u1, . . . , un with coefficients in K, i.e., we have an
embedding of

Oα ↪→ K[[u1, . . . , un]].

For a morphism Φ between two quasiprojective varieties X and Y defined over
K, α ∈ X and β = Φ(α), we have an induced morphism on the tangent spaces

DΦ : TX,α −→ TY,β ,

which is called the differential of Φ. The differential of Φ is induced by

Φ∗ : OY,β −→ OX,α;

note that Φ∗ also maps mY,β into mX,α, and therefore we have an induced map

Φ∗ : OY,β/mY,β −→ OX,α/mX,α,

which is the dual of DΦ. An isomorphism

Φ : X −→ Y

induces an isomorphism of tangent spaces, and therefore,

Φ
(
Xsmooth

)
⊆ Y smooth.

2.1.7. Differentials. Let X be a variety defined over K, and let f ∈ K(X).
Then for each x in the domain of f , we have a tangent map

df(x) : TX,x −→ TA1,f(x) = K.

This differential satisfies the usual Leibniz rules

d(f + g) = df + dg and d(f · g) = f · dg + g · df.
A regular differential 1-form ω on X has the property that for all x ∈ X, there
exists an open set x ∈ U ⊂ X and there exist (finitely many) functions fi, gi regular
on U such that

ω =
∑
i

fi · dgi

on U . We denote by Ω1[X] the set of all regular 1-forms on X; this is both a K-
vector space and an O(X)-module. When X is a smooth projective curve, Ω1[X]
is finite-dimensional as a K-vector space and the (geometric) genus of X is defined
to be the dimension of this space.

2.1.8. Some properties of varieties. A variety X is said to be complete
(over the field K) if every projection

π : X × Y −→ Y

is a closed map; projective varieties are always complete.
A variety X defined over K is called normal at the point x if the local ring

OX,x is integrally closed; then we call X normal if it is normal at each point. A
smooth variety is always normal. If X is affine, then X is normal if and only if
K[X] is integrally closed. For any variety X there exists a normalization X ′ of it
which is a normal variety equipped with a morphism

Ψ : X ′ −→ X

having the universal property that for any normal variety Z and any dominant
morphism

Φ : Z −→ X

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



2.1. ALGEBRAIC GEOMETRY 17

there exists a unique morphism

Φ′ : Z −→ X ′

such that

Φ = Ψ ◦ Φ′.

Intuitively, X ′ is the smallest normal variety mapping onto X.

2.1.9. Algebraic groups. An algebraic group G defined over a field K is a
variety with a distinguished point e ∈ G(K), and morphisms m : G × G −→ G
and i : G −→ G (corresponding respectively to multiplication and inversion in G)
satisfying the axioms of a group law, i.e.

• m(e, x) = m(x, e) = x;
• m(i(x), x) = m(x, i(x)) = e;
• m(m(x, y), z) = m(x,m(y, z)).

In the case when G is an affine variety, the main examples we will use are the
additive group Ga and the multiplicative group Gm. We call (algebraic) torus any
algebraic group (not necessarily connected) which is isomorphic with an algebraic
subgroup of GN

m for some N ∈ N.
In the case when G is projective (and connected), then G is an abelian variety ;

in this case the group law on G is indeed abelian and we usually denote by 0 its
identity element. We will also work with semiabelian varieties S, which have the
property that over K they fit into the following short exact sequence of algebraic
groups:

1 −→ Gn
m −→ S −→ A −→ 0,

where A is an abelian variety, and Gn
m is a power of the multiplicative group Gm.

Hence a semiabelian variety is a generalization of both powers of the multiplicative
group and also of abelian varieties.

Any endomorphism of a semiabelian variety is the composition of an algebraic
group endomorphism and a translation.

2.1.10. Divisors. A (Weil) divisor of the variety X is a formal sum

D :=
s∑

i=1

ki · Yi,

where each ki ∈ Z and each Yi is an irreducible codimension-one subvariety of X.
If X is defined over K, then we say that the divisor D is also defined over K if it
is invariant under the action of Gal(K/K). We call the divisor D effective if ki ≥ 0
for each i.

Assume now that the set of singular points on X has codimension at least
2, then for each irreducible codimension-one subvariety Y ⊂ X, the ring oX,Y

of rational functions on X which are regular on Y is a discrete valuation ring.
Therefore, for each f ∈ K(X) we can associate its order of vanishing along Y ,
which is a well-defined integer number. So, for each rational function f on X we
associate its support, which is a divisor∑

i

ki · Yi,
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where ki �= 0 if either f vanishes or 1/f vanishes along Yi; we call ki the order
of vanishing (respectively the order of the pole of f) along Yi. We call principal
divisor (and denote it (f)) the divisor

(f) =
∑
i

ki · Yi

associated to a rational function f , where each ki is the order of f along Yi. We
say that two divisors D1 and D2 are linearly equivalent if there exists a rational
map f such that

D1 −D2 = (f).

If X is smooth, we let Pic(X) be the Picard group for the variety X, which is the
group of equivalence classes of divisors modulo linear equivalence.

Let Φ : X −→ Y be a morphism of smooth varieties. Then we have a well-
defined induced morphism

Φ∗ : Pic(Y ) −→ Pic(X);

the definition of Φ∗ is easier to be given using Cartier divisors and then one uses
the equivalence between Cartier divisors and Weil divisors in the case of smooth
varieties.

2.1.11. Ramification. Let Φ : X −→ Y be a finite map of smooth projective
varieties, let x ∈ X, and let

f# : OY,f(x) −→ OX,x

be the induced maps of local rings. Let m be the maximal ideal of OY,f(x) and let

m′ := f#(m). We say that f is unramified at x if m′ is the maximal ideal of OX,x

and the induced map

f# : OY,f(x)/m −→ OX,x/m
′

is a finite separable field extension. We say that f is unramified, if it is unramified
at each point of X.

With the above notation, we say that f is flat at x, if

f# : OY,f(x) −→ OX,x

is a flat map of rings; if f is flat at each point of X, then we say that f is flat. We
recall that for two rings A and B,

f : A −→ B

is a flat map if it is a ring homomorphism which makes B a flat A-module. Also,
in general, an A-module B is called flat if tensoring with B over A preserves any
exact sequence of A-modules.

We say that f : X −→ Y is étale if it is both flat and unramified.

2.1.12. Sheaves.

Definition 2.1.12.1. LetX be a topological space. A presheaf F onX consists
of the following data:

• for every open subset U in X, we have a set F(U); and
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• for all open subsets V ⊂ U ⊂ X, a restriction map

rU,V : F(U) −→ F(V )

such that

rU,U = idF(U) and rU,W = rV,W ◦ rU,V .

Definition 2.1.12.2. A morphism of presheaves

f : F1 −→ F2

is a collection of maps

f(U) : F1(U) −→ F2(U)

such that for every V ⊂ U , the maps f(U) and f(V ) are compatible with the
restriction maps

r2;U,V = f(V ) ◦ r1;U,V .

If the presheaves F1 and F2 are presheaves of groups (or rings, or modules), then
we also ask that each f(U) is a group (or ring, or module) homomorphism.

Definition 2.1.12.3. Let X be a topological space. A sheaf F on X is a
presheaf with the property that for every open subset U ⊂ X and every open
covering

U = ∪iUi,

the following properties hold:

• for each x, y ∈ F(U) such that rU,Ui
(x) = rU,Ui

(y) for each i, then x = y;
and

• given a collection of elements xi ∈ F(Ui) such that for each i and j we
have rUi,Ui∩Uj

(xi) = rUj ,Ui∩Uj
(xj), then there exists x ∈ F(U) such that

rU,Ui
(x) = xi for each i.

A classical example of sheaves is the sheaf OX of regular functions on a variety
X equipped with the Zariski topology. So, for each open subset U ⊂ X we define
OX(U) be the set of all regular functions on U . We say that

f : F −→ G

is a morphism of sheaves if F and G are both sheaves, while f is a morphism of
presheaves.

Definition 2.1.12.4. The stalk Fx of a sheaf F at a point x ∈ X is the direct
limit of the F(U) over all open subsets U containing x (where the limit is taken
with respect to the restriction maps rU,V ).

If F is the sheaf of regular functions, then Fx = OX,x.

Definition 2.1.12.5. Let X be a variety. An OX -module is a sheaf F on X
such that

• for every open U ⊂ X, F(U) is a module over the ring OX(U); and
• for every open V ⊂ U ⊂ X, the map rU,V : F(U) −→ F(V ) is a homo-
morphism of OX(U)-modules.
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Let F be an OX -module on the variety X. We say that F is locally free if each
point in X has a neighborhood over which F is free. The rank of a locally free
sheaf F is the integer r such that

F(U)
∼→ OX(U)r

for all sufficiently small open subsets U . A locally free sheaf of rank 1 is called an
invertible sheaf , or a line bundle. One can use line bundles to define Pic(X) even
when X is not smooth.

Given a sheaf F on a topological space X, and an open subset Y ⊂ X, we
define the restricted sheaf F|Y on Y (endowed with the inherited topology from
X) as follows:

• for each open U ⊂ Y , we define F|Y (U) := F(U); and
• for all open subsets V ⊂ U ⊂ Y , we define rY,U,V := rX,U,V .

Given a sheaf F on a topological space X, and a continuous function f : X −→
Y , we can construct the push-forward f∗F of the sheaf F on the topological space
Y as follows:

• for every open set U ⊂ Y , we define f∗F(U) := F(f−1(U)); and
• for all open subsets V ⊂ U ⊂ Y we define the map

rY,U,V : f∗F(U) −→ f∗F(V ) by rY,U,V := rX,f−1(U),f−1(V ).

For two sheaves F1 and F2 on X, we define their tensor product F1 ⊗ F2 be
the sheaf F for which

F(U) := F1(U)⊗OX (U) F2(U)

for each open subset U ⊆ X. For a sheaf F on X and a positive integer n, we
define the tensor power F⊗n be the tensor product of F with itself n times.

2.1.13. Schemes.

Definition 2.1.13.1. Let R be an integral domain. The spectrum Spec(R) is a
pair consisting of a topological space (also denoted Spec(R)) and a sheaf OR. The
topological space Spec(R) is the set of prime ideals of R endowed with a topology
whose closed sets are the sets

V (I) := {p ∈ Spec(R) : I ⊂ p}

for any ideal I ⊂ R. The sheaf OR is characterized by

OR (Spec(R) \ V ((f))) := Rf

for any nonzero f ∈ R, where

Rf := S−1 ·R
for the multiplicative set

S := {1, f, f2, · · · },

Definition 2.1.13.2. A ringed space is a pair (X,OX) consisting of a topolog-
ical space X and a sheaf of rings OX on X. It is a locally ringed space if for all
x ∈ X, the stalk Ox is a local ring. The sheaf OX is called the structure sheaf of
the ringed space.
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Definition 2.1.13.3. A morphism of ringed spaces is a pair

(f, f#) : (X,OX) −→ (Y,OY )

where f : X −→ Y is continuous and

f# : OY −→ f∗OX

is a morphism of sheaves over Y . It is a morphism of locally ringed spaces if further
for all x ∈ X, the map f# induces a local ring homomorphism

f#
x : OY,f(x) −→ OX,x,

i.e., (f#
x )−1(mx) = mf(x), where mx and mf(x) are the corresponding maximal ideal

of the local rings OX,x and OY,f(x).

A typical example of a locally ringed space is (Spec(R),OR) for any integral
domain R, or an algebraic variety with its sheaf of regular functions. A locally
ringed space of the form (Spec(R),OR) is called an affine scheme. Any morphism
of affine schemes corresponding to integral domains R and S is induced by a ring
homomorphism between R and S.

Definition 2.1.13.4. A scheme is a locally ringed space (X,OX) that can be
covered by open affine subsets U such that (U,OX |U ) is isomorphic to some affine
scheme (Spec(R),OR).

A morphism of schemes is a morphism of locally ringed spaces that are schemes.
A morphism ϕ : X −→ Z of schemes is an immersion if it gives an isomorphism

between X and an open subset of a closed subset of Z.
If S is a scheme and X is another scheme endowed with a morphism of schemes

f : X −→ S,

then we call X an S-scheme. If Y is another S-scheme (with respect to a morphism
g : Y −→ S), then a morphism of S-schemes between X and Y is a morphism of
schemes

Φ : X −→ Y

satisfying
f = g ◦ Φ.

This notion extends the definition of morphisms of varieties since each variety over
a field K is a Spec(K)-morphism.

For an S-scheme X, we define X(S) be the set of all scheme morphisms

α : X −→ S;

this notion replaces the notion of points of varieties. If S = Spec(R) for some ring
R, for each p ∈ S, we let k(p) be the fraction field of R/p. Then we let Xp be
the fiber of X above p be defined as the fiber product of X and Spec(k(p)) over S.
Furthermore, if p = (0), then k(p) = Frac(R) and Xp is called the generic fiber of
X. Conversely, let X be a variety defined over K (i.e., a K-variety). Let R be a
subring of K whose field of fractions is K. We let S := Spec(R), and we say that
X is a model of X over S if X is an S-scheme whose generic fiber is isomorphic to
X.

As a matter of notation, if C is a curve defined over an algebraically closed
field K, then we denote by P1

C the model of P1 over C, i.e, there exists a morphism

π : P1
C −→ C
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such that for each x ∈ C(K), π−1(x)
∼→ P1 over K.

2.1.14. Ample line bundles. Assume now that X is an S-scheme, where
S = Spec(R) for some ring R.

The set of global sections is the set F(X). We say that F is very ample if there
exist global sections s0, . . . , sN ∈ F(X) such that the map

ιF : X −→ PN given by ιF (x) := [s0(x) : · · · : sN (x)]

is an immersion. We say that F is ample if F⊗n is very ample for some positive
integer n.

2.2. Dynamics of endomorphisms

In this short section we recall the basic notions for the dynamics of an endo-
morphism of a quasiprojective variety.

2.2.1. Orbit of a point. For a quasiprojective variety X, for an endomor-
phism Φ of X, and for a point α of X, we denote by OΦ(α) the orbit of α under
Φ, i.e., the set of all iterates Φn(α) for n ∈ N0.

2.2.2. Periodic and preperiodic points. We say that the point α ∈ X is
(Φ-)preperiodic if OΦ(α) is finite; the set of all preperiodic points of Φ is denoted
by PrepΦ(X). If Φn(α) = α for some n ∈ N, then we say that α is (Φ-)periodic.
Sometimes we call n a period of α; when n is the smallest such positive integer,
then it is called the (minimal) period of α.

For a periodic point α under a map Φ : X −→ X, we define the periodic cycle
of α be the finite set

{α,Φ(α), . . . ,Φ�−1(α)},
if � is the smallest positive integer n such that Φn(α) = α.

2.2.3. Periodic and preperiodic subvarieties. We extend the notion of
(pre)periodicity to arbitrary (i.e., not necessarily closed) subvarieties V ofX. Hence
we say that V is Φ-preperiodic if there exist distinct nonnegative integers m and n
such that

Φm(V ) ⊆ Φn(V ).

If there exists m ∈ N such that

Φm(V ) ⊆ V ,

then we say that V is Φ-periodic. In particular, if

Φk(V ) ⊆ V,

then we say that V is periodic, and we call k a period of V . Intuitively, one
could consider an alternative definition for periodic subvarieties by asking that V
is periodic under the action of Φ if

(2.2.3.1) Φk(V ) = V,

for some k ∈ N. However, there are many examples of subvarieties V which are
mapped by a power Φk of Φ into themselves without having that the equality from
(2.2.3.1) holds. On the other hand, in the Dynamical Mordell-Lang Conjecture (see
Conjecture 1.5.0.1), each subvariety V which is periodic according to our definition,
i.e.

Φk(V ) ⊆ V for some k ∈ N
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yields an infinite set

(2.2.3.2) S := {n ∈ N0 : Φ
n(α) ∈ V }

for any α ∈ V ; moreover, the set S is a finite union of arithmetic progressions
of common difference k. So, in this case, the common difference of the arithmetic
progressions from the conclusion of Conjecture 1.5.0.1 is the period of the subvariety
V . The whole content of the Dynamical Mordell-Lang Conjecture (see also its
reformulation from Conjectures 3.1.3.1 and 3.1.3.2) is to prove that only when V
contains a positive dimensional periodic subvariety we can have that

V ∩ OΦ(α) is infinite for some non-preperiodic point α.

For more about this interpretation of the Dynamical Mordell-Lang Conjecture, we
refer the reader to Chapter 3.

Now, if V is a closed subvariety, then it is easy to see that the property that V
is periodic can be reformulated as follows:

V is periodic if and only if Φ−n(V ) ⊇ V if and only if Φn(V ) ⊆ V.

First of all, it is immediate to see the equivalence of the last two statements:

Φ−n(V ) ⊇ V if and only if Φn(V ) ⊆ V.

Indeed, applying Φn to the left inclusion yields the right inclusion, and applying
Φ−n to the right inclusion and also using that

V ⊆ Φ−n(Φn(V ))

yields the left inclusion. So, we are left to prove that

V is periodic if and only if Φ−n(V ) ⊇ V.

Now, if V ⊆ Φ−n(V ) then Φn(V ) ⊆ V and thus

Φn(V ) ⊆ V = V.

Conversely, if

Φn(V ) ⊆ V = V,

then

V ⊆ Φ−n
(
Φn(V )

)
⊆ Φ−n(V ),

as desired. We note that if V is not necessarily a closed subvariety, then we still
have that

V ⊆ Φ−n(V ) yields Φn(V ) ⊆ V ,

but the converse is not necessarily true.
Furthermore, if Φ is a finite morphism, and thus all its iterates are finite and

hence closed, then a closed irreducible subvariety V is Φ-periodic if and only if there
exists n ∈ N such that

Φn(V ) = V.

Similarly, in this case, V is preperiodic if and only if there exist m,n ∈ N with
0 ≤ m < n such that

Φm(V ) = Φn(V ).

So, for closed subvarieties and finite morphisms, the intuitive notion of periodicity
for subvarieties matches also our more general definition of periodic subvarieties.
While our subvarieties will almost always be closed, it is not necessarily true that
the endomorphisms we consider in this book, and more generally the ones appearing
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in the Dynamical Mordell-Lang Conjecture are finite morphisms; this is the reason
why we opted for our notion of periodicity for subvarieties.

Finally, sometimes it is useful to define the orbit of a subvariety V ⊆ X under
the action of an endomorphism Φ of X. We define thus OΦ(V ) be the orbit of V

under Φ, which is a set consisting of all closed subvarieties Φn(V ) for n ∈ N0. Then,
according to our definition for preperiodic subvarieties, V is preperiodic under the
action of Φ if and only if OΦ is a finite collection of closed subvarieties.

2.2.4. Polarizable endomorphisms. Let X be a variety and Φ : X −→ X
an endomorphism. We say that Φ is polarizable if there exists an ample line bundle
L on X such that Φ∗(L) ∼→ Ld for some integer d > 1.

2.3. Valuations

In this section we introduce the basic concepts from p-adic analysis required
in this book; for more details on p-adic numbers, and p-adic analysis we refer the
reader to [Rob00].

2.3.1. p-adic numbers. Let p be a prime number. For each nonzero integer
n we define ordp(n) be the exponent of p in n. Then we define

|n|p := p− ordp(n).

We extend this definition for all nonzero rational numbers:∣∣∣m
n

∣∣∣
p
=
|m|p
|n|p

.

By convention, we let |0|p = 0. We call | · |p be the p-adic absolute value (or norm);
this induces a metric on Q. We let Qp be the completion of Q with respect to the
p-adic norm; we denote by | · |p the extension of the p-adic absolute value to Qp.
The set of all x ∈ Qp such that |x|p ≤ 1 is the ring of p-adic integers Zp. There is
an explicit description of the p-adic integers, as follows. Each x ∈ Zp corresponds
to a sequence

{xn}n∈N0
⊆ Z

with the property that for each n ∈ N we have

xn ≡ xn−1 (mod pn).

Essentially, x is the limit of the sequence xn with respect to the p-adic norm. Two
such sequences {xn}n∈N0

and {yn}n∈N0
correspond to the same number in Zp if for

each n ∈ N0 we have
xn ≡ yn (mod pn+1).

Alternatively, an element x ∈ Zp can be uniquely represented as an infinite sum of
powers of p, i.e.,

x = a0 + a1p+ · · ·+ anp
n + · · · ,

where for each n ∈ N0 we have an ∈ {0, . . . , p − 1}. The connection with the
previous representation of x as a limit of a sequence {xn}n∈N0

is made by taking

xn =
n∑

i=0

aip
i

for each n ∈ N0. Conversely, given a sequence {xn}n∈N0
, we let

bn ∈ {0, . . . , pn − 1}
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for each n ∈ N such that

xn−1 ≡ bn−1 (mod pn).

Then am is the m-th digit of bn (for any n ≥ m) in the p-adic basis. The fact that

bk ≡ xk ≡ x� ≡ b� (mod p1+min{k,�})

guarantees that am is well-defined (independent of the choice of n ≥ m).
An element x ∈ Zp is a p-adic unit if |x|p = 1. Each nonzero element of Qp is

written uniquely as pα · u, where α ∈ Z and u is a p-adic unit.
For any finite extension K of Qp there exists a unique extension of | · |p to a

p-adic absolute value on K. By taking direct limits, we can therefore extend the
p-adic absolute value of Qp to Qp. Also, we can embed Q into a fixed algebraic
closure of Qp and therefore on each number field we have an extension of the p-adic
absolute value.

2.3.2. Hensel’s Lemma. The following result (Hensel’s Lemma) is essential
for solving polynomial congruence equations.

Lemma 2.3.2.1 (Hensel). Let p be a prime number, let f be a polynomial with
coefficients in Zp, and let x0 ∈ Zp be such that

|f(x0)|p < |f ′(x0)|2p.
Then there exists α ∈ Zp such that f(α) = 0.

Proof. If f(x0) = 0, then we are done. So, from now on assume that f(x0) �=
0. Furthermore, since N0 is dense in Zp, we may assume without loss of generality
that x0 ∈ N0. By hypothesis we know that f ′(x0) �= 0, and thus there is some
δ ∈ N0 such that

|f ′(x0)|p = p−δ.

So we know that
|f(x0)|p ≤ p−2δ−1.

We construct α through approximation, i.e., we construct a sequence

{xn}n∈N0
⊂ Z

such that for each n ∈ N0 we have

|f(xn)|p ≤ p−2δ−1−n

and also
|xn+1 − xn|p ≤ p−δ−1−n.

Thus if we let α ∈ Zp be the limit of the sequence with respect to the p-adic limit,
then we have

|f(α)|p < p−n

for each n ∈ N0 and so f(α) = 0.
We construct the sequence {xn}n∈N0

as follows. We already have x0 for which

|f(x0)|p < |f ′(x0)|2p = p−2δ

and thus
|f(x0)|p ≤ p−1−2δ.

We assume that we constructed xn ∈ Z with the above properties. We let

xn+1 = xn + pn+δ+1�
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for some � ∈ Z for which we solve next. Clearly,

|xn+1 − xn|p ≤ p−δ−1−n.

Then expanding f(xn+1) around z = xn gives

(2.3.2.2) f(xn+1) ≡ f(xn) + pn+δ+1�f ′(xn) (mod p2n+2δ+2).

Since

xn ≡ x0 (mod pδ+1)

and f ′ has coefficients in Zp, we have

|f ′(xn)− f ′(x0)|p ≤ p−δ−1

and because

|f ′(x0)|p = p−δ,

we conclude that

|f ′(xn)|p = p−δ.

Thus

f ′(xn) = pδ · un,

where |un|p = 1 with un ∈ Zp. On the other hand, by the inductive hypothesis,
there exists vn ∈ Zp such that

f(xn) = pn+2δ+1 · vn.
So, using (2.3.2.2) we conclude that

|f(xn+1)|p ≤ p−2δ−2−n

if and only if

vn + �un ≡ 0 (mod p).

The above last congruence has a solution � because |un|p = 1. This concludes the
proof of Hensel’s Lemma. �

2.3.3. A complete, algebraically closed field. The algebraic closure Qp

of Qp is not complete; however its completion Cp is both algebraically closed and
complete. We include the proof of this classical result, for the sake of completeness.

Proposition 2.3.3.1. The completion Cp of Qp is also algebraically closed.

Proof. Let x ∈ Cp; then there exists d ∈ N and there exist ci ∈ Cp for
i = 0, . . . , d− 1 such that

xd + cd−1x
d−1 + · · ·+ c1x+ c0 = 0.

Since Qp is dense in its completion Cp, then for each i = 0, . . . , d− 1 there exists a
sequence

{λi,n}n≥1 ⊂ Qp such that λi,n → ci.

Because Qp is algebraically closed we have that all solutions to the polynomial
equation

(2.3.3.2) td + λd−1,nt
d−1 + · · ·+ λ1,nt+ λ0,n = 0

lie in Qp. Thus we may factor the polynomial Pn(t) appearing in (2.3.3.2) as follows:

Pn(t) := (t− β1,n) · · · (t− βd,n),
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with β1,n, . . . , βd,n ∈ Qp. By construction,

Pn(x) = Pn(x)− xd − cd−1x
d−1 − · · · − c1x− c0 =

d−1∑
i=0

(λi,n − ci)x
i.

In particular, we see that

|Pn(x)|p ≤ max
0≤i≤d−1

(
|λi,n − ci|p · |x|ip

)
→ 0

as n→∞ (because λi,n → ci in Qp). On the other hand,

|Pn(x)|p =
d∏

i=1

|x− βi,n|p,

and so we see that for each n we can find some solution t = xn to Equation (2.3.3.2)
such that |x − xn|p → 0 as n → ∞, thus proving that x lies in the completion of

Qp. So, Cp is both complete and algebraically closed, as claimed. �

It is elementary to see that for each λ ∈ Qp such that

|λ|p = 1,

there exists a positive integer d such that

|λd − 1|p ≤
1

p
,

which yields easily that

|λdp − 1|p <
1

p
.

Actually, one can prove the following more general result, which we will use later
in our book.

Proposition 2.3.3.3. Let λ ∈ Cp such that |λ|p = 1. Then there exists a
positive integer d such that |λd − 1|p < 1

p .

Proof. The only real difficulty in the proof of Proposition 2.3.3.3 lies in the
fact that the closed unit ball in Cp is not compact. We can get around this by

reducing to a compact set since Qp is dense in Cp. Thus we may assume that

λ ∈ Qp. Now let K = Qp(λ). Then K is a finite extension of Qp. We let OK

denote the subring of K containing all elements of norm at most 1. Then OK

is a finite free Zp-module of rank [K : Qp]. In particular, OK is compact, as it

is the continuous image of Z
[K:Qp]
p . By construction, λ ∈ OK . We now consider

the sequence of powers of λ. By the Bolzano-Weierstrass theorem, there exists a
convergent subsequence and hence there exist positive integers m and n with m < n
such that

|λm − λn|p <
1

p
.

Since |λ|p = 1 we then see

|λd − 1|p <
1

p
,

where d = n−m. This completes the proof. �
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2.3.4. p-adic analytic functions. When we talk about p-adic analytic func-
tions, we generally consider functions defined on open subsets of Cp. For w ∈ Cp

and r > 0, we denote by D(w, r) the open disk centered at w and of radius r, i.e.

D(w, r) := {z ∈ Cp : |z − w|p < r}.
If w ∈ Qp, sometimes we consider the above open disk inside Qp, and still denote
it by D(w, r).

Definition 2.3.4.1. Let B be an open subset of Cp, and let f : B −→ Cp. We
say that f is (p-adic) analytic at w ∈ B if there exists r > 0 such that f restricted
on D(w, r) is given by a convergent power series:

f(z) =

∞∑
i=0

ci(z − w)i.

If f is analytic at each point of B, then we says that f is (p-adic) analytic on B.

The following result is proven in [Rob00, Section 5.4].

Lemma 2.3.4.2. The p-adic logarithmic function

logp(1 + z) :=
∞∑
i=0

(−1)izi+1

i+ 1

is analytic on D (0, 1), and the p-adic exponential map

expp(z) =
∞∑
i=0

zi

i!

is analytic on D
(
0, p−1/(p−1)

)
. Therefore, for each u0 ∈ Cp such that

|u0 − 1|p < p−1/(p−1)

we can define the function

f(z) = uz
0 = expp(z · logp(1 + (u0 − 1))),

which is analytic for all z ∈ D (0, 1). Moreover, since

|u0 − 1|p < p−1/(p−1),

then
| logp(u0)|p ≤ |u0 − 1|p < p−1/(p−1).

2.3.5. Mahler series. For any integer k ≥ 0 we define the polynomial func-
tion z 	→

(
z
k

)
given by (

z

k

)
:=

z(z − 1) · · · (z − k + 1)

k!
,

where by convention,
(
z
0

)
= 1.

When studying p-adic analytic maps, it is often more useful to work with Mahler
series rather than conventional power series. A Mahler series is a function

f : Zp → Cp given by f(z) =

∞∑
j=0

ck

(
z

k

)
,

where c0, c1, . . . are elements of Cp with |cn|p → 0 as n → ∞. We note that since
a Mahler series is a uniform limit of polynomials, then it is continuous on Zp.
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The reason for which it is often advantageous to use Mahler series expansions
rather than power series expansions when studying continuous and p-adic analytic
maps on Zp is that the maps

z 	→
(
z

i

)
, i = 0, 1, . . .

form a Zp-module basis for the polynomials that map Zp into itself and because
of this fact, the coefficients of the Mahler expansion of a function are often more
readily obtained than the coefficients of its power series expansion. More generally,
one can show that every continuous map on Zp is given by Mahler series. To show
this, we let Cp denote the collection of continuous maps from Zp into Cp. The
forward difference operator is

Δ : Cp → Cp given by Δ(f)(z) = f(z + 1)− f(z).

Iteration of Δ then gives

(2.3.5.1) Δn(f)(z) =
n∑

j=0

(
n

j

)
(−1)n−jf(z + j).

Theorem 2.3.5.2. If f : Zp → Cp is continuous then |Δj(f)(0)|p → 0 and

f(z) =
∑
j

Δj(f)(0)

(
z

j

)
.

In particular, f(z) has a Mahler series expansion.

Proof. Let M denote the maximum of |f(z)|p on Zp. We claim that for each
d ≥ 0, there is some natural number N = N(d) such that the maximum of Δk(f)(z)
on Zp is less than M/pd whenever k ≥ N(d). We prove this by induction on d. The
case when d = 0 is immediate. Suppose next that the claim holds whenever d < m.
Then by assumption, there is some N such that whenever k ≥ N , we have

|Δk(f)(z)|p < M/pm−1

for all z ∈ Zp. Let g(z) = ΔN (f)(z). Since Zp is compact, g(z) is uniformly
continuous on Zp, and so there is some j such that

|g(z + pj)− g(z)|p < M/pm

for every z ∈ Zp. We have

Δpj+N (f)(z) = Δpj

(g)(z) =

pj∑
i=0

(
pj

i

)
(−1)pj−ig(z + i),

and since |
(
pj

i

)
|p ≤ p−1 for i = 1, . . . , pj−1, we see that Δpj

(g)(z)−(g(z+pj)−g(z))
can be written as a sum of terms whose absolute value is less than M/pm and so

the maximum of Δpj

(g)(z) on Zp is at most M/pm. It follows immediately that

|Δk(f)(z)|p < M/pm

for all z ∈ Zp whenever k ≥ pj +N . The claim follows by induction. Therefore

h(z) :=
∞∑
j=0

Δj(f)(0)

(
z

j

)
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is a Mahler series and hence is continuous on Zp. We claim that h(z) = f(z).
Since h(z) and f(z) are continuous and N0 is dense, it is sufficient to show that
h(n) = f(n) for every nonnegative integer n. By uniform convergence, we have

Δi(h)(z) =
∞∑
j=0

Δj+i(0)

(
z

j

)
for every nonnegative integer i. This then gives that

Δi(h)(0) = Δi(f)(0) for every i ≥ 0.

A straightforward induction argument now gives that h(n) = f(n) for every non-
negative integer n and the result follows. �

Since every continuous function on Zp has a Mahler series expansion, it is clear
that Mahler series are not in general analytic. The following result gives a criterion,
which when met, ensures that a Mahler series is analytic on Zp.

Theorem 2.3.5.3. Let

f(z) =

∞∑
j=0

cj

(
z

j

)
be a Mahler series and suppose that

|cn/n!|p → 0 as n→∞.

Then f(z) is the Mahler series expansion of a map that is analytic on Zp.

Proof. Let fn(z) =
∑n

j=0 cj
(
z
j

)
. We may write

fn(z) =

n∑
i=0

bi,nz
i with bi,n ∈ Cp.

Since j!
(
z
j

)
∈ Zp[z], we see that

|bi,n+1 − bi,n|p ≤ |cn/n!|p → 0 as n→∞.

Thus for each i there is some bi ∈ Cp such that bi,n → bi as n→∞; moreover,

|bi − bi,n| ≤ max
j≥n

|cj/j!|p → 0 as n→∞.

In particular, |bn|p → 0 as n→∞, since bn,n+1 = 0. Let

h(z) =

∞∑
i=0

biz
i.

Then h(z) is analytic on Zp and by construction we have that fn(z) converges
uniformly to both h(z) and f(z) on Zp. It follows that h(z) = f(z) and so f(z) is
analytic on Zp. �

In order to use this result, one must have an understanding of the behavior
of |n!|p for a prime p. A simple argument shows that the exponent of the highest
power of p dividing n! is exactly

�n/p�+ �n/p2�+ �n/p3�+ · · · .
Bounding this sum with a geometric series, we immediately obtain the bound

(2.3.5.4) |n!|p ≥ p−n/(p−1).
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2.3.6. Arbitrary absolute values. Let K be a field of arbitrary character-
istic. We call | · |v an absolute value or a norm on K if

(1) |ab|v = |a|v · |b|v;
(2) |a+ b|v ≤ |a|v + |b|v (this is called the triangle inequality property);
(3) |a|v = 0 if and only if a = 0.

We say that two absolute values | · |1 := | · |v1 and | · |2 := | · |v2 on K are equivalent
if there exists a positive real number c such that

|x|1 = |x|c2 for all x ∈ K.

As proven in [Lan02, Prop. 1.1, Ch. XII], two absolute values are equivalent if and
only they define the same topology on K. An equivalence class of absolute values
is called a place. Often when we refer to a place of a field K we fix an absolute
value from the equivalence class of absolute values represented by the given place.

If we have the triangle inequality (which is hypothesis (2) in the definition of
an absolute value) replaced by the stronger inequality, also called the ultrametric
inequality :

|a+ b|v ≤ max{|a|v, |b|v},
then | · |v is called a non-archimedean absolute value; otherwise, | · |v is called an
archimedean absolute value. Sometimes, for a non-archimedean absolute value | · |v
we consider the corresponding valuation

v : K −→ R ∪ {∞}
given by v(0) =∞, while for each nonzero x ∈ K we have

v(x) = − log |x|v.
Let K ⊂ L be two fields and let v be a place of K while w is a place of L. If

the restriction of | · |w on K is equal to | · |v, then we say that w is an extension and
we denote this by w|v. We also say that the place w lies above v (or equivalently
that v lies below w).

We denote by Kv the completion of K with respect to the norm | · |v. If K = Q
and | · |v is the usual absolute value, then the completion is R, while if | · |v = | · |p
we obtain the p-adic numbers.

Let v be a non-archimedean absolute value, and let Cv be an algebraically
closed, complete field with respect to the v-adic norm | · |v. The following simple
result on zeros of analytic functions can be found in [Gos96, Proposition 2.1, p.
42] (see also [GT08b, Lemma 3.4] and [Rob00, Subsection 6.2.1]). We include a
short proof for the sake of completeness.

Lemma 2.3.6.1. Let

F (z) =

∞∑
i=0

aiz
i

be a power series with coefficients in Cv that is convergent in an open disk B of
positive radius around the point z = 0. Suppose that F is not the zero function.
Then the zeros of F in B are isolated.

Proof. Let w be a zero of F in B. We may rewrite F in terms of (z − w) as
a power series

F (z) =

∞∑
i=1

bi(z − w)i
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that converges in a disk Bw of positive radius around w. Let m be the smallest
index n such that bn �= 0. Since F is convergent in Bw, there exists a positive real
number r such that for all n > m, we have∣∣∣∣ bnbm

∣∣∣∣
v

< rn−m.

Then, for any u ∈ Bw such that

0 < |u− w|v <
1

r
,

we have

|bm(u− w)m|v > |bn(u− w)n|v for all n > m.

Hence

|F (u)|v = |bm(u− w)m|v �= 0.

Thus F (u) �= 0, and so, F has no zeros other than w in a non-empty open disk
around w. �

We will use the above lemma several times in the book, mainly in the case
when Cv = Cp.

2.3.7. S-integers. Let K be a field, and let S be a set of places of K. We
call x ∈ K an S-integer if for each absolute value | · |v which is not from S, we have
|x|v ≤ 1. The classical example is that when K is a number field and S is a finite
set containing all the archimedean places of K; then the celebrated result of Siegel
[Sie29] says the following.

Theorem 2.3.7.1 (Siegel). Let K be a number field, and let S be a set contain-
ing all the archimedean places of K and also at most finitely many non-archimedean
places of K. Let C ⊂ A2 be a plane curve containing infinitely many points with
both coordinates S-integral. Then C contains a Siegel curve, i.e., an irreducible
curve of genus 0 with at most two points at infinity.

The above result is valid also when K is replaced by a finitely generated ex-
tension of Q (for more details, see Chapter 5). For a polynomial F (x, y), we say
that an irreducible polynomial G(x, y) dividing F (x, y) is a Siegel factor of F (x, y)
if the plane curve given by the equation G(x, y) = 0 is a Siegel curve.

2.4. Chebotarev Density Theorem

In this short section we state the Chebotarev Density Theorem which is used
later in the book; for more details, see [SL96].

Theorem 2.4.0.1. Let L/K be a Galois extension of number fields, and let
G := Gal(L/K). Let C ⊆ G be closed under conjugation, and define

ΠC(x, L/K) := #{p : N(p) ≤ x, p is unramified in L/K, and σp ⊆ C},
where N(p) is the (K/Q)-norm of the prime ideal p of K, and σp is the Frobenius
conjugacy class corresponding to p in Gal(L/K). Then

lim
x→∞

ΠC(x, L/K)

ΠG(x, L/K)
=
|C|
|G| .
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2.5. The Skolem-Mahler-Lech Theorem

In this section we present an important result regarding linear recurrence se-
quences: given a linear recurrence sequence {an}n∈N0

, the set of n ∈ N such that
an = 0 is a union of at most finitely many arithmetic progressions (when an ∈ Z for
each n, the result was proven by Skolem [Sko34], and then extended to arbitrary
algebraic numbers by Mahler [Mah35], and finally to complex numbers by Lech
[Lec53]).

2.5.1. Background on linear recurrences. In this subsection, we recall
some of the basic facts about linear recurrence sequences.

Definition 2.5.1.1. Let K be a field. A linear recurrence sequence (defined
over K) is a sequence f : N0 → K for which there exists m ∈ N and b1, . . . , bm ∈ K
such that

(2.5.1.2) f(n) =
m∑
j=1

bjf(n− j)

for all n ≥ m.

Lemma 2.5.1.3. Let K be a field and let F be an extension of K. Then the
collection of F -valued sequences that satisfy a linear recurrence over K forms an
F -algebra.

Proof. We only prove that the product of two linear recurrence sequences is
again a linear recurrence sequence; the proof that the sum of two such sequences is
again linearly recurrent is similar. Let

S : FN0 → FN0

denote the shift map; i.e., given an F -valued sequence f(n), we define

S · f(n) = f(n+ 1).

Then {f(n)}n∈N0
satisfies a linear recurrence over K if and only if the K-vector

space Vf spanned by {Sif}i∈N0
is finite-dimensional.

Suppose now that {f(n)} and {g(n)} are two F -valued sequences that satisfy
linear recurrences over K. Let W denote the K vector space spanned by all se-
quences that can be expressed as the product of an element of Vf and an element
of Vg. Then we have a surjective map

Vf ⊗K Vg →W

and hence W is finite-dimensional. Furthermore

{f(n)g(n)}n∈N0
∈W

and W is evidently closed under the operator S. It follows that {f(n)g(n)}n∈N0
is

a linear recurrence sequence. �

Proposition 2.5.1.4. Let K be a field and let f : N0 → K. The following are
equivalent:

(i) {f(n)} satisfies a linear recurrence;
(ii) there exist a matrix A ∈Mm(K) (for some m ∈ N) and vectors v, w ∈ Km

such that
f(n) = wtAnv for n ≥ 0;
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(iii) there exist polynomials P (x), Q(x) ∈ K[x] with Q(0) = 1 such that∑
n≥0

f(n)xn

is the power series expansion of P (x)/Q(x) about x = 0;
(iv) there exist � ∈ N, d ∈ N0 and ci,j , αj ∈ K for 0 ≤ i ≤ d and 1 ≤ j ≤ �

such that (for n sufficiently large) we have

(2.5.1.5) f(n) =

d∑
i=0

�∑
j=1

ci,jn
iαn

j .

Proof. We first show that (i) implies (ii). For each i = 1, . . . ,m, we denote
by ei the i-th vector in the canonical basis for the vector space Km; i.e., the entries
in ei are all equal to 0 except the i-th entry which equals 1. Suppose that f(n)
satisfies the linear recurrence

f(n) =

m∑
i=1

bif(n− i)

for some b1, . . . , bm ∈ K. Let v = [f(0), . . . , f(m−1)]t and let A be them×mmatrix
whose i-th row is eti+1 for i ∈ {1, . . . ,m − 1} and whose m-th row is [bm, . . . , b1].
Then the linear recurrence gives Anv = [f(n), . . . , f(n + m − 1)]. Taking w = et1
gives that f(n) = wtAnv.

We now show that (ii) implies (iii). Let Q(x) = det(I −Ax) ∈ K[x]. Then∑
n≥0

f(n)xn =
∑
n≥0

(wtAnv)xn = wt(I −Ax)−1v.

The classical adjoint formula then shows that (I − Ax)−1 = R(x)/Q(x), where
R(x) ∈ Md(K)[x]. Thus the generating sequence for f(n) is given by the power
series expansion of P (x)/Q(x), where P (x) = wtR(x)v.

Next suppose that (iii) holds. Then there exist polynomials P (x), Q(x) ∈ K[x]
with Q(0) = 1 such that the generating series for f(n) is equal to P (x)/Q(x). Using
the division algorithm, we find polynomials R,P1 ∈ K[x] such that

P (x) = Q(x) ·R(x) + P1(x)

and deg(P1) < deg(Q) (if Q is constant, then P1 = 0). Then for all sufficiently
large n, the coefficient of xn in P (x)/Q(x) is the same as the coefficient of xn in
P1(x)/Q(x). Therefore, from now on we assume R = 0 and P = P1 has degree less
than Q.

We write Q(x) = (1 − α1x) · · · (1 − α�x) with α1, . . . , α� ∈ K, not necessarily
distinct. Since the degree of P (x) is strictly less than the degree of Q(x), we can
use partial fractions to express P (x)/Q(x) as

d∑
i=0

�∑
j=1

βi,j/(1− αjx)
i

for some nonnegative integer d and βi,j ∈ K for i ∈ {1, . . . , d} and j ∈ {1, . . . , �}.
This then gives

f(n) =
d∑

i=0

�∑
j=1

βi,j

(
n+ i

i

)
αn
j ,
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which yields (iv).
Finally, we show that (iv) implies (i). Given α ∈ K, we let

c0 + c1x+ · · ·+ xm ∈ K[x]

denote its minimal polynomial. Let g(n) = αn. Then

g(n) = −
m∑
i−1

cig(n− i)

for n ≥ m and so we see that αn satisfies a linear recurrence over K. Also, h(n) = n
satisfies the recurrence h(n) − 2h(n − 1) + h(n − 2) = 0. By Lemma 2.5.1.3, the
collection of K-valued sequences satisfying a linear recurrence over K forms a K-
algebra, and so we see that (iv) implies (i). �

Remark 2.5.1.6. If in the definition of a linear recurrence sequence (Definition
2.5.1.2), we have bm �= 0 then in Proposition 2.5.1.4 we have that

det(A) = (−1)m+1bm �= 0

and so, A is invertible and therefore deg(P ) < deg(Q) in part (iii) of the conclusion
of Proposition 2.5.1.4 which in turn yields in part (iv) of Proposition 2.5.1.4 that
(2.5.1.5) holds for all n ≥ 0 (not only for n sufficiently large).

Part (iv) of Proposition 2.5.1.4 gives rise to some natural classes of linear re-
currences. We say that a linear recurrence sequence f(n) is non-degenerate if the
expression for f(n) given in part (iv) of the proposition satisfies that αj/αk is not
a root of unity when αj �= αk and αk is nonzero. We say that f(n) is simple if
ci,j = 0 whenever i > 0; that is,

f(n) =
d∑

j=1

cjα
n
j

for all n sufficiently large. In this case, we define the length of f(n) to be the
smallest natural number d for which there exists an expression for f(n) of the form

d∑
j=1

cjα
n
j

for all sufficiently large n.
With the notation as in part (iv) of the conclusion of Proposition 2.5.1.4, in

Section 2.5 (see Proposition 2.5.3.1 and Theorem 2.5.4.1), we show that that there
exists a prime number p, an embedding

Q ((ci,j)i,j , (αj)j) ↪→ Qp,

and there exists k ∈ N such that for each b ∈ {0, 1, . . . , k − 1}, the map

n 	→ f(nk + b) =
d∑

i=1

�∑
j=1

ci,j(kn+ b)iαb
j(α

k
j )

n

can be interpolated by a p-adic analytic function. This allows one to conclude
that the set of n ∈ N0 such that f(n) = 0 is a union of finitely many arithmetic
progressions.
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2.5.2. More on linear recurrence sequences. Let {an}n∈N0
⊆ C be a

linear recurrence sequence; more precisely, there exist complex numbers c0, . . . , ck−1

such that for each n ∈ N we have

an+k = ck−1an+k−1 + · · ·+ c1an+1 + c0an.

As proven in Proposition 2.5.1.4 (iv), there exist polynomials

f1, . . . , fm ∈ C[z]

such that

• deg(fi) is less than the order of multiplicity of the root ri; and
• for each n ∈ N we have

(2.5.2.1) an = f1(n)r
n
1 + · · ·+ fm(n)rnm.

The numbers ri are called the characteristic roots and they are associated to the
characteristic equation for this sequence:

xk − ck−1x
k−1 − · · · − c1x− c0 = 0.

Example 2.5.2.2. Let {an}n≥1 be the sequence defined by

a1 = −3; a2 = 0; a3 = −15 and

an+3 = 3an+1 − 2an.

The characteristic equation is

x3 − 3x+ 2 = 0

whose roots are r1 = 1 (twice) and r2 = −2. Thus we search for a formula

an = (An+B)rn1 + Crn2 ,

with A,B,C ∈ C. We find that A = −3, B = 2 and C = 1; so

an = −3n+ 2 + (−2)n.

It is natural to ask what is the set of n ∈ N such that an = 0. In Exam-
ple 2.5.2.2, this leads to solving the equation

−3n+ 2 + (−2)n = 0

and it is easy to check that the only solution is n = 2. However, in general the above
question might be more challenging if there are more roots ri of the characteristic
equation which have the same largest absolute value. Furthermore, if the linear
recurrence sequence is degenerate, then there could be even infinitely many n ∈ N
such that an = 0. So, in order to solve this question for any linear recurrence
sequence we will turn this question into an analysis problem.

2.5.3. An embedding lemma. With the notation for a linear recurrence
sequence {an} as in (2.5.2.1), assume that each ri is a positive real number; then

F (x) :=

m∑
i=1

fi(x)r
x
i

is a real analytic function. So, the question is when F (x) = 0 (especially, for which
values x which are positive integers). Still this does not solve the problem, but
it provides the motivation for the Skolem’s method which will solve the problem.
Rather than work over R, we will instead work over Qp; as we shall see, this has the
advantage that the integers embed inside Zp, which is a compact set and so analytic
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functions on Zp that vanish at infinitely many integers will necessarily vanish at
all integers. Our main goal is to prove that the general term of a linear recurrence
sequence can be parametrized by finitely many p-adic analytic functions. First we
state an embedding lemma due to Lech [Lec53].

Proposition 2.5.3.1. Let K be a finitely generated extension of Q, and let
S ⊆ K be a finite set. Then there exist infinitely many prime numbers p and for
each such prime number p there exists an embedding

σ : K −→ Qp

such that σ(S) ⊆ Zp.

Before proving this result, we need a basic result which gives that a non-
constant integer polynomial has roots modulo p for infinitely many prime numbers
p.

Lemma 2.5.3.2. Let f(x) ∈ Q[x] be a non-constant polynomial. Then there are
infinitely many primes p for which f(x) has a root modulo p.

Proof. By clearing denominators, we see that without loss of generality we
may assume that f(x) ∈ Z[x]. Suppose that the set of primes p for which f(x) has
a root modulo p is finite and let S = {p1, . . . , pk} denote the set of such primes.
Then for every integer n, we have that all prime factors of f(n) are in S. Let
N = p1 · · · pk. Pick a natural number a such that f(a) is nonzero and let j be a
natural number with the property that

|f(a)|pi
> p−j

i for i = 1, . . . , k.

Then for each integer n we have

f(a+N jn) ≡ f(a) (mod N j).

In particular, we have

|f(a+N jn)|pi
= |f(a)|pi

for i = 1, . . . , k.

Since the only prime factors of f(a+N jn) are in S, we see that

f(a+N jn) = ±f(a)
for every integer n. In particular, one of f(x) + f(a) and f(x)− f(a) has infinitely
many roots, which gives that f(x) is constant, a contradiction. �

Proof of Proposition 2.5.3.1. Let t1, . . . , td be a transcendence basis for K
as an extension of Q and let F = Q(t1, . . . , td). By the theorem of the primitive
element, there is an element θ ∈ K such that K = F [θ] with θ algebraic over F .
Let P (t1, . . . , td) ∈ Z[t1, . . . , td] be a nonzero polynomial such that

(2.5.3.3) P (t1, . . . , td)s ∈ Z[t1, . . . , td, θ] for every s ∈ S.

Let
f(x) = xd + cd−1x

d−1 + · · ·+ c0 ∈ F [x]

denote the minimal polynomial of θ over F and let

Δ = Δ(t1, . . . , td) ∈ F

denote the discriminant of f(x). Since f(x) is irreducible, we see that it has distinct
roots and hence Δ is nonzero. We also let

I := {0 ≤ i ≤ d− 1: ci �= 0}.
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Then

G(t1, . . . , td) := P ·Δ ·
∏
i∈I

ci

is a nonzero rational function. Since G is nonzero, there exist integers a1, . . . , ad
such that G(a1, . . . , ad) is a nonzero rational number. Furthermore, using Hilbert’s
Irreducibility Theorem (see [Lan83, Chapter 9]) we may ensure that

f(x) :=

d∑
i=0

ci(a1, . . . , ad)x
i ∈ Q[x]

(where we take cd = 1) is irreducible. Then by Lemma 2.5.3.2 we can choose a
prime number p satisfying the following conditions:

(i) f(x) has a root modulo p;
(ii) p does not divide P (a1, . . . , ad);
(iii) |ci(a1, . . . , ad)|p = 1 for i ∈ I;
(iv) |Δ(a1, . . . , ad)|p = 1

Since Zp is uncountable, we can find algebraically independent elements ε1, . . . , εd ∈
Zp. We note that the map σ which sends ti to ai + pεi for i = 1, . . . , d extends to
an embedding of F into Zp. Now, let

f0(x) =

d∑
i=0

ci(a1 + pε1, . . . , ad + pεd)x
i ∈ Zp[x].

Then for b ∈ Z, we have |f0(b) − f(b)|p < 1 and thus by (i), we have that there is
some a ∈ Z such that |f0(a)|p < 1. Condition (iv) gives that f0(x) has no repeated
roots mod p and so |f ′

0(a)| = 1. Hence by Hensel’s lemma (see Lemma 2.3.2.1),
there is μ ∈ Zp such that f0(μ) = 0. Moreover f0 is irreducible over σ(F ) and
hence we can extend σ to K to give an embedding of K into Qp by sending θ to μ.
By condition (iii),

|σ(P (t1, . . . , td))|p = 1,

and so by Equation (2.5.3.3), we have σ(S) ⊆ Zp. �

One can also prove Proposition 2.5.3.1 using the Chebotarev Density Theorem
(see Theorem 2.4.0.1); for more details, see, for example, [Bel06].

2.5.4. Zeros in linear recurrence sequences. Using Proposition 2.5.3.1 we
can prove the following result which is due in this form to Lech [Lec53] (see also
[Sko34, Mah35] for earlier versions of the same result under stronger hypothesis).

Theorem 2.5.4.1 (Skolem-Mahler-Lech). Let {an}n∈N0
⊆ C be a linear recur-

rence sequence. Then there exist

r,m1, . . . ,mr, k1, . . . , kr ∈ N0

such that

{n ∈ N0 : an = 0} =
r⋃

i=1

{mi + �ki : � ∈ N0} .

Remarks 2.5.4.2.
(i) In the above result, if r = 0, then that means there exist no integers n such that
an = 0.
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(ii) Note that we allow ki = 0 in which case the above corresponding set consists of
a single element; if ki > 0, then the set is an infinite arithmetic progression.

(iii) Given a decomposition of the set of n for which an = 0 as above with r minimal,
the elements of the form mi with ki = 0 are called the exceptional zeros of the linear
recurrence.

Proof of Theorem 2.5.4.1. Since {an} is a linear recurrence sequence, then
there exist polynomials fi ∈ C[z] and complex numbers ri (see Proposition 2.5.1.4)
such that

an =

�∑
i=1

fi(n)r
n
i .

Without loss of generality we may assume each ri �= 0. Choose a prime number p
and an embedding of all coefficients of each fi, and also of all ri in Zp (according
to Proposition 2.5.3.1). Furthermore, we may assume each ri is mapped to a p-adic
unit (by asking that also each inverse 1/ri is mapped into Zp). Looking at the
natural surjection

Zp → Z/pZ,

we see that

|rp−1
i − 1|p ≤ p−1 for i = 1, . . . , �.

In particular, if we let N = 2 if p = 2, and N = p − 1 if p is odd, then for each
i = 1, . . . , � we have

(2.5.4.3) | rNi − 1 |p< p−1/(p−1).

Therefore, the function

z 	→
(
rNi
)z

is a p-adic analytic function on Zp (see Lemma 2.3.4.2). Then for each k = 1, . . . , N ,
the function

gk(z) :=

�∑
i=1

fi(Nz + k)rki ·
(
rNi
)z

is a p-adic analytic function on Zp. Furthermore, for each nonnegative integer m,
we have aNm+k = gk(m). On the other hand, for each k = 1, . . . , N , we know by
Lemma 2.3.6.1 that either gk is identically equal to 0 in which case

aNm+k = 0 for all m ≥ 0,

or gk is not identically equal to 0 in which case there exist at most finitely many
z ∈ Zp such that gk(z) = 0 (and thus there exist at most finitely many integers
m ≥ 0 such that aNm+k = 0). �

Remarks 2.5.4.4. We make two important observations.

(1) The above proof also yields an upper bound for the common difference
of the (infinite) arithmetic progressions from the conclusion of Theo-
rem 2.5.4.1. Indeed, given a prime number p for which the conclusion of
Proposition 2.5.3.1 applies so we can embed each ri and each coefficient
of fi into Zp, then the common difference N of the infinite arithmetic
progressions such that a�+Nk = 0 for all k ∈ N0 is bounded above by 2 if
p = 2, and by p− 1 if p is odd. More precisely, N is a divisor of p− 1 if p
is odd (see (2.5.4.3)).
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(2) Furthermore there exist effective bounds (see [Sch99, Sch00]) for the
number of exceptional solutions n ∈ N0 such that an = 0 (for a linear
reccurence sequence {an}). Also, Schmidt [Sch99, Sch00] found effective
bounds for the number of infinite arithmetic progressions appearing in the
conclusion of Theorem 2.5.4.1.

2.6. Heights

In this section we recall some standard terminology about heights; for more
details, we refer the reader to [BG06, HS00, Lan83, Sil07].

2.6.1. Product formula fields. A product formula field K comes equipped
with a standard set MK of absolute values | · |v which satisfy a product formula

(2.6.1.1)
∏

v∈MK

|x|Nv
v = 1 for every x ∈ K∗,

where N : MK → N and Nv := N(v) (see [Lan83] for more details).
The typical examples of product formula fields appearing in the book are

(1) global fields K which are either number fields or function fields of tran-
scendence degree 1 over a finite field.

(2) function fields K of transcendence degree 1 over any field F (not neces-
sarily a finite field F ).

Actually, any finitely generated field K of characteristic 0 can be made into a
product formula field; if it has positive transcendence degree over Q, then it can
be viewed as a function field of transcendence degree 1 over another field. Also, in
certain applications, it is convenient to view a finitely generated field K of higher
(finite) transcendence degree over Q as a function field of an irreducible, projective
variety V defined over Q (at the expense of replacing K by a fintie extension we
may even assume that V is smooth and geometrically irreducible). Then one can
endow K with a set of places corresponding to irreducible divisors of V , which
makes K a product formula field; for more details, see [BG06].

We also note that once K is either a number field or a function field of tran-
scendence degree 1 over another field F , then any finite extension L of K is also
a product formula field (see [Lan83]). Indeed, each absolute value | · |v from MK

admits between 1 and [L : K] extensions to absolute values on L; we let ML be the
set of all extensions on L of the absolute values from MK . For each v ∈ MK and
for each w ∈ML lying above v, we let

Nw := Nv · [Lw : Kv],

where Kv and Lw are the corresponding completions of K and L with respect to
v and w. Then it is easy to check that L equipped with the absolute values | · |w
from ML and the corresponding positive integers Nw is a product formula field:

(2.6.1.2)
∏

w∈ML

|x|Nw
w = 1 if x ∈ L∗.

Furthermore, for each v ∈MK we have that

(2.6.1.3)
∑

w∈ML
w|v

Nw = [L : K] ·Nv.
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2.6.2. Absolute values for function fields. In the case K is the rational
function field F (t) for some field F , the places v in MK are of two types:

(a) either v := vf corresponds to a irreducible monic polynomial f ∈ F [t] in
which case for any nonzero polynomials P,Q ∈ F [t] we have∣∣∣∣P (t)

Q(t)

∣∣∣∣
v

:= eordf (Q)−ordf (P ),

where ordf (g) for a polynomial g ∈ F [t] is the nonnegative exponent
corresponding to the irreducible polynomial f(t) in the factorization of
g(t) as a product of powers of distinct irreducible polynomials. In this
case, we also let

Nv := deg(f).

(b) or v := v∞ in which case for any nonzero polynomials P,Q ∈ F [t] we have∣∣∣∣P (t)

Q(t)

∣∣∣∣
v

= edeg(f)−deg(g).

In this case we let Nv := 1.

It is immediate to see that from our definition, we have that the product formula
(2.6.1.1) holds. Also, we have that log |x|v ∈ Q for each nonzero x ∈ F (t) and for
each absolute value |·|v in MF (t). It is immediate to see that for any finite extension
K of F (t) the property that

log |x|v ∈ Q

remains valid for each nonzero x ∈ K and for each absolute value | · |v extending
an absolute value of F (t).

2.6.3. The Weil height. If K is a product formula field, the logarithmic Weil
height of x ∈ K is defined as (see [Lan83, p. 52])

(2.6.3.1) h(x) :=
1

[K(x) : K]
·
∑

v∈MK

∑
w|v

w∈MK(x)

logmax{|x|Nw
w , 1}.

It is convenient to extend the above notion of height to the entire projective line
over K by letting the height of the point at infinity be h(∞) = 0.

The following result is the classical Northcott Theorem (see [HS00, Theo-
rem B.2.3]).

Theorem 2.6.3.2. Let d ∈ N and let B ∈ R. There exist at most finitely many
algebraic numbers x such that h(x) ≤ B and [Q(x) : Q] ≤ d.

Our next result is a special case of [Lan83, Prop. 1.8, p. 81].

Proposition 2.6.3.3. Let K be a product formula field, and let f ∈ K[z] be a
polynomial. Then there exists cf > 0 such that

|h(f(x))− deg(f) · h(x)| ≤ cf

for all x ∈ K.
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2.6.4. Canonical heights. We recall that the degree of a rational function
ϕ ∈ K(z) is

deg(ϕ) := max{deg(f), deg(g)},
where ϕ(z) = f(z)/g(z) for some polynomials f, g ∈ K[z] which are coprime.

Definition 2.6.4.1. Let K be a product formula field, let φ ∈ K(z) with

deg(φ) > 1, and let z ∈ K. The canonical height ĥφ(z) := ĥφ(z) of z with respect
to φ is

ĥφ(x) := lim
n→∞

h(φn(x))

deg(φ)n
.

It is immediate to see that always the canonical height is nonnegative. Call
and Silverman [CS93, Thm. 1.1] proved the existence of the above limit, using
boundedness of

|h(φ(x))− (deg φ)h(x)|
and a telescoping sum argument due to Tate. We will use the following properties
of the canonical height.

Proposition 2.6.4.2. Let K be a number field, let ϕ ∈ K(z) be a rational
function of degree greater than 1, and let x ∈ K. Then

(a) for each n ∈ N, we have ĥϕ(ϕ
n(x)) = deg(ϕ)n · ĥϕ(x);

(b) |h(x)− ĥϕ(x)| is bounded by a function which does not depend on x;

(c) if K is a number field then x is preperiodic if and only if ĥϕ(x) = 0.

Proof. Part (a) is clear; for (b) see [CS93, Thm. 1.1]; and for (c) see [CS93,
Cor. 1.1.1]. �

Part (c) of Proposition 2.6.4.2 is not true if K is a function field with constant

field F which is not contained in the algebraic closure of a finite field, since ĥφ(x) = 0
whenever x ∈ F and ϕ ∈ F (z). But these are essentially the only counterexamples
in the function field case; for more details, see [Ben05] for the case when ϕ is
a polynomial and [Bak09] for the general case of rational maps (we also note
that Chatzidakis and Hrushovski [CH08a, CH08b] proved a generalization of
[Ben05, Bak09] for endomorphisms of arbitrary varieties defined over a function
field).

2.6.5. Local canonical heights for polynomials. Let K be a product for-
mula field endowed with a set MK of absolute values which satisfy a product for-
mula, let φ ∈ K[z] be a polynomial of degree greater than 1, and let v ∈ MK . We
let

(2.6.5.1) ĥφ,v(x) := lim
n→∞

logmax{|φn(x)|Nv
v , 1}

deg(φ)n

be the canonical local height of x ∈ K at v. Clearly, for all but finitely many
v ∈ MK , both x and all coefficients of φ are v-adic integers. Hence, for such

v ∈MK , we have ĥφ,v(x) = 0. It turns out that

(2.6.5.2) ĥφ(x) =
∑

v∈MK

ĥφ,v(x).

For a proof of the existence of the limit in (2.6.5.1), and of the equality in (2.6.5.2),
see [CS93]. We note that Call and Silverman [CS93] defined local canonical heights
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also for rational maps of degree greater than 1; however, it is only in the case of
polynomials that all local canonical heights are nonnegative (for more details, see
[Sil07]).

2.6.6. Canonical heights in function fields. We assume now that K is a
function field of transcendence degree 1 over a field F , i.e., K is a finite extension of
F (t) (where t is transcendental over F ). We endow K with the set MK of absolute
values extending the absolute values of F (t) (see Subsection 2.6.2). The following
result is a nice observation which we will use later.

Lemma 2.6.6.1. For each x ∈ K, and for each φ ∈ K[z] with deg(φ) > 1, we

have ĥφ(x) ∈ Q.

Proof. Since (2.6.5.2) is a finite sum, it suffices to prove that ĥφ,v(x) ∈ Q for
each v ∈MK . For some fixed v ∈MK , write

φ(z) =

d∑
i=0

δiz
i

with δi ∈ K and δd �= 0, and let

Mv := max

{
1, |δd|

− 1
d−1

v , max
0≤i<d

∣∣∣∣ δiδd
∣∣∣∣ 1
d−i

v

}
.

The following claim is essentially [GT08a, Lemma 4.4].

Claim 2.6.6.2. If |x|v > Mv, then ĥφ,v(x) = log |x|v + log |δd|v
d−1 .

Proof of Claim 2.6.6.2. From the definition of Mv and the fact that |x|v >
Mv, we obtain that

|δdxd|v > max
0≤i<d

|δixi|v.

Thus |φ(x)|v = |δdxd|v; but since |x|v > Mv ≥ |δd|−1/(d−1)
v , it follows that |φ(x)|v >

|x|v > 1. An easy induction now shows that

|φn(x)|v = |δd|
dn−1
d−1

v · |x|dn

v > 1 for all n ∈ N.

Hence

ĥφ,v(x) = lim
n→∞

log |φn(x)|v
dn

= log |x|v +
log |δd|v
d− 1

,

as desired. �

Finally, if ĥφ,v(x) > 0 then there exists n ∈ N such that |φn(x)|v > Mv. Thus,

(2.6.6.3) ĥφ,v(x) =
ĥφ,v(φ

n(x))

dn
=

log |φn(x)|v + log |δd|v
d−1

dn

is a rational number (see Subsection 2.6.2), which concludes the proof of Lemma
2.6.6.1. �

The following result about canonical heights of non-preperiodic points for non-
isotrivial polynomials will also be used later.

Definition 2.6.6.4. We say a polynomial φ ∈ K[z] is isotrivial over F if there
exists a linear � ∈ K[z] such that � ◦ φ ◦ �−1 ∈ F [z].
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Benedetto proved that a non-isotrivial polynomial has nonzero canonical height
at its non-preperiodic points [Ben05, Thm. B] (as mentioned before, Baker [Bak09]
extended Benedetto’s result to rational maps, and later Chatzidakis and Hrushovski
[CH08a, CH08b] proved a far-reaching generalization to endomorphisms of higher
dimensional varieties).

Lemma 2.6.6.5. Let φ ∈ K[z] with deg(φ) ≥ 2, and let x ∈ K. If φ is non-

isotrivial over F , then ĥφ(x) = 0 if and only if x is preperiodic for φ.

We state one more preliminary result, which is proved in [GTZ08, Lemma 6.8].

Lemma 2.6.6.6. Let φ ∈ K[z] be isotrivial over F , and let � be as in Defini-

tion 2.6.6.4. If x ∈ K satisfies ĥφ(x) = 0, then �(x) ∈ F .

Proof. Let f := �−1 ◦ φ ◦ �; then
fn(�−1(x)) = �−1(φn(x)),

and so, by Proposition 2.6.3.3, ĥφ(x) = 0 yields ĥf (�
−1(x)) = 0. Since f ∈ F [z],

this means

|�−1(x)|v ≤ 1 for every v ∈MK′(x);

so �−1(x) ∈ F . �

Definition 2.6.6.7. With the notation as in Lemma 2.6.6.6, we call the pair
(φ, x) isotrivial. Furthermore, if E ⊆ K is any subfield, and there exists a linear
polynomial � ∈ K[z] such that �◦φ◦ �−1 ∈ E[z] and �(x) ∈ E, then we call the pair
(φ, x) isotrivial over E.

2.6.7. Weil height on projective spaces. Let K be product formula field
with the corresponding set MK of absolute values, and let n be a positive integer.
Then for each finite extension L of K, we let ML be the corresponding set of
absolute values on L extending the absolute values from MK ; also, we let Nw be
the corresponding positive integers for the absolute values | · |w for w ∈ ML as in
the product formula (2.6.1.2). We define the Weil height of any point

[a0 : x1 : · · · : an] ∈ Pn(L), as follows

(2.6.7.1)

h([a0 : a1 : · · · : aN ]) =
1

[L : K]
·
∑

w∈ML

Nw logmax{|a0|w, |a1|w, . . . , |aN |w}.

Using the product formula (2.6.1.2) we see that the definition of the Weil height
is independent of the particular choice of coordinates for the representation of the
point in Pn(L). Also, using (2.6.1.3) we get that the formula (2.6.7.1) is independent
of the choice of the field L containing the coordinates ai. Finally, it is immediate
to see that if n = 1, the Weil height of [1 : x] is the same as the Weil height of
x ∈ K defined in (2.6.3.1).

2.6.8. Canonical heights associated to polarizable endomorphisms.
Let K be a product formula field endowed with a set MK of absolute values, let X
be a projective variety defined over K, and let f : X −→ X be a polarizable endo-
morphism with respect to the very ample line bundle L on X (see Subsection 2.2.4).
In particular,

f∗(L) = L⊗d for some integer d > 1.
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As discussed in Subsection 2.1.14, there exists a natural embedding ιL : X −→ PN

for some N ∈ N. For each x ∈ K, we denote by

hL(x) := h(ιL(x)),

where h(·) is the usual Weil height on PN (K) as defined in Subsection 2.6.7. Then,
following Call and Silverman [CS93], we define the canonical height of x ∈ X(K)
as follows:

ĥf (x) := lim
n→∞

hL(f
n(x))

dn
.

2.6.9. The case of abelian varieties. Let A be an abelian variety defined
over a global field K. Let L be a very ample line bundle on A with respect to which
the multiplication-by-n-map [n] on A is polarized; more precisely,

[n]∗(L) ∼→ L⊗n2

for each nonzero integer n. Then we can define the Néron-Tate canonical height on
A as in Subsection 2.6.8:

ĥ(x) = lim
n→∞

hL([n]x)

n2
.
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CHAPTER 3

The Dynamical Mordell-Lang problem

We start in this chapter by proving various reductions of the Dynamical Mordell-
Lang Conjecture (Conjecture 1.5.0.1). We continue by presenting the connections
of the Dynamical Mordell-Lang Conjecture (Conjecture 1.5.0.1) with the classical
Mordell-Lang Conjecture, and also with the Denis-Mordell-Lang Conjecture. Es-
sentially, the Dynamical Mordell-Lang Conjecture is the outcome of combining (at
the level of general principles) these last two conjectures in a dynamical setting.
We discuss two possible extensions of Conjecture 1.5.0.1 (see Questions 3.2.0.1 and
3.6.0.1), and also discuss various applications of the Dynamical Mordell-Lang Con-
jecture and of its extensions.

3.1. The Dynamical Mordell-Lang Conjecture

3.1.1. The statement revisited. We recall the Dynamical Mordell-Lang
Conjecture (stated first in our book as Conjecture 1.5.0.1). We note that through-
out this chapter, similar as in the rest of our book, unless otherwise stated, a
subvariety is always closed.

Conjecture 3.1.1.1 (Dynamical Mordell-Lang Conjecture). Let K be a field
of characteristic 0, let X be a quasiprojective variety defined over C, let Φ be an
endomorphism of X, let α ∈ X(K), and let V ⊆ X be a subvariety. Then the set of
n ∈ N0 for which Φn(α) ∈ V (K) is a union of finitely many arithmetic progressions.

We observe that we state Conjecture 3.1.1.1 for an arbitrary field of character-
istic 0, while Conjecture 1.5.0.1 was stated for varieties defined over the complex
numbers. On the other hand, we see in Proposition 3.1.2.1 that it suffices to prove
Conjecture 3.1.1.1 when K = C.

We will state next various reductions and equivalent formulations of Conjec-
ture 1.5.0.1.

3.1.2. Reductions. First we show that Conjecture 3.1.1.1 reduces to Conjec-
ture 1.5.0.1.

Proposition 3.1.2.1. It suffices to prove Conjecture 3.1.1.1 when K = C.

Proof. There exists a finitely generated subfield K0 ⊆ K such that

• X, V and Φ are all defined over K0; and
• α ∈ X(K0).

Since C is an algebraically closed field of infinite transcendence degree over Q, then
there exists an embedding

ι : K0 −→ C.

Hence, Conjecture 3.1.1.1 reduces to proving Conjecture 1.5.0.1. �
47
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Actually, the proof of Proposition 3.1.2.1 yields the following useful statement.

Proposition 3.1.2.2. It suffices to prove Conjecture 3.1.1.1 when K is a
finitely generated subfield of C.

So, from now on, in all of the following reductions we work under the hypothesis
and with the notation from Conjecture 1.5.0.1. Before proceeding to our reductions
we introduce a simple but useful notation for our later arguments.

Definition 3.1.2.3. Let S ⊆ C and c ∈ C. We let

S + c = c+ S := {c+ x : x ∈ S}
and

S · c = c · S := {cx : x ∈ S}.

Proposition 3.1.2.4. Let � be a positive integer. If Conjecture 1.5.0.1 holds
for X, V , Φ and Φ�(α), then it also holds for X, V , Φ and α.

Proof. Indeed, we let Sα := {n ∈ N0 : Φ
n(α) ∈ V (C)} and similarly, we let

SΦ�(α) := {n ∈ N0 : Φ
n+�(α) ∈ V (C)}. Then apart from a finite set, we have

Sα = SΦ�(α) + �,

as claimed. �
Proposition 3.1.2.5. Let k be a positive integer. Conjecture 1.5.0.1 holds for

the endomorphism Φk of X if and only if it holds for the endomorphism Φ of X.

Proof. Assume first that Conjecture 1.5.0.1 holds for the endomorphism Φ of
the variety X. Then for any subvariety V ⊆ X and for any α ∈ X(C), the set

(3.1.2.6) S(V,Φ, α) := {n ∈ N0 : Φ
n(α) ∈ V (C)}

is a finite union of arithmetic progressions. Then the set

Sk := S(V,Φ, α) ∩ {nk : n ∈ N0}
is also a finite union of arithmetic progressions since the intersection of two arith-
metic progressions is another arithmetic progression. On the other hand, letting

(3.1.2.7) S(V,Φk, α) := {n ∈ N0 : Φ
nk(α) ∈ V (C)},

we have that

S(V,Φk, α) =
1

k
· Sk,

and thus S(V,Φk, α) is also a finite union of arithmetic progressions, as claimed.
Assume now that Conjecture 1.5.0.1 holds for Φk, i.e., for any starting point

γ ∈ X(C) and for any subvariety V ⊆ X, the set S(V,Φk, γ) defined as in (3.1.2.7)
is a finite union of arithmetic progressions. Our goal is to prove that for each
α ∈ X(C), the set S(V,Φ, α) defined as in (3.1.2.6) is also a finite union of arithmetic
progressions. The result follows since

S(V,Φ, α) =
k−1⋃
�=0

(
S
(
V,Φk,Φ�(α)

)
· k + �

)
,

as claimed. �
The following simple, but useful observation will be often used even without

mentioning this proposition.
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Proposition 3.1.2.8. It suffices to prove Conjecture 1.5.0.1 for irreducible
subvarieties.

Proof. Since it suffices to consider the intersection of an orbit with each of the
finitely many irreducible components of a subvariety, the conclusion follows. �

Proposition 3.1.2.9. Conjecture 1.5.0.1 holds if α is preperiodic.

Proof. Using Propositions 3.1.2.4 and 3.1.2.5, we may replace α by an iterate
of it under Φ, and we may also replace Φ by an iterate. Therefore, we may assume
that α is fixed by Φ. Then for any subvariety V ⊆ X, either α ∈ V (C) in which
case

S := {n ∈ N0 : Φ
n(α) ∈ V (C)}

is the entire set N0, or α /∈ V (C) in which case S is empty. �

In particular, Proposition 3.1.2.9 has the following consequences.

Corollary 3.1.2.10. Assume there exists n ∈ N such that Φn is the identity
map on X. Then Conjecture 1.5.0.1 holds.

Proof. In this case, each point is periodic, and thus, Proposition 3.1.2.9 fin-
ishes the proof. �

Corollary 3.1.2.11. Conjecture 1.5.0.1 holds when dim(V ) = 0.

Proof. By Proposition 3.1.2.8, it suffices to prove the result when V is simply
a point, say V = {β}. If there exist finitely many n ∈ N such that

Φn(α) = β,

then we are done. Otherwise, α (and actually, also β) are preperiodic points for Φ,
in which case the conclusion follows from Proposition 3.1.2.9. �

The following proposition is useful sometimes in proving the Dynamical Mordell-
Lang Conjecture for an endomorphism which is conjugated to the original endomor-
phism.

Definition 3.1.2.12. Let Φ and Ψ be endomorphisms of the same variety X.
We say that Φ and Ψ are conjugated if there exists an automorphism μ of X such
that

Ψ = μ−1 ◦ Φ ◦ μ.

Proposition 3.1.2.13. Let X be a quasiprojective variety defined over C. Con-
jecture 1.5.0.1 holds for the endomorphism Φ of X if and only if it holds for an
endomorphism Ψ conjugated to Φ.

Proof. Let μ be an automorphism of X such that

Ψ = μ−1 ◦ Φ ◦ μ.
Then for each α ∈ X(C), and each subvariety V ⊂ X, we have that

Φn(α) ∈ V (C)

if and only if

Ψn
(
μ−1(α)

)
∈W (C),

where W := μ−1(V ). �
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The following easy result will allow us to reformulate the Dynamical Mordell-
Lang Conjecture. Before stating our reduction of Conjecture 1.5.0.1 we recall our
definition for periodic closed subvarieties: V is periodic under Φ, if

Φk(V ) ⊂ V ⇔ V ⊆ Φ−k(V ),

for some k ∈ N; for more details, we refer the reader to Subsection 2.2.2.

Proposition 3.1.2.14. Let X be a quasiprojective variety, let Φ be an endo-
morphism of X, let α ∈ X, let k ∈ N and � ∈ N0, and let V be the Zariski closure
of the set OΦk(Φ�(α)). Then V is Φ-periodic.

Proof. We know that Φ−k(V ) ⊇ OΦk(Φ�(α)) and since Φ−k(V ) is Zariski
closed, we have Φ−k(V ) ⊇ V which yields that V is Φ-periodic. �

3.1.3. Equivalent statements. We will show that the following two conjec-
tures are equivalent to Conjecture 1.5.0.1.

Conjecture 3.1.3.1. Let X be a quasiprojective variety defined over C, let
Φ be any endomorphism of X, let α ∈ X(C), and let V ⊆ X be an irreducible
subvariety of positive dimension. If the intersection OΦ(α)∩V (C) is Zariski dense
in V , then V is Φ-periodic.

Conjecture 3.1.3.2. Let X be a quasiprojective variety defined over C, let
Φ be any endomorphism of X, let α ∈ X(C) be a non-preperiodic point, and let
V ⊆ X be a subvariety. If V contains no periodic positive dimensional subvariety
intersecting OΦ(α), then V (C) ∩ OΦ(α) is finite.

Conjecture 1.5.0.1 implies Conjecture 3.1.3.1. Suppose that V is irre-
ducible, of positive dimension, and that

V (C) ∩ OΦ(α) is Zariski dense in V.

By Conjecture 1.5.0.1, there exist finitely many pairs (ki, �i) ∈ N0 × N0 (for 1 ≤
i ≤ r) such that

V (C) ∩ OΦ(α) =

r⋃
i=1

OΦki (Φ
�i(α)).

Since V (C) ∩ OΦ(α) is Zariski dense in V and V is irreducible, there exists a pair
(k, �) := (ki, �i) such that V is the Zariski closure of OΦk(Φ�(α)). Since dim(V ) > 0,
we have k ≥ 1. By Proposition 3.1.2.14 we conclude that V is Φ-periodic, or, more
precisely, that Φk(V ) ⊆ V . �

Conjecture 3.1.3.1 implies Conjecture 3.1.3.2. Suppose that V contains
no positive dimensional periodic subvariety intersecting OΦ(α). We must show that
V (C)∩OΦ(α) is finite. Assume not. Then the Zariski closure V0 of V (C)∩OΦ(α) is
positive dimensional. Furthermore, any positive dimensional irreducible component
V1 of V0 has Zariski dense intersection with OΦ(α). By Conjecture 3.1.3.1 we
obtain that V1 is periodic, which contradicts the fact that V contains no positive
dimensional periodic subvariety intersecting OΦ(α). �

Conjecture 3.1.3.2 implies Conjecture 1.5.0.1. By Proposition 3.1.2.9,
we may assume α is not preperiodic.

Let V be the set of all subvarieties V of X with the property that there exists
an endomorphism Φ of X, and there exists a point x ∈ X(C) such that the set

T := {n ∈ N0 : Φ
n(α) ∈ V (C)}
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is not a finite union of arithmetic progressions. Assume that V is non-empty. Then
we let V ∈ V be a subvariety of minimal dimension.

Thus there exists an endomorphism Φ of X and there exists α ∈ X(C) such
that

T = {n ∈ N0 : Φ
n(α) ∈ V (C)}

is not a finite union of arithmetic progressions. In particular, we may assume V is
irreducible; otherwise it would be a finite union of proper subvarieties and one of
these subvarieties must be in V (since otherwise V is not in V). Furthermore, T
must be an infinite set since it is not a finite union of arithmetic progressions (of
nonnegative ratio). Then assuming Conjecture 3.1.3.2 we conclude that V contains
a positive dimensional subvariety V0 satisfying:

• V (C) ∩ OΦ(α) �= ∅; and
• V0 ⊆ Φ−k(V ), for some k ∈ N.

There are two cases:
Case 1. V ⊆ Φ−k(V ).
Then for each i ∈ N0, if Φ

i(α) ∈ V (C), we also have that Φi+k(α) ∈ V (C).
In particular, for each � ∈ {0, . . . , k − 1}, the intersection of T with the (infinite)
arithmetic progression {� + nk}n∈N0

is either empty or it contains all sufficiently
large integers from the arithmetic progression. So T is a finite union of arithmetic
progressions.

Case 2. W := V ∩ Φ−k(V ) is a proper subvariety of V .
Since V is irreducible, then dim(W ) < dim(V ). For each � ∈ {0, . . . , k− 1}, we

let W� be the Zariski closure of Φ�(W ). In particular, W0 = W . Furthermore,

dim(Wj) < dim(V ) for each j.

By our assumption, V0 ⊆ V and V0 ⊆ Φ−k(V0) and so, V0 ⊆ W0. Also V0 meets
OΦ(α) and so there exists a ∈ N0 such that Φa(α) ∈ V0(C). Then

Φa+nk(α) ∈ V0(C) ⊆W0(C)

for all n ∈ N0. Furthermore, Φa+j+nk(α) ∈Wj(C) for each j < k. We let

Tj := {n ∈ N0 : Φ
a+j+nk(α) ∈ (Wj ∩ V )(C)}

for each j ∈ {0, . . . , k − 1}. Since
dim(Wj ∩ V ) ≤ dim(Wj) < dim(V )

and since V has minimal dimension among the subvarieties contained in V , we have
Wj ∩V /∈ V and so applying the conclusion of Conjecture 1.5.0.1 to each subvariety
Wj∩V with respect to the action of Φk and the starting point Φj+a(α), we conclude
that Tj is a finite union of arithmetic progressions. Now, using that

Φa+j+nk(α) ∈Wj(C)

for all n ∈ N0, we conclude that apart from a finite set, T equals

k−1⋃
j=0

(k · Tj + a+ j) .

Since each Tj is a finite union of arithmetic progressions, we also have that T is
a finite union of arithmetic progressions, contradicting the choice of V and thus
proving Conjecture 1.5.0.1. �
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3.2. The case of rational self-maps

One can formulate the same question as in Conjecture 1.5.0.1 for any rational
self-map.

Question 3.2.0.1. Let X be a quasiprojective variety defined over C, let V ⊆ X
be a subvariety, let α ∈ X(C), and let Φ be a rational self-map on X. If for each
n ∈ N0, the point Φn(α) is contained in the domain of definition for Φ, is it true
then that the set SV := {n ∈ N0 : Φ

n(α) ∈ V (C)} is a finite union of arithmetic
progressions?

So far there are very few partial results towards an answer to Question 3.2.0.1.
We mention here Xie’s result [Xie14, Theorem 1.1] for birational self-maps on sur-
faces (for more details, see Section 10.3), and also Theorem 11.1.0.7 which yields
that if the set SV has positive Banach density, then V contains a positive dimen-
sional periodic subvariety (for more details, see Section 11.4 and [BGT15b]). In
Subsection 3.2.1 we present a surprising application of a positive answer to Ques-
tion 3.2.0.1 (see also [BGT15b]). This material is not referenced again, but it
serves to illustrate the applicability of the types of problems that we study in this
monograph.

3.2.1. Applications to ODE. In [Rub83, Problem 16], Rubel posed the
following question regarding the coefficients of a power series which is a solution to
an ordinary differential equation. Note that in Question 3.2.1.1, the n-th derivative
of a function y(z) is denoted by y(n)(z).

Question 3.2.1.1 (Rubel). Let r ∈ N and let

(3.2.1.2) y(z) =

∞∑
n=0

anz
n

be a solution to a linear differential equation:

(3.2.1.3) Cr(z)y
(r)(z) + Cr−1(z)y

(r−1)(z) + · · ·+ C0(z)y(z) +D(z) = 0,

where the coefficients Ci(z) are polynomials, and also D(z) is a polynomial. Is it
true that the set

Sa := {n ∈ N0 : an = 0}
is a union of finitely many arithmetic progressions?

There was extensive work done on this problem and the best result known in
this direction is that the set Sa of zeros for the coefficients of f(z) is a union of at
most finitely many arithmetic progressions along with a set of Banach density equal
to 0 (see [BGT15b] and also Chapter 11). Previously, Bézivin [Bez89] showed
that when 0 and ∞ are not irregular singular points for the linear ordinary differ-
ential equation (ODE) satisfied by f(z), then the set Sa is a union of finitely many
arithmetic progressions along with a set of natural density equal to 0. Later, Meth-
fessel [Met00] was able to eliminate the technical condition of Bézivin regarding
the corresponding ODE (and also proved an appropriate extension of this result
to positive characteristic). On the other hand, note that a set of normal density
equal to 0 is also of Banach density 0, but the converse is not true as shown by
Example 11.1.0.2.

It is easy to see that if y(z) is a power series as in (3.2.1.2) which satisfies
a linear ODE as in (3.2.1.3), then the sequence {an}n∈N0

satisfies a recurrence
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relation of the following form: there exist polynomials P0, . . . , Pr (depending on
the polynomials Ci), such that

(3.2.1.4) Pr(n)an+r + Pr−1(n)an+r−1 + · · ·+ P0(n)an = 0,

for all n > deg(D). So, Question 3.2.1.1 asks whether the Skolem-Mahler-Lech
principle (see Section 2.5) extends also to recurrence sequences satisfying (3.2.1.4)
when the polynomials Pi are not constant. We describe in this Subsection 3.2.1 that
a positive answer to Question 3.2.0.1 provides a positive answer to Question 3.2.1.1
as well.

Let K be a field of characteristic 0, let r ≥ 1 be an integer, let

P0(z), . . . , Pr(z) ∈ K[z]

and let

{an}n≥0 ⊂ K

be a sequence satisfying the recurrence relation (3.2.1.4) for all n ≥ 0. For each
i = 1, . . . , r we let

Qi(z) :=
Pi(z)

Pr(z)
.

Choose a positive integer N such that no integer n ≥ N is a pole for any of the
Qi’s, i.e., Pr(n) �= 0 for all n ≥ N . Next we define an r-by-r matrix A(z) whose
entries are rational functions in K(z):

A(z) :=

⎛⎜⎜⎜⎜⎝
0 1 0 0 · · · 0
0 0 1 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 · · · · · · 0 1

−Q0(z) −Q1(z) · · · · · · · · · −Qr−1(z)

⎞⎟⎟⎟⎟⎠ ,

We define the following rational self-map on Ar+1 defined over K:

(3.2.1.5) Φ(z, v) := (z + 1, A(z) · v),
for any (z, v) ∈ A1 × Ar.

Assume Question 3.2.0.1 has a positive answer for the rational map Φ. We let

v0 := (aN , aN+1, . . . , aN+r−1)

and we note that for each n ≥ 0 we have that

Φn(0, v0) = (n, aN+n, aN+n+1, . . . , aN+n+r−1) .

So applying the conclusion in Question 3.2.0.1 to X := Ar+1, rational self-map Φ,
subvariety Y := Ar × {0} ⊂ X, and starting point α := (0, v0) ∈ X(K) we obtain
that the set

(3.2.1.6) Sa := {n ≥ 0: an = 0}
is a union of finitely many arithmetic progressions. This answers in the affirmative
the Question 3.2.1.1 raised by Rubel [Rub83, Problem 16].

We also mention that when both P0 and Pr in (3.2.1.4) are nonzero constants,
then the rational self-map Φ from (3.2.1.5) is actually an automorphism of Ar+1. In
that case, Question 3.2.1.1 is known to have a positive answer (see [BBY12, The-
orem 1.3] and more generally, see [BGT10] which solves the Dynamical Mordell-
Lang Conjecture for all étale endomorphisms).
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3.3. Known cases of the Dynamical Mordell-Lang Conjecture

In the present Section we discuss briefly the various cases when the Dynamical
Mordell-Lang Conjecture is known to hold. We also note that, so far, there are no
known counterexamples to Conjecture 1.5.0.1.

Each of the partial results towards Conjecture 1.5.0.1 imposes some restriction
either on the ambient variety X, or on the endomorphism Φ of X, or on the subva-
riety V , or on the starting point α. Now, when X is fixed, and α is allowed to be an
arbitrary point of X, then the strength of the restriction on Φ is usually inversely
proportional to the strength of the restriction on V , as can be seen later in this
section from the examples we discuss.

One could attempt to solve Conjecture 1.5.0.1, or at least to register the
progress towards proving it by considering the classification of algebraic varieties
and see for which varieties X the Dynamical Mordell-Lang Conjecture is known to
hold. We wish to stress that we do not take this approach either here in this section,
or later in the book. It is true that for many varieties X, there are no endomor-
phisms of infinite order (i.e., for each endomorphism Φ of X we have that Φn = idX
for some n ∈ N), and therefore, by Corollary 3.1.2.10, the Dynamical Mordell-Lang
Conjecture holds in this case. On the other hand, if Φ has infinite order and also
its ramification locus is nonempty (see Subsection 3.3.3 for the unramified case),
Conjecture 1.5.0.1 is generally difficult, even when X has small dimension; for ex-
ample, Conjecture 1.5.0.1 is still open for endomorphisms of A3. So, even though
the geometry of X sometimes limits the complexity of the dynamics of its endomor-
phisms, we found that the endomorphism itself was more relevant in the Dynamical
Mordell-Lang Conjecture than the ambient variety X. Also, due to the apparent
simplicity of the question posed by the Dynamical Mordell-Lang Conjecture, many
people searched for proving it in special cases when X is either AN , or PN , or
(P1)N , and Φ satisfies additional properties. We record in this section most of the
known results on this problem.

3.3.1. Generic endomorphisms of projective spaces. First we note that
the Dynamical Mordell-Lang Conjecture was shown by Fakhruddin [Fak14] to hold
for generic endomorphisms of PN . A generic endomorphism of degree d of Pn is a
map

[X0 : · · · : Xn] 	→ [F0(X0, . . . , Xn) : · · · : Fn(X0, . . . , Xn)],

where the homogeneous polynomials Fi have degree d and all their coefficients are
algebraically independent. Also, Fakhruddin proved that for a generic endomor-
phism of PN there exist no periodic proper subvarieties; so, generically one expects
that the intersection from Conjecture 1.5.0.1 is finite.

3.3.2. Arbitrary endomorphisms of affine and projective spaces. So,
in light of the results presented in Subsection 3.3.1, it is natural that the next
step in attacking the Dynamical Mordell-Lang Conjecture would be to relax the
hypothesis in Fakhruddin’s theorem [Fak14] and see if the conclusion can still
be established. For example, one could consider first arbitrary endomorphisms
of PN for small N . This turns out to be a very difficult question already when
N = 2. For example, for the case Φ is an endomorphism of A2, Xie [Xiea, Xieb]
was able to prove the Dynamical Mordell-Lang Conjecture (see also Section 10.3)
at the end of a proof over 100 pages long! Furthermore, it is unclear whether
Xie’s method can be extended beyond endomorphisms of A2. Also, it is worth
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mentioning that Xie [Xie14] proved first the Dynamical Mordell-Lang Conjecture
for all polynomial birational automorphisms of A2, and already that proof was
itself a tour de force. So, we believe that proving the Dynamical Mordell-Lang
Conjecture for all endomorphisms of PN (for any positive integer N) would be a
major result!

3.3.3. Étale endomorphisms. Since we saw in Subsection 3.3.2 that it seems
very hard to obtain a proof of the Dynamical Mordell-Lang Conjecture for all
endomorphisms of AN or PN (even whenN is small), the next thing one can consider
is to restrict Φ to certain classes of endomorphisms, and the first thing one can ask
is the case of automorphisms. The Dynamical Mordell-Lang Conjecture holds for
automorphisms of PN (as proven by Denis [Den94]); the proof essentially reduces
to the classical Skolem-Mahler-Lech theorem (see Theorem 2.5.4.1) because one
can easily find a p-adic analytic parametrization of the orbit in this case. Similarly,
Cutkosy and Srinivas [CS93] gave proved the Dynamical Mordell-Lang conjecture
for translation maps on algebraic groups using the classical Skolem-Mahler-Lech
theorem (see also [Zan09, Chapter 4]). For automorphisms of AN , it is not at all
clear that a p-adic analytic parametrization of the orbit can be found; however, the
surprising result of Bell [Bel06] is that such a parametrization does exist! Actually,
the p-adic methods (as introduced by Bell in [Bel06]) were key for most of the work
that has been done towards proving the Dynamical Mordell-Lang Conjecture. The
method of finding a p-adic analytic parametrization of the orbit of a point is called
now the p-adic arc lemma and it will be the main topic of Chapter 4, but it will
also be an important tool in most of the remaining chapters of our book. We call it
the p-adic arc lemma since each time it can be used it generates a p-adic analytic
submanifold of X(Cp) (we call it arc) containing the orbit of α under Φ.

Using a generalization of the original idea from [Bel06], the authors [BGT10]
proved the Dynamical Mordell-Lang Conjecture for all étale endomorphisms of any
variety; in particular, Conjecture 1.5.0.1 holds for any automorphism of any variety.
At the moment when we write this book, the result of [BGT10] is the most general
result towards the Dynamical Mordell-Lang Conjecture valid for all varietiesX (and
all subvarieties V ). Chapter 4 is devoted to the result from [BGT10].

3.3.4. Endomorphisms of semiabelian varieties. Since each endomor-
phism of a semiabelian variety is unramified (but not necessarily étale because
it may not be flat), it is natural to ask whether the Dynamical Mordell-Lang con-
jecture holds when X is a semiabelian variety. Conjecture 1.5.0.1 does indeed hold
for any endomorphism Φ of a semiabelian variety X, as proven in [GT09]. Once
again, one constructs a p-adic analytic parametrization for the orbit of any point α
under Φ; however, the method is much more direct than the method from [BGT10]
due to the existence of the local analytic uniformization map for the semiabelian
variety X. In Chapter 9 we discuss the proof from [GT09] in more depth.

Working from a slightly different angle, but still dealing with endomorphisms
Φ of PN which are induced by endomorphisms of GN

m, Silverman and Viray [SV13]
considered the number of linear subvarieties L ⊆ PN such that the intersection
OΦ(α)∩L is “larger than expected” (in a manner made precise in [SV13]). When
Φ is the d-th power map (for d ≥ 2) and the coordinates of α (seen as a point in
AN ) are multiplicatively independent, Silverman and Viray prove that there exists
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a finite subset S, whose cardinality is bounded in terms of N , such that any N +1
points in OΦ(α) \ S are in linear general position in PN .

Working in a somewhat related direction to [SV13], Ostafe and Sha [OS]
obtained quantitative bounds for the set

S(V,Φ, α) = {n ∈ N0 : Φ
n(α) ∈ V (C)},

when Φ : AN −→ AN restricts to certain endomorphisms of GN
m, V is a hypersurface

in AN , and the coordinates of α are multiplicatively independent. As previously
stated (see [GT09] and also Chapter 9), the Dynamical Mordell-Lang Conjecture
holds for any endomorphism of a semiabelian varieties (in particular, of GN

m); hence
S(V,Φ, α) is known to be a finite union of arithmetic progressions without additional
technical assumptions on Φ, V , and α. However, imposing extra hypotheses on the
endomorphism Φ, on the subvariety V , and also on the starting point α allowed
Ostafe and Sha [OS] to obtain uniform quantitative bounds for #S(V,Φ, α).

The case of endomorphisms of semiabelian varieties in the Dynamical Mordell-
Lang Conjecture is connected with one of the deepest questions in Diophantine
geometry: the classical Mordell-Lang conjecture (see Subsection 3.4.1). Actually,
the connection between these two conjectures will be the topic of Section 3.4.

3.3.5. Split endomorphisms. Besides the cases discussed in Subsections
3.3.1 to 3.3.4, Conjecture 1.5.0.1 was studied in the following special case: X =
(P1)N and

(3.3.5.1) Φ := (f1, . . . , fN ),

where each fi : P1 −→ P1 is a rational map. Sometimes, the maps fi restrict
to polynomial mappings on A1; in this case, we call them simply polynomials.
Endomorphisms of the form (3.3.5.1) are called split.

The results for maps Φ as in (3.3.5.1) are presented in full detail in Chap-
ters 5 and 7. Once again, the results show a balance between the hypotheses one
needs to impose on the maps fi, and the hypotheses imposed on the subvariety V .
Just to give a taste of these results, we note three cases when Conjecture 1.5.0.1
was proven:

(a) each fi is a polynomial map over C, and V is a line (see Theorem 5.1.0.2);
(b) f1 = · · · = · · · fN is a quadratic polynomial map over C, and V is any

subvariety (see Corollary 7.0.0.1);
(c) f1 = · · · = fN is a rational map defined over Q whose critical points are

not periodic, and V is a curve defined over Q (see Theorem 7.1.0.1).
(d) each fi is a polynomial map over Q, and V is a curve.

So, (a) is the most general result in terms of allowing different maps fi and
have no restriction on the fi’s (other than they are polynomial mappings, which is
quite essential for the proof; see Chapter 5). On the other hand, the subvariety in
case (a) is the most restrictive, since the results of Chapter 5 only hold for lines.
In (b) we have a restrictive hypothesis on the maps fi, but on the other hand the
result holds for any subvariety V . At the expense of relaxing a bit the hypothesis
on the maps fi (but still assuming they are all equal, and furthermore defined over
Q instead of C), Conjecture 1.5.0.1 is proven for all curves defined over Q. Finally,
using his deep analysis of valuation rings of a polynomial ring in two variables over
a field, Xie [Xieb, Theorem 0.3] established result (d) above (see also Section 10.3).
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We believe that an extension of the arc lemma construction (see Subsection 3.3.3
and Chapter 4) should lead to a proof of the Dynamical Mordell-Lang Conjecture
for all endomorphisms of (P1)N ; in other words, each time when we deal with split
rational maps in Conjecture 1.5.0.1, the arc lemma should be the key to the proof.
Chapter 7 details the various progress made in this direction. Also, we note that
for the case of endomorphisms of PN (so, no longer split endomorphisms), there is
heuristic evidence, which we discuss in Chapter 8, suggesting that the arc lemma
might not necessarily work for proving the Dynamical Mordell-Lang Conjecture, at
least when N > 5.

3.4. The Mordell-Lang conjecture

In this section we discuss the classical Mordell-Lang conjecture, at times in
parallel with the Dynamical Mordell-Lang Conjecture. First we start by presenting
a special case of Conjecture 1.5.0.1 which leads us naturally towards the Mordell-
Lang Conjecture.

3.4.1. A special case of the Dynamical Mordell-Lang Conjecture. We
consider next a very special case of Conjecture 1.5.0.1 in which case we recover
the cyclic case in Laurent’s theorem [Lau84] (formerly known as the Mordell-Lang
Conjecture for an algebraic torus, or the full Manin-Mumford Conjecture; for more
details, see Subsection 3.4.2).

Theorem 3.4.1.1 (Laurent [Lau84]). Let N be a positive integer, and let Γ
be a finitely generated subgroup of GN

m(C). Then for each subvariety V ⊆ GN
m, the

intersection

V (C) ∩ Γ

is a finite union of cosets of subgroups of Γ.

In particular, Theorem 3.4.1.1 yields that if an irreducible subvariety V ⊆ GN
m

contains a Zariski dense set of points from a finitely generated subgroup of GN
m(C),

then V must be a translate of an algebraic subtorus of GN
m. The proof of this

consequence is immediate since the Zariski closure of a coset of a subgroup of GN
m

is itself a coset of an algebraic subgroup of GN
m.

Essentialy, Theorem 3.4.1.1 shows that any possible algebraic relation simulta-
neously satisfied by an infinite subset of a finitely generated subgroup of an algebraic
torus has to be of the form

xm1
1 · · ·xmN

N = c,

for some integers m1, . . . ,mN and a constant c ∈ C. This type of rigidity for sub-
varieties of GN

m which contain a Zariski dense set of points from a finitely generated
subgroup of GN

m(C) was part of the motivation for conjecturing the Dynamical
Mordell-Lang Conjecture. Indeed, we have a similarly rigid description for the sub-
varieties V of a given variety X endowed with an endomorphism Φ such that V
contains a Zariski dense set of points from a single orbit of a point of X (see Con-
jecture 3.1.3.1 and its equivalence to Conjecture 1.5.0.1 proven in Subsection 3.1.3).

In order to see better the connection between Theorem 3.4.1.1 and the Dy-
namical Mordell-Lang Conjecture, assume now that Γ is a cyclic subgroup of GN

m

spanned by the point

(a1, . . . , aN ) ∈ GN
m(C).
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Then the conclusion of Theorem 3.4.1.1 is that for any given subvariety V ⊆ GN
m,

the set

S = {n ∈ Z : (an1 , . . . , a
n
N ) ∈ V (C)}

is a finite union of double-sided arithmetic progressions. We see next that this con-
clusion would follow also from a positive answer to a special case of the Dynamical
Mordell-Lang Conjecture.

So, with the above notation for N , and a1, . . . , aN , let X = AN , let Φ be the
endomorphism of AN given by

Φ(x1, . . . , xN ) := (a1x1, . . . , aNxN ),

and let

γ := (1, . . . , 1) ∈ AN (C).

Then for any subvariety V ⊆ AN , Conjecture 1.5.0.1 yields that the set

S1 := {n ∈ N0 : Φ
n(γ) ∈ V (C)}

is a finite union of arithmetic progressions. Now, noting that Φ is an automorphism
of AN , we also obtain (using Conjecture 1.5.0.1 for the endomorphism Φ−1 of AN )
that

S2 := {n ∈ N0 : Φ
−n(γ) ∈ V (C)}

is a finite union of arithmetic progressions.
Let {a + rn}n∈N0

be an infinite arithmetic progression contained either in S1

or in S2. We show next that

{a+ rn}n<0 ⊂ S1 ∪ S2.

This suffices to show that S1∪S2 is a union of finitely many double-sided arithmetic
progressions, thus proving Theorem 3.4.1.1. Without loss of generality, we assume
r > 0 and therefore we have that

{a+ rn}n∈N0
⊂ S1

and we prove that

(3.4.1.2) {a+ rn}n<0 ⊂ S2.

The Zariski closure W of OΦr(Φa(γ)) is contained in V . Furthermore, according
to Conjecture 3.1.3.1 (which is equivalent to Conjecture 1.5.0.1 as we showed in
Subsection 3.1.3), we obtain that

Φr(W ) ⊆W.

However, Φr is an automorphism, and so,

(3.4.1.3) Φr(W ) = W.

In particular (3.4.1.3) yields (3.4.1.2), as desired.
Hence, a positive answer to a special case of Conjecture 1.5.0.1 yields that for

a cyclic subgroup Γ ⊂ GN
m(C), and for any subvariety V ⊆ GN

m, the intersection

V (C) ∩ Γ

is a finite union of cosets of subgroups of Γ. This is a special case of the Mordell-
Lang Conjecture which we discuss in more detail in Subsection 3.4.2.
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3.4.2. Statement of the conjecture. Mordell’s Conjecture (solved by Falt-
ings [Fal83]) predicts that on any curve of genus greater than 1 defined over a
number field K, there exist at most finitely many K-rational points. Lang ex-
tended Mordell’s original conjecture to a question of describing the intersection
between subvarieties of semiabelian varieties X and finitely generated subgroups
Γ of X(C). This generalization (stated below in Theorem 3.4.2.1) was proven by
Vojta [Voj96] who extended Faltings’ proof for the case of abelian varieties [Fal91].

Theorem 3.4.2.1 (Vojta [Voj96]; originally Mordell-Lang Conjecture). Let
X be a semiabelian variety defined over C, let V ⊆ X be a subvariety, and let
Γ ⊆ X(C) be a finitely generated subgroup. Then

Γ ∩ V (C)

is a finite union of cosets of subgroups of Γ.

3.4.3. Interpretation of the conjecture. In particular, a reformulation of
the Mordell-Lang Conjecture (see also the reformulation of the Dynamical Mordell-
Lang Conjecture done in Conjecture 3.1.3.1) is that if V is irreducible and it contains
a Zariski dense set of points in common with a finitely generated subgroup

Γ ⊆ X(C),

then V is a translate of an algebraic subgroup, since V would have to contain a
Zariski dense coset of a subgroup of Γ (see [Hin88, Lemme 10]). This interpreta-
tion of the Mordell-Lang Conjecture can be stated in terms of special points and
special varieties, which is a central concept in arithmetic geometry (also present in
the Manin-Mumford, Bogomolov, André-Oort, and Pink-Zilber conjectures). This
principle predicts that the only irreducible subvarieties containing a Zariski dense
set of special points, are special subvarieties. In the Mordell-Lang conjecture, the
special points are the points on the finitely generated subgroup Γ and the special
(irreducible) subvarieties are translates of algebraic subgroups of X by points in
Γ. In the Dynamical Mordell-Lang conjecture, the special points are the points of
the orbit OΦ(α) while the special (irreducible) subvarieties are periodic subvarieties
which intersect OΦ(α).

3.4.4. The case of other algebraic groups. It is essential that one restricts
the Mordell-Lang conjecture to semiabelian varieties since the same statement fails
for a power of the additive group scheme. Indeed, the plane curve C given by the
equation

y2 − 2x2 = 1

contains infinitely many points in common with the rank-2 subgroup Z × Z of
G2

a, even though C is not a translate of an algebraic subgroup of G2
a. Also, the

intersection of C with Z × Z is not a finite union of cosets of subgroups of Z × Z
(there are infinitely many solutions to the above Pell’s equation, but they do not
have an additive group structure).

On the other hand, the Mordell-Lang principle holds for cyclic subgroups of
arbitrary commutative algebraic groups G. If Γ ⊂ G(C) is a cyclic subgroup gen-
erated by a point γ, then (using again Proposition 2.5.3.1) we can find a suitable
embedding of Γ into Zp and thus we have a p-adic parametrization of the group Γ
(essentially, this is the Skolem-Chabauty method or the arc lemma as we call it,
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see [Cha41, Sko34] and also Chapter 4). More precisely, there exists N ∈ N and
there exist p-adic analytic maps

f� : Zp −→ G(Zp) for � = 0, . . . , N − 1

such that for each k ∈ Z we have

f�(k) = (kN + �) · γ.
So, for any subvariety V of G, and for any polynomial H in the vanishing ideal of
V , we have that for each k ∈ N0,

(Nk + �) · γ ∈ V if and only if (H ◦ f�)(k) = 0.

An application of Lemma 2.3.6.1 finishes the argument. We discuss this method in
more detail in Chapter 4.

However, if G is not semiabelian, and Γ ⊂ G(C) is a subgroup of rank larger
than 1, then the Mordell-Lang principle fails. Even if G = Ga ×Gm, one may take
Γ to be the subgroup generated by (1, 1) and (0, 2), and V to be the diagonal line
given by the equation x = y in G (seen as a subvariety of A2 with the usual affine
coordinates x and y). Then

V (C) ∩ Γ = {(2k, 2k) : k ∈ N0},
which is not a union of cosets of subgroups of Γ.

3.4.5. The case of positive characteristic. If one attempts a näıve trans-
lation of the Mordell-Lang Conjecture in characteristic p there are obvious coun-
terexamples arising from varieties defined over finite fields, as shown in the following
example.

Example 3.4.5.1. Let p be a prime number. Consider the line V given by the
equation

x+ y = 1

defined over the field Fp(t). Then V contains infinitely many points in common
with the cyclic subgroup of G2

m spanned by (t, 1−t) even though the line itself is not
special, i.e., it is not a coset of a one-dimensional subtorus of G2

m. In particular, this
example works also as a counterexample to a verbatim translation of the Dynamical
Mordell-Lang Conjecture in positive characteristic. If we let

Φ : A2 −→ A2

be the endomorphism given by

Φ(x, y) = (tx, (1− t)y),

then the intersection of the diagonal line V ⊂ A2 with the orbit OΦ((1, 1)) consists
of all points of the form Φpn

((1, 1)).

The problem lies in the fact that the line V from Example 3.4.5.1 is defined over
a finite field, and thus once V contains a point, then it contains the entire orbit of
that point under the corresponding Frobenius map. Essentially the above example
shows that besides algebraic subgroups, varieties defined over Fp are also special
for the Mordell-Lang problem in characteristic p. Hrushovski [Hru96] proved a
characteristic p Mordell-Lang theorem which gives a full description of the special
varieties in this case.
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Theorem 3.4.5.2 (Hrushovski [Hru96]). Let X be a semiabelian variety de-
fined over a field K of characteristic p, let Γ ⊆ X(K) be a finitely generated sub-
group, and let V ⊆ X be a subvariety defined over K. If

V (K) ∩ Γ

is Zariski dense in V , then there exists a semiabelian variety X0 defined over Fp, a

subvariety V0 ⊆ X0 defined over Fp, and there exists an algebraic group homomor-

phism Ψ : X −→ X0 defined over K such that

V = γ +Ψ−1(V0),

for some point γ ∈ X(K).

The above positive characteristic counterexamples to a direct translation of the
Mordell-Lang Conjecture also prevent an immediate translation of the Dynamical
Mordell-Lang Conjecture in characteristic p. In Chapter 13 we will formulate a
revised Dynamical Mordell-Lang Conjecture in positive characteristic, which ad-
dresses the issues discussed here.

In the next section we discuss another motivation for the Dynamical Mordell-
Lang Conjecture which is a Mordell-Lang type conjecture for the additive group
scheme in characteristic p. So, there exists a natural formulation of the Mordell-
Lang problem which works both in characteristic p and also for the additive group
scheme, as long as the statement is formulated in the context of Drinfeld modules
(which are themselves families of polynomial dynamical systems acting on the affine
line).

3.5. Denis-Mordell-Lang conjecture

The Dynamical Mordell-Lang Conjecture is also motivated by the Denis-
Mordell-Lang Conjecture for Drinfeld modules (see [Den92a] and also our Chap-
ter 12). A Drinfeld module Φ is a family of endomorphisms of Ga defined over a
field K of characteristic p. More precisely, Φ is a ring homomorphism

Φ : Fp[t] −→ EndK(Ga)

such that Φa := Φ(a) is separable for each a ∈ Fp[t] (and moreover, Φt is not linear).
We can extend the action of Φ diagonally to Gg

a for any g ∈ N. A subset Γ ⊆ Gg
a

is called a Φ(Fp[t])-submodule if it is invariant under the action of Φ. Inspired
by the classical Mordell-Lang conjecture (see Theorem 3.4.2.1), Denis [Den92a]
conjectured the following statement for Drinfeld modules.

Conjecture 3.5.0.1. Let g be a positive integer, let K be a field extension of
Fp(t), let

Φ : Fp[t] −→ EndK(Ga)

be a Drinfeld module, let Γ ⊂ Gg
a(K) be a finitely generated Φ(Fp[t])-submodule,

and let V ⊆ Gg
a be any subvariety. Then the intersection

V (K) ∩ Γ

is a finite union of cosets of Φ(Fp[t])-submodules of Γ.

Only few cases of Conjecture 3.5.0.1 are known (see [Ghi05, Ghi10, GT08b]).
In [GT08b], Ghioca and Tucker proved the conjecture in the case when Γ is a cyclic
submodule andK is a finite extension of Fp(t). That result was obtained by deriving
a v-adic analytic parametrization of Γ for some suitably chosen place v of K (which
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does not lie over the place at infinity from Fp(t)). The method is somewhat similar
with the arc lemma described in the Chapter 4 for p-adically parametrizing orbits
of points under an étale map (note that Φ′

a(z) is always a nonzero constant if a �= 0,
and thus Φa is also an étale map if a ∈ Fp[t] \ {0}). However, the parametrization
from [Den92a] is much easier to obtain since a Drinfeld module comes equipped
with a global analytic uniformization map expΦ corresponding to the place v∞
at infinity from Fp(t) (very similar to the global analytic uniformization map for
abelian varieties over C). One can prove that for a place v other than v∞, the map
expΦ is a local analytic isomorphism and that is sufficient to obtain the desired
parametrization of the cyclic Φ(Fp[t])-module Γ. Then one concludes the argument
using Theorem 2.3.6.1 by noting that a v-adic analytic map either has finitely
many zeros in a compact set, or it is identically equal to 0 (for more details, see
Chapter 12).

It is interesting to note that for Drinfeld modules Φ one does not need to
allow for special subvarieties other than algebraic subgroups invariant under Φ.
Essentially, a Drinfeld module plays in characteristic p the role of an abelian variety
from characteristic 0; many of the classical conjectures in arithmetic geometry are
formulated for both abelian varieties defined over fields in characteristic 0, and
for Drinfeld modules. We will return to a positive characteristic version of the
Dynamical Mordell-Lang conjecture in Chapter 13.

3.6. A more general Dynamical Mordell-Lang problem

It is natural to ask a more general question than the Dynamical Mordell-Lang
Conjecture which would also generalize the classical Mordell-Lang Conjecture. In
particular, one would like to understand the case when a quasiprojective variety X
is endowed with the action of finitely many commuting endomorphisms.

Question 3.6.0.1 (The Dynamical Mordell-Lang problem). Let X be a quasi-
projective variety defined over C, let Φ1, . . . ,Φr be commuting endomorphisms of
X, let α ∈ X(C), and let V ⊆ X be a subvariety. Is it true that the set of tuples

(n1, . . . , nr) ∈ Nr
0

for which Φn1
1 · · ·Φnr

r (α) ∈ V is a union of at most finitely many sets of the form

γ + (H ∩ Nr
0),

where γ ∈ Nr
0 and H ⊆ Zr is a subgroup?

If X is a semiabelian variety, α is the identity of X, and each Φi is a transla-
tion map, then a positive answer to Question 3.6.0.1 is equivalent to the classical
Mordell-Lang conjecture. However, Question 3.6.0.1 is much more general, and
often it has a negative answer. For example, if X = A2, r = 2, α = (1, 2), and

Φ1(x, y) = (x+ 1, y) while Φ2(x, y) = (x, y2),

then the set of (n1, n2) ∈ N2
0 such that Φn1

1 Φn2
2 (α) ∈ Δ, where Δ is the diagonal

line y = x in A2 is the set
{(2m,m) : m ∈ N0}.

Clearly this set does not satisfy the description from Question 3.6.0.1. One might
think the problem with the previous example lies in the fact that deg(Φ1) = 1 and
so the points in any orbit of Φ1 are not sparse enough. However one can construct
negative examples to the conclusion from Question 3.6.0.1 even for algebraic group
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endomorphisms of semiabelian varieties such that the endomorphisms in question do
not restrict to automorphisms of any positive dimensional subvariety. The following
example is from [GTZ11b].

Example 3.6.0.2. Let Φ and Ψ be the endomorphisms of G3
m given by

Φ(x, y, z) =
(
x2y−1, y2z−2, z2

)
and

Ψ(x, y, z) =
(
x2y2, y2z4, z2

)
.

Then

ΦΨ(x, y, z) = ΨΦ(x, y, z) =
(
x4y2z−4, y4z4, z4

)
.

Moreover, for any m,n ∈ N0 we have that ΦmΨn(x, y, z) equals(
x2m+n

yn2
m+n−m2m+n−1

zn(n−1)2m+n+m(m−1)2m+n−2−mn2m+n

,

y2
m+n

zn2
m+n+1−m2m+n

, z2
m+n)

.

Let V be the subvariety of G3
m defined by x = 1, and let α := (1, 1/3, 9). Then,

for m,n ∈ N0, the point ΦmΨn(α) lies in V (C) if and only if(1
3

)n2m+n−m2m+n−1

9n(n−1)2m+n+m(m−1)2m+n−2−mn2m+n

= 1,

or in other words

2m+n−1(−2n+m+ 4n(n− 1) +m(m− 1)− 4mn) = 0.

This last equation is equivalent to

(2n−m)2 = 6n,

whose solutions in nonnegative integers are

n = 6k2 and m = 12k2 ± 6k

with k ∈ N0. But the set of solutions

{(12k2 ± 6k, 6k2) : k ∈ N0}

is not a union of cosets of semigroups of N2
0 (for instance, because there are arbi-

trarily large gaps between consecutive values of the second coordinate).
One can prove that Φ and Ψ do not induce a degree-one map on any subvariety

of G3
m (see [GTZ11b, Lemma 6.1]) thus showing that Question 3.6.0.1 may fail in

a non-trivial way.

On the other hand, Question 3.6.0.1 is answered in the affirmative in [GTZ11b]
for several interesting cases.

Theorem 3.6.0.3. Let G be a semiabelian variety defined over C, let α ∈ G(C),
let V ⊆ G be a closed subvariety, and let Φ1, . . . ,Φr be commuting algebraic group
endomorphisms of G. Assume that either

(a) The Jacobian at the origin of each endomorphism Φi is diagonalizable; or
(b) V is a connected algebraic subgroup of G of dimension one; or
(c) G = Aj for 0 ≤ j ≤ 2, where A is a one-dimensional semiabelian variety.
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Then the set E of tuples

(n1, . . . , nr) ∈ Nr such that Φn1
1 . . .Φnr

r (α) ∈ V (C)

is the union of finitely many sets of the form

u+ (Nr ∩H)

with u ∈ Nr and H a subgroup of Zr.

The steps in the proof of Theorem 3.6.0.3 are as follows (for more details, see
[GTZ11b]).

(1) Let S be the commutative semigroup generated by all the Φi, and denote
by OS(α) the orbit of α under S. Then one can reduce to the case

V (C) ∩OS(α) is Zariski dense in V.

The point here is that if W is the Zariski closure of V (C) ∩OS(α), then

V (C) ∩OS(α) = W (C) ∩OS(α).

(2) Furthermore, replacing V with one of its irreducible components, we may
also assume V is irreducible.

(3) Since each Φi is integral over Z (seen as a subring of the endomorphism
ring of G), one observes that OS(α) is contained in a finitely generated
subgroup Γ of G(C). Indeed, if each Φi satisfies a monic equation over Z
of degree at most g, then OS(α) is contained in the subgroup Γ which is
spanned by all the points

Φm1
1 · · ·Φmr

r (α) for all 0 ≤ mi ≤ g − 1.

(4) Using Theorem 3.4.2.1, one knows that if the irreducible subvariety V
contains a Zariski dense set of points from Γ then V is a translate of an
algebraic subgroup Y of G by a point in Γ.

(5) We focus now on part (a) of Theorem 3.6.0.3; parts (b) and (c) are
done similarly. We apply the p-adic logarithmic map logp associated to
the semiabelian variety G (for a suitable prime p; for more details, see
also Chapter 9) and thus the theorem is equivalent to showing that if
A1, . . . , Ar (where each Ai is the Jacobian of Φi at the identity of G) are
commuting matrices in Mn,n(C) (where n = dim(G)), if β ∈ Cn (where
β = logp(α)) and if L is a translate of a linear subvariety of Cn, then the
set of

(n1, . . . , nr) ∈ Nr
0 such that An1

1 · · ·Anr
r (β) ∈ L

is a finite union of sets of the form

γ + (H ∩ Nr
0),

where γ ∈ Nr
0 andH ⊆ Zr is a subgroup. The existence of a suitable prime

p and of the method of taking the p-adic logarithm will be discussed further
in Chapter 9. The difficulty lies in showing that one can reduce to the case
where α is in the domain of definition for the p-adic logarithmic map—
this step requires several clever combinatorial arguments (for details see
[GTZ11b, Lemma 3.2]).

(6) Finally, using mainly linear algebra, the previous restatement of the prob-
lem is proven.
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It is worth pointing out that there are counterexamples to any possible weak-
ening of conditions (a)—(c) from Theorem 3.6.0.3. Also, Scanlon and Yasufuku
[SY14] showed that essentially any set of tuples (n1, . . . , nr) ∈ Nr

0 which is the
solution set of finitely many polynomial-exponential equations

P1 (n1, . . . , nr, c
n1
1 , . . . , cnr

r ) = · · · = Ps (n1, . . . , nr, c
n1
1 , . . . , cnr

r ) = 0

(for any given ci ∈ Q, and any polynomials Pi with algebraic coefficients) may be
obtained in the above intersection once one does not assume that the endomor-
phisms Φi have diagonalizable Jacobian. However, it would be interesting to prove
a similar criterion for non-commuting endomorphisms of semiabelian varieties.

Besides the classical Mordell-Lang conjecture (proven by Faltings and Vojta)
and the above Theorem 3.6.0.3, the only other case when Question 3.6.0.1 has
been proven in the affirmative for a non-cyclic semigroup of endomorphisms of a
quasiprojective variety X is the case when X = Ar, V is a line, and each Φi is
given by the action on the i-th coordinate of a one-variable polynomial fi of degree
larger than 1. We will explain in detail this case in Chapter 5.
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CHAPTER 4

A geometric Skolem-Mahler-Lech Theorem

In this chapter we give a geometric interpretation of Theorem 2.5.4.1, which
leads naturally to the formulation of the Dynamical Mordell-Lang Conjecture. Then
we prove Conjecture 1.5.0.1 for all étale endomorphisms. The material for this
chapter overlaps with the papers [Bel06] and [BGT10].

4.1. Geometric reformulation

The Skolem-Mahler-Lech theorem yields a geometric statement with direct con-
sequences to solving a special case of Conjecture 1.5.0.1. The point is that for each
linear polynomial f(z), we can find a parametrization of the n-th iterate of any
c ∈ C under f . Indeed, we let f(z) = az + b, and so

(1) if a �= 1, then

(4.1.0.1) fn(c) = anc+ b · a
n − 1

a− 1
;

(2) if a = 1, then

(4.1.0.2) fn(c) = c+ nb.

Hence if f1, . . . , f� ∈ C[z] are linear polynomials, if c1, . . . , c� ∈ C, and F ∈
C[z1, . . . , z�], then there exist r1, . . . , rm ∈ C∗ and there exist g1, . . . , gm ∈ C[z]
such that for each n ∈ N we have

(4.1.0.3) F (fn
1 (c1), . . . , f

n
� (c�)) =

m∑
i=1

gi(n)r
n
i .

In other words, using the equivalences from Proposition 2.5.1.4, we see that

F (fn
1 (c1), . . . , f

n
� (c�))

is the n-th term in a linear recurrence sequence. Hence the Skolem-Mahler-Lech
theorem (see Theorem 2.5.4.1) yields that if Φ : A� −→ A� is the automorphism
given by

Φ(z1, . . . , z�) = (f1(z1), . . . , f�(z�))

then the set of integers n such that Φn(c1, . . . , c�) lies on the hypersurface

F (z1, . . . , z�) = 0

is a finite union of arithmetic progressions (with the understanding, as always,
that an arithmetic progression may consist of a single number). The following
more general statement follows identically since the intersection of two arithmetic
progressions is another arithmetic progression (or the empty set).

67
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Theorem 4.1.0.4. Let f1, . . . , f� ∈ C[z] be linear polynomials, let Φ : A� −→ A�

be the automorphism given by

Φ(z1, . . . , z�) = (f1(z1), . . . , f�(z�)),

let (c1, . . . , c�) ∈ C, and let V ⊆ A� be a subvariety. Then the set of integers n such
that Φn(c1, . . . , c�) ∈ V (C) is a finite union of two-sided arithmetic progressions.

As with Remark 2.5.4.4, we note that the common differences of the (infinite)
arithmetic progressions from the conclusion of Theorem 4.1.0.4 divide p− 1, where
p is an odd prime number for which we can find an embedding into Zp of each ri
and of each coefficient of gi from (4.1.0.3). So, Theorem 4.1.0.4 is another instance
of the arc lemma which is the common thread in the present Chapter, and as
said before, it is the most important idea behind the attempts made so far on the
Dynamical Mordell-Lang Conjecture. Furthermore, there exist effective bounds
(see [Sch99, Sch00]) for the number of iterates (in case there are at most finitely
many such iterates) which land on a subvariety V (as in Theorem 4.1.0.4).

4.2. Automorphisms of affine varieties

Denis [Den94] extended Theorem 4.1.0.4 to any automorphism of P�. The key
is once again that the automorphisms are linear and therefore one finds easily the
general form of the n-th iterate of a point α under Φ. Then, as shown in Proposi-
tion 2.5.3.1, one finds a suitable prime p and p-adic analytic parametrizations of the
orbit. Note that in each case one splits N0 into finitely many arithmetic progres-
sions of some suitable common difference N ∈ N and for each j ∈ {0, . . . , N − 1}
one finds p-adic analytic functions F0, . . . , F� such that for all m ∈ N0 we have

ΦNm+j(α) = [F0(m) : · · · : F�(m)].

Hence, for any polynomial H ∈ C[z0, . . . , z�] vanishing on the variety V , and for
any m ∈ N0, we have that

ΦNm+j(α) ∈ V ⇔ H(F0(m), . . . , F�(m)) = 0.

Thus the integer m is a zero of the p-adic analytic function

z 	→ H(F0(z), . . . , F�(z)).

Then Lemma 2.3.6.1 finishes our proof. Denis [Den94] also proved that assuming
the set of n ∈ N0 such that Φn(α) ∈ V (C) is very dense (in a precise sense defined
in [Den94]), V must contain a positive dimensional periodic subvariety, and thus
there exists an infinite arithmetic progression of integers n such that Φn(α) ∈ V (C).

Later, Bell [Bel06] showed that the analogous result holds when Φ is an auto-
morphism of any affine variety.

Theorem 4.2.0.1 (Bell [Bel06]). Let X be an affine variety defined over C, let
Φ be an automorphism of X, let α ∈ X(C), and let V ⊆ X be a subvariety. Then
the set

{n ∈ Z : Φn(α) ∈ V }
is a finite union of two-sided arithmetic progressions.

The novelty of the result from [Bel06] lies in the fact that there exists no
general form for the n-th iterate of a point α under an automorphism of AN . In
fact, the set of all automorphisms of AN is very large and one cannot employ the
exact same strategy as above, i.e., find the general form of the n-th iterate and
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then split the entire orbit of a generic point into finitely many pieces and then find
suitable p-adic parametrizations of each piece. However, it is quite surprising that
(at least in spirit) the same general strategy can be implemented: one is still able
to split the orbit of a single point into finitely many pieces (each corresponding
to some arithmetic progression for the order n of the iterates), and then find p-
adic analytic parametrizations of each piece. But all this is done without having
a general form of the n-th iterate, i.e., changing the starting point of the orbit
likely changes the splitting of the orbit of that point and also the parametrization
one needs to employ for that point. Also, just as in the case of automorphisms of
the projective space, one essentially obtains a p-adic analytic continuation to Zp of
the n-th iterate of α under Φ, i.e., locally (restricting to some suitable arithmetic
progressions {Nm+ j}m∈N0

) there exists a well-defined p-adic analytic map

z 	→ ΦNz+j(α) for z ∈ Zp.

So, the Zp-manifold consisting of all these points

ΦNz+j for z ∈ Zp

is a p-adic analytic arc which gives the name of arc lemma to this p-adic method
for parametrizing the orbit of a point.

The proof of Theorem 4.2.0.1 is a consequence of the following steps:

(1) using a result of Srinivas [Sri91], reduce to the case X = AN (by showing
that any automorphism of an affine variety extends to an automorphism
of an affine space of suitably large dimension);

(2) choose a suitable prime number p and embed everything into Zp, i.e., find
a prime p such that Φ, V and α can be viewed as being defined over Zp,
and moreover the determinant of the Jacobian of Φ is a p-adic unit;

(3) show that there exists a positive integer k, and there exist p-adic analytic
functions fi,j convergent on Zp (for each i = 0, . . . , k − 1 and for each
j = 1, . . . , N) such that

Φkm+i(α) = (fi,1(m), . . . , fi,N (m))

for all m ∈ N; and
(4) use a compactness argument for zeros of p-adic analytic series such as our

Lemma 2.3.6.1.

Clearly, Step (3) is the hardest, as the other steps are almost identical with
the work previously done for automorphisms of the projective space; for exam-
ple, Step (2) is essentially a consequence of the result we have proved in Propo-
sition 2.5.3.1. The common feature for all automorphisms of affine varieties that
in exploited in [Bel06] is that their Jacobians are constant (this is used both in
Step (2), but more importantly in Step (3)). The next lemma is proven in [Bel06]
and it constitutes the first move for proving Step (3).

Lemma 4.2.0.2. Let Φ := (F1, . . . , FN ) : ZN
p −→ ZN

p be a surjective polynomial
map whose Jacobian has constant determinant which is a p-adic unit. Then there
exists a positive integer k such that

Φk := (H1, . . . , HN )

has the following two properties:

(i) Hi(z1, . . . , zN ) ≡ zi (mod p) for all z1, . . . , zN ∈ Zp; and
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(ii) for each z := (z1, . . . , zN ) ∈ ZN
p , the Jacobian of Φk at z is of the form

IN + p ·Mz, for some matrix Mz with entries in Zp.

Proof. The first part of Lemma 4.2.0.2 is easy since Φ induces a bijective
action on FN

p , denoted Φ. We let j be the order of Φ and thus, we have

Φjn(z) ≡ z (mod p),

for each z ∈ ZN
p and for each n ∈ N. Now we let m denote the order of the finite

group GLN (Fp). We have then

J(Φjm, z) = J(Φj , z) · J(Φj ,Φj(z)) · · ·J(Φj ,Φj(m−1)(z)).

By our choice of j, we have that

J(Φj ,Φji(z)) ≡ J(Φj , z) (mod p)

for all i. So,

J(Φjm, z) ≡ J(Φj , z)m ≡ In (mod p),

which yields that k = j ·m works for Lemma 4.2.0.2. �

Lemma 4.2.0.2 allows one to obtain the following result.

Lemma 4.2.0.3. Let Ψ := (H1, . . . , HN ) : ZN
p −→ ZN

p be a polynomial map
satisfying:

(i) Hi(z1, . . . , zN ) ≡ zi (mod p) for all z1, . . . , zN ∈ Zp; and
(ii) for each z := (z1, . . . , zN ) ∈ ZN

p , the Jacobian of Ψ at z is of the form
IN + p ·Mz, for some matrix Mz with entries in Zp.

Then for each given point z0 ∈ ZN
p , there exist g1, . . . , gN ∈ Qp[[x]] which are

analytic on Zp such that

(1) (g1(0), . . . , gN (0)) = z0; and
(2) gi(z+1) = Hi(g1(z), . . . , gN (z)) for each i = 1, . . . , N and for each z ∈ Zp.

We defer the proof of Lemma 4.2.0.3 to the next Section where we will prove a
more general result valid for all unramified maps (not necessarily automorphisms).
The above lemma shows that

Ψn(z0) = (g1(n), . . . , gN (n)),

which is the desired p-adic analytic parametrization for our orbit.

4.3. Étale maps

The p-adic parametrization method from Section 4.2 was extended in [BGT10]
to étale endomorphisms of any quasiprojective variety; for more details on étale
endomorphisms, see Subsection 2.1.11 and also [Har77, Chapter III, Section 10].

Theorem 4.3.0.1 ([BGT10]). Let X be a quasiprojective variety defined over
C, let Φ be an étale endomorphism of X, let α ∈ X(C), and let V ⊆ X be any
subvariety. Then the set of n ∈ N such that Φn(α) ∈ V (C) is a union of finitely
many arithmetic progressions.

The key to proving Theorem 4.3.0.1 is to find (again) a p-adic analytic para-
metrization of the orbit OΦ(α). We present the proof of Theorem 4.3.0.1 in the
Section 4.4. We note that Theorem 4.3.0.1 (though following along the same general
principles outlined above) is stronger than Theorem 4.2.0.1. So, the progression in
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the above results, which are all treated by the same classical Skolem’s method, is
as follows:

(a) in the Skolem-Mahler-Lech theorem regarding the distribution of zeros
in a linear recurrence sequence, and in the case of automorphisms of the
projective space, one has an explicit formula for the n-th element in the
sequence (or the n-th iterate in the case of automorphisms of PN );

(b) in the case of automorphisms of AN , one does not have an explicit formula
for the n-th iterate of an automorphism of AN under an automorphism Φ,
but one knows that the Jacobian of Φ has constant (nonzero) determinant;

(c) in Theorem 4.3.0.1, the Jacobian of the étale map Φ does not have constant
determinant, but it has no ramification.

Hypothesis (c) is the weakest one can allow in order to still guarantee that Skolem’s
method can be applied. In Chapter 8 we discuss heuristic evidence that supports
a random probabilistic model, which predicts that for endomorphisms Φ of PN for
N > 5, Skolem’s method can not be used to find p-adic analytic parametrizations
for the orbit of a point under Φ.

There are interesting consequences of Theorem 4.3.0.1 in the case when Φ is
an automorphism. In [KRS05], the following question was raised in the context of
understanding when so-called näıve blow-up algebras are noetherian.

Question 4.3.0.2. Let Φ be an automorphism of an irreducible (quasi)projective
variety X defined over C, and let α ∈ X(C) such that OΦ(α) is Zariski dense in
X (where OΦ(α) is the set of all Φn(α) where n ∈ Z). Is it true that every infinite
subset of OΦ(α) is also Zariski dense in X?

We note that Question 4.3.0.2 is actually equivalent to the Dynamical Mordell-
Lang Conjecture for automorphisms of quasiprojective varieties; therefore, Theo-
rem 4.3.0.1 yields a positive answer to Question 4.3.0.2.

Proposition 4.3.0.3. Question 4.3.0.2 is equivalent with Conjecture 1.5.0.1
when Φ is an automorphism.

Proof. Assume first that Conjecture 1.5.0.1 holds when Φ is an au-
tomorphism, and we prove Question 4.3.0.2.

So, under the hypothesis that OΦ(α) is Zariski dense in X, then we have to
prove that any infinite subset of OΦ(α) is Zariski dense in X.

Assume there exists a proper, closed subvariety V of X containing an infinite
subset S of OΦ(α); without loss of generality we may assume that V contains
infinitely many points from the orbit OΦ(α) (otherwise, we can replace Φ by Φ−1).
We know by the Dynamical Mordell-Lang Conjecture applied to the automorphism
Φ that there exists an infinite arithmetic progression {�+ kn}n∈N0

(for some given
k, � ∈ N) such that Φ�+kn(α) ∈ V (C). In particular, V is fixed under the action of
Φk (see Proposition 3.1.2.14) and thus

Φ�+kn(α) ∈ V (C) for all n ∈ Z.

In particular, we obtain that

OΦ(α) ⊆
k−1⋃
i=0

Φi(V ).
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This contradicts the fact that OΦ(α) is Zariski dense in X, and that

dim(V ) < dim(X),

since X is irreducible, and V is a proper subvariety.
Assume now that Question 4.3.0.2 holds, and we prove that Conjec-

ture 1.5.0.1 holds for automorphisms.
So, Φ : X −→ X is an automorphism, and V ⊆ X is a subvariety; clearly, we

may assume that V is a proper subvariety.
If OΦ(α) is Zariski dense in X, then we know from Question 4.3.0.2 that V con-

tains only finitely many points from OΦ(α) and thus, in this case, Conjecture 1.5.0.1
holds.

If OΦ(α) is not Zariski dense, then we let Y ⊂ X be the Zariski closure of
OΦ(α). The variety Y may be reducible, so we let Yi for i = 1, . . . , � be all the
irreducible components of Y . Clearly, each Yi is periodic under Φ, i.e., there exists
N ∈ N such that for each i = 1, . . . , � we have

ΦN (Yi) = Yi.

In particular, this means that for each i = 1, . . . , �, the set

S(Yi,Φ, α) := {m ∈ N0 : Φ
m(α) ∈ Yi}

is a union of finitely many arithmetic progressions of common difference N . In
particular, this yields that the Zariski closure of OΦN (α) is an irreducible subvariety
Z of same dimension as each Yi. Hence each S(Yi,Φ, α) is an arithmetic progression
of common difference a divisor of N (possibly smaller than N). Indeed, for each

m,n ∈ S(Yi,Φ, α) and n > m,

we have that
Φn−m(Yi) = Yj

for some j ∈ {1, . . . , �} and moreover,

dim(Φn−m(Yi) ∩ Yi) = dim(Yi),

because Φn(Z) ⊆ Φn−m(Yi) ∩ Yi. In particular, we also get that

(4.3.0.4) S(Yi,Φ, α) ∩ S(Yj ,Φ, α) = ∅, if i �= j,

since otherwise we would get that S(Yi,Φ, α) ∩ S(Yj ,Φ, α) contains an arithmetic
progression of common difference N and thus

dim(Yi ∩ Yj) = dim(Yi) = dim(Yj),

contradiction. Now, we claim that

S(V,Φ, α) := {n ∈ N0 : Φ
n(α) ∈ V }

is a finite union of arithmetic progressions of common difference either 0 or N .
Indeed, if Yi ⊆ V , then

S(Yi,Φ, α) ⊆ S(V,Φ, α),

while if Yi is not contained in V , then we claim that

S(V,Φ, α) ∩ S(Yi,Φ, α) is finite.

This follows immediately from the fact that the sets S(Yi,Φ, α) are disjoint (see
(4.3.0.4)) and from Question 4.3.0.2 applied to the endomorphism ΦN of Yi and
the proper subvariety

V ∩ Yi � Yi,
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which contains only finitely many points in common with OΦN (Φmi(α)), where
mi ∈ N0 such that Φmi(α) ∈ Yi. �

4.4. Proof of the Dynamical Mordell-Lang Conjecture for étale maps

Theorem 4.3.0.1 is a generalization of Theorem 4.2.0.1 both in its conclusion
and also in the method for its proof. In order to prove Theorem 4.3.0.1, one uses a
p-adic parametrization of the given orbit of Φ, and then the conclusion is obtained
by inferring the discreteness of the set of all zeros of a non-trivial p-adic analytic
function. The construction of the p-adic parametrization of the orbit is done using
the geometric information about the map (essentially, that it has no ramification)
and also using a local p-adic argument. The rest of this section follows closely the
arguments from [BGT10], with the exception of Subsection 4.4.4 which presents a
generalization of Theorem 4.3.0.1.

4.4.1. The geometric argument. First we note that it suffices to prove
Theorem 4.3.0.1 when Φ is an unramified endomorphism of a smooth, irreducible
quasiprojective variety X. Indeed, assuming the conclusion holds under the lat-
ter hypothesis, one can descend to this case for any étale endomorphism of any
quasiprojective variety X. Since an étale map permutes the irreducible compo-
nents of X, at the expense of replacing Φ by an iterate of it, we may assume Φ
fixes each irreducible component, and thus we may assume that X is irreducible.
Secondly, if α is in the smooth locus of X, then so is the entire orbit of α since Φ
is étale and thus it induces an isomorphism between the tangent spaces of α and
of each Φn(α) (for n ∈ N). Now, if α is not a smooth point for X, then OΦ(α) is
contained in the complement of the smooth locus of X, which is a lower dimensional
subvariety Y . Hence a simple inductive argument on the dimension of the ambient
space finishes the proof. So, it suffices to prove the following result.

Theorem 4.4.1.1. Let Φ : X −→ X be an unramified endomorphism of an
irreducible smooth quasiprojective variety defined over C. Then for any subvariety
V of X, and for any point α ∈ X(C) the intersection V (C) ∩ OΦ(α) is a union of
at most finitely many orbits of the form OΦN (Φ�(α)) for some N, � ∈ N0.

We note that since X is smooth, Φ is étale since the induced morphism on the
tangent space at each space is an isomorphism as shown in [Sha74, Theorem 5,
page 145]. Also, it is worth pointing out that all we use in our proof is the fact
that Φ is unramified at the points of the orbit OΦ(α) (see Theorem 4.4.4.1).

Before proceeding to the proof of Theorem 4.4.1.1, we note the following im-
portant corollary of it.

Corollary 4.4.1.2. Conjecture 1.5.0.1 holds for any endomorphism of a semi-
abelian variety X defined over C, i.e., given a semiabelian variety X defined over
C, an endomorphism Φ of X, a subvariety V ⊆ X, and a point α ∈ X(C), the set
of all n ∈ N0 such that

Φn(α) ∈ V (C)

is a union of finitely many arithmetic progressions.

Proof. The result follows from Theorem 4.4.1.1 since any semiabelian variety
X is smooth, while any endomorphism Φ of X is unramified (see [Iit76, Theo-
rem 2]). �
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We proceed to proving Theorem 4.4.1.1. First we make several geometric re-
ductions, then we construct the p-adic analytic parametrization of the orbit and
finally we finish our proof in Section 4.4.3.

Our first observation (which is the exact same observation used in proving
the equivalence of Conjectures 1.5.0.1 and 3.1.1.1) is that there exists a finitely
generated subfield K ⊂ C such that X, Φ and V are defined over K, and also
α ∈ X(K). Furthermore, at the expense of replacing K by a finitely generated
extension, we may assume there exists an embedding of X into PM as an open
subset of a projective subvariety.

The following result can be viewed as a geometric generalization of Skolem’s em-
bedding lemma (see Proposition 2.5.3.1) and it will be used several times throughout
our book.

Proposition 4.4.1.3. Let M be a positive integer, let K be a finitely generated
subfield of C, let X ⊆ PM be an open subset of a projective subvariety defined over
K, let V ⊆ X be a subvariety defined over K, let α ∈ X(K), and let

Φ : X −→ X

be an endomorphism defined over K. Then there exists a finitely generated Z-algebra
R ⊂ K whose fraction field is K, there exists a Spec(R)-scheme

π : X −→ Spec(R)

whose generic fiber is isomorphic to X, and there exists a dense open subset U of
Spec(R) such that the following properties hold:

(1) the scheme

π|U : XU −→ U

is quasiprojective, where π|U and XU are the corresponding restrictions of
π and of X above the subset U of Spec(R).

(2) if X is smooth and geometrically irreducible, then X|U is smooth and
geometrically irreducible.

(3) Φ extends to an endomorphism ΦU of XU . Furthermore, if Φ is unrami-
fied, then ΦU is unramified.

(4) α extends to a section U −→ XU .
(5) there exists a Spec(R)-subscheme V ⊆ X whose generic fiber is isomorphic

to V .

Proof of Proposition 4.4.1.3. For any homogeneous ideal c∈K[z0, . . . , zM ],
we denote by Z(c) the Zariski closed subset of PM on which the ideal c vanishes.
Then there exist homogeneous ideals a, b ∈ K[z0, . . . , zM ] such that

X = Z(a) \ Z(b).

We choose generators F1, . . . , Fm and G1, . . . , Gn for a and b, respectively. Let R
be a finitely generated Z-algebra containing the coefficients of the Fi, Gi, of the
polynomials defining the variety V , and of the polynomials defining the morphism
Φ and such that α ∈ PM (R). Let

X ⊆ PM
Spec(R)

be the model for X over SpecR defined by Z(a′) \ Z(b′) where a′ and b
′ are the

homogeneous ideals in R[z0, . . . , zM ] defined by F1, . . . , Fm and G1, . . . , Gn, respec-
tively. Similarly, let V be the model of V over Spec(R).
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We cover X by a finite set (Yi)1≤i≤� of open subsets such that Φ restricted to
each Yi is represented by polynomials Pi,j for j ∈ {0, . . . ,M}. Let B be the closed
subset of X which is the zero set of the polynomials

Pi,j for i ∈ {1, . . . , �} and j ∈ {0, . . . ,M}.
Since Φ is a well-defined morphism on the generic fiber X, we conclude that B does
not intersect the generic fiber of

X −→ Spec(R).

Therefore B is contained in the pullback under

PM
Spec(R) −→ Spec(R)

of a proper closed subset E1 of Spec(R). Similarly, let C be the closed subset defined
by the intersection of Z(b′) with the Zariski closure of α in PM

Spec(R). Since α ∈ X,

we have that C is contained in the pullback under

PM
Spec(R) −→ Spec(R)

of a proper closed subset E2 of Spec(R). Let

U ′ = SpecR \ (E1 ∪ E2),

let X ′ be the restriction of X above U ′, and let ΦU ′ be the base extension of Φ to
an endomorphism of X ′.

Assuming X is smooth, there is an open subset of X ′ on which the restriction
of the projection map to

X ′ −→ U ′

is smooth, by [AK70, Remark VII.1.2, page 128]. Similarly, assuming Φ is un-
ramified, there exists an open subset of X ′ on which ΦU ′ is unramified by [AK70,
Proposition VI.4.6, page 116] or [GW10, Appendix E]. Also, [vdDS84, Theorem
(2.10)] shows that the condition of being geometrically irreducible is a first order
property which is thus inherited by fibers above a dense open subset of Spec(R).
Since each of these open sets contains the generic fiber, the complement of their
intersection must be contained in the pullback under

X ′ −→ U ′

of a proper closed subset E3 of Spec(R). Let

U := U ′ \ E3;

then letting XU be the restriction of X ′ above U yields the model and the endomor-
phism ΦU (which is the restriction of ΦU ′ above U) with the desired properties. �

The following result is an easy consequence of Proposition 2.5.3.1 (see also
[Bel06, Lemma 3.1] and [Lec53]).

Proposition 4.4.1.4. There exists a prime p ≥ 3, an embedding of R into Zp,
and a Zp-scheme XZp

such that

(1) XZp
is smooth and quasiprojective over Zp, and its generic fiber equals X;

(2) both the generic and the special fiber of XZp
are geometrically irreducible;

(3) Φ extends to an unramified endomorphism ΦZp
of XZp

; and
(4) α extends to a section SpecZp −→ XZp

.
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Proof. Let U be the open subset of Spec(R) defined as in the conclusion of
Proposition 4.4.1.3. So, let x ∈ R be a nonzero element such that

Spec

(
R

[
1

x

])
⊆ U.

Proposition 2.5.3.1 yields the existence of a prime number p (actually infinitely
many such primes) and there exists an embedding

ι : R −→ Zp

such that ι(x) ∈ Z∗
p. Then

XZp
:= XU ×U Spec(Zp)

has the desired property. Also, Φ extends to an endomorphism ΦZp
of XZp

and α
extends to a section Spec(Zp) −→ X (Zp). �

Note that the hypothesis p ≥ 3 will be used in Subsection 4.4.2 when we prove
the construction of the p-adic analytic parametrization of the orbit. On the other
hand, Proposition 2.5.3.1 yields that there are infinitely many primes p which satisfy
the conditions given in Proposition 4.4.1.4.

For the sake of simplifying the notation, we let

X := XZp

and Φ denote the Zp-endomorphism ΦZp
of XZp

constructed in Proposition 4.4.1.4.
Also, we use α to denote the section

Spec(Zp) −→ X (Zp)

induced in Proposition 4.4.1.4; i.e. α ∈ X (Zp). Finally, we use V = VZp
to denote

the Zp-scheme which is the Zariski closure in X of the subvariety V of X.

Since the special fiber X of X has finitely many Fp-points, some iterate of α
under Φ is in a periodic residue class modulo p. At the expense of replacing α by a
suitable iterate under Φ, we may assume that the residue class of α is Φ-periodic,
say of period N (note that replacing α by one of its iterates under Φ will not
change the conclusion of Theorem 4.4.1.1, as proven in Proposition 3.1.2.4). Also,
at the expense of replacing Φ by ΦN (which also does not change the conclusion
of Theorem 4.4.1.1, as proven in Proposition 3.1.2.5) we may also assume that the
residue class of α is fixed by Φ.

Let x be the reduction of α modulo p, i.e., the intersection of the corresponding
section

Spec(Zp) −→ X
with the special fiber of X . The next result gives the local ring structure for X at
x.

Proposition 4.4.1.5. Let OX ,x be the local ring of x as a point on X , let ÔX ,x

be the completion of OX ,x at its maximal ideal m, and let m̂ be the maximal ideal

in ÔX ,x. Then there are elements T1, . . . , Tg of ÔX ,x such that

ÔX ,x = Zp[[T1, . . . , Tg]].

Proof. This result is proven in [BGT10, Proposition 2.1]. It is an application
of the Cohen structure theorem (see [Mat86, Section 29] or [Bou06, Chapter
IX]). �
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There is a one-to-one correspondence between the points in X (Zp) that reduce
to x and the primes p in OX ,x such that

OX ,x/p ∼= Zp.

For each such prime p, its completion p̂ in ÔX ,x has the property that

pÔX ,x = p̂;

for more details, see [Mat86, Theorem 8.7]. Furthermore, p̂ is a prime ideal in

ÔX ,x with residue domain Zp since the sequence

0 −→ p̂ −→ ÔX ,x −→ Zp −→ 0

is exact; this follows from the fact that ÔX ,x is flat over OX ,x ([Mat86, Theorem
8.8]) along with the fact that the quotient

OX ,x/p ∼= Zp

is complete with respect to the m-adic topology. Thus, if q is any prime in ÔX ,x

with residue domain Zp then q must be the completion of q ∩ OX ,x, because

dimOX ,x = dim ÔX ,x,

by [AM69, Corollary 11.19]. Hence, we have a one-to-one correspondence between

the points in X (Zp) that reduce to x and the primes q in ÔX ,x such that

ÔX ,x/q ∼= Zp.

Note that the primes q in ÔX ,x for which ÔX ,x/q ∼= Zp are simply the ideals of the
form

(T1 − pz1, . . . , Tg − pzg)

where the zi are in Zp. For each Zp-point β in X such that r(β) = x, we write

ι(β) = (β1, . . . , βg)

where β corresponds to the prime ideal

(T1 − pβ1, . . . , Tg − pβg)

in ÔX ,x. Note that

ι−1 : Zg
p −→ X (Zp)

induces an analytic bijection between Zg
p and the analytic neighborhood of X (Zp)

consisting of points β such that r(β) = x. The next result is [BGT10, Proposition
2.2].

Proposition 4.4.1.6. There are power series

F1, . . . , Fg ∈ Zp[[z1, . . . , zg]]

such that:

(1) each Fi converges on Zg
p;

(2) for each β ∈ X (Zp) such that r(β) = x, we have

(4.4.1.7) ι(Φ(β)) = (F1(β1, . . . , βg), . . . , Fg(β1, . . . , βg)); and

(3) each Fi is congruent to a linear polynomial mod p (in other words, all the
coefficients of terms of degree greater than one are divisible by p).
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Proof. The map Φ induces a ring homomorphism

Φ∗ : ÔX ,x −→ ÔX ,x

that sends the maximal ideal m̂ in ÔX ,x to itself. For each i, there is a power series

Hi ∈ Zp[[T1, . . . , Tg]]

such that Φ∗Ti = Hi. Furthermore, since Φ∗Ti must be in the maximal ideal of

ÔX ,x, the constant term in Hi must be in pZp. Then, for any

(α1, . . . , αg) ∈ pZp,

we have

(Φ∗)−1(T1 − α1, . . . , Tg − αg) = (T1 −H1(α1, . . . , αg), . . . , Tg −Hg(α1, . . . , αg))

since
(T1 −H1(α1, . . . , αg), . . . , Tg −Hg(α1, . . . , αg))

is a prime ideal of coheight equal to one, and

Hi(T1, . . . , Tg)−Hi(α1, . . . , αg)

is in the ideal
(T1 − α1, . . . , Tg − αg)

for each i. Thus, if β corresponds to the prime ideal

(T1 − pβ1, . . . , Tg − pβg)

then Φ(β) corresponds to the prime ideal

(T1 −H1(pβ1, . . . , pβg), . . . , Tg −Hg(pβ1, . . . , pβg)).

Hence, letting

Fi(T1, . . . , Tg) :=
1

p
Hi(pT1, . . . , pTg)

gives the desired map. Since

Hi ∈ Zp[[T1, . . . , Tg]],

it follows that Fi must converge on Zp and that all the coefficients of terms of
degree greater than one of Fi are divisible by p. Since the constant term in Hi is
divisible by p, we conclude that

F1, . . . , Fg ∈ Zp[[T1, . . . , Tg]],

as desired. �

Switching to vector notation, we write

�β := (β1, . . . , βg) ∈ Zg
p,

and we let
F(�β) := (F1(β1, . . . , βg), . . . , Fg(β1, . . . , βg)).

From Proposition 4.4.1.6, we see that there is a g × g matrix L with coefficients in

Zp and a constant �C ∈ Zg
p such that

(4.4.1.8) F(�β) = �C + L(�β) + higher order terms

Note that since all of the higher order terms are divisible by p, we also have

(4.4.1.9) F(�β) ≡ �C + L(�β) (mod p).
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This will allow us in Subsection 4.4.2 to construct the p-adic analytic parametriza-
tion of the orbit.

Proposition 4.4.1.10. Let L be as in (4.4.1.8). Then L is invertible modulo
p.

Proof. Let OX ,x denote the local ring of x on X and let m denote its maximal
ideal. Since Φ is unramified, the map

Φ∗ : OX ,x −→ OX ,x

sends m surjectively onto itself (see [BG06, Appendix B.2]). Thus in particular it
induces an isomorphism on the Fp-vector space m/m2. Completing OX ,x at m, we
then get an induced isomorphism

σ : m̂/m̂
2 −→ m̂/m̂

2
,

where m̂ is the maximal ideal in the completion of OX ,x at m. This isomorphism is
obtained by taking the map

Φ∗ : m̂/m̂2 −→ m̂/m̂2

and reducing mod p, where m̂ is the maximal ideal of ÔX ,x. Writing σ as a linear

transformation with respect to the basis {T1, . . . , Tg} for m̂/m̂
2
, we obtain the dual

of the reduction of L mod p. Thus, if Φ∗ induces an isomorphism on m/m2, then
the reduction mod p of L itself must be invertible. �

Proposition 4.4.1.11. There exists a positive integer M such that

FM (�β) ≡ �β (mod p)

for each �β ∈ Zg
p.

Proof. Since L is invertible modulo p, it follows that the reduction modulo p
of the affine map

�β 	→ �C + L(�β)

induces an automorphism of Fg
p. Therefore, there exists a positive integer M such

that

(4.4.1.12) FM (�β) ≡ �β (mod p),

for all �β ∈ Zp. �
Now we are ready to prove the p-adic analytic parametrization of the orbit.

4.4.2. The p-adic argument. The results of this subsection generalize some
of the work of Rivera-Letelier [RL03] for parametrizing p-adic orbits of rational
maps (for more information see Chapter 6).

We construct a p-adic analytic function

U : Zp −→ Zn
p such that U(z + 1) = F(U(z)),

where F is constructed as in Subsection 4.4.1 for a closed point x ∈ X and an
unramified endomorphism Φ of the n-dimensional smooth Zp-scheme X . For this,
we generalize the construction from [Bel06], and thus provide the key analytical
result (see our Theorem 4.4.2.1) which will be used in the proof of Theorem 4.4.1.1.
We use an argument of Poonen [Poo14] that simplified and extended the proofs
from [BGT10, Section 3].
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Theorem 4.4.2.1. Let n be a positive integer, let p > 2 be a prime number and
let

ϕ1, . . . , ϕn ∈ Zp[[x1, . . . , xn]]

be convergent power series on Zn
p such that for each i = 1, . . . , n we have

ϕi(x1, . . . , xn) ≡ xi (mod p).

Let

(ω1, . . . , ωn) ∈ Zn
p

be an arbitrary point. Then there exist p-adic analytic functions

f1, . . . , fn ∈ Qp[[z]]

such that for each i = 1, . . . , n we have

(1) fi is convergent for |z|p ≤ 1;
(2) fi(0) = ωi;
(3) |fi(z)|p ≤ 1 for |z|p ≤ 1; and
(4) fi(z + 1) = ϕi(f1(z), . . . , fn(z)).

A particular case of our result, when n = 1 and ϕ1 is a rational p-adic function,
is proven in [RL03] (for more details, see our Chapter 6).

Proof of Theorem 4.4.2.1. Let

F : Zp[[x1, . . . , xn]]
n → Zp[[x1, . . . , xn]]

n

be given by

F (h1, . . . , hn) = (ϕ1(h1, . . . , hn), . . . , ϕn(h1, . . . , hn)).

Since

φi ≡ xi (mod p)

for all i, we see that F is indeed well-defined (i.e., its image lies inside
Zp[[x1, . . . , xn]]

n). We define the operator

Δ : Zp[[x1, . . . , xn]]
n → Zp[[x1, . . . , xn]]

n

given by

Δ(h1, . . . , hn) = F (h1, . . . , hn)− (h1, . . . , hn).

Since ϕi(x1, . . . , xn) ≡ xi (mod p) we see that in fact

Δ : Zp[[x1, . . . , xn]]
n −→ pZp[[x1, . . . , xn]]

n

and hence Δj maps Zp[[x1, . . . , xn]]
n into pjZp[[x1, . . . , xn]]

n for each j ≥ 1. More-
over, since

ϕ1, . . . , ϕn ∈ Zp[[x1, . . . , xn]]

are convergent power series on Zn
p , we see that for every j≥0 we have Δj(x1, . . . , xn)

converges at the point (ω1, . . . ωn) and is in pjZn
p . We now define

(f1(z), . . . , fn(z)) =

∞∑
j=0

(
z

j

)
·
(
Δj(x1, . . . , xn)

)
(ω1, . . . , ωn),

where
(
Δj(x1, . . . , xn)

)
(ω1, . . . , ωn) simply denotes the n-tuple of p-adic integers

obtained by evaluating the n-tuple of convergent power series
(
Δj(x1, . . . , xn)

)
all
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at the point (ω1, . . . , ωn). Thus for i ∈ {1, . . . , n} there exist constants cj,i ∈ pnZp

such that

fi(z) =
∞∑
j=0

cj,i

(
z

j

)
and so by Equation (2.3.5.4) we have that

|cj,i/j!|p < p−j+j/(p−1) → 0 as j →∞,

since p > 2. Thus we have that each fi(z) is a p-adic analytic theorem by Theo-
rem 2.3.5.3. By construction,

(f1(0), . . . , fn(0)) = (ω1, . . . , ωn)

and |fi(z)|p ≤ 1 for |z|p ≤ 1. It only remains to show that

fi(z + 1) = ϕi(f1(z), . . . , fn(z)) for i ∈ {1, . . . , n}.
To see this, we note that

(f1(z + 1), . . . , fn(z + 1)) =

∞∑
j=0

(
z + 1

j

)
·
(
Δj(x1, . . . , xn)

)
(ω1, . . . , ωn).

Since
(
z+1
j

)
=
(
z
j

)
+
(

z
j−1

)
and the above sum is absolutely convergent we see that

(f1(z + 1), . . . , fn(z + 1))

is equal to
∞∑
j=0

(
z

j

)
·
(
Δj(x1, . . . , xn)

)
(ω1, . . . , ωn)+

∞∑
j=1

(
z

j − 1

)
·
(
Δj(x1, . . . , xn)

)
(ω1, . . . , ωn).

Absolute convergence allows us to rearrange once more, and we see that this ex-
pression is equal to

∞∑
j=0

(
z

j

)
·
((
Δj(x1, . . . , xn)

)
(ω1, . . . , ωn) +

(
Δj+1(x1, . . . , xn)

))
(ω1, . . . , ωn).

Finally, we note that Δj +Δj+1 = F ◦Δj and so we see that

F (f1(z), . . . , fn(z)) = (f1(z + 1), . . . , fn(z + 1)),

thus proving the last remaining claim. The result now follows. �
We note that the argument used in the proof of Theorem 4.4.2.1 fails if p = 2,

because |2k/k!|2 does not tend to zero. In fact, one can construct explicit examples
which show that the conclusion to the statement of Theorem 4.4.2.1 does not hold
if one eliminates the hypothesis that p be at least 3. For example, if we take n = 1
and let φ(z) = −z then

φ(z) ≡ z (mod 2)

but φn(1) = (−1)n and so there cannot exist a 2-adic analytic function f(z) such
that

f(n) = φn(1)

since we would then have f(n) = 1 for all even natural numbers n. Lemma 2.3.6.1
would then say that f(z) must be identically 1, since the zeros of f(z)−1 are dense
in 2Z2. But this is a contradiction, since f(1) must be −1. Finally, we note that
one can generalize Theorem 4.4.2.1 to the case when K is a finite extension of Qp,
also by replacing the congruences modulo p by congruences modulo an uniformizer
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π of K; the convergence of the corresponding power series is guaranteed once p− 1
is larger than the ramification index of K/Qp. More generally the following result
holds.

Theorem 4.4.2.2. Let n be a positive integer, let (Kv, |·|p) be a finite extension
of (Qp, | · |p) (where p is a prime number and the p-adic absolute value is normalized
so that |p|p = 1/p), let π be a uniformizer of the ring Ov of integers in Kv such
that |π|ep = 1/p for some positive integer e, and let

ϕ1, . . . , ϕn ∈ Ov[[x1, . . . , xn]]

be convergent power series on On
v such that for each i = 1, . . . , n we have

ϕi(x1, . . . , xn) ≡ xi (mod π[
e

p−1 ]+1).

Let
(ω1, . . . , ωn) ∈ On

v

be an arbitrary point. Then there exist p-adic analytic functions

f1, . . . , fn ∈ Kv[[z]]

such that for each i = 1, . . . , n we have

(1) fi is convergent for |z|p ≤ 1;
(2) fi(0) = ωi;
(3) |fi(z)|p ≤ 1 for |z|p ≤ 1; and
(4) fi(z + 1) = ϕi(f1(z), . . . , fn(z)).

Proof. The proof is identical with the proof of Theorem 4.4.2.1. The exponent

g :=
[

e
p−1

]
+ 1 yields that each coefficient cj,i corresponding to the power series

fi(z) =

∞∑
j=0

cj,i

(
z

j

)
, for each i = 1, . . . , n,

satisfies the inequality

|cj,i|p ≤ p−jg/e+j/(p−1) → 0, as j →∞,

which yields the convergence of the power series fi(z). �
4.4.3. Finishing the proof for étale maps. Now we can finish the proof of

Theorem 4.3.0.1. We continue with the geometric reductions from Subsection 4.4.1.
So, let

α ∈ X (Zp)

be a point such that its reduction x modulo p is fixed by Φ (which extends as an
endomorphism of the Zp-scheme X ). Furthermore, we have a local p-adic analytic
isomorphism

ι : Ux −→ Zg
p,

where Ux is the set of all β ∈ X (Zp) whose reduction modulo p equals x. We let

ι(β) := (β1, . . . , βg)

for any β ∈ Ux. Then there exists (as proven in Subsection 4.4.1) a p-adic analytic
map

F : Zg
p −→ Zg

p

such that
ι(Φ(β)) = F(β1, . . . , βg).
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Furthermore, as proven in Proposition 4.4.1.11, there exists a positive integer M
such that

FM (z1, . . . , zg) ≡ (z1, . . . , zg) (mod p).

Finally, we let αi,j ∈ Zp such that for all j = 0, . . . ,M − 1 we have

ι(Φj(α)) = (α1,j , . . . , αg,j).

Then using Theorem 4.4.2.1 we conclude that there exist p-adic analytic functions

fi,j : Zp −→ Zp

such that

(1) fi,j(0) = αi,j for each i = 1, . . . , g and for each j = 0, . . . ,M − 1; and
(2) (f1,j(z + 1), . . . , fg,j(z + 1)) = FM (f1,j(z), . . . , fg,j(z)) for each z ∈ Zp

and for each j = 0, . . . ,M − 1.

Hence for each j = 0, . . . ,M − 1 we have that

ι
(
ΦnM+j(α)

)
= (f1,j(n), . . . , fg,j(n)) .

So, for any function H in the vanishing ideal of V , we obtain that

ΦMn+j(α) ∈ V(Zp)

if and only if n is a zero of the p-adic analytic function

z 	→
(
H ◦ ι−1

)
(f1,j(z), . . . , fg,j(z)).

Another application of Lemma 2.3.6.1 concludes our proof of Theorem 4.4.1.1.

4.4.4. The Dynamical Mordell-Lang Conjecture holds if the orbit
avoids the ramification locus. The exact same strategy as in the proof of The-
orem 4.4.1.1 yields the following result.

Theorem 4.4.4.1. Let p be a prime number, let (Kv, | · |p) be a finite extension
of (Qp, | · |p), let Ov be the ring of integers of Kv, let X be an Ov-scheme whose
generic fiber is a variety X defined over Kv. Let Φ be an endomorphism of X
defined over Ov, and we let ϕ be the induced endomorphism of X. Let α be a
section of X −→ Spec(Ov), and we let x the intersection of α with the generic fiber
of X .

Assume that there is an N such that for all n ≥ N we have the following:

(i) Φn(α) lies in the smooth locus of X ; and
(ii) the ramification locus of Φ does not intersect Φn(α).

Then for each subvariety V of X defined over Kv, the set of all n ∈ N0 such that
ϕn(x) ∈ V is a finite union of arithmetic progressions.

Proof. Since the residue field of Kv is finite, at the expense of replacing Φ
by a suitable Φm (for some positive integer m), and also replacing α by ΦN (α),
we may assume the residue class x of α (i.e., the intersection of α with the special
fiber of X −→ Spec(Ov)) is fixed by Φ. Then conditions (i)–(ii) allow us to argue
identically as in Subsection 4.4.1 to prove the Proposition 4.4.4.2. In order to state
the next result, we let g := dim(X) and we also let π be a uniformizer of Ov.

Proposition 4.4.4.2. There are power series

F1, . . . , Fg ∈ Ov[[z1, . . . , zg]]

such that:
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(a) each Fi converges on Og
v ;

(b) there exists a p-adic analytic morphism ι mapping all points β ∈ X (Ov)
to points ι(β) = (β1, . . . , βg) ∈ Og

v such that

(4.4.4.3) ι(Φ(α)) = (F1(α1, . . . , αg), . . . , Fg(α1, . . . , αg)),

where ι(α) = (α1, . . . , αg); and
(c) each Fi is congruent to a linear polynomial mod π (in other words, all the

coefficients of terms of degree greater than one are divisible by π), and
moreover

(F1(x1, . . . , xg), . . . , Fg(x1, . . . , xg)) ≡ C + L(x1, . . . , xg) (mod π),

where C ∈ Og
v and L is a linear, invertible map Og

v −→ Og
v .

Then applying [BGT15a, Proposition 2.1], at the expense of replacing again Φ
by an iterate (note that this does not affect the conclusion of the Dynamical Mordell-
Lang Conjecture, as shown by Proposition 3.1.2.5), we can improve condition (c)
of Proposition 4.4.4.2 to the following congruence relation:

Fi(x1, . . . , xg) ≡ xi (mod π[
e

p−1 ]+1),

for each i = 1, . . . , g, where e is the ramification index of Kv/Qp. Then Theo-
rem 4.4.2.2 yields the technical ingredient to finish the proof of Theorem 4.4.4.1
arguing identically as in Subsection 4.4.3. �
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CHAPTER 5

Linear relations between points in polynomial
orbits

In this chapter we prove Conjecture 1.5.0.1 for all affine lines L ⊂ AN under
the action of endomorphisms Φ of AN of the form

Φ(x1, . . . , xN ) = (f1(x1), . . . , fN (xN )) ,

where the fi’s are one-variable polynomials of degree larger than 1 with complex
coefficients. In particular, the results of this chapter refer to the split case of the
Dynamical Mordell-Lang Conjecture. The results presented in this chapter are
taken from papers [GTZ08] and [GTZ12]. For some results we include complete
proofs, and in other cases we only sketch the proofs appearing in [GTZ08] and
[GTZ12].

5.1. The main results

The first result of this chapter is the case of Conjecture 1.5.0.1 for all affine
lines under the coordinatewise action of one-variable polynomials; this result is an
immediate consequence of the main theorem of [GTZ12].

Theorem 5.1.0.1. Let N ∈ N, let f1, . . . , fN ∈ C[z] be polynomials of degree
larger than 1, let α ∈ AN (C) and let L ⊂ AN be a line defined over C. We let the
endomorphism

Φ : AN −→ AN be defined by

Φ(x1, . . . , xN ) = (f1(x1), . . . , fN (xN )) .

Then the set
S(L,Φ, α) := {n ∈ N0 : Φ

n(α) ∈ L(C)}
is a union of finitely many arithmetic progressions.

We prove Theorem 5.1.0.1 as a consequence of Theorem 5.1.0.2 (which was
proven in [GTZ12]). Before stating Theorem 5.1.0.2, we recall the notation

γ + U := {γ + x : x ∈ U}
for any typle γ ∈ NN

0 and any set U ⊂ NN
0 , where the addition of any two tuples in

NN
0 is done coordinatewise.

Theorem 5.1.0.2 ([GTZ12]). Let N ∈ N, let α ∈ AN (C), let f1, . . . , fN ∈ C[z]
satisfy deg(fi) > 1 for i = 1, . . . , N , and let L be a complex line in AN . Let S be
the semigroup generated by the maps

Φi : A
N → AN with 1 ≤ i ≤ N,

where
Φi(x1, . . . , xN ) = (x1, . . . , xi−1, fi(xi), xi+1, . . . , xN ).

85
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Then the intersection of OS(α) with L is OT (α), where T is the union of finitely
many cosets of cyclic subsemigroups of S. More precisely, there exist � ∈ N0, tuples
γ1, . . . , γ� ∈ NN

0 and cyclic subgroups Hi ⊆ ZN (for i = 1, . . . , �) such that for each
tuple (n1, . . . , nN ) ∈ NN

0 we have that

Φn1
1 · · ·ΦnN

N (α) ∈ L(C)

if and only if

(n1, . . . , nN ) ∈
�⋃

i=1

γi +
(
Hi ∩ NN

0

)
.

In particular, if the intersection OS(α)∩L(C) is infinite, then there are m1, . . . ,mN

∈ N0 not all equal to 0 such that

(fm1
1 , . . . , fmN

N )(L) = L.

5.1.1. Proof of Theorem 5.1.0.1 and of its extensions. We show how to
deduce Theorem 5.1.0.1 as a consequence of Theorem 5.1.0.2.

Proof of Theorem 5.1.0.1. With the notation as in Theorem 5.1.0.2, we
have that

(5.1.1.1)
{
(n1, . . . , nN ) ∈ NN

0 : Φn1
1 · · ·ΦnN

N (α) ∈ L(C)
}
=

�⋃
i=1

γi +
(
Hi ∩ NN

0

)
.

Intersecting the right hand-side of (5.1.1.1) with the diagonal subset ΔN of NN
0 ,

i.e. with the set
ΔN := {(n, . . . , n) : n ∈ N0},

we obtain the conclusion of Theorem 5.1.0.1. To see this, note that for each

i = 1, . . . , �,

we have that Hi ∩ΔN is a set of the form

{(ain, . . . , ain) : n ∈ N0},
for some ai ∈ N0 (because Hi is a cyclic subgroup of ZN ), and therefore the
projection of the set

(γi +Hi) ∩ΔN

on any of the coordinates is an arithmetic progression, as desired. �

As proven by Xie [Xieb], the Dynamical Mordell-Lang Conjecture holds for
any curve defined over Q under the coordinatewise action of one-variable poly-
nomials defined over Q (see also Section 5.10 and Section 10.3). It is expected
that a specialization argument (similar to the one employed in [BGKT12]) would
work to extend Xie’s result (see Theorem 5.10.0.6) to all affine curves under the
coordinatewise action of one-variable polynomials defined over C. In particular, in
Theorem 5.1.0.1 it is not essential that the polynomials fi have degrees larger than
1. We prove the extension of Theorem 5.1.0.1 to the case of all polynomials defined
over Q.

Theorem 5.1.1.2. Let N ∈ N, let α ∈ AN (Q), let L ⊂ AN be a line defined
over Q, let f1, . . . , fN ∈ Q[z] be arbitrary polynomials, and let Φ : AN −→ AN be
defined as follows

Φ(x1, . . . , xN ) := (f1(x1), . . . , fN (xN )) .
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Then the set

S(L,Φ, α) := {n ∈ N0 : Φ
n(α) ∈ L(Q)}

is a finite union of arithmetic progressions.

As previously stated, Theorem 5.1.1.2 is a special case of Xie’s result for all
curves; see Theorem 5.10.0.6. We decided to include Theorem 5.1.1.2 since the ideas
appearing in its proof also appear later in a couple of places in the more technical
proof of Theorem 5.1.0.2.

Proof of Theorem 5.1.1.2. We argue by induction on N ; the case N = 1 is
obvious.

Now, if L does not project dominantly on one of the axes of AN , then we take
the projection of L on the remaining (N − 1) coordinates of AN and apply the
inductive hypothesis. So, from now on, we assume that L projects dominantly onto
each coordinate axis of AN .

Now, letting

α := (α1, . . . , αN ),

if one of the αi is preperiodic under the action of fi, then the intersection

L(Q) ∩ OΦ(α)

consists of only finitely many points, and then Theorem 5.1.1.2 holds with an argu-
ment similar to the proof of Proposition 3.1.2.9. So, in particular, we may assume
that each fi is non-constant.

Now, if each deg(fi) > 1 then we are done by Theorem 5.1.0.1, while if each
deg(fi) = 1 then we are done by Theorem 4.1.0.4. So, we may assume from now
on that there exists at least one polynomial, say f1, which is linear, and at least
one polynomial, say f2, which has degree larger than 1. We prove that in this case
S(L,Φ, α) is finite.

Clearly, if suffices to assume N = 2 (after taking the projection of L on the
first two coordinate axes) and prove S(L,Φ, α) is finite. So, L is a line of the form

x2 = ax1 + b,

for some a ∈ Q
∗
and b ∈ Q. Hence there exists a positive constant c1 such that

for each point (x1, x2) ∈ L(Q), we have the following inequality between the Weil
heights of the coordinates of the point on L (see Proposition 2.6.3.3)

h(x2) ≤ h(x1) + c1.

So, for each n ∈ N0 such that ΦN (α) ∈ L(Q), letting α := (α1, α2) we have

(5.1.1.3) h (fn
2 (α2)) ≤ h (fn

1 (α1)) + c1.

Using the form of the n-th iterate of a linear polynomial (see (4.1.0.1) and (4.1.0.2)),
we conclude that there exist positive constants c2 and c3 such that

(5.1.1.4) h (fn
1 (α1)) ≤ nc2 + c3,

for each n ∈ N0. On the other hand, using Proposition 2.6.4.2 (a)—(b), we obtain
that there exists a positive constant c4 such that

(5.1.1.5) h (fn
2 (α2)) ≥ deg(f2)

n · ĥf2(α2)− c4,
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for each n ∈ N0, where ĥf2(α2) is the canonical height of α2 with respect to the

polynomial f2 ∈ Q[z] (for more details, see Subsection 2.6.4). According to Propo-

sition 2.6.4.2 (c), we have that ĥf2(α2) > 0 since we assumed that α2 is not prepe-
riodic under the action of f2. Then, combining (5.1.1.3), (5.1.1.4) and (5.1.1.5), we
obtain that

(5.1.1.6) deg(f2)
n · ĥf2(α2) ≤ nc2 + c1 + c3 + c4.

Using in (5.1.1.6) the fact that deg(f2) ≥ 2 and that ĥf2(α2) > 0, we conclude
that n must be bounded, i.e., S(L,Φ, α) is finite, which concludes the proof of
Theorem 5.1.1.2. �

Employing a specialization argument similar to the one we will present in Sec-
tion 5.6, one can extend the result of Theorem 5.1.1.2 for all lines and polynomials
defined over C.

5.1.2. Question 3.6.0.1 for polynomial orbits. With the notation as in
Theorem 5.1.0.2, letting

α := (α1, . . . , αN ), we have

OS(α1, . . . , αN ) = {(fm1
1 (α1), . . . , f

mN

N (αN )) : m1, . . . ,mN ∈ N0} .
We state next a special case of Question 3.6.0.1 that is relevant for Theorem 5.1.0.2.

Question 5.1.2.1. Let N ∈ N, let α1, . . . , αN ∈ C, let V ⊂ AN be a subvariety,
and let f1, . . . , fN ∈ C[z] be polynomials of degree greater than 1. Is it true that the
set

S(V, f1, . . . , fN , α) := {(n1, . . . , nN ) ∈ NN
0 : (fn1

1 (α1), . . . , f
nN

N (αN )) ∈ V (C)}
is a union of finitely many sets of the form

γ +
(
H ∩ NN

0

)
,

for some tuples γ ∈ NN
0 and subgroups H ⊆ ZN?

Theorem 5.1.0.2 solves a special case of Question 5.1.2.1 when V is a line.
Theorem 5.1.0.2 can be interpreted as showing that the only linear relations be-
tween points in the orbits of the polynomials fi come from a linear relation between
the polynomials themselves. More generally, Question 5.1.2.1 asks for all algebraic
relations between points in the orbits of the polynomials fi. We expect that Ques-
tion 5.1.2.1 is true.

It is crucial that the polynomials fi be non-linear in Theorem 5.1.0.2 (and
similarly in Question 5.1.2.1). Indeed, with the notation as in Theorem 5.1.0.2, if

N = 2, f1(z) = z + 1, f2(z) = z2, α1 = 0 and α2 = 2,

then the orbit OS(α1, α2) intersects the diagonal line of the affine plane in the
points (

22
n

, 22
n
)
= Φ22

n

1 Φn
2 (α1, α2).

Many similar counterexamples can be constructed when at least one of the poly-
nomials fi is linear. So, in other words, Question 5.1.2.1 (and in particular, an
extension of Theorem 5.1.0.2) does not necessarily have a positive answer when an
endomorphism

Φi : A
N −→ AN
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defined as in Theorem 5.1.0.2 is actually an automorphism. Informally, the problem
with the case when one of the fi is linear is that the height of the iterates of αi

under the action of the linear fi grows much slower than the height of the iterates
of an αj under the action of a non-linear polynomial fj (see Section 2.6 for more
details on heights). However, there are examples when Question 3.6.0.1 fails even
when all polynomials fi are linear. For example, if

N = 2, f1(z) = z + 1, f2(z) = 2z, α1 = 0 and α2 = 1,

then the orbit OS(α1, α2) intersects the diagonal line of the affine plane in the
points

(2n, 2n) = Φ2n

1 Φn
2 (α1, α2).

On the other hand, the original Dynamical Mordell-Lang Conjecture (see Conjec-
ture 1.5.0.1) is already known to hold when the dynamical system is given by an
automorphism (see Theorem 4.3.0.1).

5.2. Intersections of polynomial orbits

Theorem 5.1.0.2 is the main result of [GTZ12]; in the special case

deg(f1) = · · · = deg(fN ),

the result was proven in [GTZ08], and actually, the general result from [GTZ12]
was proved by first reducing it to the special case when all polynomials have the
same degree. In this section we prove Theorem 5.1.0.2 as a consequence of a result
(see Theorem 5.2.0.1) regarding intersections of orbits under polynomial maps.

Theorem 5.2.0.1. Let f, g ∈ C[x] be polynomials of degrees larger than 1, and
let α, β ∈ C. If Of (α) ∩ Og(β) is infinite, then there exist positive integers m and
n such that fm = gn.

Theorem 5.2.0.1 was proven in [GTZ12] by reducing it to the case when

deg(f) = deg(g)

which was proved in [GTZ08]. It is essential that both f and g have degrees
larger than 1, since otherwise, if f(z) = z + 1 and if g is a polynomial with all its
coefficients positive integers, then Of (0) ∩ Og(0) is always infinite even though no
iterate of f equals an interate of g. Again, the problem lies in the fact that the
points in the orbit of f are not sparse enough, or, equivalently, that the height of
the iterates under f does not grow exponentially.

Next we show how to deduce Theorem 5.1.0.2 from Theorem 5.2.0.1.

5.2.1. Proof of Theorem 5.1.0.2. Assume first that the intersection is infi-
nite; otherwise the statement follows similarly to the proof of Proposition 3.1.2.9.

We proceed by induction on N . If N = 1, then the statement is trivial. Assume
now that the statement holds for all N < M , and we prove it for N = M .

If all points of L take the same value, say ai, on the i-th coordinate (for some

i = 1, . . . ,M), then we take L̃i to be the projection of L on the remaining M − 1

coordinates and then reduce the problem to the intersection of L̃i ⊆ AM−1 with the
orbit of a point under the action of a semigroup generated by M − 1 one-variable
polynomials, each acting on a different coordinate of AM−1. Thus the result follows
by the inductive hypothesis.
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Assume from now on that L projects dominantly onto each coordinate of AM .
Let α = (α1, . . . , αM ) ∈ CM ; so we know that

L(C) ∩ (Of1(α1)× · · · × OfM (αM )) is infinite.

For each i = 2, . . . ,M , we let πi denote the projection of AM onto the first and
i-th coordinates and we let Li := πi(L). Since Li projects dominantly onto each
of the two coordinates, there exists a linear polynomial σi such that Li is given by
the equation Xi = σi(X1). Now, for any k, � ∈ N such that

(
fk
1 (α1), f

�
i (αi)

)
∈ Li

we have (
σi ◦ f1 ◦ σ−1

i

)k
(σi(α1)) = f �

i (αi).

Thus by Theorem 5.2.0.1 there exist mi, ni ∈ N such that
(
σi ◦ f1 ◦ σ−1

i

)mi
= fni

i .
Without loss of generality, we may assume mi (and thus also ni) is minimal with
this property. Let D1 be the least common multiple of all the mi’s, and let

Di =
niD1

mi

for each i > 1. Then(
σi ◦ f1 ◦ σ−1

i

)D1
= fDi

i , i.e. fDi
i ◦ σi = σi ◦ fD1

1 .

Since L is defined by the M−1 equations Xi = σi(X1), it follows that L is invariant

under (fD1
1 , . . . , fDN

N ).

Hence, for each (k1, . . . , kM ) ∈ NN
0 such that (fk1

1 (α1), . . . , f
kM

M (αM )) ∈ L(C),
we also have that for all m ∈ N,

(fk1+mD1
1 (α1), . . . , f

kM+mDM

M (αM )) ∈ L(C).

For each � ∈ {1, . . . , D1}, let U� be the set of tuples (k1, . . . , kM ) ∈ NN
0 such that

k1 ≡ � (mod M1) and (fk1
1 (α1), . . . , f

kM

M (αM )) ∈ L(C).

If U� is non-empty, pick (s1, . . . , sM ) ∈ U� for which s1 is minimal. Then U� contains

V� := {(s1 + jD1, . . . , sM + jDM ) : j ∈ N0}.

On the other hand, since L projects injectively onto each coordinate of AM , we
conclude that U� = V�. Therefore, the set Z� of all

(fk1
1 (α1), . . . , f

kM

M (αM )) ∈ L(C) and (k1, . . . , kM ) ∈ U�

is the orbit of α under 〈ρD1
1 · · · ρDM

M 〉ρk1
1 · · · ρkM

M .

5.2.2. Ritt’s classification of polynomials with a common iterate. In
Subsection 5.2.1 we proved that Theorem 5.2.0.1 yields Theorem 5.1.0.2, while
in Subsection 5.1.1 we proved that Theorem 5.1.0.2 yields Theorem 5.1.0.1. So,
most of the remaining part of this chapter is devoted to proving Theorem 5.2.0.1.
But first, in this subsection we describe which are the polynomials satisfying the
conclusion of Theorem 5.2.0.1, i.e. polynomials f1, f2 ∈ C[z] such that

fm1
1 = fm2

2 for some m1,m2 ∈ N.

Ritt [Rit20] proved the following result.
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Theorem 5.2.2.1 (Ritt [Rit20]). Let f1, f2 ∈ C[z] with

di := deg(fi) > 1 for i = 1, 2.

Then there exist m1,m2 ∈ N such that

fm1
1 = fm2

2

if and only if there exists a polynomial g ∈ zrC[zs] for some r ∈ N0 and s ∈ N,
there exist positive integers n1 and n2 such that

n1m1 = n2m2,

and there exist ε1, ε2, β ∈ C satisfying

εsi = 1 and ε
d
mi
i

−1

di−1

i = 1

for each i = 1, 2, such that

f1(z) = −β + ε1g
n1(z + β)

and

f2(z) = −β + ε2g
n2(z + β).

Using Theorem 5.2.2.1 we obtain the following consequence of Theorem 5.2.0.1.

Corollary 5.2.2.2. Let α1, α2 ∈ C, and let f1, f2 ∈ C[z] be non-linear poly-
nomials. If

Of1(α) ∩ Of2(α2) is infinite,

then there exists h ∈ C[z], n1, n2 ∈ N, and �1, �2 ∈ C[z] of degree 1 such that

f1 = �1 ◦ hn1 and f2 = �2 ◦ hn2 .

Proof. The result follows applying the conclusion of Theorem 5.2.2.1 to the
polynomials f1 and f2 which have a common iterate according to Theorem 5.2.0.1.
The conclusion of Corollary 5.2.2.2 holds with

h(z) := −β + g(z + β)

and

�i(z) = (−β + εiβ) + εiz

for i = 1, 2, where g, β, εi are as in the conclusion of Theorem 5.2.2.1. �

5.3. A special case

We first prove Theorem 5.2.0.1 in the special case when deg(f) = deg(g), and
in addition, f, g ∈ Q[z] and α, β ∈ Q.

Theorem 5.3.0.1. Let K be a number field, let α, β ∈ K, and let f, g ∈ K[z]
satisfy deg(f) = deg(g) > 1. If Of (α) ∩ Og(β) is infinite, then fk = gk for some
k ∈ N.

The hypothesis that deg(f) = deg(g) = d > 1 in Theorem 5.3.0.1 allows us to
reduce Theorem 5.3.0.1 to the following special case of the Dynamical Mordell-Lang
Conjecture.
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Theorem 5.3.0.2. Let K be a number field, let α, β ∈ K, and let f, g ∈ K[z]
satisfy deg(f) = deg(g) > 1. Let Δ ⊂ A2 be the diagonal line, and let Φ : A2 −→ A2

be defined as

(5.3.0.3) Φ(x, y) = (f(x), g(y)).

If the intersection

OΦ(α, β) ∩Δ is infinite,

then there exists k ∈ N such that

Φk(Δ) = Δ, i.e. fk = gk.

Theorem 5.3.0.2 is the case of Conjecture 1.5.0.1 for the diagonal line in the
affine plane under the action of an endomorphism Φ as in (5.3.0.3) (see the equiv-
alence between the Dynamical Mordell-Lang Conjecture and Conjecture 3.1.3.1
proven in Subsection 3.1.3).

5.3.1. Theorem 5.3.0.2 yields Theorem 5.3.0.1.

Proof of Theorem 5.3.0.1. So, we assume Theorem 5.3.0.2 holds and we
prove Theorem 5.3.0.1.

Let d := deg(f) = deg(g). Since both Of (α) and Og(β) are infinite, we con-
clude that α and β are not respectively preperiodic under the actions of f and g.
We claim that |m− n| is uniformly bounded for all pairs

(m,n) such that fm(α) = gn(β).

Indeed, using Proposition 2.6.4.2 (a)—(b), there exists a positive constant c such
that for all z ∈ Q we have

(5.3.1.1) | ĥf (z)− ĥg(z)| < c.

Using inequality (5.3.1.1) for z = fm(α) = gn(β), and also using that

ĥf (f
m(α)) = dm · ĥf (α) and ĥg(g

n(β)) = dn · ĥg(β),

we conclude that

|dm ĥf (α)− dn ĥg(β)| < c.

Furthermore, both ĥf (α) and ĥg(β) are nonzero since neither α nor β is preperiodic
under the action of f , respectively of g (see Proposition 2.6.4.2 (c)). Hence |m−n|
is uniformly bounded as claimed. Therefore, without loss of generality, we may
assume that there exists � ∈ N0 such that

fm(α) = gm+�(β)

for infinitely many m ∈ N. Thus, the diagonal line Δ in the affine plane contains
infinitely many points in common with the orbit O(f,g)(α, g

�(β)) and hence by

Theorem 5.3.0.2, there exists k ∈ N such that fk = gk. �
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5.4. Proof of Theorem 5.3.0.2

In Subsection 5.3.1 we proved that Theorem 5.3.0.2 yields Theorem 5.3.0.1. In
this section we prove Theorem 5.3.0.2, using the arguments from [GTZ08].

We continue with the notation from Theorem 5.3.0.2; in particular we assume
there exist infinitely many k ∈ N such that

fk(α) = gk(β).

Also, we work under the assumption that

deg(f) = deg(g) = d ≥ 2,

and that there exists a number field K containing α, β and all coefficients of f and
g.

5.4.1. A useful theorem of Bilu and Tichy. Now, we let S be the finite set
of places of K containing all archimedean places, and all non-archimedean places v
such that at least one of α, β, or one of the coefficients of f and g is not integral
at v. Then it is immediate to see that for all k ∈ N0, we have that

fk(α) and gk(β) are S-integers of K.

Knowing that there exist infinitely many k ∈ N such that fk(α) = gk(β), we
conclude that for each k ∈ N, the plane curve Ck given by the equation

fk(X)− gk(Y ) = 0

contains infinitely many S-integral points in K. Theorem 2.3.7.1 yields then the
existence of an irreducible component Ck,0 of Ck which is a Siegel curve, i.e. Ck,0

has genus 0 and at most two points at infinity. Moreover, Bilu and Tichy [BT00]
proved a strengthening (see Theorem 5.4.1.2) of Siegel’s Theorem which gives a
complete list of the polynomials f and g for which the curve C := C1 given by the
equation

f(X)− g(Y ) = 0

contains a Siegel curve. We note from the beginning that we state Theorem 5.4.1.2
with the extra hypothesis that the polynomials f and g have the same degrees which
simplifies the classification obtained by Bilu and Tichy [BT00]. In order to state
this classification result we introduce the notation for a special class of polynomials
of two variables denoted Dn(X,Y ) which may be viewed as a homogenized version
of the Chebyshev polynomials (see also Definition 5.7.0.1).

Definition 5.4.1.1. For each positive integer n we define the polynomial
Dn(X,Y ) be the unique polynomial in Z[X,Y ] such that

Dn(U + V, UV ) = Un + V n.

It is immediate to see that Dn(X, 0) = Xn (for all n ∈ N) and, for α ∈ C we
have

αnDn(X, 1) = Dn(αX,α2).

Theorem 5.4.1.2 (Bilu-Tichy [BT00]). Let K be a number field, and let S be a
finite set of places of K containing all the archimedean places of K. Let F,G ∈ K[z]
be polynomials of same degree and assume

F (x) = G(y)
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has infinitely many solutions in the ring of S-integers of K. Then

F = E ◦ F1 ◦ a and G = E ◦G1 ◦ b,
where E, a, b ∈ K[z] with deg(a) = deg(b) = 1, and (F1, G1) or (G1, F1) are one of
the following pairs:

1. (z, z);
2. (z2, c ◦ z2) with c ∈ K[z] linear;
3. (D2(z, α)/α,D2(z, β)/β) with α, β ∈ K∗;
4. (Dn(z, α),−Dn(z cos(π/n), α)) with α ∈ K, where n ∈ N is such that

cos(2π/n) is in K.

In the proof from [GTZ08] we only need the coarser information that F1 and
G1 assume only finitely many shapes modulo composition with linear polynomials.
We note that for n ≥ 3 we have [Q(cos(2π/n)) : Q] = φ(n)/2 and hence degree
considerations make it straightforward to find restrictions on the set of n for which
cos(2π/n) ∈ K, where K is a number field. In particular, there are only finitely
many such n.

Corollary 5.4.1.3. Let K,S, F,G satisfy the hypotheses of Theorem 5.4.1.2.
Then

F = E ◦H ◦ a and G = E ◦ c ◦H ◦ b
for some E ∈ K[z], some linear a, b, c ∈ K[z], and some H = Dn(X,α) with
α ∈ {0, 1} and n ∈ N satisfying cos(2π/n) ∈ K. In particular, for fixed K, there
are only finitely many possibilities for H (even if we vary S, F,G).

Note very importantly that we can apply Theorem 5.4.1.2 and Corollary 5.4.1.3
not only to our polynomials f and g, but also to any pair of polynomials (fk, gk)
with k ∈ N since each curve Ck contains infinitely many S-integral points of K.

5.4.2. Ritt’s theorem regarding the decomposition of polynomials.
The proof of Theorem 5.3.0.2 uses the following fundamental result of Ritt [Rit20]
(for more recent results on polynomial decomposition, see [MS14, MZ]).

Theorem 5.4.2.1 (Ritt [Rit20]). Let K be a field of characteristic zero. If
A,B,C,D ∈ K[z] \K satisfy A ◦B = C ◦D and deg(B) = deg(D), then there is a
linear � ∈ K[z] such that A = C ◦ � and B = � ◦D.

The following technical result follows as a consequence of Theorem 5.4.2.1.

Lemma 5.4.2.2. Let K be a field of characteristic zero. Suppose that

F,H,E, Ẽ ∈ K[z] \K and linear a, b, c, ã, b̃, c̃ ∈ K[z]

satisfy
F = E ◦H ◦ a

G = E ◦ c ◦H ◦ b
F k = Ẽ ◦H ◦ ã

Gk = Ẽ ◦ c̃ ◦H ◦ b̃
for some integer k > 1. Then there is a linear e ∈ K[z] such that F k−1 = Gk−1 ◦ e.

Proof. See [GTZ08, Lemma 3.1]. �

Lemma 5.4.2.2 yields the first relation between the iterates of f and of g.
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Lemma 5.4.2.3. Let K be a number field, let S be a finite set of places of K
containing all archimedean places of K, and let f, g ∈ K[z] with

deg(f) = deg(g) > 1.

Suppose that for every k ∈ N the equation

fk(X) = gk(Y )

has infinitely many solutions in the ring of S-integers of K. Then there exists r ∈ N
such that, for both n = 1 and infinitely many other values n ∈ N, there is a linear
�n ∈ K[z] such that

frn = grn ◦ �n.
Proof. First we show that there exists r ∈ N such that

fr = gr ◦ � for some linear � ∈ K[X].

By Corollary 5.4.1.3, for each m we have

f2m = Em ◦Hm ◦ am and g2
m

= Em ◦ cm ◦Hm ◦ bm
with Em ∈ K[z], linear am, bm, cm ∈ K[z], and some Hm ∈ K[z] which comes from
a finite set of polynomials. Thus

Hm = Hs for some m and s with m < s.

Applying Lemma 5.4.2.2 with F = f2m and G = g2
m

and k = 2s−m, it follows that
there is a linear � ∈ K[z] such that

F k−1 = Gk−1 ◦ �, and thus

fr = gr ◦ � for r = 2s − 2m.

Suppose there are only finitely many n ∈ N for which there is a linear �n ∈ K[z]
with frn = grn ◦ �n. Let N be an integer exceeding each of these finitely many
integers n. We get a contradiction by applying the argument from the previous
paragraph with (frN , grN ) in place of (f, g). �

5.4.3. The key result in the proof of Theorem 5.3.0.2. The following
result (see [GTZ08, Proposition 3.3]) is key to the proof of Theorem 5.3.0.2.

Proposition 5.4.3.1. Let K be a field of characteristic zero, and let F, � ∈ K[z]
satisfy deg(F ) = d > 1 = deg(�). Suppose that, for infinitely many n ∈ N, there is
a linear �n ∈ K[z] such that Fn = (F ◦ �)n ◦ �n. Then either

(1) F k = (F ◦ �)k for some k ∈ N; or
(2) F (z) = v−1 ◦ εzd ◦ v and � = v−1 ◦ δz ◦ v for some linear v ∈ K[z] and

some ε, δ ∈ K∗.

Before proving Proposition 5.4.3.1, we state two technical lemmas which are
used in its proof.

Lemma 5.4.3.2. If H is a polynomial defined over a field K of characteristic 0,
such that u◦H◦v has at least two nonzero monomial terms for all linear polynomials
u and v, then there exist at most finitely many linear polynomials a and b such that
H ◦ b = a ◦ H. In fact, the number of solutions is at most the size of the largest
group of roots of unity in K of order less than deg(H).

Proof. This is proven in [GTZ08, Lemma 4.1] as a consequence of an old
theorem of Hällström [Hal57]. �
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Lemma 5.4.3.3. For any linear polynomial �, and for any polynomial H defined
over a field K of characteristic 0, if there exist linear polynomials u, v ∈ K[z] such
that H(z) = u◦zd◦v (for some d > 1), then the following statements are equivalent:

(1) the equation

(5.4.3.4) H ◦ � ◦H ◦ b = a ◦H ◦H
has infinitely many solutions in linears a, b ∈ K[z];

(2) H(z) = v−1 ◦ εzd ◦ v and �(z) = v−1 ◦ δz ◦ v for some ε, δ ∈ K∗.

Proof. This is proven in [GTZ08, Lemma 4.3] as an application of Theo-
rem 5.4.2.1. �

Proof of Proposition 5.4.3.1. We have

(5.4.3.5) (F ◦ �)n ◦ �n = Fn

for every n in some infinite subset M of N. For n ∈M, we apply Theorem 5.4.2.1
to the identity (5.4.3.5) with

B = F ◦ � ◦ �n and D = F,

and conclude that there is a linear un ∈ K[z] such that

F ◦ � ◦ �n = un ◦ F.
By Lemma 5.4.3.2, if F is not obtained from a monomial by composing with linears
on both sides then {�n : n ∈M} is finite.

Next, for n ∈M with n > 1, apply Lemma 5.4.2.1 to (5.4.3.5) with

B = (F ◦ �)2 ◦ �n and D = F 2,

and conclude that there is a linear vn ∈ K[z] such that

(F ◦ �)2 ◦ �n = vn ◦ F 2.

Using Lemma 5.4.3.3, if F is obtained from a monomial by composing with linears
on both sides, then either {�n : n ∈ M} is finite or conclusion (2) of Proposi-
tion 5.4.3.1 holds.

Thus, whenever (2) of Proposition 5.4.3.1 does not hold, the set {�n : n ∈ M}
is finite, so there exist n,N ∈M such that �n = �N and n < N . Then

FN−n ◦ Fn = FN

= (F ◦ �)N ◦ �n
= (F ◦ �)N−n ◦ (F ◦ �)n ◦ �n
= (F ◦ �)N−n ◦ Fn,

so FN−n = (F ◦ �)N−n, as desired. �

5.4.4. Finishing the proof of Theorem 5.3.0.2. Now we have all ingredi-
ents to finish the proof of Theorem 5.3.0.2.

Proof of Theorem 5.3.0.2. Let S be a finite set of places of K such that
the ring of S-integers oK,S contains α, β, and every coefficient of f and g. Then
oK,S contains every fn(α) and gn(β) with n ∈ N.

Our hypotheses imply that α is not preperiodic for f , and β is not preperiodic
for g. Moreover, for every k ∈ N, the equation fk(x) = gk(y) has infinitely many
solutions (x, y) ∈ oK,S × oK,S .
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By Lemma 5.4.2.3, there is some r ∈ N such that, for both n = 1 and infinitely
many n ∈ N, we have

frn = grn ◦ �n with �n ∈ K[z] linear.

Let F := fr and � = �−1
1 . Then gr = F ◦ �, and for infinitely many n we have

Fn = (F ◦ �)n ◦ �n. If F and F ◦ � have a common iterate, then so do f and g. By
Proposition 5.4.3.1, it remains only to consider the case that

F (z) = v−1 ◦ εzd ◦ v and �(z) = v−1 ◦ δz ◦ v,

where v ∈ K[z] is linear and ε, δ ∈ K
∗
. Note that d > 1.

By hypothesis, the set M of pairs (m,n) ∈ N× N satisfying

fm(α) = gn(β)

is infinite, and (from non-preperiodicity of both α and β with respect to the actions
of f , and respectively of g) its projections onto each coordinate are injective. Thus,
for some s1, s2 ∈ N, the set M contains infinitely many pairs

(rm+ s1, rn+ s2) with m,n ∈ N.

Since the projections are injective,M contains pairs of this form in which min(m,n)
is arbitrarily large. For any m,n ∈ N such that (rm+ s1, rn+ s2) ∈M, we have

Fm(α1) = (F ◦ �)n(β1),

where α1 := fs1(α) and β1 := gs2(β). Thus

v−1
(
ε

dm−1
d−1 v(α1)

dm
)
= Fm(α1)

= (F ◦ �)n(β1)

= v−1
(
(εδd)

dn−1
d−1 v(β1)

dn
)
,

so

(5.4.4.1) v(α1)
dm

ε
dm−dn

d−1 = δ
d(dn−1)

d−1 v(β1)
dn

.

We cannot have v(α1) = 0, since otherwise α1 = fs1(x0) is a fixed point of F = fr,
contrary to our hypotheses. Likewise v(β1) �= 0. Now let ε1, δ1 ∈ K satisfy

εd−1
1 = ε and δd−1

1 = δd,

so (5.4.4.1) implies

(5.4.4.2) δ1 = v(α1)
−dm · εd

n−dm

1 · δdn

1 · v(β1)
dn

.

Since (5.4.4.2) holds for pairs (m,n) with min(m,n) arbitrarily large, there are
infinitely many k ∈ N for which δ1 is a dk-th power in the number field

K0 := Q(v(α1), v(β1), ε1, δ1).

Letting oK0
be the ring of algebraic integers in K0, it follows that the fractional

ideal of oK0
generated by δ1 is a dk-th power for infinitely many k. Now unique

factorization of fractional ideals implies δ1 is in the unit group U of oK0
. Moreover,

δ1 is a dk-th power in U for infinitely many k. Since U is a finitely generated abelian
group, δ1 must be a root of unity whose order N is coprime to d. Thus

N | (dq − 1) for some positive integer q.
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Hence

(F ◦ �)q(z) = v−1 ◦ (εδd)
dq−1
d−1 zd

q ◦ v,
and since δd = δd−1

1 and δd
q−1

1 = 1, we get that (F ◦ �)q = F q, as desired. �

5.5. The general case of Theorem 5.3.0.1

We recall that in Subsection 5.3.1 we proved the special case of Theorem 5.2.0.1
when the coefficients of the polynomials f and g and the starting points are alge-
braic numbers and also deg(f) = deg(g) (see Theorem 5.3.0.1) as a consequence of
Theorem 5.3.0.2; then in Section 5.4 we proved Theorem 5.3.0.2.

Now, one can prove a generalization of Theorem 5.3.0.2 when deg(f) = deg(g)
and the coefficients of the polynomials f and g, and also the starting points α and β
are complex numbers using the exact same strategy employed in Section 5.4. Indeed,
Theorem 5.4.1.2 (see [BT00]) holds even when the corresponding polynomials are
defined over a finitely generated extension of Q; even though the statement from
[BT00] is for polynomials defined over a number field, all the arguments from
[BT00] are done for polynomials defined over an arbitrary field of characteristic 0.
Furthermore, one may use the following generalization due to Lang [Lan83, Thm.
8.2.4 and 8.5.1] of Siegel’s classical theorem [Sie29] (see Theorem 2.3.7.1).

Theorem 5.5.0.1. Let K be a finitely generated field of characteristic zero,
and let R be a finitely generated subring of K. Let C be a smooth, projective,
geometrically irreducible curve over K, and let φ be a non-constant function in
K(C). Suppose that there are infinitely many points P ∈ C(K) which are not poles
of φ and which satisfy φ(P ) ∈ R. Then C has genus zero and φ has at most two
distinct poles.

Theorem 5.5.0.1 allows us to extend Theorem 5.4.1.2 to the case of an arbitrary
finitely generated field K, thus proving Theorem 5.3.0.2 for polynomials f and g
defined over C of same degree. Then one can employ a similar reduction using
the theory of heights as in Subsection 5.3.1 (though one would have to work with
heights corresponding to function fields and define properly the minimal field of
definition for the polynomials f and g, but essentially the same ideas would work)
to prove that the extension of Theorem 5.3.0.2 over C yields the following result.

Theorem 5.5.0.2. Let f, g ∈ C[z] such that deg(f) = deg(g) = d > 1. If there
exist α, β ∈ C such that Of (α)∩Og(β) is infinite, then there exists k ∈ N such that
fk = gk.

However, we prefer to prove Theorem 5.5.0.2 by inferring it directly from The-
orem 5.3.0.1 (without appealing to a generalization of Theorem 5.3.0.2 to C) using
specialization techniques. We do this since we find this method of specialization
(and its by-product results) useful for future applications in dynamics. We give the
proof in the next section (see also [GTZ08]).

5.6. The method of specialization and the proof of Theorem 5.5.0.2

The goal of this section is the proof of Theorem 5.5.0.2. We describe first how
to obtain Theorem 5.5.0.2 from Theorem 5.3.0.1 using specialization techniques,
and then we prove that the hypotheses necessary for our application of a suitable
specialization are met. We note that we follow the proof from [GTZ08].
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Proof of Theorem 5.5.0.2. (under the additional assumption of the exis-
tence of a suitable specialization).

It suffices to prove Theorem 5.5.0.2 in case f, g ∈ K[z] and also α, β ∈ K,
where K is a finitely generated extension of Q. We will prove Theorem 5.5.0.2 by
induction on the transcendence degree of K/Q. The base case is Theorem 5.3.0.1.
For the inductive step, let E be a subfield of K such that trdeg(K/E) = 1 and E/Q
is finitely generated. Suppose in addition that the diagonal is not periodic under
the (f, g) action (i.e., there is no k ∈ N for which fk = gk), and that the set

{(fm(α), gn(β)) : m,n ∈ N}
has infinite intersection with the diagonal. Assume there is a subring R of K, a
finite extension E′ of E, and a homomorphism

σ : R→ E′,

such that denoting by fσ, gσ, and ασ the images of f , g, and α, respectively, under
the homomorphism σ, then the following conditions are met:

(1) R contains α, β, and every coefficient of f and g, but the leading coeffi-
cients of f and g have nonzero image under σ;

(2) fk
σ �= gkσ for each k ∈ N;

(3) ασ is not preperiodic for fα.

Geometrically, we can phrase as follows the conditions (1)—(3). The field K may
be viewed as the function field of a smooth, projective, geometrically irreducible
curve C defined over E (one can achieve this at the expense of replacing E and
K by finite extensions). Then both f and g extend as rational maps on P1 over
an open dense subset of C; specializing at each point σ ∈ C yields rational maps
fσ and gσ. Similarly, each point γ ∈ K may be viewed as a section of P1

C (for
the definition of P1

C , see Subsection 2.1.13), and therefore its intersection with the
fiber above σ ∈ C is denoted by γσ. Then, in the above purely algebraic setup,
the subring R of K is the valuation ring corresponding to the point σ ∈ C (i.e.,
R = OC,σ with the notation as in Section 2.1), the field E′ is the residue field of
this valuation, and the homomorphism R→ E′ is simply the map γ 	→ γσ.

Properties (1) and (3) show that

{(fm
σ (ασ), g

n
σ(βσ)) : m,n ∈ N} has infinite intersection with Δ,

where Δ ⊂ A2 is the usual diagonal line. The inductive hypothesis implies

fk
σ = gkσ

for some k ∈ N, which contradicts property (2). Then Theorem 5.5.0.2 follows
immediately. �

To explain why there exists a σ as in the proof of Theorem 5.5.0.2, we use
the geometric setup introduced in the above proof which assumed the existence
of a suitable specialization. So, by replacing K by a finite extension, and then
replacing E with its algebraic closure in K, we may assume that there exists a
smooth, projective, geometrically irreducible curve C over E whose function field
is K. Let

π : P1
C → C

be the natural fibration (see Subsection 2.1.13). Any z ∈ P1
K gives rise to a section

Z : C → P1
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of π, and for σ ∈ C(E), we let zσ := Z(σ), and let E(σ) be the residue field of K at
the valuation corresponding to σ. The polynomial f ∈ K[X] extends to a rational
map (of E-varieties) from P1

C to itself, whose generic fiber is f , and whose fiber
above any σ ∈ C is fσ. Note that fσ is a morphism of degree deg(f) from the fiber

(P1
C)σ = P1

E(σ)

to itself whenever the coefficients of f have no poles at σ, while the leading coeffi-
cient of f does not lie in the maximal ideal of the valuation ring corresponding to
σ; hence it is a morphism on P1

E(σ) of degree deg(f) at all but finitely many σ (we

call these σ places of good reduction for f ; see also Definition 6.1.1.1).
We will show that most choices of σ satisfy conditions (2) and (3) from the

proof of Theorem 5.5.0.2; obviously all but finitely many σ satisfy condition (1)
for the specialization used in the proof of Theorem 5.5.0.2. First, we prove the
following result about specializations of polynomials.

Proposition 5.6.0.3. For each r > 0, there are at most finitely many σ ∈ C(E)
such that [E(σ) : E] ≤ r and fk

σ = gkσ for some k ∈ N.

Proof. First, using Theorem 5.2.2.1 in the special case of two polynomials
of the same degree we deduce (see [GTZ08, Corollary 6.4]) that if f and g are
non-linear polynomials of same degree defined over a field K of characteristic 0, if

fk = gk for some k ∈ N

then

fn = gn for some n ∈ N such that n ≤ NK ,

where NK is the number of roots of unity contained in K.
Pick a point σ on C such that [E(σ) : E] ≤ r and fk

σ = gkσ for some k ∈ N. Let
Nσ be the number of roots of unity in E(σ). By the observation from the above
paragraph, the least n ∈ N with fn

σ = gnσ satisfies n ≤ Nσ.
Now, Nσ is bounded in terms of the degree

[E(σ) ∩Q : Q] ≤ r · [E ∩Q : Q].

Since E is finitely generated, then

[E ∩Q : Q] is finite.

So, there is a finite bound on n which depends only on E and r (and not on σ)
such that

fn
σ = gnσ .

For any fixed n ∈ N, we have

(5.6.0.4) deg(fn
σ − gnσ) = deg(fn − gn)

for all but finitely many σ ∈ C. Since

fn �= gn,

(5.6.0.4) applied for the finitely many positive integers n ≤ Nσ yields that there
are at most finitely many σ ∈ C such that

fn
σ = gnσ ,

as desired. �
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Next, letting hC be the Weil height on C associated to a fixed degree-one ample
divisor, we prove the following dynamical analogue of Silverman’s specialization
result for abelian varieties [Sil83, Thm. C].

Proposition 5.6.0.5. There exists c > 0 such that, for σ ∈ C(E) with hC(σ) >
c, the point ασ is not preperiodic for fσ.

Proof. First note that E is a global field. The key ingredient in our proof is
the following result of Call and Silverman [CS93, Thm. 4.1], which relates hC to
the canonical heights

ĥf : K → R≥0 of f , and

ĥfσ : E → R≥0 of fσ.

Lemma 5.6.0.6 (Call-Silverman [CS93]). For each z ∈ K we have

(5.6.0.7) lim
hC(σ)→∞

ĥfσ (zσ)

hC(σ)
= ĥf (z).

If ĥf (α) > 0 then, by Lemma 5.6.0.6, there exists c > 0 such that every

σ ∈ C(E) with hC(σ) > c satisfies

ĥfσ (zσ)

hC(σ)
> 0.

Then ĥfσ (zσ) > 0, so zσ is not preperiodic for fσ.

If f is not isotrivial, Lemma 2.6.6.5 implies ĥf (α) > 0, so the proof is complete.

It remains only to consider the case that f is isotrivial and ĥf (α) = 0.
Then there is a finite extension K ′ of K and a linear � ∈ K ′[z] such that

g := �−1 ◦ f ◦ �

has coefficients in E′, where E′ is the algebraic closure of E in K ′. Lemma 2.6.6.6
implies

w := �−1(α) ∈ E′.

Moreover, since

�−1 ◦ fn(α) = gn(w)

and α is not preperiodic for f , we see that w is not preperiodic for g. Since

g ∈ E′[z] and w ∈ E′,

we see that for all places σ′ of K ′, the reductions of g and w at σ′ equal g, and
respectively w (because E′ embeds naturally into the residue field at σ′). Hence, for
all but finitely many σ′ (we only need to exclude the places where � does not have
good reduction), if σ is the place of K lying below σ′, then zσ is not preperiodic
for fσ. �

Propositions 5.6.0.3 and 5.6.0.5 allow us to finish the proof of Theorem 5.5.0.2.

Proof of existence of a suitable specialization in Theorem 5.5.0.2.
Let

φ : C → P1
E
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be any non-constant rational function, and let r = deg(φ). By [Lan83, Prop. 4.1.7],
there are positive constants c1 and c2 such that for all P ∈ P1(E), the preimage
σ = φ−1(P ) satisfies

hC(σ) ≥ c1h(P ) + c2.

Since there are infinitely many P ∈ P1(E) such that

h(P ) >
c− c2
c1

,

we thus obtain infinitely many σ ∈ C(E) such that

hC(σ) > c and [E(σ) : E] ≤ r.

Hence, Propositions 5.6.0.3 and 5.6.0.5 yield that there are infinitely many σ ∈
C(E) satisfying conditions (2) and (3) for a suitable specialization as used in the
proof of Theorem 5.5.0.2. Also, clearly all but finitely many of these σ satisfy
condition (1) as well. �

This completes the proof of Theorem 5.5.0.2.

5.7. The case of Theorem 5.2.0.1 when the polynomials have different
degrees

So, in Section 5.6 we proved Theorem 5.5.0.2 which is Theorem 5.2.0.1 in the
case deg(f) = deg(g). In this section we complete the proof of Theorem 5.2.0.1 by
reducing the general case to the special case proven in Theorem 5.5.0.2.

The general case of Theorem 5.2.0.1 when deg(f) �= deg(g) is much harder. One
needs some delicate results about polynomial decompositions in order to obtain the
full Theorem 5.2.0.1. One employs a similar strategy to that used in the special
case deg(f) = deg(g); the difference is that the polynomial decomposition work is
much more difficult. The main reason for this is that, when analyzing functional
equations involving fn and gn in case deg(f) = deg(g), one could use the fact that
if A,B,C,D ∈ C[z] \ C satisfy

A ◦B = C ◦D and deg(A) = deg(C)

then
C = A ◦ � and D = �−1 ◦B

for some linear � ∈ C[z] (see Theorem 5.2.2.1). When f and g have distinct degrees,
one must use a different approach. The proof relies on the full strength of the
description given in [MZ] for the collection of all decompositions of a polynomial;
in addition, several new types of polynomial decomposition arguments are used in
[GTZ12]. The crucial polynomial decomposition result needed is the one proved by
Zieve and included in [MZ, Theorem 3.1]. In order to state this remarkable result
of Zieve regarding polynomial decomposition, we recall the definition of Chebyshev
polynomials.

Definition 5.7.0.1. By Tn we mean the (normalized) degree-n Chebyshev poly-
nomial (of the first kind), which is defined by the equation

Tn(z + z−1) = zn + z−n.

The classical Chebyshev polynomial Cn defined by Cn(cos θ) = cosnθ for all θ ∈ R
satisfies

2Cn(z/2) = Tn(z).
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Theorem 5.7.0.2 (Zieve [MZ]). Pick f ∈ C[z] with deg(f) = n > 1, and
suppose that there is no linear � ∈ C[z] such that � ◦ f ◦ �−1 is either zn or Tn or
−Tn. Let r, s ∈ C[z] and d ∈ N satisfy r ◦ s = fd. Then we have

r = f i ◦R
s = S ◦ f j

R ◦ S = fk

where R,S ∈ C[z] and i, j, k ∈ N0 with k ≤ log2(n+ 2).

The proof of Theorem 5.7.0.2 relies on the full strength of the description given
in [MZ] for the collection of all decompositions of a polynomial; this in turn depends
on the classical results of Ritt [Rit20] combined with several very clever arguments.

5.7.1. Outline of the proof of Theorem 5.2.0.1. We work under the hy-
potheses of Theorem 5.2.0.1; hence there exists a finitely generated field K such
that f, g ∈ K[z] and α, β ∈ K, and moreover we assume that

Of (α) ∩Og(β) is infinite.

Our goal is to prove that fk = gk for some k ∈ N .
Arguing as in the proof of Theorem 5.3.0.1, for every m,n we find that the

polynomial

(5.7.1.1) fn(x)− gm(y) has a Siegel factor;

(see Subsection 2.3.7). Indeed, we let S be a finite set of places of K containing
all archimedean places of K (if any) such that each coefficient of f and of g is S-
integral, and also both α and β are S-integers. Then the plane curve Cn,m defined
by the equation

fn(x)− gm(y) = 0

contains infinitely many points of the form(
fk(α), g�(β)

)
,

for some k, � ∈ N; each such point has both coordinates S-integral. Hence Theo-
rem 5.5.0.1 can be applied to the curve Cn,m and derive that it contains an irre-
ducible curve which is a Siegel curve, i.e., it has genus 0 and at most two points
at infinity. We recall that the Siegel factor refers to an irreducible factor of the
polynomial from (5.7.1.1) for which the corresponding plane curve is a Siegel curve.

In [GTZ12] it is shown that the condition expressed by (5.7.1.1) for all n,m ∈ N
implies that either

fk = gk for some k ∈ N,

or there is a linear � ∈ C[z] such that

(� ◦ f ◦ �−1, � ◦ g ◦ �−1)

is either

(aXr, bXs) for some a, b ∈ C∗

or

(±Tr,±Ts),

where Tr is the degree-r Chebyshev polynomial as in Definition 5.7.0.1. Then one
uses a consequence of Siegel’s theorem to handle these last possibilities.
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Siegel’s seminal result (see our Theorem 5.5.0.1) was already used for deriving
the refined form from [BT00] for polynomials F and G such that the curve F (X)−
G(Y ) = 0 has a Siegel factor. The other way Siegel’s Theorem is used in the proof
from [GTZ12] comes in the following consequence due to Lang [Lan60], which in
turn it is a special case of Laurent’s proof [Lau84] of the Mordell-Lang conjecture
for the multiplicative group GN

m (see Theorem 3.4.1.1).

Corollary 5.7.1.2 (Lang [Lan60]). Let a, b ∈ C∗, and let Γ be a finitely
generated subgroup of C∗ ×C∗. Then the equation ax+ by = 1 has at most finitely
many solutions (x, y) ∈ Γ.

Proof. Corollary 5.7.1.2 is proved in [Lan60] by applying Theorem 5.5.0.1 to
the genus-1 curves aαX3 + bβY 3 = 1, where (α, β) runs through a finite subset of
Γ which surjects onto Γ/Γ3. �

5.7.2. Sketch of the proof of Theorem 5.2.0.1. We conclude Section 5.7
by providing more details to the outline of the proof presented in Subsection 5.7.1.

Now, [GTZ12, Proposition 4.1] (see Proposition 5.7.2.1) generalizes [GTZ08,
Proposition 3.3] (see Proposition 5.4.3.1) as follows.

Proposition 5.7.2.1. Pick f, g ∈ C[z] for which r := deg(f) and s := deg(g)
satisfy r, s > 1. Suppose that for every m ∈ N, there exists n ∈ N and h ∈ C[z]
such that

gn = fm ◦ h.
Then either f and g have a common iterate, or there is a linear � ∈ C[z] such that

(� ◦ f ◦ �−1, � ◦ g ◦ �−1)

is either

(azr, zs) for some a ∈ C∗

or

(Tr ◦ ε̂z, Ts ◦ εz) with ε̂, ε ∈ {1,−1}.

If f and g satisfy the hypothesis of Theorem 5.2.0.1, but they do not satisfy the
hypothesis of Proposition 5.7.2.1, one can prove the following result (see [GTZ12,
Proposition 5.1]).

Proposition 5.7.2.2. Pick f, g ∈ C[z] for which r := deg(f) and s := deg(g)
satisfy r, s > 1. Assume there exists m ∈ N with these properties:

(1) gn �= fm ◦ h for every h ∈ C[z] and n ∈ N; and
(2) there are infinitely many j ∈ N for which fmj(X)− gmj(Y ) has a Siegel

factor in C[X,Y ].

Then there is a linear � ∈ C[X] for which

(� ◦ f ◦ �−1, � ◦ g ◦ �−1)

is either

(zr, azs) for some a ∈ C∗

or

(ε1Tr, ε2Ts) with ε1, ε2 ∈ {1,−1}.
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Finally, we combine Propositions 5.7.2.1 and 5.7.2.2 and therefore reduce The-
orem 5.2.0.1 to the case that the pair (f, g) has one of the two forms:

(zr, bzs), with b ∈ C∗ and r, s ∈ Z>1;(5.7.2.3)

(ε1Tr, ε2Ts), with ε1, ε2 ∈ {1,−1} and r, s ∈ Z>1.(5.7.2.4)

Proposition 5.7.2.5 finishes the proof of Theorem 5.5.0.2.

Proposition 5.7.2.5. Pick f, g ∈ C[X] such that (f, g) has one of the forms
(5.7.2.3) or (5.7.2.4). If there are α, β ∈ C for which Of (α) ∩ Og(β) is infinite,
then f and g have a common iterate.

Proof. We follow the proof of [GTZ12, Proposition 6.5]. Assuming

Of (α) ∩Og(β) is infinite,

let M be the set of pairs (m,n) ∈ N× N for which fm(α) = gn(β). Note that any
two elements of M have distinct first coordinates, since if M contains (m,n1) and
(m,n2) with n1 �= n2 then

gn1(β) = gn2(β)

and so, Og(β) would be finite. Likewise, any two elements ofM have distinct second
coordinates, so there are elements (m,n) ∈ M in which min(m,n) is arbitrarily
large.

Suppose (f, g) has the form (5.7.2.3). Since

fm(z) = zr
m

and Of (α) is infinite, α is neither zero nor a root of unity. We compute

gn(β) = b
sn−1
s−1 βsn ;

putting β1 := b1β where b1 ∈ C∗ satisfies bs−1
1 = b, it follows that

gn(β) =
βsn

1

b1
,

so the infinitude of Og(β) implies that β1 is neither zero nor a root of unity. A pair

(m,n) ∈ N× N

lies in M if and only if

(5.7.2.6) αrm = b
sn−1
s−1 βsn ,

or equivalently

(5.7.2.7) b1α
rm = βsn

1 .

Since (5.7.2.7) holds for two pairs (m,n) ∈M which differ in both coordinates, we
have

αk = β�
1

for some nonzero integers k, �. By choosing k to have minimal absolute value, it
follows that the set

S := {(u, v) ∈ Z2 : b1α
u = βv

1}
has the form

{(c+ kt, d+ �t) : t ∈ Z}
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for some c, d ∈ Z. For (m,n) ∈M we have

(rm, sn) ∈ S, so
rm − c

k
=

sn − d

�
.

Since M is infinite, Corollary 5.7.1.2 gives that

c

k
=

d

�
.

In particular, every
(m,n) ∈M satisfies krm = �sn.

Pick two pairs (m,n) and (m+m0, n+ n0) in M with m0, n0 ∈ N. Then

rm0 = sn0 ,

and S contains both
(rm, sn) and

(
rm+m0 , sn+n0

)
,

so
βsn

1 α−rm = b1 = βsn+n0

1 α−rm+m0
,

and thus
(βsn

1 )s
n0−1 = (αrm)r

m0−1.

Since rm0 = sn0 , it follows that bs
n0−1

1 = 1, and thus

fm0 = gn0 .

Now suppose (f, g) has the form (5.7.2.4). Then for any m,n ∈ N there exist
ε3, ε4 ∈ {1,−1} such that

(fm, gn) = (ε3Trm , ε4Tsn).

Since
Of (α) ∩Og(β) is infinite,

we can choose δ ∈ {1,−1} such that

Trm(α) = δTsn(β)

for infinitely many (m,n) ∈ N× N. Pick α0, β0 ∈ C∗ such that

α0 + α−1
0 = α and β0 + β−1

0 = y.

Then there are infinitely many pairs (m,n) ∈ N× N for which

αrm

0 + α−rm

0 = δ(βsn

0 + β−sn

0 ),

so we can choose ε ∈ {1,−1} such that

(5.7.2.8) αrm

0 = δβεsn

0

for infinitely many (m,n) ∈ N× N. Moreover, since Of (α) and Og(β) are infinite,
neither α0 nor β0 is a root of unity, so distinct pairs (m,n) ∈ N × N which sat-
isfy (5.7.2.8) must differ in both coordinates. Now (5.7.2.8) is a reformulation of
(5.7.2.7), so we conclude as above that

rm0 = sn0

for some m0, n0 ∈ N such that δs
n0−1 = 1. If s is odd, it follows that

f2m0 = g2n0 .

If s is even then we cannot have δ = −1; since
fm = ε1Trm and gn = ε2Tsn ,
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it follows that ε1 = ε2, and then again

fm0 = gn0 ,

as desired. �

5.8. An alternative proof for the function field case

We can prove a “function field” version of Theorem 5.2.0.1 using only the theory
of heights, and also using the fact that we know the special case deg(f) = deg(g)
in Theorem 5.2.0.1 as stated in Theorem 5.5.0.2. The following result is [GTZ12,
Theorem 8.1].

Theorem 5.8.0.1 ([GTZ12]). Let K be a field of characteristic 0, let f, g ∈
K[z] be polynomials of degree greater than one, and let α, β ∈ K. Assume there is
no linear μ ∈ K[z] for which μ−1(α), μ−1(β) ∈ Q and both μ−1◦f ◦μ and μ−1◦g◦μ
are in Q[z]. If Of (x0) ∩Og(y0) is infinite, then f and g have a common iterate.

The theory of heights is used to reduce Theorem 5.8.0.1 to the case deg(f) =
deg(g) and then the result follows from Theorem 5.5.0.2. The advantage in this
approach is that one avoids all the complicated polynomial decomposition argu-
ments which were necessary to deal with the general case of Theorem 5.2.0.1. We
decided to include Theorem 5.8.0.1 in our book not only since it provides a partial
answer to the general case of Theorem 5.2.0.1 avoiding the complicated polynomial
decomposition arguments invoked in [GTZ12], but also since we believe that the
method of proof of Theorem 5.8.0.1 could be useful for other similar questions in
arithmetic dynamics. In particular, the proof of Theorem 5.8.0.1 relies heavily on
the somewhat surprising property of the canonical height for points under the action
of polynomials defined over function fields of taking values only rational numbers
(see Lemma 2.6.6.1).

Intuitively, here is the reason for which we are able to prove this “function
field” version of Theorem 5.2.0.1. Over a function field, the canonical height with
respect to any polynomial is a rational number (see Lemma 2.6.6.1). So, letting
H1 and H2 be the canonical heights of α respectively β under the action of the
polynomials f respectively g (defined over a suitable function field), then for each
pair (m,n) ∈ N× N such that

(5.8.0.2) fm(α) = gn(β),

we get that

(5.8.0.3) |deg(f)m ·H1 − deg(g)n ·H2| < C

for some constant C which is independent of (m,n); actually, C depends only on the
difference between the usual Weil height and the corresponding canonical heights
constructed with respect to f and g (see Proposition 2.6.4.2 (a)—(b)). Because
H1 and H2 are rational numbers, (5.8.0.3) yields that there exist finitely many
possibilities for the quantity

deg(f)m ·H1 − deg(g)n ·H2

as we vary m and n. Assuming there exist infinitely many pairs (m,n) satisfying
(5.8.0.2) we get that there exists a rational number γ and there exists an infinite
set S ⊂ N× N such that for each (m,n) ∈ S we have

deg(f)m ·H1 − deg(g)n ·H2 = γ.
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Hence, the plane curve given by the equation

H1x−H2y = γ

contains infinitely many points in common with the subgroup

Γ ⊂ Q∗ ×Q∗

spanned by (deg(f), 1) and (1, deg(g)). An easy application of an old theorem of
Lang [Lan60] (see Corollary 5.7.1.2) finishes the proof of Theorem 5.8.0.1.

Now, in order to formalize the argument sketched above, we first prove two
easy claims (which are [GTZ12, Claims 11.1 and 11.2]).

Claim 5.8.0.4. Let E be any subfield of K, and assume that (f, α) and (g, β)
are isotrivial over E (see Definition 2.6.6.7). If Of (α)∩Og(β) is infinite, then there

exists a linear μ ∈ K[z] such that μ◦f ◦μ−1, μ◦g ◦μ−1 ∈ E[z] and μ(α), μ(β) ∈ E.

Proof. We reproduce here the proof of [GTZ12, Cl. 11.1]. We know that
there exist linear μ1, μ2 ∈ K[z] such that

f1 := μ1 ◦ f ◦ μ−1
1 ∈ E[z] and g1 := μ2 ◦ g ◦ μ−1

2 ∈ E[z],

and α1 := μ1(α) ∈ E and β1 := μ2(β) ∈ E. Thus

Of1(α1) = μ1(Of (α)) and Og1(β1) = μ2(Og(β)).

Since Of (α) ∩ Og(β) is infinite, there are infinitely many pairs (x1, x2) ∈ E × E

such that μ−1
1 (x1) = μ−1

2 (x2). Thus μ := μ2 ◦ μ−1
1 ∈ E[z]. Hence

μ1 ◦ g ◦ μ−1
1 = μ−1(μ2 ◦ g ◦ μ−1

2 )μ ∈ E[z],

and

μ1(β) = (μ1 ◦ μ−1
2 )(β1) = μ−1(β1) ∈ E,

as claimed. �

Claim 5.8.0.5. Working under the hypotheses of Theorem 5.8.0.1, if

Of (α) ∩Og(β) is infinite,

then there exist subfields E ⊆ F ⊆ K such that F is a function field of transcendence
degree 1 over E, and there exists a linear polynomial μ ∈ K[z] such that

μ ◦ f ◦ μ−1, μ ◦ g ◦ μ−1 ∈ F [z], and μ(α), μ(β) ∈ F ,

and either (f, α) or (g, β) is non-isotrivial over E.

Proof of Claim 5.8.0.5. We reproduce here the proof of [GTZ12, Claim 11.2].
Let K0 be a finitely generated subfield of K such that f, g ∈ K0[z] and α, β ∈ K0.
Then there exists a finite tower of field subextensions:

Ks ⊆ Ks−1 ⊆ · · · ⊆ K1 ⊆ K0

such that Ks is a number field, and for each i = 0, . . . , s−1, the extension Ki/Ki+1

is finitely generated of transcendence degree 1. Using Claim 5.8.0.4 and the hy-
potheses of Theorem 5.8.0.1, we conclude that there exists i = 0, . . . , s − 1, and
there exists a linear μ ∈ K0[z] such that

μ ◦ f ◦ μ−1, μ ◦ g ◦ μ−1 ∈ Ki[z], and μ(α), μ(β) ∈ Ki,

and either (f, α) or (g, β) is not isotrivial over Ki+1. �
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Proof of Theorem 5.8.0.1. We follow the proof of [GTZ12, Theorem 8.1].
Let E, F and μ all be as in the conclusion of Claim 5.8.0.5. At the expense of
replacing f and g with their respective conjugates by μ, and at the expense of
replacing F by a finite extension, we may assume that

f, g ∈ F [z], and α, β ∈ F , and (f, α) is not isotrivial over E.

Let d1 := deg(f) and d2 := deg(g). We construct the canonical heights ĥf and

ĥg associated to the polynomials f and g, with respect to the set of absolute val-
ues associated to the function field F/E (see Chapter 2.6). Since (f, α) is non-
isotrivial, and since α is not preperiodic for f (note that Of (α)∩Og(β) is infinite),
Lemma 2.6.6.5 yields that

H1 := ĥf (α) > 0.

Moreover, if

H2 := ĥg(y0),

then using Lemma 2.6.6.1, we have that

H1, H2 ∈ Q.

Since there exist infinitely many pairs (m,n) ∈ N× N such that

fm(α) = gn(β),

Proposition 2.6.4.2 (a)—(b) yields that

(5.8.0.6) |dm1 ·H1 − dn2 ·H2| is bounded
for infinitely many pairs (m,n) ∈ N×N. Since H1, H2 ∈ Q, we conclude that there
exist finitely many rational numbers γ1, . . . , γs such that

γi = dm1 ·H1 − dn2 ·H2

for each pair (m,n) as in (5.8.0.6); here we are using the fact that there are
finitely many rational numbers of bounded denominator, and bounded absolute
value. Therefore, there exists a rational number γ := γi (for some i = 1, . . . , s)
such that

(5.8.0.7) dm1 H1 − dn2H2 = γ.

for infinitely many pairs (m,n) ∈ N × N. Hence, the line L ⊆ A2 given by the
equation

H1 ·X −H2 · Y = γ

has infinitely many points in common with the rank-2 subgroup

Γ := {(dk1
1 , dk2

2 ) : k1, k2 ∈ Z} ⊂ G2
m(C).

Using Corollary 5.7.1.2 (see also Theorem 3.4.1.1), we obtain that γ = 0. Since
there are infinitely many pairs (m,n) satisfying (5.8.0.7), and since H1 �= 0, we
conclude that there exist positive integers m0 and n0 such that

dm0
1 = dn0

2 ; thus deg(fm0) = deg(gn0).

Since Of (α) ∩ Og(β) is infinite, we can find k0, �0 ∈ N such that

Ofm0 (fk0(α)) ∩Ogn0 (g�0(β)) is infinite.

Since deg(fm0) = deg(gn0), we can apply Theorem 5.5.0.2 and conclude the proof
of Theorem 5.8.0.1. �
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5.9. Possible extensions

In this short section we discuss briefly a somewhat surprising extension to the
main results (Theorems 5.1.0.2 and 5.2.0.1) presented in this chapter. For Theo-
rem 5.2.0.1 and its consequence (Theorem 5.1.0.2) we saw that using techniques
from the theory of polynomial decomposition coupled with Siegel’s theorem (and
its subsequent refinements by Bilu and Tichy [BT00]) one can prove the Dynam-
ical Mordell-Lang Conjecture for lines V in AN under the coordinatewise action
of N one-variable polynomials. Using the same approach, coupled also with a
topological argument, Wang [Wan] proved a Dynamical Mordell-Lang result for
endomorphisms of Riemann surfaces:

Theorem 5.9.0.1 (Wang [Wan]). Let X be a simply connected, open Riemann
surface, let f, g ∈ End(X) \ Aut(X), and let α, β ∈ X(C). If Of (α) ∩ Og(β) is
infinite, then f and g have a common iterate.

The key new ingredient in proving Theorem 5.9.0.1 is a study of the fundamen-
tal groups in order to develop a theory of factoring finite maps between Riemann
surfaces. Wang [NW13] also uses his joint result with Ng [NW13] in which they
obtained a complete theory of Ritt’s factorization for finite maps on the closed unit
disk (which correspond to finite Blaschke products).

5.10. The case of plane curves

It is natural to ask how far the method presented in this chapter can be ex-
tended. One might hope that the same approach would work for proving the Dy-
namical Mordell-Lang Conjecture in the case when V is a curve in (P1)N under
the action of an endomorphism of (P1)N given by the coordinatewise action of N
one-variable rational maps, as we will explain below.

We start by making the following conjecture which we believe holds (see also
[NZa, NZb] for a proof in the special case of affine lines under the coordinatewise
action of rational maps with generic monodromy groups); also, note that Conjec-
ture 5.10.0.1 is a special case of the Dynamical Mordell-Lang Conjecture.

Conjecture 5.10.0.1. Let N ∈ N, let α ∈ (P1)N (C), let C ⊆ (P1)N be a
curve, and let

Φ : (P1)N −→ (P1)N

be an endomorphism of the form

Φ(x1, . . . , xN ) := (f1(x1), . . . , fN (xN ))

for some rational maps fi ∈ C(z). Then the set of all n ∈ N0 such that

Φn(α) ∈ C(C)

is a union of at most finitely many arithmetic progressions.

We claim that it suffices to prove Conjecture 5.10.0.1 for plane curves V ; i.e.,
it suffices to prove the following statement.

Conjecture 5.10.0.2. Let (α1, α2) ∈ P1(C) × P1(C), let C ⊂ P1 × P1 be a
curve, and let

Φ : P1 × P1 −→ P1 × P1

be an endomorphism of the form

Φ(x, y) = (f1(x1), f2(x2))
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for some rational maps f1, f2 ∈ C(z). The set of all n ∈ N0 such that

Φn(α) ∈ C(C)

is a union of at most finitely many arithmetic progressions.

Proof that Conjecture 5.10.0.2 yields Conjecture 5.10.0.1. The argu-
ment we present is similar to the proof of [BGKT12, Theorem 1.4]. So, assume
Conjecture 5.10.0.2 holds. We prove Theorem 5.10.0.1 by induction on N ; the case
N = 2 is Theorem 5.10.0.2. So, assume Theorem 5.10.0.1 holds for N and next we
will prove it for N + 1. Let

α := (α1, . . . , αN+1) ∈ (P1)N+1(C).

Clearly, we can reduce to the case C is irreducible (by intersecting each component
of C with the orbit O := OΦ(α)). We may also assume that C projects dominantly
onto each of the coordinates of (P1)N+1; otherwise, we may view C as a curve
in (P1)N , and apply the inductive hypothesis. We may also assume that no αi is
preperiodic, lest C should fail to project dominantly on the i-th coordinate. Let

π1 : (P1)N+1 → (P1)N

be the projection onto the first N coordinates, let

C1 := π1(C), and let O1 := π1 (O) .

By our assumptions, C1 is an irreducible curve that has an infinite intersection
with O1. By the inductive hypothesis and the reformulation of the Dynamical
Mordell-Lang Conjecture as stated in Conjecture 3.1.3.1, C1 is periodic under the
coordinatewise action of Φ restricted on the first N coordinates of (P1)N+1; we
denote by Φ1 this restriction of Φ on the last N coordinates of (P1)N+1. We recall
from Section 2.2 our definition of periodic (closed) subvarieties:

Φm
1 (C1) ⊆ C1 for some m ∈ N.

Similarly, let C2 be the projection of C on the lastN coordinates of (P1)N+1. By
the same argument, C2 is periodic under the coordinatewise action of Φ restricted
on the last N coordinates of (P1)N+1.

Thus, C is Φ-preperiodic, because it is an irreducible component of the one-
dimensional variety (

C1 × P1
)
∩
(
P1 × C2

)
,

and because both C1×P1 and P1×C2 are Φ-periodic. The following Claim (proven
in [BGKT12, Claim 5.2]) will therefore complete the proof of the inductive step
in Conjecture 5.10.0.1.

Claim 5.10.0.3. Let X be a variety defined over C, let α ∈ X(C), let Φ :
X −→ X be a morphism, and let C ⊆ X be an irreducible curve that has infinite
intersection with the orbit OΦ(α). If C is Φ-preperiodic, then C is Φ-periodic.

Proof of Claim 5.10.0.3. Assume C is not periodic. Since C is preperiodic,
there exist k0, n0 ≥ 1 such that Φn0(C) is periodic of period k0. Let

k := n0k0, and let C ′ := Φk(C);

so

Φk(C ′) ⊆ C ′.
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(We recall, that T denotes the Zariski closure of the set T .) Then C �= C ′, since C
is not periodic. Since C and C ′ are irreducible curves (C ′ is irreducible since it is
the Zariski closure of the image of an irreducible variety through a morphism), it
follows that

(5.10.0.4) C ∩ C ′ is finite.

On the other hand, there exists � ∈ {0, . . . , k − 1} such that

C(C) ∩OΦk(Φ�(α)) is infinite,

because we know that C ∩ OΦ(α) is infinite. Let n1 ∈ N be the smallest n ∈ N0

such that

Φnk+�(α) ∈ C(C).

Since C ′ = Φk(C) is mapped by Φk into itself, we conclude that

Φnk+�(α) ∈ C ′(C)

for each n ≥ n1 + 1. Therefore

(5.10.0.5) C(C) ∩OΦk(Φ�(α)) ∩ C ′ is infinite.

Statements (5.10.0.4) and (5.10.0.5) are contradictory, proving the claim. �

Hence it is sufficient that one proves Conjecture 5.10.0.1 for N = 2. �

We note that Conjecture 5.10.0.1 was proven by Xie [Xieb, Theorem 0.3] in
the special case when the maps fi are polynomials defined over Q.

Theorem 5.10.0.6 (Xie [Xieb]). Let f1, . . . , fN ∈ Q[z], let C ⊂ AN be a curve
defined over Q, let α ∈ AN (Q), and let

Φ : AN −→ AN

be defined by

Φ(x1, . . . , xN ) := (f1(x1), . . . , fN (xN )).

Then the set

S(C,Φ, α) := {n ∈ N0 : Φ
n(α) ∈ C(Q)}

is a union of finitely many arithmetic progressions.

We believe it should be possible to extend Theorem 5.10.0.6 to the case poly-
nomials fi are defined over C using a specialization argument similar to the one
employed in [BGKT12] (see also Section 7.2) using the famous classification made
by Medvedev and Scanlon [MS14] for the invariant plane curves under the action
of coordinatewise one-variable complex polynomials.

In order to prove Theorem 5.10.0.6, Xie used the reduction to Conjecture
5.10.0.2 for the case of polynomial endomorphisms. Besides several new results
on the dynamics of polynomial endomorphisms of the affine plane (some similar
to the ones previously introduced in [Xie14]), Xie used a finer theory of valuation
rings of C[x, y] (as proven in [Xiea]), but also he used Siegel’s theorem similarly to
the way we employed it in the proof of Theorem 5.2.0.1.

The general case of rational maps in Conjecture 5.10.0.1 remains open. As
proven in this section, it suffices to prove Conjecture 5.10.0.2. So, working under
the hypotheses of Conjecture 5.10.0.2, one can assume that αi is not fi-preperiodic
for i = 1, 2. Assuming that C contains infinitely many points in common with
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O(f1,f2)(α1, α2) we may conclude as in the proof of Theorem 5.2.0.1 (using The-
orem 5.5.0.1) that C is a curve of genus 0 with at most 2 points at infinity. In
particular this yields that C admits a parametrization of the form

(Q1(t), Q2(t))

where each Qi is a Laurent polynomial, i.e. there exists ki ∈ N0 such that

zkiQi(z) ∈ C[z].

The reason for this is that C has at most two points at infinity and so the parame-
trization of C (note that C is a rational curve because it has genus equal to 0) is
made by rational functions which map at most two points of P1 to∞. Furthermore,
for each n ∈ N, the curve parametrized by

(Q1(f
n
1 (t)), Q2(f

n
2 (t)))

also has an irreducible component which is a Siegel curve, which in turn leads to
analyzing equations of the form

(5.10.0.7) a ◦ b = c ◦ d,
where each a and c are Laurent polynomials, while b and d are rational maps.
Theoretically this might lead to a solution of Conjecture 5.10.0.2 (similar to the
arguments from [GTZ08, GTZ12]); Nguyen and Zieve [NZa, NZb] announced
the proof of this result when C is an affine line under the action of rational maps with
generic monodromy groups. The problem with solving completely Question 5.10.0.2
along this line of approach for all rational maps and all curves lies in finding a
complete classification of the tuples (a, b, c, d) satisfying (5.10.0.7) (for more details
on this difficult problem see [Zieb]).

5.11. A Dynamical Mordell-Lang type question for polarizable
endomorphisms

We can combine Theorem 4.3.0.1 with the observations regarding heights from
this chapter in order to prove the following result, which is another special case of
Question 3.6.0.1 in the spirit of Question 5.1.2.1.

Theorem 5.11.0.1. Let X be a projective variety defined over a number field
K. Let Φ and Ψ be polarizable étale endomorphisms of X of the same degree d > 1
with respect to the same very ample line bundle L. Let α, β ∈ X(K). Then the set

S = {(m,n) ∈ N0 × N0 : Φ
m(α) = Ψn(β)}

is a union of at most finitely many sets of the form

(5.11.0.2) {(i+ kr, j + �r) : r ∈ N0}
for some i, j, k, � ∈ N0.

Proof. If either α or β are preperiodic, then the conclusion is obvious (see
Proposition 3.1.2.9); so, from now on, we assume neither α nor β is preperiodic for
Φ, respectively for Ψ. Since K is a number field, the points of canonical height
equal to 0 are precisely the preperiodic points. This last fact is proven in [CS93];
for the case of rational maps, see Proposition 2.6.4.2 (c). Hence we have

γ := ĥΦ(α) > 0 and δ := ĥΨ(β) > 0.
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Furthermore, the difference between the canonical heights ĥΦ(·) or ĥΨ(·) and the
usual Weil height hL(·) constructed with respect to the very ample line bundle L
(see Subsection 2.6.8) is uniformly bounded on X(K). This fact is again proven
in [CS93]; for the case of rational maps, see Proposition 2.6.4.2 (b). So, we know
that there exists a positive constant c such that for all k ∈ N0 we have

max
{∣∣∣ĥΦ(Φk(α))− hL(Φ

k(α))
∣∣∣ , ∣∣∣ĥΨ(Ψk(β))− hL(Ψ

k(β))
∣∣∣} < c.

So, for each (m,n) in the set S from the conclusion of the above theorem, we have∣∣∣ĥΦ(Φm(α))− ĥΨ(Ψ
n(β))

∣∣∣ < 2c,

i.e., |dmγ − dnδ| < 2c. Because both γ and δ are positive, we conclude that there
exists s ∈ N independent of (m,n) such that |m− n| < s. For each

i ∈ {−(s− 1), . . . , s− 1},

we let

Si := {(n+ i, n) ∈ N0 × N0 : Φ
n+i(α) = Ψn(β)}.

We treat next only the case i ≥ 0; the case i < 0 is similar. Then letting αi := Φi(α),
and letting

Ti = {n ∈ N0 : Φ
n(αi) = Ψn(β)},

in order to show that each Si has the form (5.11.0.2), it suffices to prove Ti is a
union of at most finitely many arithmetic progressions. This follows immediately
by applying Theorem 4.3.0.1 to the étale endomorphism

(Φ,Ψ) : X ×X −→ X ×X,

the point (αi, β) ∈ (X ×X)(K), and the diagonal subvariety

Δ := {(x, x) : x ∈ X} ⊂ X ×X.

�

It would be interesting to relax the hypotheses in Theorem 5.11.0.1; for ex-
ample we believe the result should hold even if the two endomorphisms do not
have the same degree. On the other hand, the result is not true for arbitrary étale
endomorphisms as shown by the following example.

Example 5.11.0.3. Let X be an elliptic curve defined over Q, let P ∈ E(Q)
be a non-torsion point, let

Φ : E −→ E be given by Φ(Q) := Q+ P,

and let

Ψ : E −→ E be given by Ψ(Q) = 2Q for each point Q ∈ E.

Then Φm(P ) = Ψn(P ) if and only if m = 2n − 1.

So, the polarizability condition is essential, but the condition on degrees should
not be essential, even though at the moment the known methods do not deliver the
result without this condition. Hence, we advance the following question.
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Question 5.11.0.4. Let X be a projective variety defined over a number field
K. Let Φ and Ψ be polarizable étale endomorphisms of X with respect to the same
very ample line bundle L. Let α, β ∈ X(K). Then the set

S = {(m,n) ∈ N0 × N0 : Φ
m(α) = Ψn(β)}

is a union of at most finitely many sets of the form

{(i+ kr, j + �r) : r ∈ N0}
for some i, j, k, � ∈ N0.

Now, if the canonical heights of the starting points α and β under the action
of the endomorphisms Φ (resp. Ψ) were rational numbers (as it is the case for
polynomial maps defined over function fields; see Lemma 2.6.6.1), then the exact
same argument as in the proof of Theorem 5.8.0.1 may be employed to obtain the
conclusion of Theorem 5.11.0.1 even without the hypothesis that deg(Φ) = deg(Ψ).
However, it is unknown to us under which hypotheses, the canonical height of a
point under a polarizable endomorphism is a rational number. Even in the case of
a rational map

Φ : P1 −→ P1

defined over a function field K/k, it is not known to us whether the canonical height
of each point in P1(K) is a rational number (after a suitable normalization).

The first interesting (yet unknown) case of Question 5.11.0.4 would be for
polarizable étale endomorphisms Φ and Ψ of abelian varieties X. We believe in
this case, Question 5.11.0.4 has a positive answer and the proof should use the
results of [GS] for the arithmetic properties of the dynamics of an endomorphism
of an abelian variety.
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CHAPTER 6

Parametrization of orbits

In Chapter 5 we have seen the extent to which we can use polynomial decom-
position techniques in order to prove special cases of the Dynamical Mordell-Lang
Conjecture. In this chapter we discuss an alternative approach to Conjecture 1.5.0.1
which uses p-adic parametrizations of the orbit. This approach is reminiscent of the
approach described in Chapter 4 for parametrizing orbits under the action of étale
endomorphisms. Finding analytic parametrizations for orbits under arbitrary endo-
morphisms Φ of a projective space PN is very difficult; we summarize in Section 6.3
the known results in this direction which can be used to solve Conjecture 1.5.0.1
in some special cases. However, if Φ is a rational map (of one variable), it is well-
understood how to parametrize an orbit under the action of Φ. The reason why
this is well-understood is that for a rational map Φ defined over Zp (which also
admits good reduction modulo p; see Subsection 6.1.1 for the definition of good
reduction for rational maps), and for a point α ∈ P1(Zp) whose reduction x modulo

p is fixed by Φ (which is the reduction of Φ modulo p), there are three possibilities
for describing the dynamics of Φ within the residue class of α modulo p:

(1) indifferent;
(2) attracting; or
(3) super-attracting.

Informally speaking, in a small neighborhood of an indifferent fixed point, the map
ϕ(z) is conjugate through a p-adic analytic map to the map

z 	→ z + 1.

Similarly, in a small neighborhood of an attracting fixed point, the map ϕ(z) is
conjugate through a p-adic analytic map to the map

z 	→ λz,

where 0 < |λ|p < 1. Finally, in the case of a super-attracting fixed point, the map
ϕ(z) is conjugate through a p-adic analytic map to the map

z 	→ zk,

for some integer k ≥ 2. We discuss in detail these three possibilities in Sec-
tions 6.1 and 6.2. We conclude this chapter with a discussion about p-adic analytic
parametrizations for orbits of endomorphisms of higher dimensional varieties; see
Section 6.3.

Before proceeding to the results of this chapter, we make the following gen-
eral observation regarding the p-adic parametrizations that we discuss here, in this
chapter, and also throughout the book. There are two types of such parametriza-
tions:

• for a single orbit ; and

117
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118 6. PARAMETRIZATION OF ORBITS

• for an entire p-adic neighborhood.

For example, the p-adic arc lemma constructed in Theorem 4.4.2.1 is valid for all
smooth points of the ambient varietyX endowed with an unramified endomorphism
Φ; hence the parametrization used in Chapter 4 works for entire p-adic neighbor-
hoods. Similarly, the parametrizations we construct in this chapter for the action
of a rational map (see Lemmas 6.2.1.1 and 6.2.2.1) are valid for all orbits of points
in a p-adic submanifold of X. Same is true even in some cases of endomorphisms
of higher dimensional varieties as presented in Theorem 6.3.0.3. Furthermore, for
endomorphisms of semiabelian varieties, the p-adic parametrization of orbits comes
from global analytic uniformization maps; for more details, see Chapter 9. A similar
situation as in the case of endomorphisms of semiabelian varieties is encountered
for the action of Drinfeld modules; for more details, see Chapter 12. On the other
hand, in order for the p-adic arc lemma to work for the Dynamical Mordedll-Lang
Conjecture, one needs simply the p-adic parametrization of that specific orbit; this
could be particularly important for the case of endomorphisms of higher dimen-
sional varieties when maybe there is no parametrization valid in an entire p-adic
neighborhood.

6.1. Rational maps

First we start with some generalities regarding reduction modulo p of a rational
map and we define the concept of good reduction modulo p for a rational map;
see Subsection 6.1.1. Then we define the attracting and super-attracting periodic
points; see Definition 6.1.3.1. Later, in Section 6.2, interpreting a rational map with
good reduction modulo p as a convergent p-adic analytic series, we will introduce the
various analytic parametrization of rational maps in small neighborhoods of fixed
points according to the type of that fixed point: attracting or super-attracting.

6.1.1. Good reduction of rational maps. We follow the exposition from
[BGKT10] and [BGKT12]. If ϕ : P1 → P1 is a morphism defined over the field
K, then (fixing a choice of homogeneous coordinates) there are relatively prime
homogeneous polynomials F,G ∈ K[X,Y ] of the same degree d = degϕ such that

ϕ([X,Y ]) = [F (X,Y ) : G(X,Y )].

In affine coordinates, ϕ(z) = F (z, 1)/G(z, 1) ∈ K(z) is a rational function in one
variable. Note that by our choice of coordinates, F and G are uniquely defined up
to a nonzero constant multiple. We will need the notion of good reduction of ϕ,
first introduced by Morton and Silverman [MS94].

Definition 6.1.1.1. Let K be a field, let v be a non-archimedean valuation on
K, let ov be the ring of v-adic integers of K, and let kv be the residue field at v.
Let

ϕ : P1 −→ P1

be a morphism over K given by

ϕ([X,Y ]) = [F (X,Y ) : G(X,Y )],

where F,G ∈ ov[X,Y ] are relatively prime homogeneous polynomials of the same
degree such that at least one coefficient of F or G is a unit in ov. Let

ϕv := [Fv : Gv],
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where Fv, Gv ∈ kv[X,Y ] are the reductions of F and G modulo v. We say that ϕ
has good reduction at v if

ϕv : P1(kv) −→ P1(kv)

is a morphism of the same degree as ϕ.

Equivalently, ϕ has good reduction at v if ϕ extends as a morphism to the
fibre of P1

Spec(ov)
above v. If ϕ ∈ K[z] is a polynomial, we can give the following

elementary criterion for good reduction: ϕ has good reduction at v if all coefficients
of ϕ are v-adic integers, and its leading coefficient is a v-adic unit. For simplicity,
we will always use this criterion when we choose a place v of good reduction for a
polynomial ϕ.

If K is a number field, then for all but finitely many non-archimedean places v
of K, the map ϕ has good reduction (for more details, see [Sil07, Sections 2.3-2.5]).

If ϕ has good reduction at a place v of a number field K, then its reduction
modulo v, denoted ϕv, induces a map on the residue classes modulo v, and because
there are finitely many such residue classes, we conclude that each residue class
modulo v is either periodic, or it maps into a periodic residue class (i.e., it is
preperiodic). This prompts us to study the action of ϕ in a periodic residue class.
At the expense of replacing ϕ by an iterate, it suffices to understand the action of
a rational map on a fixed residue class. Here we will see that there are three types
of behaviors for ϕ: attracting, super-attracting, or indifferent.

6.1.2. Conjugate rational maps. First we recall that a fractional linear
transformation is a map of the form

z 	→ az + b

cz + d
,

for some constants a, b, c, d. Unless otherwise stated, μ(z) will always denote a
linear fractional transformation.

The next definition is a special case of Definition 3.1.2.12 when the ambient
variety is P1.

Definition 6.1.2.1. Two rational functions ϕ and ψ are conjugate if there is
a linear fractional transformation μ such that ϕ = μ−1 ◦ ψ ◦ μ.

In the above definition, if ϕ and ψ are polynomials, then we may assume that
μ is a polynomial of degree one.

6.1.3. Periodic points. Next we define the attracting and super-attracting
periodic points.

Definition 6.1.3.1. If K is a field, and ϕ ∈ K(z) is a rational function, then
x ∈ P1(K) is a periodic point for ϕ if there exists an integer n ≥ 1 such that

ϕn(x) = x.

The smallest such integer n is the period of x, and

λ = (ϕn)′(x)

is the multiplier of x. If
λ = 0,

then x is called super-attracting. If | · |v is an absolute value on K, and if

0 < |λ|v < 1,
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then x is called attracting.

Let x be a periodic point of ϕ. If ϕ = μ−1 ◦ψ ◦μ, then μ(x) is a periodic point
of ψ, and by the chain rule, it has the same multiplier. In particular, we can define
the multiplier of a periodic point at x = ∞ by changing coordinates. Also by the
chain rule, the multiplier of ϕ�(x) is the same as that of x, because

(ϕk)′(x) =
k−1∏
i=0

(ϕ′(ϕi(x))) = (ϕk)′(ϕ�(x)).

6.1.4. Critical points. We say x is a ramification point or critical point of ϕ
if ϕ′(x) = 0. If ϕ = μ−1 ◦ψ ◦μ, then x is a critical point of ϕ if and only if μ(x) is a
critical point of ψ; in particular, coordinate change can again be used to determine
whether x =∞ is a critical point. Note that a periodic point x is super-attracting
if and only if at least one of x, ϕ(x), ϕ2(x), . . . , ϕn−1(x) is critical, where n is the
period of x.

6.1.5. Exceptional points.

Definition 6.1.5.1. We say that x is an exceptional point for the rational map
ϕ if there exist finitely many points y ∈ P1 such that for some n ∈ N we have
ϕn(y) = x.

A rational map ϕ of degree d ≥ 2 can have at most two exceptional points, and
if it has two such points, then ϕ is conjugate either to the map z 	→ zd, or to the
map z 	→ z−d. If ϕ has precisely one exceptional point, then ϕ is conjugate to a
polynomial map (which is not a single monomial).

6.2. Analytic uniformization

In this section we state formally the three types of analytic uniformization
that we encounter near a fixed point of a rational map. Since the same theory
applies more generally to p-adic analytic maps, we will state our results in this
latter generality. We follow closely the exposition from [BGKT10].

Fix a prime p. As usual, let Cp be the completion of an algebraic closure of
Qp. Given a point y ∈ Cp and a real number r > 0, write

D(y, r) = {x ∈ Cp : |x− y|p < r}, D(y, r) = {x ∈ Cp : |x− y|p ≤ r}
for the open and closed disks, respectively, of radius r about y in Cp.

We write
[y] ⊆ P1(Cp)

for the residue class of a point y ∈ P1(Cp), i.e.,

[y] = D(y, 1) if |y|p ≤ 1,

or else
[y] = P1(Cp) \D(0, 1) if |y|p > 1.

The action of a p-adic power series f ∈ Zp[[z]] on D(0, 1) is either attracting
(i.e., f contracts distances) or quasiperiodic (i.e., f is distance-preserving), depend-
ing on its linear coefficient. Rivera-Letelier gives a more precise description of this
dichotomy in [RL03, Sections 3.1 and 3.2]. The following two Lemmas essentially
reproduce his Propositions 3.3 and 3.16 (see also [BGKT10, Lemmas 2.1 and 2.2]).
Also note that in our Lemmas we verify that the corresponding power series have
coefficients in Qp, not just in Cp.
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6.2.1. The attracting and the super-attracting cases.

Lemma 6.2.1.1. Let f(z) = a0 + a1z + a2z
2 + · · · ∈ Zp[[z]] be a non-constant

power series with |a0|p, |a1|p < 1. Then there is a point y ∈ pZp such that f(y) = y,
and limn→∞ fn(z) = y for all z ∈ D(0, 1). Write λ = f ′(y); then |λ|p < 1, and:

(1) (Attracting). If λ �= 0, then there is a radius 0 < r < 1 and a power series
u ∈ Qp[[z]] mapping D(0, r) bijectively onto D(y, r) with u(0) = y, such
that for all z ∈ D(y, r) and n ≥ 0,

fn(z) = u(λnu−1(z)).

(2) (Super-attracting). If λ = 0, then write f as

f(z) = y + cm(z − y)m + cm+1(z − y)m+1 + · · · ∈ Zp[[z − y]]

with m ≥ 2 and cm �= 0. If cm has an (m − 1)-st root in Zp, then there

are radii 0 < r, s < 1 and a power series u ∈ Qp[[z]] mapping D(0, s)

bijectively onto D(y, r) with u(0) = y, such that for all z ∈ D(y, r) and
n ≥ 0,

fn(z) = u
(
(u−1(z))m

n
)
.

Proof. We reproduce here the proof of [BGKT10, Lemma 2.1]. Using Hen-
sel’s Lemma (see Lemma 2.3.2.1) to the function f(z)− z with z = 0, we conclude
that f has a Qp-rational fixed point y ∈ D(0, 1); that is, y ∈ pZp. Clearly λ = f ′(y)
is also in pZp. Replacing f(z) by f(z + y) − y (and, ultimately, replacing u(z) by
u(z) + y), we may assume hereafter that y = 0. By [RL03, Proposition 3.2(i)],
limn→∞ fn(z) = 0 for all z ∈ D(0, 1).

If λ �= 0, then Rivera-Letelier defines

u−1(z) := lim
n→∞

λ−nfn(z)

and proves in [RL03, Proposition 3.3(i)] that it has an inverse u(z) under compo-
sition that satisfies the desired properties for some radius 0 < r < 1. Note that
f ∈ Qp[[z]], and hence

λ−nfn ∈ Qp[[z]]

for all n ≥ 1. Thus, u−1 ∈ Qp[[z]], and therefore u ∈ Qp[[z]] as well.
If λ = 0, then choose γ ∈ Zp\{0} with γm−1 = cm, according to the hypotheses.

Define
f̃(z) := γf(γ−1z), so that f̃(z) = zm(1 + g(z)),

with g ∈ zQp[[z]]. Rivera-Letelier [RL03, Proposition 3.3(ii)] defines

h(z) :=
∑
n≥0

m−n−1 log
(
1 + g(f̃n(z))

)
∈ zQp[[z]],

where log(1 + z) = z − z2/2 + z3/3− · · · . Rivera-Letelier then sets

ũ−1(z) := z exp(h(z)),

where exp(z) = 1+ z+ z2/2! + · · · , and shows that the inverse ũ of ũ−1 has all the

desired properties for f̃ ; note also that ũ ∈ Qp[[z]], because

log(1 + ·), exp, g, f̃ ∈ Qp[[z]].

Hence, u(z) = γ−1ũ(z) ∈ Qp[[z]] has the desired properties for f , mapping some

disk D(0, s) bijectively onto some disk D(y, r) ⊆ D(0, 1). Finally, the radius s
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must be less than 1, or else u(1) �= y will be fixed by f , contradicting the fact that
limn→∞ fn(u(1)) = y. �

Lemma 6.2.1.1 shows that in the attracting case, the power series f(z) is locally
conjugate (through an analytic map u(z)) to the much simpler map z 	→ λz. Sim-
ilarly, in the super-attracting case, Lemma 6.2.1.1 yields that f(z) is analytically
conjugate to the map z 	→ zm. These results are key for us since both the function
z 	→ λz and the function z 	→ zm have a very simple form for their n-th iterate and
hence we get easily a p-adic analytic parametrization of the orbit under f of any
point in the basin of attraction.

Corollary 6.2.1.2. With the notation as in Lemma 6.2.1.1, for each x ∈
D(y, r) and for each n ∈ N0, if we let c := u−1(x) then we have that

(1) (Attracting).

fn(x) = u(λn · c).
(2) (Super-attracting).

fn(x) = u
(
cm

n
)
.

6.2.2. The indifferent case. The next Lemma describes the quasiperiodic
domains (or disks) for convergent p-adic power series; we call this case the indifferent
case since no point in the quasiperiodic domain gets pulled (under iteration by f)
into a periodic point for the map. As noted in [Sil07], a point P is called recurrent
or quasiperiodic if it is a limit point of its own forward orbit. In a quasiperiodic
domain U , every point in U is quasiperiodic.

Lemma 6.2.2.1. Let f(z) = a0 + a1z + a2z
2 + · · · ∈ Zp[[z]] be a non-constant

power series with |a0|p < 1 but |a1|p = 1. Then for any non-periodic x ∈ pZp, there
are: an integer k ≥ 1, radii 0 < r < 1 and s ≥ |k|p, and a power series u ∈ Qp[[z]]

mapping D(0, s) bijectively onto D(x, r) with u(0) = x, such that for all z ∈ D(x, r)
and n ≥ 0,

fnk(z) = u(nk + u−1(z)).

The above result is the one-dimensional case of our Theorem 4.4.2.1. We include
its proof since it is much simpler in this special case. Again, this result allows us
to find p-adic analytic parametrization for any orbit of a point in a quasiperiodic
domain for f .

Proof of Lemma 6.2.2.1. We reproduce here the proof of [BGKT10, Lem-
ma 2.2].

Since f ∈ Zp[[z]] with |c1|p = 1 and |c0|p < 1, f maps D(0, 1) bijectively onto
itself. Therefore, by [RL03, Corollaire 3.12], f is quasiperiodic, which means in
particular that for some r ∈ (0, 1) and for some positive integer k, the function

f∗(z) := lim
|n|p→0

fnk(z)− z

nk

converges uniformly on D(x, r) to a power series in Cp[[z − x]]. In fact,

f∗ ∈ Qp[[z − x]]

because (fnk(z)− z)/(nk) ∈ Qp[[z − x]] for every n.
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Since x is not periodic, f∗(x) �= 0, by [RL03, Proposition 3.16(1)]. Define

u−1 ∈ Qp[[z − x]]

to be the antiderivative of 1/f∗ with u−1(x) = 0. Since (u−1)′(x) �= 0, we may
decrease r so that u−1 is one-to-one on D(x, r). Also, we replace k by a multiple of
itself so that fk(x) ∈ D(0, r), and we write D(0, s) := u−1(D(x, r)). The proof of
[RL03, Proposition 3.16(2)] shows that the inverse u of u−1, which must also have
coefficients in Qp, satisfies the desired properties. �

In fact, the integer k in Lemma 6.2.2.1 is at most p − 1, at least in the case
that p > 3 (see [BGT10, Theorem 3.3] and also our Theorem 4.4.2.1 in the one-
dimensional case). The next result is an easy consequence of Lemma 6.2.2.1, which
yields a p-adic parametrization of the orbit of a point x lying in a quasiperiodic
domain for a p-adic analytic map f(z).

Corollary 6.2.2.2. Let f(z) = a0+a1z+a2z
2+· · · ∈ Zp[[z]] be a non-constant

power series with |a0|p < 1 but |a1|p = 1. Then for any x ∈ pZp, there are: an
integer k ≥ 1, positive radii r ∈ (0, 1) and s, and power series uj ∈ Qp[[z]] for

j = 0, . . . , k − 1 mapping D(0, s) into D(x, r) with uj(0) = f j(x), such that for all

z ∈ D(x, r) and n ≥ 0,

fnk+j(x) = uj(nk).

Proof. If x is non-periodic, the result is precisely Lemma 6.2.2.1. Indeed, we
may take k = (p−1)! in Lemma 6.2.2.1 and this value of k would work for each point
in pZp. Hence for each j = 0, . . . , k − 1 we let uj be the analytic map constructed
in Lemma 6.2.2.1 with respect to f j(x) and then the conclusion of Corollary 6.2.2.2
follows.

Now, if x is periodic of period, say, k, then simply let s = r = 1 and let
uj(z) = f j(x) be the constant map for each j = 0, . . . , k − 1. �

6.2.3. Special case of the Dynamical Mordell-Lang Conjecture. Corol-
lary 6.2.2.2 yields the following special case of the Dynamical Mordell-Lang Con-
jecture (see also [BGKT12, Theorem 3.4]).

Theorem 6.2.3.1. Let p be a prime and N ≥ 1. For each i = 1, . . . , N , let
Ui be an open disk in P1(Cp), and let fi : Ui → Ui be a map for which Ui is a
quasiperiodicity disk. Let Φ denote the action of f1 × · · · × fN on U1 × · · · × UN ,
let α = (α1, . . . , αN ) ∈ U1 × · · · × UN be a point. Let V be a subvariety of (P1)N

defined over Cp. Then V (Cp)∩OΦ(α) is a union of at most finitely many orbits of
the form {Φnk+�(α)}n≥0 for nonnegative integers k and �.

Proof. We let ki be the natural number corresponding to each pair (αi, fi)
as in Corollary 6.2.2.2, and then let k = lcm[k1, . . . , kN ]. Then for each � =
0, . . . , k − 1 we have a p-adic analytic parametrization of OΦk(Φ�(α)) by some
functions (u�,1, . . . , u�,N ). So for each polynomial H in the vanishing ideal of V we
form the corresponding p-adic analytic map

z 	→ GH,� = H (u�,1(z), . . . , u�,N (z))

such that if Φnk+�(α) ∈ V (Cp), then GH,�(n) = 0. Using the discreteness of the
zeros of a nonzero p-adic analytic function (Lemma 2.3.6.1), we obtain the desired
conclusion. �
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We note that the exact same argument applies when V is replaced by a p-adic
analytic variety.

6.3. Higher dimensional parametrizations

In this section we show that under certain technical conditions, there are p-adic
analytic parametrizations of orbits under endomorphisms of higher dimensional
varieties. Our construction is based on a classical result of Herman and Yoccoz
[HY83], which was used for the first time in [GT09] for the purpose of solving
some special cases of the Dynamical Mordell-Lang Conjecture.

We will begin with a theorem of Herman and Yoccoz [HY83] on linearization

of analytic maps near one of their fixed points. First we set up the notation. Let �0
be the zero vector in Cg

p, and for �x := (x1, . . . , xg) we let

(6.3.0.1) f(�x) =
∑

(i1,...,ig)∈Ng

bi1,...,igx
i1
1 · · ·xig

g

be a power series over Cp which fixes �0 and has a positive radius of convergence;

i.e., there is some r > 0 such that (6.3.0.1) converges on D(�0, r). Furthermore, we
assume there exists A ∈ GLg(Cp) such that

f(�x) = A · �x+ higher order terms.

In this case, f is a formal diffeomorphism in the terminology of [HY83]. More
generally, for a formal power series ψ in Cg

p centered at �α, we define Dψ
α to be the
linear part of the power series. Thus Df
0 = A. Note that this coincides with the
usual definition of the D-operator from the theory of manifolds (that is, Dψ
α is the
usual Jacobian of ψ at �α—see [Jos02, I.1.5]).

Let λ1, . . . , λg be the eigenvalues of A. Suppose that there are constants C, b >
0 such that

(6.3.0.2) |λe1
1 · · ·λeg

g − λi|p ≥ C

⎛⎝ g∑
j=1

ej

⎞⎠−b

for any 1 ≤ i ≤ g and any tuple (e1, . . . , eg) ∈ Ng such that
∑g

j=1 ej ≥ 2 (this is

condition (C) from page 413 of [HY83]). Note that (6.3.0.2) already implies that
no λi = 0. Also, we note that if each λi is algebraic, then condition (6.3.0.2) is
automatically satisfied as proven in [Yu90].

The following result is Theorem 1 of [HY83].

Theorem 6.3.0.3. Let f and A be as above. There exists r > 0, and there
exists a bijective, p-adic analytic function h : D(�0, r) −→ D(�0, r) such that

(6.3.0.4) f(h(�x)) = h(A�x),

for all �x ∈ D(�0, r), where Dh
0 = Id.

In particular, we obtain the following corollary.

Corollary 6.3.0.5. Let f : CN
p −→ CN

p be a p-adic analytic map, and let β be
a fixed point for f . Assume the Jacobian A of f at β has eigenvalues λi satisfying
condition (6.3.0.2) above. Then there exists a small p-adic neighborhood U ⊆ CN

p
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of β, and there exists a bijective p-adic analytic function h : U −→ U such that for
each α ∈ U and for each n ∈ N0, we have

fn(α) = h
(
Anh−1(α)

)
.

Proof. The proof is immediate once we replace the function h from the con-
clusion of Theorem 6.3.0.3 with the appropriate conjugate:

z 	→ β + h(−β + z),

defined for each z ∈ D(�0, r). �
6.3.1. Periodic points for endomorphisms of higher dimensional vari-

eties. If Φ is an endomorphism of a quasiprojective variety X, and β is a periodic
point of Φ, then one can still say (sometimes) whether β is attracting or indifferent.
So, assume X is defined over Cp, and also assume β is fixed by ΦM ; then let

J := DΦM
β .

If each eigenvalue of J is nonzero and it has p-adic absolute value less than 1, then
we say that β is attracting. On the other hand, if each eigenvalue of J has p-adic
absolute value equal to 1, then we say that β is indifferent. Often, it happens that
some eigenvalues have p-adic absolute value less than 1, while others have absolute
value at least equal to 1, in which case the point β has mixed behaviour for the
dynamics of the endomorphism Φ.

For an arbitrary attracting or indifferent periodic point β (as defined in the
above paragraph), we do not always have a p-adic analytic parametrization of an
orbit of a point α which is sufficiently close p-adically to β. Even in the case of
super-attracting fixed points β (i.e., DΦβ = 0), it is not always true that one can
find a uniformization for Φ in a sufficiently small neighborhood, as in the case of
rational maps (see Lemma 6.2.1.1 (2)). For more details on the delicate issue of uni-
formizing endomorphisms of CN in neighborhoods of super-atrracting fixed points,
we refer the interested reader to [BEK12]. However, in Chapter 9 we are able to
present some cases when a p-adic analytic parametrization exists in the vicinity
of an attracting or indifferent periodic point (see Theorems 9.1.0.1 and 9.2.0.1).
Those parametrizations come from the results of Herman and Yoccoz [HY83] (see
Theorem 6.3.0.3 and Corollary 6.3.0.5), and they lead naturally to proving various
instances of the Dynamical Mordell-Lang Conjecture for endomorphisms of higher
dimensional varieties.
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CHAPTER 7

The split case in the Dynamical Mordell-Lang
Conjecture

Using the parametrization for rational maps introduced in Chapter 6 we can
prove certain special cases of the Dynamical Mordell-Lang Conjecture for endomor-
phisms of (P1)N which are of the form

Φ := (f1, . . . , fN )

for some rational maps fi ∈ C(z). So, the results of this chapter refer to the split
case of the Dynamical Mordell-Lang Conjecture.

The results we present are mainly from two papers [BGKT12, BGHKST13]
(whose arguments we also follow in our exposition). The results rely on proving that
modulo a suitable prime p the orbit of each αi under fi (where the starting point α ∈
(P1)N is α := (α1, . . . , αN )) lands in a quasiperiodic domain (see Subsection 6.2.2
and also Theorem 6.2.3.1). Finding such a prime p which would work for each
pair (fi, αi) is very hard. Hence the instances when we know this happens are
somewhat restrictive either on the maps fi, or on the subvariety V of (P1)N which
is intersected with the orbit OΦ(α), as follows.

• Result (1): α ∈ (P1)N (Q), f1 = · · · = fN = ϕ ∈ Q(z) and ϕ has
no periodic critical points (other than exceptional points; see Subsec-
tions 6.1.4 and 6.1.5 for the definition of critical and exceptional points),
while V is a curve defined over Q. For the precise statement of this result,
see Theorem 7.1.0.1 and also [BGKT12, Theorem 1.4].

• Result (2): f1 = · · · = fN = ϕ ∈ C[z] and ϕ has no periodic critical
points (other than exceptional points), while V is a curve defined over C;
for the precise statement, see Theorem 7.2.0.1 and also the slightly weaker
result from [BGKT12, Theorem 1.5].

• Result (3): each fi ∈ Q(z) is a rational function of degree at least 2
such that there is at most one (distinct) fi which has at most one critical
point that is not fi-preperiodic (and that all other critical points are
preperiodic), while V is any subvariety defined over Q. For the precise
statement, see Theorem 7.3.0.1 and also [BGHKST13, Theorem 4.3].

One sees that there is a balance in the listed results (1)—(3) between the
strength of the hypothesis regarding the map Φ and the strength of the hypothesis
regarding the subvariety V . In result (1), we have two strong conditions: there is
the same rational map ϕ acting on each coordinate, and also the subvariety V is
a curve. However, the actual condition on ϕ is very weak since almost all rational
maps (interpreted in any sensible moduli space) have critical points which are not
preperiodic. More precisely, assume that ϕ ∈ K[z] is a polynomial of degree d ≥ 2

127
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for some number field K; i.e.,

f(z) = cdz
d + cd−1z

d−1 + · · ·+ c1z + c0.

We let h : K −→ R≥0 be the usual Weil height on the algebraic closure of K. For
each T ≥ 0 we denote by

S(T ) := {(c0, . . . , cd) ∈ Kd+1 : h(ci) ≤ T for each i = 0, . . . , d}.

We also denote by S0(T ) the set of all (c0, . . . , cd) ∈ Kd+1 such that each h(ci) ≤ T
and moreover, the corresponding polynomial ϕ has the property that none of its
critical points is periodic. Then one can show that

lim
T→∞

#S0(T )/#S(T ) = 1.

For example, if d = 2, using a conjugation by a linear polynomial, one may nor-
malize ϕ and assume that it is monic and that the coefficient of z is equal to 0; i.e.,
ϕ(z) = z2 + c. The only critical point of ϕ (other than the exceptional point from
∞) is x = 0 and if 0 is periodic under the action of z2+ c, one can show that c ∈ K
has bounded height. This statement follows easily by noting that if 0 is periodic,
then c must be integral at all non-archimedean places, while at any archimedean
place | · |v, one needs that

|c|v ≤ 2.

Hence h(c) ≤ 2 and in particular, this means that there are at most finitely many
c’s living in any extension of K of bounded degree such that the corresponding
polynomial ϕ(z) = z2+c does not satisfy the hypothesis listed in results (1) and (2)
regarding periodic critical points.

In result (2), at the expense of assuming that ϕ is actually a polynomial, we
can allow the map (and also the curve V , and the starting point α) to be defined
over C rather than over Q. This extension is possible due to the classification of
Medvedev and Scanlon [MS14] of periodic plane curves under polynomial actions

(x, y) 	→ (f(x), g(y)).

For more details on results (1)—(2), see Sections 7.1 and 7.2, and also [BGKT12].
On the other hand, in result (3), we allow for arbitrary subvarieties V , and

for possibly different rational maps fi acting on each coordinate, but we impose a
strong hypothesis on the fi’s that they only have at most one critical point which
is not preperiodic. Result (3) has also two interesting corollaries (for more details,
see Theorem 7.3.0.1 and [BGHKST13], but also see [BGKT12], where a weaker
version of result (3) was first proven).

Corollary 7.0.0.1. Let K be a number field, let V ⊆
(
P1
)N

be a subvariety

defined over K, let α = (α1, . . . , αN ) ∈ (P1)N (K), let f ∈ K[t] be a quadratic

polynomial, and let Φ := (f, . . . , f) act on
(
P1
)g

coordinatewise. Then the set of
integers n ∈ N0 such that Φn(α) ∈ V (K) is a union of finitely many arithmetic
progressions {nk + �}n∈N0

, where k, � ≥ 0 are nonnegative integers.

For the next result we need a definition.

Definition 7.0.0.2. A rational map ϕ is called post-critically finite if all of its
critical points are preperiodic.
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Corollary 7.0.0.3. Let K be a number field, let V ⊆
(
P1
)N

be a subvariety

defined over K, let α = (α1, . . . , αN ) ∈ (P1)N (K), and let Φ := (f1, . . . , fN ) act on(
P1
)N

coordinatewise, where each fi ∈ K(t) is post-critically finite and of degree
at least 2. Then the set of integers n ∈ N0 such that Φn(α) ∈ V (K) is a union of
finitely many arithmetic progressions {nk+ �}n∈N0

, where k, � ≥ 0 are nonnegative
integers.

The rest of this chapter is devoted to proving the listed results (1)—(3), each
result being proven in each of the three remaining Sections of our Chapter.

Before proceeding to the proofs, we note that our results (1)—(3) are not
covered by the results of Xie [Xieb] who proved the Dynamical Mordell-Lang Con-
jecture for endomorphisms of A2 defined over Q, even using the reduction of Con-
jecture 5.10.0.1 to Conjecture 5.10.0.2 proven in Section 5.10. Indeed, result (1)
is for coordinatewise action of rational maps which do not necessarily restrict to
endomorphisms of A2, while result (2) is for maps defined over C, not necessarily
over Q. Finally, result (3) cannot be inferred from a similar statement only for
plane curves since it is valid for higher dimensional varieties.

We find it important to include the proof of Theorem 7.1.0.1 since those argu-
ments rely on the p-adic analytic uniformization method presented in Chapter 6,
which is in turn connected to the p-adic arc lemma (see Chapter 4), which is the
recurrent theme of our book. Furthermore the arguments used in the proof of The-
orem 7.1.0.1 ultimately led to the proof of Theorem 7.3.0.1 (see result (3) listed
above), which is valid for higher dimensional subvarieties. Finally, we note that the
proof of Theorem 7.2.0.1 (see result (2) above) uses a specialization technique which
we believe should work more generally to extend Theorem 5.10.0.6 to polynomials
with complex coefficients.

7.1. The case of rational maps without periodic critical points

The main result of this section is the following.

Theorem 7.1.0.1 ([BGKT12]). Let C ⊆
(
P1
)N

be a curve defined over Q,
and let

Φ := (ϕ, . . . , ϕ)

act on
(
P1
)N

coordinatewise, where ϕ ∈ Q(z) is a rational function with no super-
attracting periodic points other than exceptional points. Then for each point
(α1, . . . , αN ) ∈ (P1)N (Q), the set of integers n such that Φn(α1, . . . , αN ) ∈ C(Q)
is a union of finitely many arithmetic progressions.

We follow the proof from [BGKT12].

7.1.1. Preliminaries. Using the reduction of Conjecture 5.10.0.1 to Conjec-
ture 5.10.0.2 done in Section 5.10, we may assume C is a plane curve. This reduction
is essential since the argument used in [BGKT12] relies heavily on the assumption
that we have two starting points α, β ∈ P1(Q) and then finding a suitable prime p
such that both α and β land in a quasiperiodic domain (modulo p) for the action
of ϕ. Once such a prime p is found, the argument is almost identical with the
geometric generalization of the Skolem-Mahler-Lech Theorem, i.e., the p-adic arc
lemma (see Chapter 4 and also [BGT10]).
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Now, if C is replaced by an arbitrary subvariety V , then in order to find a
p-adic analytic parametrization of the orbit of (α1, . . . , αN ) under the action of

Φ = (ϕ, . . . , ϕ)

so that the generalized Skolem-Mahler-Lech theorem can be applied, we need to
find a prime number p for which each αi lands in a quasiperiodic domain for the
action of ϕ. This is hard in general, and it may not even be possible as some of our
heuristics from the Chapter 8 might suggest.

However, when N = 2, we can find a suitable prime p; the proof of this fact
relies on the following lemma.

Lemma 7.1.1.1. Let K be a number field, let ϕ : P1 −→ P1 be a morphism
of degree greater than one defined over K, let α ∈ P1(K) be a point that is not
preperiodic for ϕ, and let β ∈ P1(K) be a non-exceptional point for ϕ. Then there
are infinitely many v such that there is some positive integer n for which ϕn(α) and
β have the same reduction modulo v.

Proof. The proof can be found in [BGKT12, Lemma 4.1] and it is a conse-
quence of an integrality result of Silverman [Sil93]; we reproduce it here since it is
a useful tool for various problems in arithmetic dynamics.

Suppose there were only finitely many such v. Let S be the set of all such v,
together with all the archimedean places. We may choose coordinates [x : y] for
P1 such that β is the point [1 : 0]. Since [1 : 0] is not exceptional for ϕ, we see
that ϕ2 is not a polynomial with respect to this coordinate system. Therefore, by
[Sil93, Theorem 2.2], there are at most finitely many n such that ϕn(α) = [t : 1]
for t ∈ oS , where oS is the ring of S-integers in K. Hence, for all but finitely many
integers n ≥ 0, there is some v /∈ S such that ϕn(α) and β have the same reduction
modulo v; but this contradicts our original supposition. �

The next result (see [BGKT12, Proposition 4.2]) is key for the proof of The-
orem 7.1.0.1.

Proposition 7.1.1.2. Let K be a number field, let ϕ : P1 −→ P1 be a morphism
of degree greater than one defined over K, and let α, β ∈ P1(K) be points that are
not preperiodic for ϕ. Then there are infinitely many finite places v of K such that
ϕ has good reduction at v and such that either:

(1) for all m ≥ 0, ϕm(α) and ϕm(β) do not lie in the residue class of any
attracting ϕ-periodic points; or

(2) there are integers k ≥ 1 and � ≥ 0 and attracting periodic points γ1, γ2 ∈
P1(Kv) of period k such that ϕ�(α) and γ1 lies in the same residue class
modulo v, and also ϕ�(β) and γ2 lies in the same residue class modulo v,
and moreover (ϕk)′(γ1) = (ϕk)′(γ2).

Proof. By Lemma 7.1.1.1, there are infinitely many places v of good reduction
such that there is some positive integer n for which ϕn(α) and β are in the same
residue class modulo v. Fix any such v. Then for any periodic point γ, the orbit
of α intersects the residue class of γ if and only if the orbit of β does. Thus,
if condition (i) of the Proposition fails, we can choose an integer � ≥ 0 and an
attracting periodic point γ1 such that ϕ�(α) and γ1 are in the same residue class
modulo v. By Lemma 6.2.1.1 (see also [RL03, Proposition 3.2]), γ1 lies in the
v-adic closure of the orbit of α, and hence γ1 ∈ P1(Kv).
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Set γ2 = ϕn(γ1). Then ϕ�(β) lies in the same residue class modulo v as ϕn+�(α),
and thus it is in the same residue class as ϕn(γ1) and also as γ2. Finally, as noted
after Definition 6.1.3.1, (ϕk)′(γ1) = (ϕk)′(γ2). �

7.1.2. Proof of Theorem 7.1.0.1. As discussed in the previous subsection,
we are reduced to the following setting:

• K is a number field;
• α, β ∈ P1(K);
• C ⊆ P1 × P1 is a curve defined over K; and
• ϕ : P1 −→ P1 is a rational map defined over K.

Our goal is to prove that the set of n ∈ N0 such that (ϕn(α), ϕn(β)) ∈ C(K) is a
finite union of arithmetic progressions.

Clearly, we may assume that C is irreducible, since we can prove the statement
for each irreducible component of C. If either α or β is preperiodic for ϕ, then the
statement follows easily (see also Proposition 3.1.2.9). So, from now on we assume
that neither α nor β is ϕ-preperiodic.

Suppose that there is a place v of good reduction satisfying condition (i) of
Proposition 7.1.1.2. Let p ∈ N be the prime number lying in the maximal ideal of
the non-archimedean place v, and fix an embedding of K into Cp respecting v. The
desired conclusion is immediate since then the orbits of α and β lie in quasiperiodic
domains, and so we can find a p-adic analytic parametrization of the orbit of (α, β)
under Φ = (ϕ, ϕ) (see Theorem 6.2.3.1 and also [BGKT12, Theorem 3.4]).

If no such place exists, then by Proposition 7.1.1.2, there must be a place
v of good reduction meeting condition (ii) for which neither α nor β lies in the
same residue class as an exceptional point (note that since there are at most two
exceptional points, and in addition, neither α nor β is an exceptional point for ϕ
because we assumed they are not preperiodic, then for all but finitely many places v,
the reductions of both α and β do not coincide with the reduction of an exceptional
point for ϕ).

It follows that the orbits of α and β also avoid the residue classes of exceptional
points. In particular, the attracting periodic points γ1 and γ2 given in condition (ii)
of Proposition 7.1.1.2 cannot be exceptional.

Furthermore, at the expense of replacing both α and β by an iterate ϕ�(α),
respectively ϕ�(β), we may assume that α and β are already in the residue classes
of γ1, respectively γ2; note that we are allowed to replace (α, β) by an iterate of it
under Φ by Proposition 3.1.2.4. Also, at the expense of replacing ϕ by an iterate
(see Proposition 3.1.2.5), we may assume that both γ1 and γ2 are fixed by ϕ.

By hypothesis, then, γ1 and γ2 are attracting but not super-attracting, and
therefore the Theorem follows from [GT09, Theorem 1.3] (see also our Chapter 9).
For the sake of completeness, we sketch here the argument since it is easier than
the general case considered in Chapter 9.

So, by Corollary 6.2.1.2 we know that there exist p-adic analytic functions u1

and u2 such that for all n ∈ N0 we have

ϕn(α) = u1(λ
n) and ϕn(β) = u2(λ

n),

where λ is the common multplier for the periodic points γ1 and γ2 (see Proposi-
tion 7.1.1.2). So, if F (X,Y ) = 0 is the equation of the affine part (inside A1 ×A1)
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of the curve C ⊂ P1 × P1, then we obtain that

(ϕn(α), ϕn(β)) ∈ C(K) if and only if F (u1(λ
n), u2(λ

n)) = 0.

Hence considering the p-adic analytic function H : Cp −→ Cp × Cp defined by

H(z) := F (u1(z), u2(z)),

we see that if there exist infinitely many n ∈ N0 such that

(ϕn(α), ϕn(β)) ∈ C(K),

then H(z) = 0 has infinitely many solutions z = λn which converge to 0 (since λ is
the uniformizer for γi and so, 0 < |λ|p < 1). By Lemma 2.3.6.1, we conclude that
H = 0, and so,

Φn(α, β) ∈ C(K) for all n ∈ N0.

7.2. Extension to polynomials with complex coefficients

Using the results of Medvedev and Scanlon [MS14] who give a complete clas-
sification of all invariant subvarieties of AN under the coordinatewise action of
N one-variable polynomials, one can extend Theorem 7.1.0.1 to the case when
ϕ ∈ C[z]. The results of this section overlap substantially with [BGKT12, Sec-
tion 7], but strictly speaking, our Theorem 7.2.0.1 is more general than [BGKT12,
Theorem 1.5] because the latter was stated only for indecomposable polynomials.

Theorem 7.2.0.1. Let ϕ ∈ C[z] be a non-constant polynomial whose critical
points in C are not periodic, let Φ : AN −→ AN be given by

(x1, . . . , xN ) 	→ (ϕ(x1), . . . , ϕ(xN)),

let C ⊆ AN be a curve defined over C, and let α ∈ AN (C). Then the set of n ∈ N0

such that Φn(α) ∈ C(C) is a finite union of arithmetic progressions.

As before, using the reduction of Conjecture 5.10.0.1 to Conjecture 5.10.0.2
done in Section 5.10, we can reduce the proof of Theorem 7.2.0.1 to the case N = 2.
Also, we may assume C is an irreducible curve. In addition, we can easily prove
two special cases.

7.2.1. ϕ is a linear polynomial. If ϕ is a linear polynomial, then Φ is an
automorphism of AN and the conclusion follows from the main result of [Bel06]
(see also our Theorem 4.4.1.1).

7.2.2. ϕ is conjugate to either z 	→ zd, or to Td for some d ≥ 2. We
recall that Td is itself a conjugate of the Chebyshev polynomial, i.e., Td is a monic
polynomial of degree d with the property that

Td

(
z +

1

z

)
= zd +

1

zd
.

If ϕ is conjugate to Td, then there exists a linear polynomial μ ∈ C[z] such that

ϕ = μ−1 ◦ Td ◦ μ.
So, using Proposition 3.1.2.13, Theorem 7.2.0.1 for the triple (ϕ,C, α) follows from
the same result being proven for (Td, μ̃(C), μ̃(α)), where

μ̃ := (μ, μ) : A2 −→ A2.

Hence from now on, we assume ϕ = Td and thus Φ = (Td, Td) : A
2 −→ A2.
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For each i = 1, 2, we let βi ∈ C such that βi + 1/βi = αi. Therefore, for each
n ∈ N0 we have that

Tn
d (αi) = βdn

i +
1

βdn

i

.

On the other hand, if F (x, y) = 0 is the equation of the plane curve C, then we let

C̃ be the plane curve defined by the equation

F

(
x+

1

x
, y +

1

y

)
= 0.

Clearly, Φn(α) ∈ C(C) if and only if
(
βdn

1 , βdn

2

)
∈ C̃(C). An easy application of

Laurent’s Theorem [Lau84] (see Theorem 3.4.1.1) finishes the proof in this case.

Note that we can also apply our Theorem 4.4.1.1 since the map Φ̃(x, y) = (xd, yd)
is étale when restricted to G2

m.
The case when ϕ is conjugate with z 	→ zd is similar, but only simpler since it

reduces immediately to Theorem 4.4.1.1.

7.2.3. The general case of Theorem 7.2.0.1. We are left with proving
Theorem 7.2.0.1 for

• N = 2;
• C is an irreducible curve; and
• ϕ is a non-linear polynomial, not conjugate to either a monomial or a
Chebyshev polynomial.

Furthermore, using Proposition 3.1.2.9, we may reduce to the case when neither
α1 nor α2 is ϕ-preperiodic; we recall that α = (α1, α2) is the starting point of the
orbit in Theorem 7.2.0.1. Also, using Proposition 3.1.2.13 for replacing ϕ with a
polynomial conjugate with itself, we may assume ϕ is in normal form.

Definition 7.2.3.1. We say that a polynomial ϕ ∈ C[z] of degree d ≥ 2 is in
normal form if it is monic and the coefficient of zd−1 in ϕ(z) equals 0. Furthermore,
if we let

ϕ(z) = zd + cd−2z
d−2 + · · ·+ c0,

with ci ∈ C, then we say that ϕ is of type (a, b) if a is the smallest nonnegative integer
such that ca �= 0, and b is the largest positive integer such that ϕ(z) = zau(zb) for
some polynomial u ∈ C[z].

Note that when we normalize ϕ we may have to enlarge the number field K so
that it contains an (m− 1)-st root of the leading coefficient of ϕ.

Finally, at the expense of replacing ϕ by a map ϕ1 such that

ϕk
1 = ϕ (with respect to the composition of functions),

we may assume that ϕ is not a compositional power of another polynomial. Note
that if we prove the result for

Φ1 := (ϕ1, ϕ1),

then the result follows for Φ, as proven in Proposition 3.1.2.5. With these reductions
in place for ϕ we can state the pivotal result for our proof, which is a consequence
of [MS14, Theorem 6.24].
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Theorem 7.2.3.2 (Medvedev-Scanlon [MS14]). Let K be an algebraically closed
field of characteristic 0, and let ϕ ∈ K[z] be a polynomial of degree d ≥ 2 which is
not conjugate to td or Td for any positive integer d. Assume that ϕ is in normal
form, of type (a, b).

Let Φ denote the action of (ϕ, ϕ) on A2. Let C be a Φ-periodic irreducible plane
curve defined over K. Then C is defined by one of the following equations in the
variables (x, y) of the affine plane:

(i) x = x0, for a ϕ-periodic point x0; or
(ii) y = y0, for a ϕ-periodic point y0; or
(iii) x = ζϕr(y), for some r ≥ 0; or
(iv) y = ζϕr(x), for some r ≥ 0,

where ζ is a d-th root of unity, where d | b and gcd(d, a) = 1. (Note that if b = 1
or a = 0, then d = 1.)

Now we can prove the remaining case of Theorem 7.2.0.1. We follow closely
the arguments provided in the proof of [BGKT12, Theorem 7.6].

Let K be a finitely generated field over which C, ϕ, α1 and α2 are defined.
Furthermore, at the expense of replacing K by a finite extension, we may assume
that C is geometrically irreducible and that K contains all critical points of ϕ and
all (m− 1)-st roots of unity.

We prove Theorem 7.2.0.1 by induction on d := trdegQ K. If d = 0, then K is
a number field, and our conclusion follows from Theorem 7.1.0.1.

Assume d ≥ 1. Then K may be viewed as the function field of a smooth,
geometrically irreducible curve Z defined over a finitely generated field E. Thus

trdegQ E = d− 1.

Moreover, the curve C extends to a one-dimensional scheme, denoted by C over Z,
all but finitely many of whose fibres Cγ are irreducible curves.

We claim that there are infinitely many places γ of K for which all of the
following statements hold. (By a place of K, we mean a valuation of the function
field K/E, see Section 2.6.)

(a) The fiber Cγ is an irreducible curve defined over the residue field E(γ) of
γ, of the same degree as C.

(b) All nonzero coefficients of ϕ are units at the place γ; in particular, ϕ
has good reduction at γ, and so we write ϕγ and Φγ := (ϕγ , ϕγ) for the
reductions of ϕ and respectively Φ at γ.

(c) The critical points of ϕγ are reductions at γ of the critical points of ϕ.
(d) For each critical point z of ϕ (other than infinity), the reduction zγ is not

a periodic point for ϕγ .
(e) The map O −→ Oγ from the Φ-orbit O of α under Φ to the Φγ-orbit of

αγ , induced by reduction at γ, is injective.
(f) ϕγ is not conjugate to zd or Td (we recall that d = degϕ).
(g) ϕγ is not a compositional power of another polynomial.

Conditions (a)—(c) above are satisfied at all but finitely many places γ of K (see
for example [GW10, Appendix E] and also the proof of [Ghi05, Theorem 4.11]
and [vdDS84]). We note that a similar result was proven in Proposition 4.4.1.3.
The same is true of conditions (f)—(g), by [BGKT12, Propositions 7.8 and 7.9].
Condition (d) for preperiodic (but not periodic) critical points also holds at all but
finitely many places since for any given finite set of points S for all but finitely
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many places v, the points in S reduce modulo v to distinct points. Meanwhile, con-
ditions (d)—(e) hold by applying Proposition 5.6.0.5 to αi and the non-preperiodic
critical points, proving the claim.

Let γ be one of the infinitely many places satisfying conditions (a)—(g). From
condition (e), we deduce that

Cγ(E(γ)) ∩Oγ is infinite.

Conditions (c)—(d) guarantee that ϕγ has no periodic critical points (other than
the exceptional point at infinity). Since E(γ) is a finite extension of E, we get

trdegQ E(γ) = d− 1.

By the inductive hypothesis, then, Cγ is Φγ-periodic. By conditions (f)—(g) and
Theorem 7.2.3.2, Cγ is the zero set of an equation from one of the four forms
(i)—(iv) in Theorem 7.2.3.2. In fact, if ϕ has type (a, b), then the degree d in
Theorem 7.2.3.2 satisfies

d | b and gcd(d, a) = 1,

because condition (b) implies that ϕγ also has type (a, b). Thus, for one of the four
forms (i)—(iv), there are infinitely many places γ satisfying (a)—(g) above such
that the equation for Cγ is of that form. By symmetry, it suffices to consider only
forms (i) and (iii) from the conclusion of Theorem 7.2.3.2.

Case 1. Assume there are infinitely many γ satisfying (a)—(g) such that Cγ is
given by an equation

x = x(γ), for some ϕγ-periodic point x(γ) ∈ E(γ).

Then, since the degree of C is preserved by the reduction at γ, we see that the
degree of C must be 1. Thus, C is defined by an equation of the form

u1x+ u2y + u3 = 0,

for some constants u1, u2, u3 ∈ K. Since there are infinitely many γ such that the
above equation reduces at γ to x = x(γ), we must have

u2 = 0.

Hence, the curve C must be given by an equation

x = x1 for some x1 ∈ K,

contradicting our assumption that C does not project to a point in either of the
two coordinates.

Case 2. Assume there are infinitely many γ satisfying (a)—(g) such that Cγ is
given by an equation

y = ζϕr
γ(x),

for some r ≥ 0 and some d-th root of unity ζ, where

d | b and gcd(d, a) = 1.

Since there are only finitely many b-th roots of unity, we may assume ζ is the same
for all of the infinitely many γ. Moreover, because Cγ has the same degree as C,
the integer r is the same for all such γ. Thus, there are infinitely many places γ for
which the polynomial equation for C reduces modulo γ to

y − ζϕr(x),
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and hence the two polynomials are the same. Thus, C is the zero set of the poly-
nomial

y − ζϕr(x).

Since ϕ is of type (a, b), it follows that C is Φ-periodic, as desired.

7.3. The case of “almost” post-critically finite rational maps

In [BGHKST13], the following special case of the Dynamical Mordell-Lang
Conjecture was proven.

Theorem 7.3.0.1 ([BGHKST13]). Let K be a number field, let V ⊆
(
P1
)N

be a subvariety defined over K, let α = (α1, . . . , αg) ∈ (P1)N (K), and let

Φ := (ϕ1, . . . , ϕN )

act on
(
P1
)N

coordinatewise, where each ϕi ∈ K(t) is a rational function of degree
at least 2. Suppose that at most one distinct ϕi has a critical point that is not
ϕi-preperiodic, and that all other critical points of that ϕi are preperiodic. Then
the set of integers n ∈ N such that

Φn(α) ∈ V (K)

is a union of finitely many arithmetic progressions.

The key to proving the above result is [BGHKST13, Theorem 3.1], which we
now state.

Theorem 7.3.0.2 ([BGHKST13]). Let K be a number field, and let

ϕ1, . . . , ϕN : P1 −→ P1

be rational maps of degree at least 2 defined over K. Let A1, . . . ,Ag be finite subsets
of P1(K) such that at most one set Ai contains a point that is not ϕi-preperiodic,
and such that there is at most one such point in that set Ai. Let T1, . . . , Tg be finite
subsets of P1(K) such that no Ti contains any ϕi-preperiodic points. Then there is
a positive integer M and a set of primes P of K having positive density such that
for any i = 1, . . . , g, any γ ∈ Ti, any α ∈ Ai, any p ∈ P, and any m ≥M ,

ϕm
i (γ) �≡ α (mod p).

We first show how to deduce Theorem 7.3.0.1 from Theorem 7.3.0.2, after which
we give the proof of Theorem 7.3.0.2.

Proof of Theorem 7.3.0.1. We reproduce here the proof of [BGHKST13,
Theorem 4.3].

Arguing by induction (see also Proposition 3.1.2.9), we may assume that no αi

is ϕi-preperiodic.
By Theorem 7.3.0.2, there exist a constant M and a positive proportion of

primes p of K such that for each i = 1, . . . , N , ϕi has good reduction at p, and
ϕm
i (xi) is not congruent modulo p to any critical point of ϕi for all m ≥M . Fix any

such p, and note that the derivative of the reduction (ϕi,p)
′ is non-trivial, because

ϕi has good reduction and we may assume

char(kp) � degϕi.

Thus, ϕ′
i(ϕ

m
i (xi)) is a p-adic unit for all m ≥M . It follows that

ϕm
i (xi) �≡ γ (mod p)
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for any attracting periodic point γ of ϕi. Therefore each αi lands in a quasiperiodic
domain under the action of ϕi and applying Theorem 6.2.3.1 finishes our proof. �

Before proving Theorem 7.3.0.2 we show how to deduce Corollary 7.0.0.1.

Proof of Corollary 7.0.0.1. Corollary 7.0.0.1 can be deduced both from
Theorem 7.3.0.1, but also directly from Theorem 7.3.0.2. Indeed, as proven in
Theorem 7.3.0.2, we can allow in Theorem 7.3.0.1 that there is only one distinct
ϕi which has only one critical point that is not preperiodic, i.e., we are allowed in
Theorem 7.3.0.1 to take

ϕ1 = · · · = ϕN = f,

and f has exactly one critical point which is not preperiodic. Now, if f is any
quadratic polynomial, then indeed, f has at most one critical point which is not
preperiodic because the point at infinity (which is critical for the polynomial f)
is clearly fixed by f . Hence Corollary 7.0.0.1 follows from Theorem 7.3.0.1 (or
alternatively, directly from Theorem 7.3.0.2). �

On the other hand, Corollary 7.0.0.3 is an immediate consequence of Theo-
rem 7.3.0.1. So, now we are left to complete the proof of Theorem 7.3.0.2, which
we do in the following Subsection.

7.3.1. Proof of Theorem 7.3.0.2. We follow the proof of [BGHKST13,
Theorem 3.1].

We employ in our proof the following standard ramification lemma over p-adic
fields; it says, roughly, that if the field of definition of a point in ϕ−m(α) ramifies
at p̃, then that point must be a ramification point of ϕm modulo p̃, provided the
characteristic of the residue field corresponding to p̃ does not divide the degree of
ϕ.

Lemma 7.3.1.1. Let K be a number field, let p̃ be a prime of o
K
, and let

ϕ : P1 −→ P1

be a rational function defined over K and of good reduction at p = p̃∩ oK such that
degϕ ≥ 2 and that deg(ϕ) is not divisible by char(kp). Let α ∈ P1(K), let m ≥ 1

be an integer, let β ∈ ϕ−m(α) ⊆ P1(K), and let q := p̃∩oK(β). If q is ramified over
p, then β is congruent modulo p̃ to a ramification point of ϕm.

Proof. We reproduce here the proof of [BGHKST13, Lemma 3.2].
By induction, it suffices to show the lemma in the case m = 1; note that

the hypothesis about deg(ϕm) not being divisible by char(kp̃) remains valid for all
m ≥ 1.

Let | · |p̃ denote the p̃-adic absolute value on K, and let Kp be the completion
of K with respect to | · |p̃. After a change of coordinates, we may assume that α = 0
and that |β|p̃ ≤ 1.

Writing ϕ = f/g, where f, g ∈ K[t] are relatively prime polynomials, we have
f(β) = 0. Since q is ramified over p, f must have at least one other root congruent
to β modulo p̃. Thus, the reduction fp of f has a multiple root at β. However,
gp(β) �= 0, since ϕ has good reduction. Therefore, the reduction ϕp has a multiple
root at β, and hence ϕ′

p(β) = 0. On the other hand, because degϕ is not divisible
by char(kp), there must be some γ ∈ o

K
such that ϕ′

p(γ) �= 0. It follows that there

is a root of ϕ′ congruent to β modulo p̃. �

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



138 7. THE SPLIT CASE

We note that Lemma 7.3.1.1 may fail if the characteristic of the residue field
for p̃ divides the degree of ϕ. For example, if p is a prime number, K = Q, α = 1
and

ϕ(z) = zp,

while ζp is a primitive p-th root of unity, then Q(ζp)/Q is ramified above the prime
p even though 1 is not congruent to a ramification point of ϕ. The part that breaks
down from the proof of Lemma 7.3.1.1 in this case is that ϕ′

p = 0, where for any
polynomial f , we denote by fp its reduction modulo p.

Next, we use the fact that our residue fields are finite to show that if α is not
periodic modulo a large enough prime p, then for large m, there can be no roots
of ϕm(x) − α modulo p. We also obtain some extra information about our fields
of definition, which we will need in order to apply the Chebotarev density theorem
(see Theorem 2.4.0.1) in our proof of Theorem 7.3.0.2.

Lemma 7.3.1.2. Let K be a number field, let p̃ be a prime of o
K
, and let

ϕ : P1 −→ P1

be a rational function defined over K and of good reduction at p = p̃∩ oK such that
degϕ ≥ 2 and that degϕ is not divisible by char(kp). Suppose that α ∈ P1(K) is not
periodic modulo p. Then there exists a finite extension E of K with the following
property: for any finite extension L of E, there is an integer M ∈ N such that for
all m ≥M and all β ∈ P1(K) with ϕm(β) = α,

(i) r does not ramify over q, and
(ii) [oL(β)/r : oL/q] > 1,

where r := p̃ ∩ oL(β), and q := p̃ ∩ oL.

Proof. We reproduce here the proof of [BGHKST13, Lemma 3.3].
For any γ ∈ o

K
,

(7.3.1.3) there is at most one j ≥ 0 such that ϕj(γ) ≡ α (mod p̃),

since α is not periodic modulo p. In particular, for each ramification point γ ∈
P1(K) of ϕ, there are only finitely many integers n ≥ 0 and points z ∈ P1(K) such
that

(7.3.1.4) ϕn(z) = α and z ≡ γ (mod p̃).

Let E be the finite extension of K formed by adjoining all such points z.
Given any finite extension L of E, let q = p̃ ∩ oL. Since P1(oL/q) is finite,

(7.3.1.3) implies that for all sufficiently large M , the equation

ϕM (x) = α has no solutions in P1(oL/q).

Fix any such M ; note that M must be larger than any of the integers n satisfying
(7.3.1.4). Hence, given m ≥M and β ∈ P1(K) such that ϕm(β) = α, we must have

[oL(β)/r : oL/q] > 1,

where r = p̃∩oL(β), proving conclusion (ii). Furthermore, if β is a root of ϕm(x)−α,
then there are two possibilities: either

(1) β is not congruent modulo p̃ to a ramification point of ϕm, or
(2) ϕj(β) = z for some j ≥ 0 and some point z ∈ P1(L) satisfying equation

(7.3.1.4).
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In case (1), r is unramified over q by Lemma 7.3.1.1.
In case (2), choosing a minimal such j ≥ 0, and applying Lemma 7.3.1.1 with z

in the role of α and j in the role of m, r is again unramified over q. Thus, in either
case, conclusion (i) of Lemma 7.3.1.2 holds. �

We now apply Lemma 7.3.1.2 to a set A of points.

Proposition 7.3.1.5. Let K be a number field, let p̃ be a prime of o
K
, and let

ϕ : P1 −→ P1

be a rational function defined over K and of good reduction at p = p̃∩ oK such that
degϕ ≥ 2 and that degϕ is not divisible by char(kp). Let

A = {α1, . . . , αn}

be a finite subset of P1(K) such that for each αi ∈ A,
(i) if αi is not periodic, then αi is not periodic modulo p; and
(ii) if αi is periodic, then ϕ(αi) = αi (i.e., αi is fixed by ϕ) and the ramifica-

tion index of ϕ at αi is the same modulo p as over K.

Then there is a finite extension E of K with the following property: for any finite
extension L of E, there is an integer M ∈ N such that for all m ≥ M and all
β ∈ P1(K) with ϕm(β) ∈ A but ϕt(β) /∈ A for all t < m,

(1) r does not ramify over q, and
(2) [oL(β)/r : oL/q] > 1,

where r := p̃ ∩ oL(β) and q := p̃ ∩ oL.

Proof. We reproduce here the proof of [BGHKST13, Proposition 3.4].
For each αi ∈ A that is not periodic, we apply Lemma 7.3.1.2 and obtain a field

Ei with the property described in that lemma. For each αj ∈ A that is periodic,
we apply Lemma 7.3.1.2 to each point

γjk ∈ ϕ−1(αj) \ {αj}

and obtain a field Ejk with the corresponding property. To do so, of course, we
must know that no γjk is periodic modulo p̃. To see that this is true, first note that

(7.3.1.6) γjk �≡ αj (mod p̃);

otherwise the ramification index of ϕ at αj would be greater modulo p than over
K, contradicting our hypotheses. Since αj is fixed, congruence (7.3.1.6) yields that
γjk is not periodic modulo p̃, as desired.

Let E be the compositum of all the fields Ei and Ejk. Given any finite extension
L of E, then by our choice of Ei and Ejk, there are integers Mi,Mjk ∈ N satisfying
the conclusions of Lemma 7.3.1.2. Set

M := max
i,j,k

(Mi,Mjk) + 1.

Then for any m ≥ M and β ∈ P1(K) such that ϕm(β) ∈ A but ϕt(β) /∈ A for
all 0 ≤ t < m, we have ϕm−1(β) /∈ A. Hence, ϕm−1(β) is either some γjk or
is in ϕ−1(αi) for some non-periodic αi; that is, β is an element either of some
ϕ−(m−1)(γjk) or of ϕ

−m(αi) for some non-periodic αi. Thus, by the conclusions of
Lemma 7.3.1.2, β satisfies conditions (i) and (ii), as desired. �
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We will now apply Proposition 7.3.1.5 to several maps ϕ1, . . . , ϕg at once to
obtain a proof of Theorem 7.3.0.2 (again we follow [BGHKST13]).

Proof of Theorem 7.3.0.2. We note first that it suffices to prove our result
for a finite extension of K. Indeed, if L/K is a finite extension and

q ∩ oK = r for a prime q ⊆ oL,

then ϕm
i (γ) is congruent to α modulo q if and only if ϕm

i (γ) is congruent to α
modulo r. Moreover, given a positive density set of primes Q of L, the set

P = {q ∩ oK : q ∈ Q}
also has positive density as a set of primes of K.

We may assume, for all i = 1, . . . , g, that every ϕi-preperiodic point α ∈ Ai

is in fact fixed by ϕi. Indeed, for each such i and α, choose integers jα ≥ 0 and
�α ≥ 1 such that

ϕjα
i (α) = ϕjα+�α

i (α).

Let j := maxα{jα}, and replace each α ∈ Ai by ϕj
i (α). Similarly, let

� := lcmα{�α},
and enlarge each

Ti = {γi1, . . . , γisi}
to include ϕb

i(γic) for all b = 1, . . . , �− 1 and c = 1, . . . , si. Finally, replace each ϕi

by ϕ�
i , so that for the new data,

(7.3.1.7) all the ϕi-preperiodic points in α ∈ Ai are fixed by ϕi.

If the theorem holds for the new data, then it holds for the original data, since for
any m ≥M and any prime p at which every ϕi has good reduction,

ϕm
i (γij) ≡ α (mod p) =⇒ (ϕ�

i)
a(ϕb

i(γij)) ≡ ϕj
i (α) (mod p),

writing m+ j as a�+ b with a ≥ 0 and 0 ≤ b < �.
We fix the following notation for the remainder of the proof. If there is any

index i such thatAi contains a non-periodic point, we may assume that this happens
for i = 1, and we denote the non-periodic point by α′. By hypothesis, all points in
A1� {α′} are ϕ1-preperiodic, and we denote them by α1j ; similarly, for each i ≥ 2,
all points in Ai are ϕi-preperiodic, and we denote them by αij . By (7.3.1.7), we
may assume that ϕi fixes αij for all i, j. Note that there are only

• finitely many primes p of bad reduction for any ϕi;
• finitely many primes p for which char(kp) | degϕi for some i; and
• finitely many primes p such that the ramification index of some ϕi at some
αij ∈ Ai is greater modulo p than over K.

On the other hand, by [BGKT12, Lemma 4.3], there are infinitely many primes p
of K such that α′ is not ϕ1-periodic modulo p. Hence, we may choose such a prime
p, and then a prime p̃ of o

K
for which p = p̃ ∩ oK , that simultaneously satisfy, for

each i = 1, . . . , g, the hypotheses of Proposition 7.3.1.5 for ϕi and Ai.
Applying Proposition 7.3.1.5, for each i = 1, . . . , g we obtain finite extensions

Ei of K satisfying the conclusions of that result. Let

L be the compositum of the fields E1, . . . , Eg, and let q = p̃ ∩ oL.
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7.3. THE CASE OF “ALMOST” POST-CRITICALLY FINITE RATIONAL MAPS 141

Then for all i = 1, . . . , g, all sufficiently large M , and all β ∈ K such that

ϕM
i (β) ∈ Ai but ϕ

t
i(β) /∈ Ai for 0 ≤ t < M,

we have

(i) r does not ramify over q, and
(ii) [oL(β)/r : oL/q] > 1,

where r = p̃ ∩ oL(β). As noted at the start of this proof, it suffices to prove the
Theorem for the field L.

Fix such a sufficiently large integer M , and let F/L be the finite extension
obtained by adjoining all points β ∈ P1(L) such that for some i = 1, . . . , g we have

ϕM
i (β) ∈ Ai but ϕ

t
i(β) /∈ Ai for all 0 ≤ t < M.

Note that F/L is a Galois extension, since each Ai and each ϕi is defined over L.
Moreover, by property (i), F/L is unramified over q. By property (ii), then, the
Frobenius element of q belongs to a conjugacy class of Gal(F/L) whose members do
not fix any of the points β. By the Chebotarev density theorem (Theorem 2.4.0.1),
there is a positive density set of primes S of L whose Frobenius conjugacy classes
in Gal(F/L) do not fix any of the points β.

Fix any prime r ∈ S. We make the following claim.

Claim 7.3.1.8. Let m ≥ 0, let 1 ≤ i ≤ g, and let z ∈ P1(L) be a point such
that ϕm

i (z) is congruent modulo r to an element of Ai. Then there is some

t ∈ {0, . . . ,M}
such that ϕt

i(z) is congruent modulo r to an element of Ai.

Proof of Claim 7.3.1.8. Note first that the conclusion is vacuous if m < M ;
thus, we may assume that m ≥ M . In fact, given any index i and point z as in
the claim, we may assume that m is the minimal integer m ≥ M satisfying the
hypothesis, namely that

ϕm
i (z) = ϕM

i (ϕm−M
i (z))

is congruent modulo r to an element of Ai. However, by the defining property
of the set of primes S, there cannot be any points w ∈ P1(L) such that ϕM

i (w)
is congruent modulo r to an element of Ai but ϕt

i(w) /∈ Ai for all 0 ≤ t < M .

Choosing w = ϕm−M
i (z) ∈ P1(L), then, there must be some 0 ≤ t < M such that

ϕt
i(ϕ

m−M
i (z)) is congruent modulo r to an element of Ai. Thus, ϕm−M+t

i (z) is
congruent modulo r to an element of Ai; but 0 ≤ m −M + t < m, contradicting
the minimality of m and proving Claim 7.3.1.8. �

Let U be the subset of S consisting of primes r ∈ S such that one or more of
the following holds:

(a) ϕt
i(γ) ≡ αij (mod r) for some i = 1, . . . , g, some γ ∈ Ti, some ϕi-periodic

αij ∈ Ai, and some 0 ≤ t < M ; or
(b) ϕt

1(α
′) ≡ α (mod r) for some α ∈ A1 and some 1 ≤ t ≤M .

Note, for each ϕi-periodic αij ∈ Ai, there cannot exist a nonnegative integer r
and γ ∈ Ti such that ϕr

i (γ) = αij , since the elements of Ti are not ϕi-preperiodic.
(However, it is possible that ϕr

1(γ) = α′ for some r and some γ ∈ T1.) Thus U is
a finite subset of S, and hence S ′ := S \ U has positive density. We will now show
that Theorem 7.3.0.2 holds for the field L, the integer M , and this set of primes S ′.
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Suppose there exist a prime r ∈ S ′, an index 1 ≤ i ≤ g, points α ∈ Ai and
γ ∈ Ti, and an integer m ≥ M such that ϕm

i (γ) ≡ α (mod r). By Claim 7.3.1.8,
there is an integer 0 ≤ t < M and a point α̃ ∈ Ai such that ϕt

i(γ) ≡ α̃ (mod r).
By property (b), then we must have i = 1 and α̃ = α′. Moreover, since

ϕm−t−1
1 (ϕ1(α

′)) ≡ α (mod r), and since m− t− 1 ≥ 0,

Claim 7.3.1.8 tells us that there is some k ∈ {0, . . . ,M} such that ϕk+1
1 (α′) is

congruent modulo r to an element of A1, contradicting property (b), and hence
proving Theorem 7.3.0.2. �
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CHAPTER 8

Heuristics for avoiding ramification

The p-adic parametrization method for treating the Dynamical Mordell-Lang
conjecture works for a point α ∈ X(K) whenever there is a prime p of good re-
duction such that the OΦ(α) does not meet the ramification divisor of Φ modulo
p. In fact, it works under slightly weaker hypotheses, since one only needs that the
periodic part of the orbit of α modulo p does not meet the ramification divisor of
Φ modulo p. This follows immediately from Theorem 4.4.4.1.

As we have seen in the Chapters 4 and 7, there are some cases where one can
prove that such a p exists. Unfortunately, as is shown in [BGHKST13], there is
a heuristic and some numerical evidence that suggests that perhaps no such prime
exists for general self-maps of varieties of dimension 5 or more. In this chapter, we
explain these ideas in detail.

Most of the material presented in this chapter overlaps with [BGHKST13].
The techniques of this chapter are different from the rest of the book, both because
they involve speculative heuristics rather than proofs, and because the discussion
of the heuristics is probabilistic and analytic rather than arithmetic geometric. We
begin with a brief summary of what one should expect if morphisms on special
fibers of varieties follow a so-called random model. After that, we provide some
proofs about what should happen assuming a random model; here we see that
if the random model is accurate, then one should not expect the method of p-
adic parametrization to work in dimensions 5 or greater for solving the Dynamical
Mordell-Lang Conjecture. Finally, we present more details on how one might hope
to analyze the “split case” more generally. At this time, we do not have a strategy
for treating the case of dimension 2, 3, and 4 via p-adic parametrization, although
the heuristic suggests that it may be possible to do so.

8.1. A random model heuristic

Let X be a variety defined over a number field K, let

Φ : X −→ X

be a morphism, let RΦ be the ramification locus of Φ, and let α ∈ X(K). If we
have a model X for X over the ring of integers of K, then Φ extends to a self-map
of the special fiber Xp for all but finitely many primes p. Furthermore, for all but
finitely many primes p the intersection of the Zariski closure of RΦ (considered as a
subset of the generic fiber of X ) with the special fiber Xp is the ramification divisor
of Φp. We will call the primes p with these properties “primes of good reduction”
for Φ. Let αp be the specialization of α to Xp and let kp denote the residue field of
p. Since Xp(kp) is finite, αp must be preperiodic. We let j be the smallest positive
integer such that

Φi
p(αp) = Φj

p(αp)

143
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144 8. HEURISTICS FOR AVOIDING RAMIFICATION

for some integer 0 ≤ i < j. Then OrbΦp
(αp) decomposes into a (possibly empty)

“tail”

(αp, . . . ,Φ
i−1
p (αp))

and a periodic part

(Φi
p(αp), . . . ,Φ

j−1
p (αp)).

We want to come up with a model that predicts the likelihood that the periodic
part of OrbΦp

(αp) intersects RΦp
.

We think of Φp as a random map on Xp(kp); that is, to each element z ∈ Xp(kp),
we take Φp(z) to be a random element of Xp(kp). The birthday paradox (for its
application to number theory, see for example [Pol75]) shows that on average

|OrbΦp
(αp)| should be proportional to

√
#X (kp); a simple analysis also shows the

length of the periodic part of OrbΦp
(αp) should be about half of |OrbΦp

(αp)| on
average.

Note however, that the distribution of orbit lengths under the random model
is very far from being normal. Suppose that

#Xp(kp) = M.

Then the chance that the length of the orbit of αp is equal to i is

M − 1

M
· M − 2

M
· · · · · M − i+ 1

M
· 1

M
,

so even though the expected value for the orbit length is
√

#Xp(kp), the most likely
value for the orbit length is 1. In fact, under the random model hypothesis, the
orbit length follows a well-known distribution, as we shall soon see.

The number of kp-points in the ramification locus of Φp should be about
#kdimX

p , by the Weil bounds (see [Del74]). Typically, the ramification locus RΦ

has dimension dimX−1, so (again by the Weil bounds) there are about #kdimX−1
p

points in Xp(kp) that are in the Zariski closure of RΦ. Thus, the proportion of
primes in Xp(kp) that are in the ramification divisor is about 1/#kp. Hence, the
chance of a given iterate being in the ramification divisor is about 1/#kp. Now,
since the lengths of orbits under Φp increases with dimension (assuming a random
model) whereas the proportion of points in Xp(kp) that meet the ramification divi-
sor stays the same, it should not be surprising that that the periodic parts of orbits
are less likely to avoid ramification modulo primes in higher dimensions.

Here is a brief summary of what one should expect about orbit lengths and
intersection of orbits modulo primes, assuming the random model. We restate
briefly the setup for our problem, which is valid for both Sections 8.2 and 8.3.

• Φ : X −→ X is an endomorphism of a variety X defined over a nunber
field K;

• p is a prime of good reduction for Φ with respect to a model X for X over
the ring of algebraic integers of K;

• Xp is the special fiber of X at p;
• RΦ is the ramification locus of Φ;
• d be the dimension of X, and
• α ∈ X(K) is a point, and αp ∈ X (kp) is its reduction (seen as a point on
the special fiber) the special fiber.

Assuming a random model and a large #kp, we will find that:
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(RM1) The distribution of the length of the periodic part of OrbΦp
(αp) follows a

suitably normalized version of standard Gaussian error function

erfc(s) :=
2√
π

∫ ∞

s

e−t2 dt,

which is described in [AS92, Chapter 7], for example. We prove a precise
form of this in Proposition 8.2.0.5.

(RM2) For d ≥ 3, the chance that the periodic part of OrbΦp
(αp) does not inter-

sect the reduction of RΦ modulo p is proportional to

(#kp)
1− d

2 .

This will be proved in Proposition 8.3.0.2.

To estimate the chance that each prime p has the property that OrbΦp
(αp)

intersects the reduction of RΦ modulo p, one then takes the infinite product∏
finite primes p of K

(
1− 1

(#kp)d/2−1

)
.

Of course, when K = Q, this is simply the reciprocal of the usual Euler product
expansion of ζ(d/2− 1), where ζ is the usual Riemann ζ-function. Since the Euler
product expansion of ζ(s) converges when s > 1, the random model heuristic sug-
gests that when d ≥ 5, there is a nonzero chance that each prime p has the property
that OrbΦp

(αp) intersects the reduction of RΦ modulo p. More generally, for any
number field K, the product ∏

finite primes p of K

(
1− 1

(#kp)d/2−1

)
converges to a nonzero number whenever d ≥ 5. Hence, when d ≥ 5, for a given
point α, there is a chance that at every prime p, the cyclic part of Φp(αp) meets
RΦ modulo p; thus, there is a chance that there is no prime p at which one can
treat the dynamical Mordell-Lang problem for Orb(α) using the method of p-adic
analytic parametrization.

The idea of using random maps to model behavior of orbits modulo primes is
not new. For example Silverman [Sil08] used such a model to formulate questions
about the lengths of orbits modulo primes for a point in Pd(Q) under a morphism

Φ : Pd −→ Pd;

he conjectured that the orbit length mod p is greater than pd/2−ε for a full density
subset of the primes (see also [AG09]). Questions about orbit lengths of polyno-
mials (in particular quadratic polynomials) over finite fields also arise naturally in
Pollard’s rho method [Pol75] for factoring integers (see [Bac91]).

Although proofs of the accuracy of the random model are out of reach, numeri-
cal data that mirrors RM1 and RM2 can be found in [BGHKST13, Section 5]. We
also note that data strongly suggests that it should be possible to avoid ramification
modulo infinitely many primes in dimension 1 and 2. The case of dimensions 3 and
4 are less clear. A simpler analysis, where one assumes that orbit lengths modulo p

are normally distributed around the expected value, suggested that it may not be
possible to to avoid ramification modulo any prime in some cases; a more detailed
analysis, using erfc suggests that is only when d ≥ 5 that it may not be possible to
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146 8. HEURISTICS FOR AVOIDING RAMIFICATION

to avoid ramification modulo any prime. In any case, we currently have no method
for producing primes p where an orbit avoids ramification modulo p when d ≥ 5.

8.2. Random models and cycle lengths

We begin by proving RM1. Let Z be a (large) finite set, and let

f : Z → Z

be a random map in the following sense: for each z ∈ Z, select the image f(z) by
randomly selecting an element of Z, with uniform distribution. Given a starting
point z ∈ Z, we dneote by Orbf (z) the orbit of z under f . Since Z is finite, z is
necessarily preperiodic. Let π(z) be the number of distinct elements in Orbf (z)
i.e., π(z) is the smallest positive integer such that

fπ(z)(z) = fs(z)

for some s < π(z). Then the randomness assumption on f implies that

Prob(π(z) > m) =

m∏
j=1

(
1− j

|Z|
)
= exp

[ m∑
j=1

log
(
1− j

|Z|
)]

.

From the Taylor series expansion

log(1− x) = −
(
x+

x2

2
+

x3

3
+ . . .

)
,

we obtain the inequality

(8.2.0.1) Prob(π(z) > m) ≤ exp

(
−m(m+ 1)

2|Z|

)
,

and similarly we find that for m = o(|Z|2/3),

(8.2.0.2) Prob(π(z) > m) = exp

(
− m2

2|Z|

)
· (1 + o(1)),

since

(8.2.0.3) Prob(π(z) > m) = exp

(
−m(m+ 1)

2|Z| +O(m3/|Z|2)
)

= exp

(
− m2

2|Z| +O(m/|Z|+m3/|Z|2)
)
.

In addition, if we let α(m) := Prob(π(z) ≥ m), then

Prob(π(z) = m) = Prob(π(z) ≥ m)− Prob(π(z) > m)

=
m−1∏
j=1

(
1− j

|Z|
)
−

m∏
j=1

(
1− j

|Z|
)

=
[
1−
(
1− m

|Z|
)]
·
m−1∏
j=1

(
1− j

|Z|
)
=

m

|Z| · α(m).

Define C to be the periodic part of Orb(z). Conditioning on π(z) = m, the
random map assumption implies that fm(z) is uniformly selected among

{z, f(z), . . . , fm−1(z)},
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and hence

Prob
(
|C| = �

∣∣∣π(z) = m
)
=

1

m
for any � ≤ m.

The cycle length probability may thus be written as

(8.2.0.4) Prob(|C| = �) =
∑
m≥�

Prob(|C| = �
∣∣π(z) = m) · Prob(π(z) = m)

=
∑
m≥�

1

m
· Prob(π(z) = m) =

∑
m≥�

1

m
· m

|Z| · α(m) =
1

|Z|
∑
m≥�

α(m).

Proposition 8.2.0.5. If � = o(|Z|2/3) then, as |Z| → ∞,

Prob(|C| = �) =

√
π

2|Z| ·
(
erfc
(
�/
√

2|Z|
)
+ o(1)

)
.

Proof. By (8.2.0.4), we find that

(8.2.0.6) Prob(|C| = �) =
1

|Z|

|Z|∑
m=�

α(m) =
1

|Z|

⎛⎝ |Z|∑
m=1

α(m)−
∑

1≤m<�

α(m)

⎞⎠ .

We begin by evaluating the first sum. Recalling that

α(m) = Prob(π(z) > m− 1),

if m = o(|Z|2/3), then by (8.2.0.2), we have

α(m) = exp
(
−m2/(2|Z|)

)
·
(
1 + o(1)

)
.

Moreover, by (8.2.0.1) the inequality

α(m)� exp
(
−m2/(3|Z|)

)
holds for m ≥ 1. Thus, setting Q(T ) := T 2/3/ log T , we have

(8.2.0.7)

|Z|∑
m=1

α(m) =
∑

1≤m≤Q(|Z|)
α(m) +

∑
Q(|Z|)<m≤|Z|

α(m)

=
(
1 + o(1)

)
·

∑
1≤m≤Q(|Z|)

e−m2/(2|Z|) +O

(∫ ∞

Q(|Z|)−1

e−t2/(3|Z|) dt

)
.

To show that the contribution from the integral is negligible, we note the inequality
(valid for all A,B > 0)∫ ∞

A

e−t2/B dt =
√
B

∫ ∞

A/
√
B

e−s2 ds ≤ B

A

∫ ∞

A/
√
B

se−s2 ds =
B

2A
e−A2/B.

Thus,

(8.2.0.8)

∫ ∞

Q(|Z|)−1

e−t2/(3|Z|) dt ≤ 3|Z|
2Q(|Z|)− 2

exp

(
−
(
Q(|Z|)− 1

)2
3|Z|

)

� |Z|1/3 log |Z| exp
(
− |Z|1/3
3(log |Z|)2

)
= o(1)

as |Z| → ∞.
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Meanwhile, note that for any L ≥ 1,

∑
1≤m≤L

e−m2/(2|Z|) =
√
2|Z| ·

[∫ L�/
√

2|Z|

0

e−t2 dt+O

(
�L�
2|Z|

)]

=
√
2|Z| ·

∫ L/
√

2|Z|

0

e−t2 dt+O

(
L√
2|Z|

+ 1

)
.

by interpreting the sum as a 1/
√
2|Z|-spaced Riemann sum approximation of an

integral and noting that

|e−s2 − e−t2 | ≤ |s− t| for all s, t ∈ R.

Thus, the sum in the right side of (8.2.0.7) is

∑
1≤m≤Q(|Z|)

e−m2/(2|Z|) =
√
2|Z| ·

∫ Q(|Z|)/
√

2|Z|

0

e−t2 dt+O

(
Q(|Z|)√

2|Z|
+ 1

)

=
√
2|Z| ·

(∫ ∞

0

e−t2 dt+ o(1)

)
,

and the second sum on the right side of (8.2.0.6) is

∑
1≤m<�

α(m) =
(
1 + o(1)

)
·
�−1∑
m=1

e−m2/(2|Z|)

=
(
1 + o(1)

)
·
(√

2|Z|
∫ �/

√
2|Z|

0

e−t2 dt+ O
( �√

2|Z|
+ 1)

)
.

Combining equations (8.2.0.6), (8.2.0.7), and (8.2.0.8) with the above Riemann sum

estimates, and recalling that erfc(s) = 2√
π

∫∞
s

e−t2 dt, we have

Prob(|C| = �) =

√
2 ·
∫∞
�/
√

2|Z| e
−t2 dt+ o(1)

|Z|1/2

=

√
π

2|Z| ·
(
erfc
(
�/
√

2|Z|
)
+ o(1)

)
.

�

8.3. Random models and avoiding ramification

We continue with the notation used in Section 8.1 for X, Φ, RΦ, p and α.
We let Φp be the induced action of the endomorphism Φ on the special fiber Xp

corresponding to the prime p, and we also let αp be the reduction of α modulo p.
We let Cp denote the periodic part of the forward orbit of αp under the action of
Φp, and let Rp denote the set of points in X (p) that are in the Zariski closure of
RΦ (considered as a subset of the generic fiber of X ). Finally, we let d := dimX.

We suppose that Φ is not unramified, and moreover that RΦ is nonempty and
of codimension 1 in X. By the Weil bounds (see [Del74]), we have

|Xp(kp)| = #kdp(1 + o(1)),
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as #kp goes to infinity. Similarly, if Rφ is irreducible, then

|Rp| = #kd−1
p (1 + o(1)).

When RΦ is not irreducible, |Rp| may be larger, but since we are interested in
demonstrating the unfeasibility of avoiding Rp modulo primes, we may assume that
|Rp| is as small as possible (but still under the assumption that RΦ has codimension
1 in X). Hence, we may assume that we have

(8.3.0.1)
|Rp|
|X (kp)|

=
1

#kp
(1 + o(1)).

We say Φ has random map behavior modulo p if the following two conditions
hold:

• |Cp| has the same probability distribution as the cycle length of a random
map on a set of size |X (kp)|.

• The probability for the event that any given distinct points y1, . . . , ym ∈ Cp
all belong to Rp is 1

(#kp)m
.

Note that in light of (8.3.0.1) , the second assumption is essentially saying that
Cp and Rp are suitably independent, i.e., for any given point on the special fiber
Xp belonging to Cp, respectively to Rp are two independent events.

Proposition 8.3.0.2. Assume that the polynomial map Φ : X −→ X has
random map behavior modulo for all but finitely many p. If d ≥ 3, then

Prob(Cfp ∩Rfp = ∅) =
√
π/2

(#kp)d/2−1
· (1 + o(1)) as #kp →∞.

Proof. Fix a p such that #kp is sufficiently large. We write q = #kp. For
simplicity of notation, we will write C and R instead of Cp and Rp. Conditioning
on the cycle length |C| being equal to �, we find that

Prob
(
C ∩ R = ∅

∣∣∣|C| = �
)
= (1− 1/q)�,

and hence

Prob(C ∩ R = ∅) =
qd∑
�=1

(1− 1/q)� · Prob(|C| = �).

We start by bounding the contribution from the large cycles. Since (1− 1/q)� is a
decreasing function of � and

qd∑
�=1

Prob(|C| = �) = 1,

we have

qd∑
�≥dq log q

(
1− 1

q

)�
· Prob(|C| = �) ≤

(
1− 1

q

)dq log q

� exp(−d log q) = q−d.

To determine the contribution from the short cycles we argue as follows. By
Proposition 8.2.0.5, if

� ≤ dq log q = o(qd/2),
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we have

Prob(|C| = �) =

√
π

2qd
·
(
erfc
(
�/
√

2qd
)
+ o(1)

)
=

√
π

2qd
· (1 + o(1))

since erfc(0) = 1. Hence,

dq log q∑
�=1

(
1− 1

q

)�
· Prob(|C| = �) =

(
1 + o(1)

)
·
√

π

2qd
·
dq log q∑
�=1

∑
1≤�<dq log q

(
1− 1

q

)�
,

which, on summing the geometric series, equals(
1 + o(1)

)
·
√

π

2qd
· 1−O(q−d)

1− (1− 1/q)
= (
√
π/2 + o(1)) · q1−d/2.

�

As noted at the end of Section 8.1, this means if the random model is accurate,
then when d ≥ 5, there may be some α ∈ X(K) such that one cannot treat the
dynamical Mordell-Lang problem for OrbΦ(α) via the method of p-adic analytic
parametrization.

8.4. The case of split maps

We believe that the p-adic parametrization method does work for split maps, in
the sense that there should always be a prime p at which one can avoid ramification.
We begin by looking at what the random model heuristic suggests. We work with
the following setup:

• f : P1 −→ P1 is a rational map of degree at least one defined over a
number field K;

• p is a finite prime of good reduction for f ;
• rp is the usual reduction map from P1(K) to P1(kp), where kp the residue

field of p; and
• α and β are points in P1(K) such that β is not in the forward orbit of α.

The random model heuristic (see Sections 8.2 and 8.3) suggests that the chance
that there is an n such that

rp(f
n(α)) = rp(β)

should be about 1/
√

#kp. Thus, the density of primes p such that that there is an
n for which

rp(f
n(α)) = rp(β)

should be zero. If this were the case, then one could prove the split case of the
dynamical Mordell-Lang conjecture by letting the βi range over the critical points
of the maps involved.

However, the random model heuristic is not accurate in all cases. For example,
let

• f(x) = x3 + 5;
• K = Q; and
• α = 5 and β = 0.
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Then β is not in the forward orbit of α. On the other hand, for any prime p
satisfying

p ≡ 2 (mod 3),

the map f reduces to a permutation modulo p, and since

f(β) = α,

this means that there is an n such that

rp(f
n(α)) = β.

The density of such primes is obviously 1
2 , so the density of primes p such that

there is an n for which

rp(f
n(α)) = β

must be at least 1/2. In fact, Hamblen, Jones, and Madhu [HJM15] proved that
the proportion is exactly 1/2. They proved this by applying the Chebotarev density
theorem (see Theorem 2.4.0.1) to the Galois groups of the polynomials fm(x). It
turns out that these Galois groups take on a very specific structure as a subgroup
of finite index in a wreath product of the group Z2 (see [Odo85, Sto92, Jon08,
JKMT]). More generally, one might hope to use the theory of iterated Galois
groups to attack the problem at hand more generally (see also [Nek05, Jon15,
Jon13]). These considerations, along with the ideas of [BGHKST13] lead us to
make the following conjecture.

Conjecture 8.4.0.3. Let K be a number field. Let f1, . . . , fg ∈ K(x) all have
degree greater than one and let

α1, . . . , αg, β1, . . . , βg ∈ P1(K).

Suppose that for i = 1, . . . , g there is no n such that fn
i (αi) = βi. Let S be the set

of primes p such that for i = 1, . . . , g there is no n such that rp(f
n
i (αi)) = rp(βi),

where

rp : P1(K) −→ P1(kp)

is the usual reduction map. Then S has positive density among the primes of K.

This would imply that the dynamical Mordell-Lang conjecture is true for prod-
ucts of rational functions (what we call the “split case”), since one can find a positive
density of primes such that a given orbit avoids ramification (see Theorem 4.4.4.1
which proves the Dynamical Mordell-Lang Conjecture under the assumption that
such a prime can be found). Conjecture 8.4.0.3 has a similar flavor to Proposition
7.3.0.2. The difference here is that Conjecture 8.4.0.3 applies to any collection of
points, not just to collections of points containing at most one wandering point.

In fact, Conjecture 8.4.0.3 is stronger than what is needed to prove the split case
of the dynamical Mordell-Lang conjecture, since the points in Conjecture 8.4.0.3
need not be critical points for the maps fi. Many of the examples of rational
functions with pathological Galois groups are post-critically finite rational functions
(that is, rational functions all of whose critical points are preperiodic). Moreover,
in some cases, one can change the density of primes such that there is an n for
which

rp(f
n(α)) = rp(β)
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by taking a base extension. Take for example, the situation we considered earlier
where f(x) = x3 +5 and α = 5 and β = 0. Then, over Q, the proportion of primes
such that there is an n for which

rp(f
n(α)) = rp(β)

is 1/2, but if one extends to Q(ξ3) for ξ3 a primitive third root of unity the pro-
portion drops to zero (see [HJM15]). This leads us to pose the following question,
which is similar to Conjecture 8.4.0.3.

Question 8.4.0.4. Let K be a number field. Let φ ∈ K(x) have degree greater
than one. Let β be critical point of f . Suppose that β is not periodic. Is there a
finite extension K ′ of K such that if S is the set of primes of K ′ such that αp is
periodic under φp, then S has density zero among the primes of K ′?

A positive answer to Question 8.4.0.4 would also solve the split case of the
dynamical Mordell-Lang conjecture (see again Theorem 4.4.4.1).

A first step towards understanding Question 8.4.0.4 via the technique of iterated
Galois groups would be an answer to the following question, posed by Sookdeo
[Soo11].

Question 8.4.0.5. Let ϕ : P1 −→ P1 be a rational function defined over a
number field K, and let β ∈ P1(K) be a wandering point of ϕ. Is there a constant
C(ϕ, β) such that for any n the number of Gal(K/K)-orbits of points in ϕ−n(0) is
bounded above by C(ϕ, β)?

A solution to the dynamical Lehmer conjecture on lower bounds for canonical
heights of points (see [Sil07, Conjecture 3.25]) would yield a positive answer to
Question 8.4.0.5.
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CHAPTER 9

Higher dimensional results

In this chapter, we use the p-adic parametrization from Section 6.3 to prove
several instances of the Dynamical Mordell-Lang Conjecture. We prove Conjec-
ture 1.5.0.1 in two important instances:

(i) for orbits that are close p-adically to a periodic point β of the endomor-
phism Φ for which the JacobianDΦβ satisfies certain technical hypotehses;
and

(ii) for endomorphisms Φ of semiabelian varieties X.

There are also two different results (see Theorems 9.1.0.1 and 9.2.0.1) that
we prove when the orbit of α is close p-adically to a suitable periodic point; see
the statements of the aforementioned theorems for the precise results. In Theo-
rem 9.1.0.1, the p-adic closure of the orbit of α contains an attracting periodic
point, while in Theorem 9.2.0.1, α is in a suitable p-adic neighborhood of an in-
different periodic point. We prove Theorem 9.1.0.1 in Section 9.1, while Theo-
rem 9.2.0.1 is stated in Section 9.2 and then proved in Section 9.5 using also the
technical results from linear algebra obtained in Section 9.4. We state the result
for endomorphisms of semiabelian varieties in Section 9.3 and then we prove it in
Section 9.5 by employing the same strategy used in the proof of Theorem 9.2.0.1.

The method we employ in the proofs of the main results of this chapter is
therefore p-adic analytic. Often (but not always) our strategy is a generalization of
the Skolem’s method discussed first in Section 2.5 and then extended in Chapter 4
to the p-adic arc lemma that we used for proving other instances of the Dynami-
cal Mordell-Lang Conjecture, such as the case of étale endomorphisms (see Theo-
rem 4.3.0.1). After all, the Dynamical Mordell-Lang Conjecture for endomorphisms
of semiabelian varieties is a direct consequence of the main result of Chapter 4—see
Corollary 4.4.1.2. However, the proofs we present in this chapter are self-contained,
and they do not reply on the general form of the p-adic arc lemma developed in
Chapter 4 as employed in the proof of Theorem 4.4.1.1.

For more details regarding the results contained in this chapter, we refer the
reader to [GT09], whose exposition we also follow.

9.1. The Herman-Yoccoz method for periodic attracting points

First, we setup the notation for this section; most of this setup remains valid
throughout the entire chapter.

If X is a quasiprojective variety defined over a field L, and

Φ : X −→ X

is a morphism, and both β and Φ(β) are nonsingular points inX(L), then Φ induces
an L-linear map

DΦβ : Tβ −→ TΦ(β)

153
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154 9. HIGHER DIMENSIONAL RESULTS

where Tβ is the stalk of the tangent sheaf for X at β (see also Subsection 2.1.6).
Since β and Φ(β) are nonsingular, both Tβ and TΦ(β) are vector spaces of dimension
dimX over L (see [Har77, II.8] and also [Sha74]). Note that when L = C and β
and Φ(β) are in a coordinate patch U on the complex manifold Xsmooth(C) (which
is the set of smooth points of X(C); see Section 2.1.6), then DΦβ can be written in
coordinates using the partial derivatives of Φ with respect to these coordinates (i.e.,
DΦβ is the Jacobian matrix of Φ at β expressed with respect to these coordinates).

Let p be a prime number, and let Cp be the completion of a fixed algebraic
closure of Qp. We also use the notation D(�γ, r) ⊆ CN

p for the open disk centered

at �γ ∈ CN
p of radius r; also, sometimes, we drop the vector notation for a point in

CN
p and simply denote it γ (instead of �γ).

Now, using Corollary 6.3.0.5 we can prove the following result (see [GT09,
Theorem 1.3]). We note that the hypotheses in Theorem 9.1.0.1 are quite restric-
tive since this result is valid only when the Jacobian of a power ΦM is a nonzero
homothety , i.e.

DΦM = λ · Id,
for some nonzero constant λ.

Theorem 9.1.0.1 ([GT09]). Let p be a prime number, let X be a quasiprojec-
tive variety defined over Cp, and let

Φ : X −→ X

be a morphism defined over Cp. Let α ∈ X(Cp), and let V be a closed subvariety
of X defined over Cp. Assume the p-adic closure of the orbit OΦ(α) contains a
Φ-periodic point β of period dividing M such that β and all of its iterates are
nonsingular, and such that the Jacobian of ΦM at β is a nonzero homothety of p-adic
absolute value less than one. Then the set of all n ∈ N0 such that Φn(α) ∈ V (Cp)
is a union of finitely many arithmetic progressions.

Proof. We follow the arguments from the proof of [GT09, Theorem 1.3].
Let λ ∈ Cp such that

DΦM
β = λ · Id .

According to our hypotheses, we have 0 < |λ|p < 1. Let j ∈ {0, . . . ,M − 1} be
fixed. Using the fact that X(Cp) is a p-adic analytic manifold of dimension g in a
neighborhood of each iterate Φj(β), we may find an analytic function Fj defined

on a sufficiently small neighborhood Uj of �0 ∈ Cg
p which maps Uj bijectively onto a

neighborhood Vj of Φj(β). Then we write

Ψj := F−1
j ◦ ΦM ◦ Fj

as a function of the following form (note that D(Ψj)
0 = λ · Id):
Ψj(�x) := (F−1

j ◦ ΦM ◦ Fj)(�x) = λ · �x+ higher order terms .

Since

|λi − λ|p = |λ|p
for i ≥ 2, we see that (6.3.0.2) is satisfied; so we have a bijective analytic function

hj : D(�0, rj) −→ D(�0, rj),

for some rj > 0 such that

Ψj ◦ hj = hj ◦ λ Id
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and furthermore,

D (hj)
0 = Id,

by Theorem 6.3.0.3. Let r > 0 such that for each 0 ≤ j ≤M − 1, we have

(9.1.0.2) (Φj ◦ F0)(D(�0, r)) ⊆ Fj(D(�0, rj)).

Let N0 be the smallest positive integer such that

ΦN0(α) ∈ F0(D(�0, r)).

Then

ΦNj (α) ∈ Fj(D(�0, rj)),

where Nj := N0 + j for each j = 1, . . . ,M − 1. Let �αj ∈ D(�0, rj) satisfy

hj( �αj) = F−1
j (ΦNj (α)).

Since |λ|p < 1, we have

(9.1.0.3) (F−1
j ◦ ΦkM )

(
ΦNj (α)

)
= (Ψk

j ◦ hj)( �αj) = hj(λ
k · �αj).

Now, for each polynomial F in the vanishing ideal of V , we construct the
function

ΘF,j : D(0, 1) −→ Cp

given by

ΘF,j(z) := F ((Fj ◦ hj) (z · �αj)) .

The function ΘF,j is analytic because each hj is analytic on D(�0, rj), and �αj ∈
D(�0, rj).

For each k ∈ N such that

ΦkM+Nj (α) ∈ V (Cp),

we have ΘF,j(λ
k) = 0 for each F . Since

lim
k→∞

λk = 0,

we conclude that if there are infinitely many k such that

ΦN0+j+Mk(α) ∈ V (Cp),

then ΘF,j is identically equal to 0 (since the zeros of a p-adic analytic function
cannot accumulate, as shown in Lemma 2.3.6.1); hence

ΘF,j(λ
k) = 0 for all k ∈ N,

which means that F vanishes on all points ΦN0+j+Mk(α) for k ∈ N. Applying this
argument for all polynomials F in a finite set of generators for the vanishing ideal
of V , we conclude that

either ΦN0+j+Mk(α) ∈ V (Cp) for all k ∈ N(9.1.0.4)

or V (Cp) ∩OΦM

(
ΦN0+j(α)

)
is finite.

Since

OΦ(α) = {Φi(α) : 0 ≤ i ≤ N0 − 1}
⋃⎛⎝M−1⋃

j=0

OΦM (ΦN0+j(α))

⎞⎠ ,

we conclude the proof of Theorem 9.1.0.1. �

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



156 9. HIGHER DIMENSIONAL RESULTS

We observe that, just as in Remark 2.5.4.4, we obtain an upper bound for the
common difference of the (infinite) arithmetic progressions from the conclusion of
the Dynamical Mordell-Lang Conjecture in the setting of Theorem 9.1.0.1; more
precisely, the common difference of those arithmetic progressions is bounded above
by the order of the period of the point β.

Theorem 9.1.0.1 works on the p-adic analytic side along the same reasoning
as the Skolem-Mahler-Lech method and the p-adic arc lemma from Chapter 4: we
obtain a p-adic analytic parametrization of the orbit (piecewise) and then for each
polynomial F in the vanishing ideal of the subvariety V we construct a one-variable
p-adic analytic function z 	→ ΘF,j(z) such that

ΦMk+j(α) ∈ V (Cp) for k sufficiently large if and only if ΘF,j(λ
k) = 0,

for each F in a given finite set of generators for the vanishing ideal of V . Using the
fact that {λk}k∈N0

accumulate to 0 since |λ|p < 1, we obtain the same dichotomy
as in the classical Skolem-Mahler-Lech approach:

(1) either there exist only finitely many k such that ΦMk+j(α) ∈ V (Cp); or
(2) ΘF,j = 0 for each F , which yields that ΦMk+j(α) ∈ V (Cp) for all k

sufficiently large.

The difference from the p-adic arc lemma constructed in Chapter 4 is the fact
that the p-adic analytic functions ΘF,j are evaluated in this case at points λn

converging to 0 rather than being evaluated at points n ∈ Z ⊂ Zp. We also see that
it is essential that the Jacobian J of ΦM at β is a multiple of the identity. Indeed, if
J were a diagonal matrix, say, with eigenvalues λi which satisfy (6.3.0.2) we could
still use Theorem 6.3.0.3 and its Corollary 6.3.0.5 only that this time we would get
that for each polynomial F in the vanishing ideal of V there exists a p-adic analytic
function ΘF,j of g variables such that

(9.1.0.5) ΦMk+j(α) ∈ V (Cp) if and only if ΘF,j(λ
k
1 , . . . , λ

k
g) = 0 for each F.

Now, if |λi|p = 1, then we can apply the p-adic arc lemma exactly as in Chap-
ter 4 (see Theorem 9.2.0.1) and conclude the proof of Conjecture 1.5.0.1 in this
case.

Assume now that |λi|p < 1 for each i. Then in this case, (9.1.0.5) is generally
insufficient to allow us to apply Lemma 2.3.6.1 since we do not have a one-variable
p-adic analytic function. In general, the zero set of a multivariable p-adic analytic
function forms a positive dimensional p-adic analytic manifold, and thus it has
accumulation points. We could still find a one-variable p-adic analytic function
if each pair of the eigenvalues λi were multiplicatively dependent, and they still
satisfied condition (6.3.0.2) (after all, the case of Theorem 9.1.0.1 is when λ1 =
· · · = λg). However, in all other cases, it would generally be impossible to construct
a one-variable p-adic analytic function ΘF,j satisfying (9.1.0.5).

On the other hand, assuming each λi ∈ Zp, then arguing as in Chapter 11 (see
in particular Lemma 11.8.0.1), the multivariable parametrization from (9.1.0.5) for
arbitrary λi reduces to finding k ∈ N such that

G(k, pk) = 0,

where G is a p-adic analytic function of two variables. Indeed, since λi ∈ Zp, then

λi = ui · pei
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for some nonnegative integers ei and p-adic units ui. Then at the expense of
replacing M by (p− 1)M (and therefore replacing λi by λp−1

i ) we may assume

|ui − 1|p < 1.

Hence the existence of a p-adic analytic function G in two variables such that

G(k, pk) = ΘF,j(λ
k
1 , . . . , λ

k
g).

In Chapter 11 we prove a general statement (see Lemma 11.8.0.1) about the sparse-
ness of the set of positive integers k such that G(k, pk) = 0 (for such a non-trivial
p-adic analytic function G; note that if G were identically zero then we would obtain
an entire arithmetic progression in the set of iterates n such that Φn(α) ∈ V (Cp)).
For more about the sparseness of the set

{n ∈ N : Φn(α) ∈ V },

assuming V does not contain a positive dimensional periodic subvariety, we refer
the reader to Chapter 11.

A special case of Theorem 9.1.0.1 is the following result for orbits of points in
the vicinity of an attracting periodic point; see Subsection 6.3.1 for the definition
of attracting periodic points for endomorphisms of higher dimensional varieties.

Theorem 9.1.0.6 ([GT09]). Let N ≥ 1, let p be a prime number, let

ϕ1, . . . , ϕN ∈ Cp(t)

be rational functions, and let

Φ := (ϕ1, . . . , ϕN )

act coordinatewise on
(
P1
)N

. Let

α := (α1, . . . , αN ) ∈
(
P1
)N

(Cp),

and let V ⊆
(
P1
)N

be a subvariety defined over Cp. Assume the p-adic closure of
the orbit OΦ(α) contains an attracting Φ-periodic point

β := (β1, . . . , βN )

such that for some positive integer M , we have

ΦM (β) = β

and

(ϕM
1 )′(β1) = · · · = (ϕM

N )′(βN ).

Then the set of n ∈ N0 such that Φn(α) ∈ V (Cp) is a union of finitely many
arithmetic progressions.

Proof. We refer the interested reader to [GT09, Theorem 1.5]. �
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9.2. The Herman-Yoccoz method for periodic indifferent points

In this section we apply again the Herman-Yoccoz method (see Chapter 6 and
Section 6.3) but this time we use an embedding into Zp such that each eigenvalue
of the Jacobian matrix at the periodic point is a p-adic unit. So, using again the
parametrization of an orbit from Corollary 6.3.0.5, one obtains the following result
(see [GT09, Theorem 1.6]).

Theorem 9.2.0.1. Let X be a quasiprojective variety defined over a number
field K, let

Φ : X −→ X

be a morphism defined over K, and let V be a closed subvariety of X defined over
K. Let β ∈ X(K) be a periodic point of period dividing M such that β and its
iterates are all nonsingular points, and the Jacobian of ΦM at β is a diagonalizable
matrix whose eigenvalues λ1, . . . , λg satisfy

(9.2.0.2)

g∏
j=1

λ
ej
j �= λi,

for each 1 ≤ i ≤ g, and any nonnegative integers e1, . . . , eg such that
∑g

j=1 ej ≥ 2.
Then for all but finitely many primes p, there is a p-adic neighborhood Vp of β

(depending only on p and β) such that if

OΦ(α) ∩ Vp is non-empty

for α ∈ X(Cp), then the set of n ∈ N0 such that Φn(α) ∈ V (Cp) is a union of
finitely many arithmetic progressions.

Theorem 9.2.0.1 is connected both with Theorem 9.1.0.1 and with Theorem
4.4.1.1. The connection to Theorem 9.1.0.1 lies in the fact that in both the proof of
that result and also in the proof of Theorem 9.2.0.1 one starts by choosing an iterate
Φ�(α) that is very close to β. By the work of Herman and Yoccoz [HY83] (see our
Theorem 6.3.0.3) we obtain the existence of a p-adic function h in a neighborhood
of β such that, for a suitable positive integer M , we have

ΦM ◦ h = h ◦A,

for some linear function A. When A is a homothety, this means that iterates
of Φ�(α) under ΦM lie on an analytic line in Cg

p. Under the conditions of Theo-
rem 9.2.0.1, it is necessary to take p-adic logarithms of iterates in order to get a line
in Cg

p but otherwise the proof is the same. Note that existence of the map h in The-
orem 9.2.0.1 depends on Yu’s [Yu90] results on linear forms in p-adic logarithms,
which only apply over number fields. Under the conditions of Theorem 9.1.0.1, the
map h exists even when the eigenvalues of A are transcendental.

The connection between Theorem 9.2.0.1 and Theorem 4.4.1.1 lies in the fact
that in both cases one obtains p-adic analytic functions z 	→ ΘF,j(z) (for each
j = 0, . . . ,M−1, and for each polynomial F in the vanishing ideal of the subvariety
V ) such that

(9.2.0.3) ΦMk+j(α) ∈ V (Cp) if and only if ΘF,j(k) = 0 for each F.

In other words, for Theorem 9.2.0.1 the p-adic arc lemma applies. We postpone
the proof of Theorem 9.2.0.1 until Section 9.5. First we discuss in Section 9.3 the
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Dynamical Mordell-Lang Conjecture for arbitrary endomorphisms of semiabelian
varieties, which motivated the authors of [GT09] to prove Theorem 9.2.0.1.

9.3. The case of semiabelian varieties

As we previously wrote, the motivation for obtaining Theorem 9.2.0.1 lay, at
the time of writing [GT09], in finding a self-contained proof of the Dynamical
Mordell-Lang Conjecture for endomorphisms of semiabelian varieties.

Theorem 9.3.0.1. Let A be a semiabelian variety defined over C, and let

Φ : A −→ A

be an arbitrary endomorphism defined over C. Then for every subvariety V ⊆ A
defined over C, and for every point α ∈ A(C), the set of n ∈ N0 such that

Φn(α) ∈ V (C)

is a union of finitely many arithmetic progressions.

We note that an arbitrary endomorphism Φ of a semiabelian variety A is the
composition of an algebraic group endomorphism (i.e., an endomorphism of A as
an algebraic group) and a translation; see Subsection 2.1.9. Theorem 9.3.0.1 was
proven in [GT09] in the special case when Φ is an algebraic group endomorphism.

One can prove Theorem 9.3.0.1 by reducing it to deep results of Faltings [Fal91]
and Vojta [Voj96] (see Theorem 3.4.2.1) that settled the classical Mordell-Lang
Conjecture; see Section 3.4. Indeed, any endomorphism Φ of a semiabelian variety
A is of the form

γ 	→ Φ(γ) = Ψ(γ) + β,

where Ψ is an algebraic group endomorphism of A, and β ∈ A(C) is a given point.
On the other hand, each algebraic group endomorphism of A is integral over Z.
More precisely, if g := dim(A), then there exists a monic polynomial P ∈ Z[z] of
degree at most 2g such that P (Ψ) = 0. Since for any given α ∈ A(C), we have

Φn(α) = Ψn(α) +
(
Ψn−1 + · · ·+Ψ+ 1

)
(β),

we conclude that OΦ(α) lies in the finitely generated subgroup Γ of A(C) spanned
by Ψi(α) and Ψi(β) for i = 0, . . . , 2g − 1. Then by Theorem 3.4.2.1, we get that

Γ ∩ V (C) =
⋃
i

γi +Hi,

for some γi ∈ A(C) and some subgroups Hi ⊆ Γ. Thus Theorem 9.3.0.1 reduces to
determining the set of all n ∈ N0 such that

Φn(α) ∈ (γ +H),

for a given coset γ + H of Γ. Since Φ induces an affine map on the Z-module Γ
(i.e., it is a composition of a translation by an element of Γ with a linear map on
Γ), a simple combinatorial argument finishes the proof of Theorem 9.3.0.1.

Also, Theorem 9.3.0.1 is an immediate consequence of Theorem 4.4.1.1 since
Φ is unramified. However, we show in Section 9.5 how to deduce Theorem 9.3.0.1
without appealing to the more technical (both geometric and p-adic analytic) con-
struction from [BGT10] which yields Theorem 4.4.1.1. Also, our method of proof
for Theorem 9.3.0.1 does not appeal to the powerful theorem of Vojta [Voj96];
instead we apply a strategy common for the proof of both Theorem 9.3.0.1 and of
Theorem 9.2.0.1.
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9.4. Preliminaries from linear algebra

Before proving Theorems 9.2.0.1 and 9.3.0.1 we need to derive a technical result
from linear algebra, which also involves p-adic analytic functions.

Proposition 9.4.0.2 is key for our proofs of both Theorems 9.3.0.1 and 9.2.0.1.
We need a definition first (see [Lan02, XI.2]).

Definition 9.4.0.1. By a Jordan matrix we mean a matrix which is in its
Jordan form, i.e. it consists of its Jordan blocks. A Jordan block is either a
multiple of the identity matrix, or it is an upper-triangular matrix whose entries
on the diagonal are all equal, and the only nonzero entries outside the diagonal are
the entries on the line above the diagonal which are all equal to one.

Before stating our key linear algebra result, we recall that Mn,n(F ) always
represents the set of all n-by-n matrices with entries in the field F .

Proposition 9.4.0.2. Let J ∈MN,N (Cp) be a Jordan matrix with the property
that each eigenvalue λi of J is either equal to 0, or satisfies |λi|p = 1, and let
b ∈ CN

p be an arbitrary vector. We let

Ψ : CN
p −→ CN

p be defined by Ψ(v) = Jv + b.

Then for each v ∈ CN
p there exists a positive integer d (depending only on J) and

a p-adic analytic function

f := fΨ,v : D(0, 1) −→ CN
p

such that for each positive integer k, we have

f(k) = Ψdk(v).

Proposition 9.4.0.2 is a generalization of [GT09, Proposition 3.1].

Proof of Proposition 9.4.0.2. Working on subspaces of CN
p corresponding

the Jordan blocks of J , we see immediately that it suffices to prove the conclusion
under the assumption that J is an N -by-N Jordan block; so, from now on, we
assume J is an N -by-N Jordan block.

An easy computation shows that for each d, n ∈ N we have

Ψdn(v) = Jdnv +
(
Jd(n−1) + · · ·+ Jd + Id

) (
Jd−1b+ · · ·+ Jb+ b

)
.

There are two cases: the (unique) eigenvalue λ of J is either zero or nonzero.
Case 1. λ = 0.
We let d be the dimension N of J and therefore Jd = 0. For each k ∈ N we

have

Ψdk(v) = Jd−1b+ · · ·+ Jb+ b.

Hence we may take f be the constant function

f(z) :=

d−1∑
i=0

J ib.

Case 2. |λ|p = 1.
Using Proposition 2.3.3.3, there exists a positive integer d such that

(9.4.0.3) |λd − 1|p < p−
1

p−1 .
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Assume first that

λd �= 1.

Then we see that the matrix

Jd − Id is invertible,

and so there exists a vector w ∈ Cg
p such that

(Jd − Id)w =
d−1∑
i=0

J ib.

Then

Ψdk(v) = Jdkv +
(
Jdk − Id

)
w

and the result follows easily because all entries of Jdk are p-adic analytic functions
in the variable k, convergent whenever |k|p ≤ 1. Here we use (9.4.0.3) and also
Lemma 2.3.4.2 which yields that

z 	→ (λd)z is analytic if |z|p ≤ 1.

Note that the following N -by-N matrix, defined for each z ∈ D(0, 1) by

(Jd)z := (λd)z ·

⎛⎜⎜⎜⎜⎜⎝
1 z

1!·λ
z(z−1)
2!·λ2 . . . z(z−1)···(z−N+1)

N !·λN−1

0 1 z
1!·λ . . . z(z−1)···(z−N+2)

(N−1)!·λN−2

0 0 1 . . . z(z−1)···(z−N+3)
(N−2)!·λN−3

. . . . . . . . . . . . . . .
0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎠
has the property that (Jd)z equals the usual power Jdk whenever k ∈ N.

Assume now that

λd = 1.

Then

Jd = Id+J0,

where J0 is a nilpotent matrix, i.e.

JN
0 = 0.

Then for each z we may define a matrix Jdz whose entries are all polynomial
functions in z, as follows:

Jdz = (Id+J0)
z :=

N−1∑
n=0

z(z − 1) · · · (z − n+ 1)

n!
· Jn

0 .

Hence
n−1∑
i=0

Jdi =
N−1∑
k=0

(
n−1∑
i=0

i(i− 1) · · · (i− k + 1)

k!

)
· Jk

0 =
N−1∑
k=0

gk(n) · Jk
0 ,

where each gk ∈ Q[z] is a polynomial of degree (k + 1). In conclusion, we can let
f : D(0, 1) −→ CN

p be defined by

f(z) = Jdzv +

(
N−1∑
k=0

gk(z) · Jk
0

)(
d−1∑
i=0

J ib

)
,

which satisfies the conclusion of Proposition 9.4.0.2. �
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9.5. Proofs for Theorems 9.2.0.1 and 9.3.0.1

In this section we conclude the proofs of Theorem 9.2.0.1 and 9.3.0.1.

Proof of Theorem 9.2.0.1. Let B ∈ GLN (K) such that

Λ := B(D(ΦM )β)B
−1 is a diagonal matrix.

At the expense of replacing K by a finite extension, we may assume

B ∈ GLN (K).

Then for all but finitely many primes p, the entries of both B and B−1 have p-adic
absolute values at most 1. Let λi (for 1 ≤ i ≤ N) be the eigenvalues of D(ΦM )β.
According to our hypotheses, each λi is nonzero. Thus for all but finitely many
primes p, each λi is a p-adic unit. Fix a prime p and an embedding of K into Cp

such that

• |λi|p = 1 for each i; and
• each entry in B and B−1 is a p-adic integer.

Let j ∈ {0, . . . ,M − 1} be fixed. Clearly, we have

D(ΦM )Φj(β) = D(ΦM )β.

Since each Φj(β) is a nonsingular point, there exists a sufficiently small neighbor-

hood Uj ⊆ Cg
p of �0, and an analytic function Fj that maps Uj bijectively onto a

small neighborhood of Φj(β) ∈ X(Cp). Let

Ψj := F−1
j ◦ ΦM ◦ Fj .

Then
Ψj(�x) = (B−1ΛB) · �x+ higher order terms.

Using hypothesis (9.2.0.2) and [Yu90, Theorem 1], we conclude that (6.3.0.2) is
satisfied by the eigenvalues λi. Using Theorem 6.3.0.3, we conclude that there exists
a positive number rj > 0 such that

D(�0, rj) ⊆ Uj ,
and there exists a bijective analytic function

hj : D(�0, rj) −→ D(�0, rj)

such that

Ψj ◦ hj = hj ◦ (B−1ΛB).

Let r be a positive number such that for every j = 0, . . . ,M − 1 we have

Φj(F0(D(�0, r))) ⊆ Fj(D(�0, rj)).

We let

Vp := F0(D(�0, r))

be the corresponding p-adic neighborhood of β in X(Cp). Suppose that

OΦ(α) ∩ Vp is non-empty.

Then there exists N0 ∈ N such that

ΦN0(α) ∈ Vp,
and so,

ΦNj (α) ∈ Fj(D(�0, rj))
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where Nj := N0 + j, for each j = 0, . . . ,M − 1. Let �αj ∈ D(�0, rj) such that

hj( �αj) = F−1
j (ΦNj (α)).

Then for each k ∈ N, we have

ΦkM+Nj (α) = (Fj ◦ hj)
(
B−1ΛkB( �αj)

)
.

Note that

B−1ΛkB( �αj) ∈ D(�0, rj)

for each k ∈ N, since each entry of B, B−1, and Λ is in D(0, 1),
Let d be a positive integer as in the conclusion of Proposition 9.4.0.2. Then the

entries of the matrix (Λd)z are p-adic analytic functions of z in the disk D(0, 1).
Therefore, for each fixed � = 0, . . . , d − 1, the entries of the matrix Λ� · (Λd)z are
p-adic analytic functions of z ∈ D(0, 1).

Let F be any polynomial in the vanishing ideal of V . Then, for each j =
0, . . . ,M − 1 and for each � = 0, . . . , d− 1, the function

ΘF,j,� : D(0, 1) −→ Cp

defined by

ΘF,j,�(z) = F
(
(Fj ◦ hj)

(
B−1

(
Λ� · (Λd)z

)
B(αj)

))
is analytic. Furthermore, for each k ∈ N such that

ΦN0+j+M(kd+�)(α) ∈ V (Cp)

we obtain that ΘF,j,�(k) = 0 for each F in the vanishing ideal of V . Since the zeros
of a nonzero p-adic analytic function cannot accumulate (see Lemma 2.3.6.1), we
conclude that if there are infinitely many k ∈ N such that ΘF,j,�(k) = 0, then ΘF,j,�

is identically equal to zero, and thus F vanishes on all points ΦN0+j+M(kd+�)(α)
for k ∈ N. Applying this argument to each F in a finite set of generators for the
vanishing ideal of V , we conclude that

either ΦN0+j+M(kd+�)(α) ∈ V (Cp) for all k ∈ N(9.5.0.4)

or V (Cp) ∩ OΦMd

(
ΦN0+j+M�(α)

)
is finite.

Since (9.5.0.4) holds for each j = 0, . . . ,M − 1 and for each � = 0, . . . , d − 1, this
concludes the proof of Theorem 9.2.0.1. �

We conclude this section by proving Theorem 9.3.0.1.

Proof of Theorem 9.3.0.1. Since Φ is an endomorphism of a semiabelian
variety, it is a composition of a an algebraic group endomorphism Ψ with a trans-
lation by a point β ∈ A, i.e.,

Φ(γ) = Ψ(γ) + β,

for each γ ∈ A. We let L := DΨ0 be the Jacobian of Ψ at the identity of A.
We proceed by induction on the dimension of V . The case dimV = 0 follows

from Corollary 3.1.2.11. Using the inductive hypothesis, we prove the following
reduction.

Claim 9.5.0.5. Let m ∈ N. It suffices to prove Theorem 9.3.0.1 for the starting
point mα and for the endomorphism

Φ1 : A −→ A,

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



164 9. HIGHER DIMENSIONAL RESULTS

defined for all γ ∈ A by
Φ1(γ) = Ψ(γ) +mβ.

Proof of Claim 9.5.0.5. As we wrote before, we argue by induction on the
dimension of V ; the case dim(V ) = 0 is the content of Corollary 3.1.2.11 (since
Conjecture 1.5.0.1 holds in this case).

Now, assume dim(V ) ≥ 1. We have that for all n ∈ N,

Φn
1 (mα) = mΦn(α).

Then, given any subvariety V , we know that the set of n for which

Φn(mα) ∈ mV

forms a finite union P of arithmetic progressions (note that we denote by mV the
image of V under the multiplication-by-m-map on A). Thus, if we let W be the
inverse image of mV under the multiplication-by-m map (so, W is the finite union
of translates of V by torsion points of A of order m) we know that the set of n such
that

Φn(α) ∈W

forms the same finite union P of arithmetic progressions. We let Z1, . . . , Zs be the
positive dimensional irreducible components of the Zariski closure of

{Φn(α)}n∈P ;

note that if {Φn(α)}n∈P is finite, then also V (K) ∩OΦ(α) is finite, and so, we are
done. Hence each Zi is a Φ-periodic subvariety, i.e.,

Φ(Zi) ⊆ Zi; see Proposition 3.1.2.14.

Also, all but finitely many of the Φn(α) for n ∈ P are contained in one of the
Zi(K). Thus, we need only show that for each i, the set of n such that

Φn(α) ∈ V ∩ Zi

forms a finite union of arithmetic progressions. Each Zi is contained in one of
irreducible components of W and thus

dimZi ≤ dimV.

If Zi is contained in V , then the set of n for which

Φn(α) ∈ Zi = Zi ∩ V

is a finite union of arithmetic progressions, since Zi is Φ-periodic. If Zi is not
contained in V , then

dim(Zi ∩ V ) < dim(Zi) ≤ dimV

and the set of n such that Φn(α) ∈ Zi∩V is a finite union of arithmetic progressions
by the inductive hypothesis. �

At the expense of replacing K by another finitely generated field, we may
assume the Jacobian L is defined over K. We choose an embedding over C of

ι : A −→ PM

as an open subset of a projective variety (for some positive integer M). At the
expense of enlarging K, we may assume the above embedding ι is defined over K.
We write

ι(A) = Z(a) \ Z(b)
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for homogeneous ideals a and b in K[x0, . . . , xM ], where Z(c) denotes the Zariski
closed subset of PM on which the ideal c vanishes. We choose generators F1, . . . , Fm

and G1, . . . , Gn for a and b respectively. We let

⊕ : A×A −→ A and � : A −→ A

denote the addition, respectively the inversion map, written with respect to our
chosen coordinates on PM .

The following result is proven by an argument similar to Proposition 4.4.1.4;
for more details, see also [GT09, Claim 3.3].

Claim 9.5.0.6. There exists a prime number p, and an embedding of K into
Qp such that:

(i) there exists a Spec(Zp)-scheme A whose generic fiber equals A;
(ii) α, β ∈ A(Zp);
(iii) L is conjugate over Zp to its Jordan canonical form Λ (which is an N×N

matrix), and moreover each of its eigenvalues λi is either a p-adic unit or
equal to 0;

(iv) the maps Φ and � extend as endomorphisms of the Zp-scheme A, while
⊕ extends to a morphism between A×A and A.

Let p be a prime number for which the conclusion of Claim 9.5.0.6 holds. Then
we have a Zp-scheme A whose generic fiber equals A such that α, β ∈ A(Zp).

Claim 9.5.0.7. With the above notation, A(Zp) is compact .

Proof of Claim 9.5.0.7. Let V and W be the Zariski closures of Z(a) and
respectively Z(b) in A. Then

A(Zp) = V(Zp) ∩
(
PN \W

)
(Zp)

is compact because it is the intersection of two compact subsets of PN (Zp). Indeed,
V(Zp) is compact because it is a closed subset of the compact set PN (Zp). On the
other hand, (

PN \W
)
(Zp)

consists of finitely many residue classes of PN (Zp) and thus, it is compact because
Zp is compact. The above finitely many residue classes correspond to points in(

PN \ Z(b )
)
(Fp),

where b is the ideal of Fp[x0, . . . , xN ] generated by the reductions modulo p of each
generator Gi of b. �

According to [Bou98, Proposition 3, p. 216] there exists a p-adic analytic map

exp : Cg
p −→ A(Cp)

which maps a sufficiently small neighborhood D(�0, r) of �0 ∈ Cg
p bijectively onto

a sufficiently small neighborhood of 0 ∈ A(Cp). Since exp is a local isomorphism
of the analytic groups Cg

p and A(Cp), we conclude that any endomorphism of A
corresponds to an affine map of (Cg

p,+); thus there exists an affine map

ϕ : Cg
p −→ Cg

p

such that

(9.5.0.8) Φ(exp(z)) = exp(ϕ(z)).
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Computing the Jacobian at �0 in (9.5.0.8), we obtain that

Dϕ
0 = L

because the embedding into Cp preserves the Jacobian L of Φ at 0. Therefore

ϕ(z) = L · z + b

for some given b ∈ Cg
p.

After replacing α and β by m · α and respectively m · β, for a positive integer
m (as we are allowed to do so, by Claim 9.5.0.5), we may assume

α, β ∈ exp(D(�0, r)).

To see this, we note that D(�0, r) is an additive subgroup because | · |p is non-
archimedean, so its image in A(Qp) under exp is an open subgroup because exp is

bijective and analytic on D(�0, r). The fact that A(Zp) is compact (by Claim 9.5.0.7)
means that any open subgroup of A(Zp) has finitely many cosets in A(Zp). Since
α, β ∈ A(Zp), there is a positive integer m such that

mα,mβ ∈ exp(D(�0, r)).

Let �v,�b ∈ D(�0, r) such that

exp(�v) = α and exp(�b) = β.

Since the coefficients of L are all p-adic integers, it follows that

Ln�v ∈ D(�0, r) for any n ∈ N.

Let d be as in Proposition 9.4.0.2 corresponding to the map ϕ, and let f
v := fϕ,
v
be the p-adic analytic function on D(0, 1) such that for every positive integer k we
have

f
v(k) = ϕdk(�v).

Let �vj := ϕj(�v), for each j = 0, . . . , d− 1.
The remaining part of our argument now proceeds as in the proof of Theo-

rem 9.2.0.1. Fix j ∈ {0, . . . , d− 1}. Using (9.5.0.8) we obtain that for each k ∈ N,
we have

Φj+kd(α) = exp
(
ϕdk(�vj)

)
.

For each polynomial F in the vanishing ideal of V , we define the function ΘF,j on

D(0, 1) by
ΘF,j(z) = F

(
exp
(
f 
vj (z)

))
.

So, ΘF,j is analytic, and assuming that there are infinitely many k ∈ N such that

Φj+kd(α) ∈ V (Cp),

we see that ΘF,j is identically equal to 0. This means that F vanishes on all points
Φj+kd(α) for k ∈ N. We conclude that

either Φj+kd(α) ∈ V (Cp) for all k ∈ N(9.5.0.9)

or V (Cp) ∩ OΦd(Φj(α)) is finite.

This concludes the proof of Theorem 9.3.0.1. �
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CHAPTER 10

Additional results towards the Dynamical
Mordell-Lang Conjecture

In this chapter we discuss additional special cases of Conjecture 1.5.0.1. The
novelty of these results is that they do not rely either on the p-adic arc lemma
(see Chapter 4 and [BGT10]), nor on results about polynomial decomposition (see
Chapter 5 and [GTZ08, GTZ12]). We first describe the results presented in this
chapter.

The Dynamical Mordell-Lang Conjecture (and especially its generalization from
Question 3.6.0.1) asks for a description of the possible algebraic relations between
points in an orbit. In the first two Sections of this chapter we discuss a couple of
results due to Thomas Scanlon [Sca11, Sca] regarding analytic relations between
points in an orbit. Note that in general there is no p-adic analytic version of
the Dynamical Mordell-Lang Conjecture (see Proposition 11.10.0.1). However, in
Section 10.1, we present the findings of [Sca] which can be viewed as an instance
of the Dynamical Mordell-Lang Conjecture in the context of v-adic analytic maps
(under suitable hypotheses). In Section 10.2 we present a real-analytic instance of
the Dynamical Mordell-Lang Conjecture based on the results of [Sca11].

In Section 10.3 we present briefly a result of Junyi Xie (see Theorem 10.3.0.1 and
also [Xie14]) who proved the Dynamical Mordell-Lang Conjecture for birational
polynomial self-maps on A2. We also mention that while writing the last version
of this book, we found out that Xie [Xieb] proved the Dynamical Mordell-Lang
Conjecture for all endomorphisms of A2 which is based on his deep analysis from
[Xiea] of valuation subrings of a polynomial ring in 2 variables over a field of
characteristic 0. The preprint [Xieb] is 95 pages long and it is based on another
preprint of Xie [Xiea] which is itself 42 pages long. So, while we do not describe
the intricate proof of Xie for arbitrary endomorphisms of A2, we present briefly
the special case of birational polynomial self-maps on A2; we mention that a very
detailed description of the strategy employed by Xie for the case of endomorphisms
of A2 can be found in [Xieb, pp. 4–7].

10.1. A v-adic analytic instance of the Dynamical Mordell-Lang
Conjecture

10.1.1. The philosophy of special points and special subvarieties.
First we recall from Subsection 3.4.3 the interpretation of special points and spe-
cial subvarieties in the context of the Dynamical Mordell-Lang Conjecture; this
is connected with the classical Mordell-Lang Conjecture and also with other fa-
mous conjectures in arithmetic geometry such as the André-Oort, Bogomolov, or
Pink-Zilber conjectures. So, for a quasiprojective variety X defined over a field of
characteristic 0 endowed with an endomorphism Φ, the special points are the ones
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contained in a given (infinite) orbit O under Φ, while the special (irreducible) sub-
varieties V ⊆ X are periodic (irreducible) subvarieties intersecting O. Then among
all irreducible subvarieties V of X, it is precisely the special subvarieties that have
the property that

V ∩ O is Zariski dense in V .

More generally, Question 5.1.2.1 (see also Question 3.6.0.1 which generalizes both
the classical Mordell-Lang and the Dynamical Mordell-Lang conjectures) asks for
a similar description of the special subvarieties of AN under the action of an endo-
morphism Φ of the form

(x1, . . . , xN ) 	→ (f1(x1), . . . , fN (xN )),

for some polynomials fi ∈ K[z], where char(K) = 0. This time, the special points
of AN are points belonging to a product of (infinite) orbits:

(10.1.1.1) Of1(α1)× · · · × OfN (αN ),

for some points αi ∈ K. Then Question 5.1.2.1 (see also Proposition 3.1.2.14)
predicts that the special subvarieties of AN are periodic subvarieties V under the
action of a map of the form

(10.1.1.2) (x1, . . . , xN ) 	→
(
fk1
1 (x1), . . . , f

kN

N (xN )
)

for some k1, . . . , kN ∈ N0 not all equal to 0 such that V also intersects the product
of orbits from (10.1.1.1).

Scanlon [Sca] described the special subvarieties in the following related scenario
(for the precise statement, see Theorem 10.1.2.4). Let K be a complete discretely
valued field and let

f : D(0, 1) −→ D(0, 1)

be a non-constant analytic map from the unit disk to itself. We assume that
0 is an attracting fixed point of f . Let α be an element of K whose orbit Of (α)
converges to 0. If 0 is a super-attracting fixed point, then Scanlon [Sca] proves that
every irreducible analytic subvariety of D(0, 1)N meeting Of (α)

N in an analytically
Zariski dense set is defined by equations of the form

(10.1.1.3) xi = β and xj = f(xk).

When 0 is an attracting point but is not super-attracting, then Scanlon [Sca] shows
that all analytic relations come from algebraic tori.

Hence the results of [Sca] describe the possible analytic relations between points
in an orbit, as long as the orbit lies in the basin of attraction of a fixed point.
In addition, Scanlon’s result applies to analytic maps Φ not necessarily algebraic
maps (as we considered before in the Dynamical Mordell-Lang Conjecture). So, on
one hand, the results of [Sca] are more general than the Dynamical Mordell-Lang
Conjecture (even in its strong form from Question 3.6.0.1) because Scanlon works
with analytic maps and not only that he proves the special subvarieties are indeed
the ones periodic under a map of the form given in (10.1.1.2), but also Scanlon
[Sca] gives the precise form of all special subvarieties (see (10.1.1.3)). On the other
hand, the results of [Sca] apply only when

f := f1 = · · · = fN and α := α1 = · · · = αN ,

and most importantly, the point α is in a suitable neighborhood of an attracting
point for the map f . For example, assuming f is a polynomial defined over a
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number field L, it is usually difficult to find a prime number p and an embedding
of L into Qp such that this condition on α is verified with respect to the norm | · |p
on Qp.

10.1.2. Statement of the result. We state in Theorem 10.1.2.4 a special
case of [Sca] when K is a finite extension of Qp. We start by defining the analytic
Zariski topology on AN .

Definition 10.1.2.1. We call V ⊆ AN an analytic subvariety if it is the zero
set of finitely many analytic functions in K[[z1, . . . , zN ]]. A subset S of V is analytic
Zariski dense in V if V is the smallest analytic subvariety containing S.

Let Φ be a p-adic analytic map which converges on a small open ball B centered
at 0 of radius leass than 1 such that

Φ(z) =
∑
n≥M

cnz
n,

where cn ∈ K for all n, and M ≥ 1 such that 0 < |cM |p < 1. In particular, for each
x ∈ B we assume that

|cnxn|p < |cMxM |p if n > M.

Then 0 is a fixed point for Φ, and if M > 1 then 0 is a super-attracting point for Φ;
otherwise it is only an attracting fixed point. We consider a point α ∈ K such that
its orbit OΦ(α) intersects the ball B, and thus Φn(α) converges to 0 as n→∞. To
ease the notation, we assume from now on that

α ∈ B \ {0}.
Note that if α = 0, then the orbit consisits of a single point and thus no positive
dimensional subvariety of AN can have a Zariski dense intersection with a Cartesian
power of the orbit; therefore for each nonnegative integers m < n we have

|Φm(α)|p > |Φn(α)|p.

We call a subvariety V ⊆ AN special if it has an analytically Zariski dense
intersection with OΦ(α)

N (the N -th Cartesian power of the orbit of α under Φ).
In order to describe the special subvarieties, we start with a definition from [Sca].

Definition 10.1.2.2. Let n ∈ N and let I ⊆ K[z1, . . . , zN ] be an ideal gener-
ated by a set of the form

{zi − Φmi(α) : i ∈ I}
⋃{

zj − Φ�j,k(zk) : (j, k) ∈ J
}

where I ⊆ {1, . . . , N} and J ⊆ {1, . . . , N}2, and each mi and �j,k is a nonnegative
integer. We let V := VI be the analytic variety defined by I and we call V an
iterational special variety.

Unless the equations from Definition 10.1.2.2 are inconsistent, for each i ∈ I
there exists a unique value of mi appearing in the above equations, and also for each
(j, k) ∈ J there exists a unique value �j,k appearing in the defining equations for
VI . In [Sca, Proposition 3.3], it is shown that V = VI is irreducible, and moreover
it has an analytically Zariski dense intersection with OΦ(α)

N .
With the above notation for Φ, assume M = 1 and let λ := c1 (i.e., λ = Φ′(0));

so 0 is a fixed attracting, but not super-attracting fixed point for Φ. Then (see
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Lemma 6.2.1.1) there exists an analytic function h convergent in a small ball around
0 such that

h(Φ(z)) = λh(z).

At the expense of replacing B with a smaller ball, we may assume h is analytic on
B. We extend diagonally the action of h on AN .

Definition 10.1.2.3. With the above notation, we say that an analytic sub-
variety V of BN is a deformed torus, if there exists a connected algebraic torus T
(see Subsection 2.1.9), and there exists a point ζ ∈ BN such that

h(V ) = (ζ · T ) ∩ BN .

It is easy to prove (see [Sca, Proposition 3.7]) that (with the notation as in
Definition 10.1.2.3) if

ζ =
(
Φt1(α), . . .ΦtN (α)

)
,

and if A = (ai,j) is a k×N matrix with integer coefficients such that the connected
algebraic torus T is given by the equations

N∏
i=1

x
aj,i

i = 1 for j = 1, . . . , k,

then

V ∩ OΦ(α)
N =

{
(Φs1(α), . . . ,ΦsN (α)) :

N∑
i=1

aj,i(si − ti) = 0 for j = 1, . . . , k

}
.

Moreover, V ∩ OΦ(α) is analytically Zariski dense in V . Then the main result of
[Sca] is the following.

Theorem 10.1.2.4 (Scanlon [Sca]). With the above notation, we have:

• if M = 1, then an irreducible analytic variety V ⊆ BN meets OΦ(α)
N in

an analytically Zariski dense set if and only if V is a deformed torus; and
• if M ≥ 2, then an irreducible analytic variety meets OΦ(α) in an analyt-
ically Zariski dense set of and only if it is iterational.

The proof of Theorem 10.1.2.4 follows by induction on N , the more difficult
case being when M = 1. In this case, one uses the explicit description of the
intersection between a linear subvariety of GN

m with a finitely generated subgroup
of GN

m(C) as proved in [vdDG06]. We state below the refinement of the result
from [vdDG06] for the setting of [Sca]

Proposition 10.1.2.5 (Scanlon [Sca]). Let Γ ⊆ C∗ be a finitely generated
multiplicative subgroup. If c, c1, . . . , cN ∈ C then the set{

(γ1, . . . , γN ) ∈ ΓN : c1γ1 + · · ·+ cNγN = c
}

is a finite union of sets defined by equations of the form

xi = γ and xj = δxk

for γ, δ ∈ Γ.

Proof. We refer the interested reader to [Sca, Lemma 3.11]. �
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10.2. A real analytic instance of the Dynamical Mordell-Lang
Conjecture

10.2.1. The Dynamical Mordell-Lang principle. To describe the result
of [Sca11], first we formulate informally the Dynamical Mordell-Lang principle.
Given a topological set X endowed with a continuous self-map Φ, a closed subset
V ⊆ X, and a point α ∈ X, we say that the Dynamical Mordell-Lang principle
holds if the set

S(V,Φ, α) := {n ∈ N0 : Φ
n(α) ∈ V }

is a finite union of arithmetic progressions. Obviously, this principle is generally not
satisfied; for example, one could consider the discrete topology on X, and therefore
S(V,Φ, α) could be any subset of N0. Even ifX is a metric space, there are examples
when S(V,Φ, α) is not necessarily a finite union of arithmetic progressions; see, for
example, Proposition 11.10.0.1 for a counterexample when

X = Qp ×Qp and Φ(x, y) = (x+ 1, py).

However, if X is Noetherian, then at least one can prove that at the very worst,
S(V,Φ, α) differs from a finite union of arithemtic progressions by a set of Banach
density equal to 0 (see Theorem 11.1.0.7); for a comprehensive discussion on this
topic, see Chapter 11 (especially Section 11.4).

10.2.2. Description of the result. In [Sca11], Scanlon shows that the Dy-
namical Mordell-Lang principle holds in some cases for real-analytic spaces. More
precisely (see Corollary 10.2.4.4), Scanlon proves that if f1, . . . , fN are real analytic
functions mapping the interval (−1, 1) into itself for which

fi(0) = 0 and |f ′
i(0)| ≤ 1,

and if α = (α1, . . . , αN ) is close enough to the origin of X = AN , and H(z1, . . . , zN )
is a real analytic function in N variables, then the set

{n ∈ N0 : H (fn
1 (α1), . . . , f

n
N (αN )) = 0}

is either all of N0, all of the odd numbers, all of the even numbers, or is finite. In
particular the Dynamical Mordell-Lang principle holds for the real analytic map
Φ := (f1, . . . , fN ) acting on AN . Actually, Scanlon [Sca11] proves a more general
result valid for analytic endomorphisms of (−1, 1)N which are not necessarily given
by the coordinatewise action of N one-variable analytic maps; for more details, see
Theorem 10.2.4.3.

The motivation for the proof from [Sca11] comes from the Skolem-Mahler-
Lech method presented in Chapter 4 only that Scanlon uses real analytic functions
instead of p-adic analytic functions. At first glance the translation to the real
analytic world seems to be unsuccessful since Z is not a compact subset of R and
thus the main lemma of zeros (see Lemma 2.3.6.1) for p-adic analytic functions does
not have an analogue for real analytic functions. However, in certain instances (as
the one outlined above), one can find a function

F : R+ −→ X(R)

such that for all n ∈ N0 we have

F (n) = Φn(α),

where F is definable in an o-minimal expansion of the field of real numbers. Then
it would follow from the o-minimality principle that if such an orbit has infinite
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intersection with an algebraic subvariety of X, then all but finitely many of the
points from the orbit lie in the subvariety.

10.2.3. Background on o-minimal theory. We start by briefly introducing
the basic notions regarding o-minimal structures (we refer to [Sca11] for more
details; our presentation follows closely [Sca11] but we leave out certain details).
First, we recall the definition of definable sets in first-order logic.

Definition 10.2.3.1. We give the definition of definable sets with parameters
as follows:

• Let L be a first-order language, let M be an L-structure with domain
M , let X ⊆ M , and let m ∈ N. A set A ⊆ Mm is definable in M with
parameters from X if and only if there exists a formula

ϕ[x1, . . . , xm, y1, . . . , yn]

and elements b1, . . . , bn ∈ X such that for all a1, . . . , am ∈M , we have

(a1, . . . , am) ∈ A

if and only if the formula ϕ evaluated for xi = ai for i = 1, . . . ,m and for
yj = bj for j = 1, . . . , n holds in M.

• A set A is definable inM without parameters if it is definable inM with
parameters from the empty set (that is, with no parameters in the defining
formula).

• A function is definable in M (with parameters) if its graph is definable
(with those parameters) in M.

Definition 10.2.3.2. A structure (M,<, . . . ) which is totally ordered by the
relation < is o-minimal if every definable (with parameters) subset of M is a finite
union of singletons and intervals of the form

(−∞, a) := {x ∈M : x < a},
(a, b) := {x ∈M : a < x < b}, or

(b,+∞) := {x ∈M : b < x}
for some a, b ∈M .

Definition 10.2.3.3. For each n ∈ N, let Fn be a set of real-valued functions

f : Rn −→ R

and we let F denote the union of the Fn. By LF we mean the first-order language
having a binary relation symbol ≤, binary function symbols + and ·, constant
symbols r for each r ∈ R, and n-ary function symbols f for each f ∈ Fn. By RF
we mean the LF -structure having universe R.

In the structure RF , sets of the form

{(a1, . . . , an) ∈ Rn : f(a1, . . . , an) ≤ g(a1, . . . , an)}
are definable where f, g ∈ Fn or more generally where f and g are obtained from the
projection functions, constant functions, functions in F and addition and multipli-
cation via appropriate compositions. We obtain the class of quantifier-free definable
sets by closing off under finite Boolean operations. In general, since first-order logic
allows the application of existential quantifiers or equivalently, at the level of the
definable sets, images under coordinate projections, then there will be definable
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sets which cannot be expressed in the simple form of finite Boolean combinations
of sets defined by inequalities between the basic functions. Wilkie [Wil96] showed
that when F consists of the usual exponential function, then every definable set
may be expressed as a projection of a basic set and that

Rexp := (R,≤,+, ·, exp)
is o-minimal. It is clear that one cannot take F to consist of arbitrary real analytic
functions since, for example, the set

{x ∈ R : cos(x) = 0}
is an infinite discrete set and it would be definable in Rcos. However, if we con-
sider only restricted analytic functions on a given finite interval, then the resulting
structure is o-minimal. For example we may consider Fn consisting of all functions

f : Rn −→ R

for which

(1) there is some open set U containing [−1, 1]n and a real analytic function
g : U −→ R for which f(z) = g(z) for each z ∈ U ;

(2) f(z1, . . . , zn) = 0 if there is some i = 1, . . . , n such that |zi| > 1.

In this case, the induced structure is denoted Ran. Even if we add the exponential
function to the previous structure (and thus obtain Ran,exp), the structure remains
o-minimal as proven in [vdDMM94, vdDM94].

10.2.4. Statement of the results. In order to state the main result of
[Sca11] we need the following definition.

Definition 10.2.4.1. We say that a real analytic self-map Φ near the origin is
projectively linearizable if there is a real analytic function h which fixes the origin
and is invertible near the origin for which h ◦Φ ◦ h−1 is given by a fractional linear
transformation near the origin. We say that Φ is strongly projectively linearizable if,
in addition, every eigenvalue of some matrix representing its projective linearization
is real and positive.

We say that Φ is monomializable if the differential DΦ is identically equal to
0 and there are a real analytic h as in the above paragraph, an invertible matrix
A := (ai,j) all of whose entries are positive integers, but not having any roots of
unity among its eigenvalues, and a tuple

λ := (λ1, . . . , λN ) ∈ (R∗)N

so that near the origin we have

h ◦ Φ ◦ h−1(z1, . . . , zN )

= λ · (z1, . . . , zN )A

=
(
λ1z

a1,1

1 z
a1,2

2 · · · za1,N

N , . . . , λNz
aN,1

1 z
aN,2

2 · · · zaN,N

N

)
.

We say that Φ is strongly monomializable if, in addition, every eigenvalue of M is
real and positive.

As shown in [Sca11, Lemma 3.6], if Φ is monomializable then one may choose
the vector λ to have all entries in {−1, 1}. Furthermore, by taking B := B(N) to
be the least common multiple of the lengths of the periodic cycles of the maps

(z1, . . . , zN ) 	→ (z1, . . . , zN )A
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on (±1)N as A varies over all invertible N×N matrices with positive integer entries,
we obtain the following result (see [Sca11, Proposition 3.7]).

Proposition 10.2.4.2 (Scanlon [Sca11]). With the above notation, assuming
Φ is strongly monomializable and α ∈ RN is a point sufficiently close to the origin,
then there is a function

F : [0,+∞) −→ RN

definable in Ran,exp satisfying

(1) F (0) = α; and
(2) F (z + 1) = ΦB(F (z)).

A similar statement is proved in [Sca11, Corollary 3.8] if Φ is expressible as
a Cartesian product of a strongly projectively linearizable function and a strongly
monomializable function. Then we can state the main result of [Sca11].

Theorem 10.2.4.3. If Φ is a real analytic function for which some positive
compositional power is expressible as a product of a strongly projectively linearizable
function and a strongly monomializable function and α is sufficiently close to the
origin, then for any closed real analytic variety V the set

{n ∈ N0 : Φn(α) ∈ V }
is a finite union of arithmetic progressions.

If Φ is expressible as a product of univariate functions, Scanlon gets a more
precise result.

Corollary 10.2.4.4 (Scanlon). Let

f1, . . . , fN : (−1, 1) −→ (−1, 1)
be real analytic functions for which

fi(0) = 0 and |f ′
i(0)| ≤ 1,

and let BN be a small ball centered around the origin such that for each i and for
each z ∈ B we have

|f(z)| ≤ |z|.
If α = (α1, . . . , αN ) ∈ BN and V is a real analytic subvariety of BN , then

{n ∈ N0 : (fn
1 (α1), . . . , f

n
N (αN )) ∈ V }

is either:

(1) all of N0;
(2) all odd positive integers;
(3) all even nonnegative integers;
(4) finite.

Proof. Clearly, it suffices to prove Corollary 10.2.4.4 when V is an analytic
hypersurface; so assume V is the zero set of some analytic function H in N vari-
ables. Corollary 10.2.4.4 follows immediately from Theorem 10.2.4.3 because for
each real analytic function f in one variable near the origin which fixes the origin,
f2 is strongly projectively linearizable or strongly monomializable (see the proof of
[Sca11, Fact 3.9]). �
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The methods from [Sca11] are quite restrictive since one has to assume α is
in the proximity of a fixed attracting point for a real analytic self-map. However,
the results obtained are not covered by the other methods presented in this book.
Furthermore, Scanlon [Sca11] speculates that a more refined analysis of his method
would lead to proving a gap principle for real analytic maps in the context of the
Dynamical Mordell-Lang Conjecture, similar to the one from Chapter 11 (for p-adic
analytic maps). Such a result would combine the arguments from [Sca11] with the
powerful techniques introduced by Pila, Wilkie and Zannier for counting algebraic
points of small height on real analytic varieties (for more details, see [PZ08]).

10.3. Birational polynomial self-maps on the affine plane

The following result is proven by Xie in [Xie14, Theorem A].

Theorem 10.3.0.1 (Xie [Xie14]). Let K be an algebraically closed field of
characteristic 0, let α ∈ A2(K), let C ⊂ A2 be a curve defined over K, and let

Φ : A2 −→ A2

be a birational polynomial morphism. Then the set

S := {n ∈ N0 : Φ
n(α) ∈ C(K)}

is a union of finitely many arithmetic progressions.

The strategy from [Xie14] for proving Theorem 10.3.0.1 is a clever combination
of tools from algebraic geometry, number theory and algebraic dynamics. So, as-
suming α is not preperiodic (otherwise, Theorem 10.3.0.1 holds easily according to
Proposition 3.1.2.9), Theorem 10.3.0.1 reduces to proving that if S is infinite, then
C is periodic (see also Subsection 3.1.3). The bulk of the argument from [Xie14]
applies for arbitrary algebraically closed fields K of characteristic 0, with the excep-
tion of the last part of the argument which relies on the application of Northcott’s
Theorem. We sketch the main ingredients of the proof of Theorem 10.3.0.1 when
K = Q and refer the reader to [Xie14, Section 8] for the general case.

The proof splits into two cases depending on the dynamical degree of Φ. Be-
fore defining the dynamical degree of a self-map, we recall a few definitions from
algebraic geometry.

The Néron-Severi group NS(X) of a variety X is defined as the quotient of
the group of divisors modulo algebraic equivalence (for more details on algebraic
equivalence of divisors, see [Har77, p. 367]). We also recall the definition of the
spectral radius of a linear operator.

Definition 10.3.0.2. The spectral radius ρ(T, V ) of a linear operator T act-
ing on a real vector space V is the supremum among the absolute values of its
eigenvalues.

As shown in Chapter 2, an endomorphism Φ of a variety X induces a map
Φ∗ on NS(X). In fact, this can even be done when one only assumes that Φ is a
rational self map of a surface X (see [Xie14] for more details). Next we define the
dynamical degree of a rational self-map.

Definition 10.3.0.3. Let Φ : X −→ X be a rational self-map of a variety X
and define NS(X)R := NS(X)⊗R. Then Φ induces a linear operator Φ∗ on NS(X)R
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and we define the dynamical degree of Φ as

(10.3.0.4) δΦ := lim
n→∞

ρ ((Φn)∗,NS(X)R)
1
n .

We mention that if Φ is an endomorphism (i.e., Φ is regular, or in other words,
the indeterminacy locus of Φ is the empty set), then

(Φn)∗ = (Φ∗)n

and thus, δf is simply the spectral radius of the operator Φ∗ acting on NS(X)R.
For an interesting discussion of the arithmetic properties of the dynamical degree
of a morphism (including the explanation of why the limit from (10.3.0.4) exists),
we refer the reader to [KS14]. Now, if

Φ : A2 −→ A2

is a birational polynomial morphism of dynamical degree 1, then [DF01] and [FJ11]
yield that (after a suitable conjugation by a linear automorphism of A2) we may
assume that

Φ(x, y) = (ax+ b, A(x)y +B(x))

for some constants a and b, and some polynomials A and B. Xie [Xie14, Section 6]
proves directly Theorem 10.3.0.1 for such maps Φ of dynamical degree 1. So, from
now on, we assume that

δΦ > 1.

Using [FJ11, Proposition 2.6 and Theorem 3.1] the following compactification
result is obtained (see [Xie14, Theorem 2.4]). By a compactification of A2 we mean
a smooth projective surface X equipped with a birational map

π : X −→ P2

that is an isomorphism above A2 ⊂ P2 (for more details, see [FJ11]).

Theorem 10.3.0.5 (Xie [Xie14]). Let Φ : A2 −→ A2 be a birational polynomial
morphism such that δΦ > 1. Then there exists a compactification X of A2 satisfying
the following properties:

(i) the map Φ extends to a self-map on X (also denoted by Φ). In addition,
there is no curve V ⊂ X and no n ∈ N such that fn(V ) ⊆ I(Φ), where
I(Φ) is the indeterminacy locus for the self-map Φ : X −→ X (in [Xie14],
this means that Φ is algebraically stable).

(ii) there exists a fixed super-attracting point β ∈ X\A2 for Φ (i.e., DΦ2(β) =
0).

(iii) there exists a positive integer n such that Φn(X \ A2) = {β}.

We replace C by its Zariski closure inside X. If fn(C) meets I(Φ) for all n ∈ N,
then [Xie14, Theorem 1.2] yields that C is periodic. So, at the expense of replacing
Φ by an iterate of it and replacing C by its image under Φ, we may assume

C \ A2 = {β}.
In [Xie14, Theorem 1.1], Xie shows that if there exists an absolute value | · |v

on Q such that Φn(α) converges v-adically to β, and if there are infinitely many
points in common for C and for the orbit of α under Φ, then C is fixed by Φ. Now,
assuming the point α lies outside the basins of attraction of β with respect to all
absolute values on Q, one obtains that α has bounded height (see [Xie14, Propo-
sition 7.5]). Hence α and all its iterates have bounded height and therefore α is
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preperiodic (by the Northcott property for algebraic numbers; see Theorem 2.6.3.2),
a contradiction. Hence Theorem 10.3.0.1 holds.

It would be very interesting to know how far one can extend the method of
Xie [Xie14] for proving other cases of the Dynamical Mordell-Lang Conjecture.
As mentioned before, Xie [Xieb] was able to extend his result from [Xie14] to all
endomorphisms of A2, but so far it is unclear whether his method would work for
proving Conjecture 1.5.0.1 either for endomorphisms of AN when N > 2, or for
arbitrary endomorphisms of PN when N ≥ 2.
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CHAPTER 11

Sparse sets in the Dynamical Mordell-Lang
Conjecture

11.1. Overview of the results presented in this chapter

We recall the setting from the Dynamical Mordell-Lang Conjecture:

• X is a quasiprojective variety defined over C,
• Φ : X −→ X is an endomorphism,
• V ⊆ X is a subvariety (always closed, unless otherwise mentioned), and
• α ∈ X(C).

Then Conjecture 3.1.3.2 (which was shown to be equivalent to Conjecture 1.5.0.1 in
Subsection 3.1.3) predicts that a subvariety which contains no positive dimensional
periodic subvariety must intersect an orbit in finitely many points. We recall that
W ⊆ X is periodic (under the action of Φ) if

Φm(W ) ⊆W,

for some m ∈ N; for more details on periodic subvarieties, see Subsection 2.2.2.
In this chapter we show that when a subvariety V contains no positive dimen-

sional periodic subvariety intersecting OΦ(α), then the set

S = SV := {n ∈ N0 : Φ
n(α) ∈ V (C)}

is very sparse (see Theorem 11.1.0.7, which is [BGT15b, Corollary 1.5]). In the

special case when X =
(
P1
)N

and Φ := (ϕ1, . . . , ϕN ) is given by the coordinatewise
action of N one-variable rational maps, one obtains a more refined result regarding
the sparseness of the set SV (see Theorem 11.1.0.9 and also [BGKT10]).

We note that Denis [Den94] first raised the question (when X is the projective
space defined over a field of arbitrary characteristic) that the above set SV must
be sparse when V does not contain a positive dimensional periodic subvariety. In
order to state Denis’ question we first define the Banach density of a subset of N0;
this allows us also to give a first interpretation of what (very) sparse means.

Definition 11.1.0.1. Let S be a subset of N0. We define the Banach density
of S to be

δ(S) := lim sup
|I|→∞

|S ∩ I|
|I| ,

where the lim sup is taken over intervals I ⊆ N0 (also, as always, we denote by |U |
the cardinality of a set U). We say that a subset S ⊆ N0 has Banach density zero
if δ(S) = 0.

So, a set of Banach density equal to 0 is sparse, and actually it is sparser than
a set of natural density equal to 0. We recall that the natural density of a subset
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180 11. SPARSE SETS IN THE DYNAMICAL MORDELL-LANG CONJECTURE

S ⊆ N0 is defined similar to Definition 11.1.0.1 only that the limit is taken only
over intervals I of the form

{0, 1, . . . , n}.
It is possible to construct (see Example 11.1.0.2) a subset of N0 of natural density
equal to 0, but Banach density equal to 1.

Example 11.1.0.2. Let d ≥ 3 be any integer, and let

S :=
∞⋃

n=1

{
nd, nd + 1, . . . , nd + n

}
.

Clearly, the Banach density δ(S) = 1 since S contains arbitrarily long intervals
of positive integers. On the other hand, the gaps between two consecutive such
intervals grow very fast so that the natural density of S is 0. Indeed, in the interval

{0, 1, . . . , N},
for N sufficiently large, S contains fewer than N2/d = o(N) integers.

The following is [Den94, Question 2].

Question 11.1.0.3 (Denis [Den94]). Let Φ : Pm −→ Pm be an endomor-
phism defined over a field K, let V ⊆ Pm be a subvariety defined over K, and let
α ∈ Pm(K) be a non-preperiodic point. Is it true that one of the following two
alternatives must hold?

(1) The set SV := {n ∈ N0 : Φ
n(α) ∈ V (K)} has Banach density 0; or

(2) There exists a positive dimension subvariety W ⊆ V , and there exist � ∈
N0 and k ∈ N such that Φ�(α) ∈W (K) and Φk(W ) ⊆W .

Alternatively, one could rephrase Question 11.1.0.3 by asking that whenever
SV has positive Banach density, then condition (2) above holds; so,

Φ�+nk(α) ∈ V (K) for all n ∈ N0.

Hence, in this case SV contains an infinite arithmetic progression {�+nk}n∈N0
. So,

one can reformulate Question 11.1.0.3 as follows (and also state the question in the
most general context of endomorphisms of quasiprojective varieties).

Question 11.1.0.4. Let Φ : X −→ X be an endomorphism of a quasiprojective
variety defined over a field K, let V ⊆ X be a subvariety defined over K, and let
α ∈ X(K) be a point. If the set

SV := {n ∈ N0 : Φ
n(α) ∈ V (K)}

has positive Banach density 0, does it follow that SV contains an infinite arithmetic
progression?

In Theorem 11.1.0.7 (see [BGT15b], where this result was first published)
we give a positive answer to Question 11.1.0.4. As a quick observation (see also
Proposition 3.1.2.9), Question 11.1.0.4 holds trivially if α is preperiodic.

Denis [Den94] showed, for any endomorphism Φ of Pm, if SV does not contain
an infinite arithemetic progression, then SV cannot be “very dense” (see [Den94,
Définition 2] and also our next definition).

Definition 11.1.0.5. Let S ⊆ N0 and let k ∈ N. We say that S is very dense
of order k if, for all � ∈ N, there exist positive integers r and b such that
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11.1. OVERVIEW OF THE RESULTS PRESENTED IN THIS CHAPTER 181

(1) r ≤ max{log(k)(�), 1}, where log(k) is the k-th iterate of the natural loga-
rithmic function; and

(2) ar + b ∈ S for all 0 ≤ a ≤ �.

Denis (see [Den94, Théorème 3]) proves that with the notation from Ques-
tion 11.1.0.3, if the set of n ∈ N0 such that Φn(α) ∈ V is very dense of order
2 dim(V ) − 1, then V contains a positive dimensional subvariety which is periodic
under the action of Φ.

We also note that in both Denis’ question from [Den94] (see Question 11.1.0.3)
and its reformulation (see Question 11.1.0.4) the fieldK has arbitrary characteristic.
When char(K) = p > 0 one cannot expect that alternative (1) in Question 11.1.0.3
could be improved to SV being a finite set. Indeed, as observed by Denis [Den94,
Remarque, p. 17] (see also Example 3.4.5.1), the set SV could be infinite, but very
sparse (for example, consisting only of powers of p). It is possible that the set SV

has an even more complicated structure; the following example was first suggested
in [MS04].

Example 11.1.0.6. Let C be a curve of high genus (for example, at least equal
to 3) defined over Fp embedded in its Jacobian J , and let α ∈ C(Fp(t)) \ C(Fp).
Then the Zariski closure V of C + C (where the addition takes place inside J)
generically does not contain a translate of a positive dimensional algebraic group
(for example, if J is a simple abelian variety, and C +C is not Zariski dense in J).
So, the intersection of V with the orbit of 0 ∈ J under the translation-by-α map
consists of points of the form (pm + pn) · α only.

For more details on a characteristic p version of the Dynamical Mordell-Lang
Conjecture, we refer the reader to Chapter 13.

In this chapter we show that Question 11.1.0.3 has a positive answer even in
the more general case of rational self-maps on arbitrary quasiprojective varieties.

Theorem 11.1.0.7 ([BGT15b]). Let X be a quasiprojective variety defined
over a field K, let

Φ : X −→ X

be a rational map defined over K, let x ∈ X(K) such that OΦ(x) is contained in
the domain of definition for Φ, and let Y be a K-subvariety of X. Then the set

S := {n : Φn(x) ∈ Y (K)}
is a union of at most finitely many arithmetic progressions along with a set of
Banach density zero.

In the case of a rational self-map Φ on a variety X, and for a point x ∈ X, the
orbit OΦ(x) is defined when Φn(x) is not contained in the indeterminacy locus of
Φ for each n ∈ N0; for more details, see also Question 3.2.0.1 and the discussion
from Section 3.2.

Theorem 11.1.0.7 is proven in Section 11.4 using also the technical results from
Section 11.2. The results of Sections 11.2, 11.3 and 11.4 are contained in [BGT15b].
Actually, we are able to prove a more general result (see Theorem 11.4.2.2, which
is [BGT15b, Theorem 3.2]) extending Theorem 11.1.0.7 where rational self-maps
on algebraic varieties are replaced by continuous maps defined on an open subset of
a Noetherian space (for a definition of Noetherian spaces, see Definition 11.4.1.1).
Our results for Noetherian spaces show that the Dynamical Mordell-Lang principle
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182 11. SPARSE SETS IN THE DYNAMICAL MORDELL-LANG CONJECTURE

(see Subsection 10.2.1) extends quite generally with the caveat that one has to
consider sets of Banach density 0 in place of finite sets.

In Section 11.4 we present our most general results towards the Dynami-
cal Mordell-Lang principle for continuous maps on Noetherian spaces (see also
[BGT15b] where these results were first published). A crucial ingredient for prov-
ing Theorem 11.4.2.2 and its consequences is a general result on subsets of N0 of
positive Banach density (see Lemma 11.2.0.1). We use Lemma 11.2.0.1 in Sec-
tion 11.3 to derive some quantitative results, such as the following statement (see
[BGT15b, Theorem 1.9]).

Theorem 11.1.0.8 ([BGT15b]). Let C ⊆ P� be an irreducible curve of degree
d defined over a field K, let

Φ : P� −→ P�

be an endomorphism of degree m defined over K, and let α ∈ P�(K) be a non-
preperiodic point. If C is not periodic, then there exists a constant c0 depending
only on d, m, and � such that for all integers N ≥ 2, we have

#{1 ≤ n ≤ N : Φn(α) ∈ C(K)} ≤ c0N

log(N)
.

In Section 11.5 (which contains mainly the results from [BGKT10]) we state
a more precise result than Theorem 11.1.0.7 in the special case X = (P1)N and Φ
is given by the coordinatewise action of N (one-variable) complex rational maps.

Theorem 11.1.0.9 ([BGKT12]). Let f1, . . . , fN ∈ C(z) be rational functions,
and let

Φ = (f1, . . . , fN )

denote their coordinatewise action on (P1)N . Let

α = (α1, . . . , αN ) ∈ (P1)N (C)

be a non-preperiodic point, and let V ⊆ (P1)N be a subvariety such that Φn(α) ∈ V
for infinitely many n ∈ N. If V contains no positive dimensional periodic subvariety
intersecting OΦ(α), then

#{0 ≤ k ≤ n : Φk(α) ∈ V (C)} = o
(
log(m)(n)

)
,

for each m ∈ N, where log(m) is the m-th iterated logarithm.

In Section 11.5 we prove Theorem 11.1.0.9 as a corollary of Theorem 11.5.0.2
(which is stated in Section 11.5 and proven in Section 11.8). Sections 11.6 and 11.7
contain the technical setup and the necessary lemmas used in Section 11.8 for
proving Theorem 11.5.0.2.

In Section 11.11 we prove a general approximating result (see Theorem 11.11.1.1)
for parametrizing p-adically an orbit. Our result can be viewed as an approximating
version of the p-adic arc lemma. We use Theorem 11.11.1.1 to deduce some partial
results towards the Dynamical Mordell-Lang Conjecture (see Theorem 11.11.3.1).

11.2. Sets of positive Banach density

Denis [Den94] uses in his proof the famous theorem of Szemerédi [Sze75]
regarding the existence of (arbitrarily long, but finite) arithmetic progressions con-
tained in subsets of N0 of positive Banach density. More precisely, Szemerédi
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[Sze75] showed that for all ε > 0 and k ∈ N, there exists a positive number
N(k, ε) such that for all integers n > N(k, ε), if

R ⊆ {1, . . . , n} such that |R| > εn,

then R contains an arithmetic progression with (at least) k elements. In other
words, if S ⊆ N0 is a set of positive natural density, then it contains arbitrarily
long (but finite) arithmetic progressions. Assuming that the set SV from Ques-
tion 11.1.0.4 is very dense of order 2 dim(V ) − 1 (see Definition 11.1.0.5) allows
Denis [Den94] to use Szmerédi’s Theorem to infer a positive answer to Ques-
tion 11.1.0.3 under these hypotheses. Essentially, the argument from [Den94] relies
on the following observation: if an irreducible subvariety V ⊆ Pm contains the first
� iterates of a point α ∈ Pm(K) under an endomorphism Ψ, and � is sufficiently
large (compared to the degrees of both Ψ and of V ), then V is periodic under Ψ.

Theorem 11.1.0.7 is based on a result (see Lemma 11.2.0.1) of the same flavour
as Szemerédi’s theorem [Sze75], but going in a slightly different direction. Sze-
merédi’s theorem yields the existence of long arithmetic progressions contained in
a subset S ⊆ N0 of positive density; our Lemma 11.2.0.1 yields the existence of a
positive integer k and of a positive density subset Q ⊂ S such that its translation
by k is also a subset of S.

Lemma 11.2.0.1 ([BGT15b]). Let S be a set of positive integers having positive
Banach density. Let N ≥ �1/δ(S)� + 1, where �x� as usual denotes the greatest
integer less than or equal to x. Then there is a positive integer k and a subset
Q ⊆ S such that

(1) k ≤ N − 1;

(2) δ(Q) ≥ Nδ(S)−1
2N2(N−1) > 0; and

(3) for all a ∈ Q, we have a+ k ∈ S.

Proof. We reproduce here the proof from [BGT15b, Lemma 2.1]. By as-
sumption, δ(S) > 1

N , and so there exist intervals In with |In| → ∞ such that

|S ∩ In|
|In|

>
δ(S) + 1

N

2
.

Let

P = {i : |{iN + 1, . . . , (i+ 1)N} ∩ S| ≥ 2} .
We claim that P has positive Banach density. To see this, let

Jn = {i : {iN + 1, . . . , (i+ 1)N} ⊆ In}.
Then

|Jn| ≤
|In|
N

and |Jn| → ∞, as n→∞.

For i ∈ Jn \ P we have

S ∩ {iN + 1, . . . , (i+ 1)N}
has size at most 1 and for i ∈ P ∩ Jn we have

S ∩ {iN + 1, . . . , (i+ 1)N}
has size at mostN . Since there are at most 2N elements of In that are not accounted
for by taking the union of the

{iN + 1, . . . , (i+ 1)N}
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with i ∈ Jn, we see that(
δ(S) + 1

N

)
· |In|

2
≤ |In ∩ S| ≤ |Jn \ P |+N |P ∩ Jn|+ 2N.

Using the fact that |Jn| ≤ |In|
N , we see(

δ(S) + 1
N

)
·N |Jn|

2
≤ |Jn \ P |+N |P ∩ Jn|+ 2N.

Dividing by N |Jn| now gives

δ(S) + 1
N

2
≤ |Jn \ P |

N |Jn|
+
|P ∩ Jn|
|Jn|

+
2

|Jn|
.

Since |Jn \ P | ≤ |Jn|, we get

δ(S) + 1
N

2
≤ 1

N
+
|P ∩ Jn|
|Jn|

+
2

|Jn|
,

which gives
δ(S)− 1

N

2
≤ |P ∩ Jn|

|Jn|
+

2

|Jn|
.

Since |Jn| → ∞, we see that δ(P ) ≥ δ(S)− 1
N

2 .
For each i ∈ P , we pick ai, bi ∈ {iN+1, . . . , (i+1)N}∩S with 0 < bi−ai < N .

For j ∈ {1, . . . , N − 1}, we let

Pj := {i ∈ P : bi − ai = j}.
Then

P =

N−1⋃
j=1

Pj

and since Banach density is subadditive, we have

δ(P ) ≤
N−1∑
j=1

δ(Pj).

Thus there is some k ∈ {1, . . . , N − 1} such that δ(Pk) ≥ δ(P )
N−1 . Let

Q := {ai : i ∈ Pk} ⊆ S.

Then a+ k ∈ S for all a ∈ Q and a simple computation yields

δ(Q) ≥ δ(Pk)

N
≥ Nδ(S)− 1

2N2(N − 1)
> 0,

as desired. �
The following Corollary of Lemma 11.2.0.1 is used in the proof of Theorem

11.3.0.4, and we also consider that it is of independent interest for possible other
applications of Lemma 11.2.0.1. We state here [BGT15b, Corollary 2.2].

Corollary 11.2.0.2 ([BGT15b]). Let S be a set of positive integers having
positive Banach density. Then there is a positive integer k < 2

δ(S) and a subset

Q ⊆ S such that

(a) δ(Q) ≥ δ(S)3

24 ; and
(b) for all a ∈ Q, we have a+ k ∈ S.
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Proof. The proof is from [BGT15b]. We let δ := δ(S), and we apply Lemma
11.2.0.1 with N =

⌊
2
δ

⌋
(which is at least equal to

⌊
1
δ

⌋
+ 1 since δ ≤ 1). This shows

the existence of a set Q ⊆ S satisfying property (b) above; in addition

δ(Q) ≥ Nδ − 1

2N2(N − 1)
.

So, in order to show that condition (a) holds, it suffices to prove that

Nδ − 1

2N2(N − 1)
≥ δ3

24
,

which is equivalent to proving that

Nδ − 1

N − 1
≥ N2δ3

12
=

2

3N
·
(
Nδ

2

)3

.

Since N =
⌊
2
δ

⌋
≤ 2

δ , then it suffices to show that Nδ−1
N−1 ≥

2
3N , which is equivalent

with showing that

(11.2.0.3) δ ≥ 5

3N
− 2

3N2
.

Since N =
⌊
2
δ

⌋
, we have 2

δ < N + 1 and so,

δ >
2

N + 1
.

Then inequality (11.2.0.3) follows since

(11.2.0.4)
2

N + 1
−
(

5

3N
− 2

3N2

)
=

N − 5

3N(N + 1)
+

2

3N2
≥ 0.

Inequality 11.2.0.4 is obvious for all N ≥ 5, while for N ∈ {2, 3, 4} the inequality
can be checked directly (note that N =

⌊
2
δ

⌋
≥ 2 because δ ≤ 1). �

11.3. General quantitative results

The following result is [BGT15b, Theorem 4.1] and it is an easy application
of Lemma 11.2.0.1.

Theorem 11.3.0.1 ([BGT15b]). Let X be a quasiprojective variety defined
over a field K, let

Φ : X −→ X

be an endomorphism defined over K, let C ⊆ X be an irreducible curve, and let
α ∈ X(K) be a point that is not preperiodic under Φ. If the set

S := {n ∈ N : Φn(α) ∈ C(K)}

has Banach density δ > 0, then S contains an infinite arithmetic progression of
common difference

k =
1

δ
, and Φk(C) ⊆ C.

In particular, C is periodic under the action of Φ.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



186 11. SPARSE SETS IN THE DYNAMICAL MORDELL-LANG CONJECTURE

Proof. The proof is from [BGT15b]. It follows from Lemma 11.2.0.1 applied
with N =

⌊
1
δ

⌋
+ 1 that there exists a positive integer k ≤

⌊
1
δ

⌋
and a subset Q ⊂ S

of positive density such that for each n ∈ Q, also Φn+k(α) ∈ C(K). So

Φn(α) ∈ C ∩ Φ−k(C).

Hence, C ∩ Φ−k(C) contains an infinite set of points (because α is not preperiodic
under the action of Φ). Since C is an irreducible curve, we see then that

(11.3.0.2) C ⊆ Φ−k(C); thus Φk(C) ⊆ C.

This yields the desired infinite arithmetic progression of common difference k ≤ 1
δ .

If k < 1/δ, then the existence of this arithmetic progression would imply that

δ ≥ 1/k > δ,

a contradiction. Thus, k = 1
δ ; also (11.3.0.2) yields that C is periodic. �

Theorem 11.3.0.1 has the following interesting consequence.

Corollary 11.3.0.3. Let X be a quasiprojective variety defined over a field
K, let

Φ : X −→ X

be an endomorphism defined over K, let C ⊆ X be an irreducible curve, and let
α ∈ X(K) be a point that is not preperiodic under Φ. If the set

S := {n ∈ N : Φn(α) ∈ C(K)}
has positive Banach density δ, then

δ =
1

k
,

for some k ∈ N, and moreover,

S = {�+ nk : n ∈ N0},
for some � ∈ N0.

In other words, under the hypotheses of Corollary 11.3.0.3, not only that the
Dynamical Mordell-Lang Conjecture holds, but we also know that there is precisely
one arithmetic progression appearing in the conclusion of Conjecture 1.5.0.1.

Proof of Corollary 11.3.0.3. The conclusion of Theorem 11.3.0.1 yields
immediately that

δ =
1

k
for some k ∈ N.

Furthermore, Φk(C) ⊆ C, which yields that given � ∈ N0 be the smallest integer
such that

Φ�(α) ∈ C(K),

then {�+ nk : n ∈ N0} ⊆ S. Now, if there exists some

�1 ∈ N \ {�+ nk : n ∈ N0}
such that Φ�1(α) ∈ C(K), then we would get again that

{�1 + nk : n ∈ N0} ⊂ S,
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and since the two arithmetic progressions {� + nk}n∈N0
and {�1 + nk}n∈N0

are
disjoint, we would get that

δ(S) ≥ 2

k
> δ,

a contradiction. In conclusion,

S = {�+ nk : n ∈ N0},
as claimed. �

Applying the technique of the proof of Theorem 11.3.0.1 recursively in the case
of endomorphisms of P� one can obtain a similar result for all projective subvarieties
of P�. This may be viewed as a weak dynamical analogue of a result of Evertse-
Schlickewei-Schmidt [ESS02, Theorem 1.2] on effective bounds for the common
differences of arithmetic progressions that arise from linear recurrence sequences.

Theorem 11.3.0.4 ([BGT15b]). For each real number δ > 0, and each D, �, e,
m ∈ N, there exists a positive real number

M := M(δ,m, �,D, e)

with the following property: for any endomorphism Φ : P� −→ P� given by homoge-
nous polynomials of degree at most m defined over any algebraically closed field K,
any irreducible subvariety V ⊆ P� of dimension at most e and degree at most D,
and any α ∈ P�(K), if the set

S := {n ∈ N : Φn(α) ∈ V (K)}
has Banach density at least equal to δ, then S contains an infinite arithmetic pro-
gression of common difference at most M .

Proof. The proof is from [BGT15b, Theorem 4.2]. One uses induction on
the dimension e of V , with the base case being Theorem 11.3.0.1; so

M(δ,m, �,D, 1) :=
1

δ
.

Assume now e ≥ 2. If V ⊆ Φ−k(V ) for some integer

k < N :=

⌊
2

δ

⌋
,

then V is periodic under Φ and moreover it contains an infinite arithmetic progres-
sion of common difference at most

⌊
2
δ

⌋
. So, assume V ∩ Φ−k(V ) has dimension at

most e− 1 for each k < N . By Corollary 11.2.0.2 applied with N =
⌊
2
δ

⌋
, there is a

set Q ⊂ S of density at least equal to δ3

24 and there is an integer k < N such that

Φn(α) ∈ V ∩ Φ−k(V )

for each n ∈ Q. Then with the use of Bézout-type inequalities (see [Hei83, The-
orem 1] or [Lan83, Lemma 3.5, p. 65], for example), one sees that the degree of
V ∩ Φ−k(V ) is at most

mk(�−e)D2

because Φ−k(V ) has degree at most mk(�−e)D. Hence, by the pigeonhole principle,
there exists an irreducible subvariety

W ⊆ V ∩ Φ−k(V )
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of dimension at most e− 1 such that the set

SW := {n ∈ N : Φn(α) ∈W (K)}
has density at least equal to

δ3

24mk(�−e)D2
.

Then the induction hypothesis yields the following recursive formula

M(δ,m, �,D, e) = M

(
δ3

24m
2(�−e)

δ D2
,m, �, �m

2(�−e)
δ D2�+ 1, e− 1

)
.

�

Theorem 11.1.0.8 is proven in [BGT15b, Theorem 1.9], whose arguments we
follow.

Proof of Theorem 11.1.0.8. The proof relies on the following quantitative
version of the argument from the proof of Theorem 11.3.0.1.

Lemma 11.3.0.5. Let k ∈ N, and let K, C, Φ, α, m, d be as in Theo-
rem 11.1.0.8. Let c1 = 2m�d2. Then we have

#{n ≥ 1: Φn(α) ∈ C(K) and Φn+k(α) ∈ C(K)} ≤ ck1 .

Proof of Lemma 11.3.0.5. Let n be a positive integer such that

Φn(α) ∈ C(K) and also Φn+k(α) ∈ C(K);

then Φn(α) ∈ C ∩ Φ−k(C). We know that C is an irreducible non-periodic curve.
Then C ∩ Φ−k(C) is a proper intersection of projective curves, and therefore, by
Bézout’s Theorem (see [Hei83, Theorem 1], for example), the number of points in
the intersection is bounded above by

deg(C) · deg(Φ−k(C)) ≤
(
2m�d2

)k
= ck1 .

�

Based on Lemma 11.3.0.5, the rest of the proof is a simple counting argument.
We let {nk}k≥1 be the increasing sequence of positive integers n for which

Φn(x) ∈ C(K).

The proof of Theorem 11.1.0.8 is a consequence of the following result.

Lemma 11.3.0.6. With notation as in Lemma 11.3.0.5, let

c2 = (4c1 log(c1) logc1(2c1))
−1.

Then nk ≥ c2k log(k) for each k ≥ 1.

Proof of Lemma 11.3.0.6. We first estimate the size of nk for k > (2c1)
4c1 .

Note that c1 ≥ 2. Then there exists a unique positive integer j such that

j∑
i=1

ci1 < k ≤
j+1∑
i=1

ci1,

which, since c1 ≥ 2, gives

(11.3.0.7) k ≤ 2cj+1
1 , or equivalently cj1 ≥ k/2c1.
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Using Lemma 11.3.0.5, we obtain

nk = n1 +
k−1∑
i=1

(ni+1 − ni) ≥
j∑

i=1

i · ci1 ≥ jcj1.

Then, using equation (11.3.0.7), we find

nk ≥ jcj1 ≥
k

2c1
logc1(k/2c1) = k(logc1 k)

(
1− logc1(2c1)/ logc1(k)

)
2c1

≥ 1

4c1
k logc1(k),

(11.3.0.8)

where the last inequality follows from the fact that we are assuming for now that
k > (2c1)

4c1 .
Suppose now that k ≤ (2c1)

4c1 . Since ni ≥ i for every i, we see then that

nk ≥ k ≥ 1

4c1 logc1(2c1)
k logc1(k).

Hence we have nk ≥ c2k log(k) for every k ≥ 1. �

Now, for each N ≥ 2, if k := #{1 ≤ n ≤ N : Φn(x) ∈ C(K)} then nk ≤ N .
Using Lemma 11.3.0.6 we obtain

N ≥ nk ≥ c2k log(k),

and therefore, k ≤ c0N
log(N) with c0 := 2

c2
(which depends on d, m and � only). �

11.4. The Dynamical Mordell-Lang problem for Noetherian spaces

11.4.1. Noetherian spaces. Before stating the main result of this section
(which follows closely [BGT15b]), we define Noetherian spaces.

Definition 11.4.1.1. Let X be a topological space. We say that X is Noether-
ian if it satisfies the descending chain condition for its closed subsets, i.e., there
exists no infinite descending chain of proper closed subsets.

Any quasiprojective variety endowed with the Zariski topology is a Noetherian
space. Also, a compact p-adic manifold endowed with the rigid analytic topology
is a Noetherian space. For example, on D(0, 1)m (where D(0, 1) is the p-adic unit
ball) endowed with the rigid analytic topology, the closed sets are the zero sets of
p-adic analytic functions f from the Tate algebra, i.e. power series

f(z1, . . . , zm) :=
∑

i1,...,im∈N0

ci1,...,imzi11 · · · zimm ∈ Zp[[z1, . . . , zm]]

such that |ci1,...,im |p → 0 as i1 + · · ·+ im →∞.

11.4.2. The main results of this section. The following result is [BGT15b,
Theorem 1.4].

Theorem 11.4.2.1. Let X be a Noetherian topological space, and let Φ : X −→
X be a continuous function. Then for each x ∈ X and for each closed subset Y of
X, the set S := {n ∈ N : Φn(x) ∈ Y } is a union of at most finitely many arithmetic
progressions along with a set of Banach density zero.
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We note that both in the context of algebraic varieties over fields of positive
characteristic (see Examples 3.4.5.1 and 11.1.0.6) and in the context of rigid an-
alytic spaces (see Proposition 11.10.0.1 and [BGKT10]), there are examples of
Noetherian spaces X having a closed subset V ⊂ X, a continuous self-map Φ on
X, and a point α ∈ X such that the set S from the conclusion of Theorem 11.4.2.1
is infinite but has Banach density 0.

Using different techniques, Petsche [Pet] proved Theorem 11.1.0.7 when Φ is an
endomorphism of an affine variety X. Petsche uses methods from topological dy-
namics and ergodic theory; in particular, he uses Berkovich spaces (for a comprehen-
sive introduction to Berkovich spaces, see [BR10]) and a strong topological version
of Furstenberg’s Poincaré Recurrence Theorem (see [Fur81]). Theorem 11.4.2.1
can also be derived using arguments that come from a deep result of ergodic theory
on Noetherian spaces proved by Charles Favre (this is Théorème 2.5.8 in Favre’s
PhD thesis [Fav]); see also [Gig, Example A.3.2] and [Gig14, Theorem 1.6] for an
alternative proof of Favre’s result using measure-theoretic methods.

Actually, a more general result holds (see [BGT15b, Theorem 3.2]), which is
a generalization of Theorem 11.1.0.7.

Theorem 11.4.2.2 ([BGT15b]). Let X be a Noetherian space, let U ⊆ X be
an open subset, and let Φ : U −→ X be a continuous map. Let x ∈ X such that
Φn(x) ∈ U for each nonnegative integer n. Then for each closed set Y ⊆ X, the set

S := {n ∈ N : Φn(x) ∈ Y }
is a union of at most finitely many arithmetic progressions along with a set of
Banach density zero.

Proof. Let
Z :=

⋂
n≥0

Φ−n(U).

We know that Z is non-empty since x (and therefore OΦ(x)) is contained in Z. We
endow Z with the inherited topology from X. Then Z is also a Noetherian space.
Furthermore, by its definition, we obtain that Φ restricts to a self-map

ΦZ : Z −→ Z.

Next we show that ΦZ is continuous. Indeed, let V ⊆ X be an open set. We need
to show that Φ−1

Z (V ∩ Z) is open in Z. This follows immediately once we prove
that

Φ−1
Z (V ∩ Z) = Φ−1(V ) ∩ Z

because Φ : U −→ X is continuous and so Φ−1(V ) is open in U and (because U is
an open subset of X) it is also open in X which yields that Φ−1(V ) ∩ Z is open in
Z. To see that

Φ−1
Z (V ∩ Z) = Φ−1(V ) ∩ Z

we note that for each y ∈ Φ−1
Z (V ∩ Z) ⊆ Z we have ΦZ(y) ∈ V . So, Φ(y) ∈ V and

thus y ∈ Φ−1(V ) ∩ Z. Conversely, if

y ∈ Φ−1(V ) ∩ Z,

then y ∈ Z and so ΦZ(y) ∈ V ∩ Z as claimed. Therefore ΦZ : Z −→ Z is a
continuous map on a Noetherian space. Hence by Theorem 11.4.2.1, the set of all
n ∈ N such that

Φn
Z(x) ∈ Y ∩ Z
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is a union of at most finitely many arithmetic progressions along with a set of
Banach density zero. Since Φ = ΦZ on Z, we see

Φn(x) ∈ Y if and only if Φn
Z(x) ∈ Y ∩ Z,

which concludes our proof. �

So, even though at a first glance, Theorem 11.4.2.2 is more general than The-
orem 11.4.2.1, its proof reduces to applying the latter theorem in a proper setting.
The rest of this section is devoted to proving Theorem 11.4.2.1, but first we start
by noting some useful reductions.

11.4.3. A reformulation of Theorem 11.4.2.1. Theorems 11.4.2.1 and
11.4.2.2 yield that once removing finitely many arithmetic progressions contained
in S, we obtain a very sparse set. The key for the proof of Theorem 11.4.2.1 is the
following result (see [BGT15b, Proposition 3.1]).

Proposition 11.4.3.1 ([BGT15b]). Let X be a Noetherian topological space,
let Φ : X −→ X be a continuous map, let x ∈ X, let Y be a closed subset of X,
and let

S := SY := {n : Φn(x) ∈ Y }.

If S has positive Banach density, then it contains an infinite arithmetic progression.

Proof. Consider the set V of all closed subsets V of X with the property that

SV := {n : Φn(x) ∈ V }

has positive Banach density but does not contain an infinite arithmetic progression.
If V is empty, then there is nothing to prove. Thus we may assume, towards a con-
tradiction, that V is non-empty. We let W be a minimal element of V with respect
to the inclusion of sets (note that such an element exists since X is Noetherian). By
Lemma 11.2.0.1, we have a positive integer k and a subset Q ⊆ SW with δ(Q) > 0
such that a+ k ∈ SW for all a ∈ Q.

If n ∈ Q, then Φn(x) ∈W and Φn+k(x) ∈W . Thus

Φn(x) ∈W ∩ Φ−k(W )

whenever n ∈ Q. If Φ−k(W ) ⊇ W then SW has the property that n + k ∈ SW

whenever n ∈ SW and since SW is non-empty, it contains an infinite arithmetic
progression, which contradicts the fact that W ∈ V . Thus

Z := W ∩ Φ−k(W )

is a proper closed subset of W (since Φ is continuous and W is closed) and so
we have Φn(x) ∈ Z for all n ∈ Q. Since Q has positive Banach density, we
obtain that SZ ⊇ Q also has positive Banach density and therefore SZ contains
an infinite arithmetic progression. Since SZ ⊆ SW , we see that SW contains an
infinite arithmetic progression, a contradiction. This concludes our proof. �

We finish the proof of Theorem 11.4.2.1 in the following subsection.
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11.4.4. Proof of Theorem 11.4.2.1. The proof is given in [BGT15b, Sec-
tion 3], and it follows from Proposition 11.4.3.1 similarly to the equivalence of the
Conjectures 1.5.0.1 and 3.1.3.2 (which was shown in Chapter 3). Before proceeding
to our proof, we recall that for any set U ⊆ N0 and any c ∈ N, we let

c · U := {cj : j ∈ U},
and we also let

c+ U := U + c := {c+ j : j ∈ U}.
We assume towards a contradiction that the conclusion of Theorem 11.4.2.1

does not hold. Then let V be the collection of all closed subsets V of X for which
there exists:

• a continuous map g : V → V ,
• a closed subset W of V , and
• a point y ∈ V such that {n : gn(y) ∈ W} cannot be expressed as a finite

union of arithmetic progressions along with a set of Banach density zero.

By assumption, X ∈ V and so we may choose a minimal element V ∈ V . Then
there is some continuous map g : V −→ V , some closed subset W of V , and some
point y ∈ V such that

S := {n : gn(y) ∈W}
cannot be expressed as a finite union of arithmetic progressions along with a set
of Banach density zero. We necessarily have that Wi := g−i(W ) is a proper closed
subset of V (note that g is continuous), since otherwise S would contain every
integer greater than or equal to i (and thus it would be the union of an arithmetic
progression with a finite set). Moreover, by our choice of V , W and y, it follows
that δ(T ) > 0 and thus by Proposition 11.4.3.1, there exist a, b ∈ N such that

S ⊇ {an+ b : n ≥ 0}.
Let Ci denote the closure of

Ti := {g(an+b)(y) : n ≥ i}.
Then

C0 ⊇ C1 ⊇ · · ·
is a descending chain of closed sets and hence there is some m such that

Cm = Cm+1 = · · · .
We take V0 = Cm. Then

g−a(V0) ⊇ g−a(Tm+1) ⊇ Tm

and since g−a(V0) is closed we thus see it contains the closure of Tm, which is V0.
Then V0 ⊆W is closed and we have

g−a(V0) ⊇ V0.

We let Vj denote the closed set

g−j(V0) for j ∈ {1, . . . , a− 1}.
Since Vj ⊆ Wa+j � V , we see that each Vj is a proper subset for 0 ≤ j ≤ a − 1.
Then

g−a(Vj) = g−a(g−j(V0)) = g−j(g−a(V0)) ⊇ g−j(V0) = Vj ,
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and so for j ∈ {0, . . . , a−1}, we have g−j+na+b(y) ∈ Vj for every n > m. Moreover,
since

g−a(Vj) ⊇ Vj ,

we have that h := ga restricts to continuous maps

h : Vj −→ Vj for each j ∈ {0, . . . , a− 1}.

We let yj := g−j+a+b(y). It follows from the minimality of V that

Sj := {n ≥ m : hn(yj) ∈W ∩ Vj}

is a finite union of arithmetic progressions along with a set of Banach density zero.
On the other hand,

Sj = {n ≥ m : g−j+a(n+1)+b(y) ∈W},

for each j = 0, . . . , a− 1. Then, up to a finite set, we have

S =

a−1⋃
j=0

(aSj + b+ a− j).

Hence S is a finite union of arithmetic progressions along with a set of Banach
density zero.

11.5. Very sparse sets in the Dynamical Mordell-Lang problem for
endomorphisms of (P1)N

In this section we present a sharpening of Theorem 11.1.0.7 in the case the
ambient variety is X = (P1)N and Φ is an endomorphism of X, i.e.,

Φ(x1, . . . , xN ) = (f1(x1), . . . , fN (xN )),

where each fi ∈ C(z). The results of this section are mainly from [BGKT10]. For
any point α ∈ (P1)N (C) we show that if

SV = {n ≥ 0 : Φn(α) ∈ V (C)}

does not contain any infinite arithmetic progressions, then SV must be a very sparse
set of integers (improving on the conclusion of both Proposition 11.4.3.1 and of
Theorem 11.1.0.8). In particular, we show that for any k and any sufficiently large

N , the number of n ≤ N such that Φn(α) ∈ V (C) is less than log(k)N , where log(k)

denotes the k-th iterate of the log function (see Theorem 11.1.0.9). This result can
be interpreted as an analogue of the gap principle of Davenport-Roth [DR55] and
Mumford [Mum65] in the context of the classical Mordell’s Conjecture. We state
Mumford’s theorem (for more details, see [Lan83, Theorem 8.1, p. 135] and [HS00,
Theorem B.6.6, p. 218]).

Theorem 11.5.0.1 (Mumford [Mum65]). Let C be a curve of genus greater
than 1 defined over a number field K, and we embed C into its Jacobian J . We
write the set C(K) as the sequence {xn} ordered increasingly with respect to the size

of their canonical height ĥ computed inside J . Then there exists a positive integer

M and a real number c > 1 such for all n, we have ĥ(xn+M ) ≥ c · ĥ(xn).
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We recall that Faltings [Fal83] proved Mordell’s Conjecture, i.e., that C(K)
is a finite set if the genus of C is greater than 1. However, Theorem 11.5.0.1
was proven by Mumford several years prior to Faltings and for many years it was
believed that Mumford’s result would be the key to a solution to Mordell’s Conjec-
ture. This belief was proven right by Vojta [Voj89] who provided an alternative
proof of Mordell’s Conjecture building on Mumford’s original result and also adding
several deep ideas of his own regarding Diophantine approximation. Vojta’s proof
[Voj89] inspired Faltings [Fal91] to prove the Mordell-Lang Conjecture for abelian
varieties, and later, Vojta [Voj96] obtained the most general result in the Mordell-
Lang Conjecture by proving it for all semiabelian varieties (see Section 3.4 for our
discussion of the classical Mordell-Lang Conjecture).

The precise result in the context of arithmetic dynamics is the following (see
[BGKT10, Theorem 1.4]).

Theorem 11.5.0.2 ([BGKT10]). Let f1, . . . , fN ∈ C(z) be rational functions,
and let Φ = (f1, . . . , fN ) denote their coordinatewise action on (P1)N . Let

α = (α1, . . . , αN ) ∈ (P1)N (C),

and let V ⊆ (P1)N be a proper subvariety such that Φn(α) ∈ V for infinitely many
n ∈ N. Then there exist positive integers M, � ≥ 1 and a real number c > 1 such
that one of the following two statements holds:

(i) Φ�+nM (α) ∈ V for all nonnegative integers n.
(ii) For any sufficiently large integers n > m ≥ 0 such that n ≡ m (mod M)

and Φm(α),Φn(α) ∈ V , we have n−m > cm.

We prove Theorem 11.5.0.2 in Section 11.8 using the technical results derived
in Sections 11.6 and 11.7.

We show next how to deduce Theorem 11.1.0.9 from Theorem 11.5.0.2.

Proof of Theorem 11.1.0.9. Since α is not preperiodic, then OΦ(α) is infi-
nite, and so alternative (i) from Theorem 11.5.0.2 does not hold. Indeed, otherwise
we would have that V contains the Zariski closure W of OΦM (Φ�(α)) (see The-
orem 11.5.0.2). But then V contains W which is a positive dimensional periodic
subvariety (see Proposition 3.1.2.14); this is a contradiction. So, indeed alterna-
tive (ii) from Theorem 11.5.0.2 must hold.

With the same notation as in Theorem 11.5.0.2, in order to derive the conclusion
of Theorem 11.1.0.9 it suffices to prove that for each i ∈ {0, . . . ,M − 1} we have

(11.5.0.3) #{0 ≤ k ≤ n : n ≡ i (mod M) and Φn(α) ∈ V (C)} = o
(
log(m)(n)

)
,

for any m ∈ N. We let n1 < n2 < · · · be the set of all nonnegative integers n
satisfying both conditions:

n ≡ i (mod M) and Φn(α) ∈ V (C).

Then alternative (ii) in Theorem 11.5.0.2 yields that for all j ≥ m we have

log(m)(nj) > cc
c···

,

where in the above inequality there are j − m exponentials. Using the fact that
c > 1, then for each ε > 0, we obtain that there exists a positive number

L := L(m, c, ε)
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such that for all j > L, we have

log(m)(nj) > cc
c···

>
j

ε
.

Hence (11.5.0.3) holds, as desired. �

The proof of Theorem 11.1.0.9 yields that assuming alternative (i) in Theo-
rem 11.5.0.2 does not occur (for any given M ∈ N), if ni is the i-th integer n such
that Φn(α) ∈ V (C), then ni grows much faster than exp(m)(i), where exp(m) is the
m-th iterate of the exponential function. Using a similar argument as in the proof
of Theorem 11.4.2.1 based on Proposition 11.4.3.1, we can deduce the following
result regarding very sparse sets which may appear in an unlikely counterexample
to the Dynamical Mordell-Lang Conjecture.

Theorem 11.5.0.4. Let f1, . . . , fN ∈ C(z) be rational functions, and let Φ =
(f1, . . . , fN ) denote the map on (P1)N given by the coordinatewise action. Let

α = (α1, . . . , αN ) ∈ (P1)N (C),

and let V ⊆ (P1)N be a subvariety. Then the set

SV := {n ∈ N0 : Φ
n(α) ∈ V (C)}

is a union of finitely many arithmetic progressions along with a set TV with the
property that

(11.5.0.5) #{0 ≤ i ≤ n : i ∈ Tv} = o
(
log(m)(n)

)
,

for all m ∈ N.

Proof. We let V be the set of all subvarieties V of X := (P1)N with the
property that there exists an endomorphism Φ of X (as above) and there exists a
point α ∈ X(C) such that the set

SV := {n ∈ N0 : Φ
n(α) ∈ V (C)}

is not a union of at most finitely many arithmetic progressions along with a set TV

satisfying condition (11.5.0.5) above. We assume V is non-empty and then we let
V ∈ V be of minimal dimension. We may assume that V is irreducible (since an
irreducible component of it has to be in V anyway). Also we assume the point α
is not preperiodic, since otherwise the Dynamical Mordell-Lang Conjecture holds
(see Proposition 3.1.2.9). By definition, the set

SV := {n ∈ N0 : Φ
n(α) ∈ V (C)}

does not satisfy condition (11.5.0.5) above. Then Theorem 11.1.0.9 yields that SV

contains an infinite arithmetic progression {� + nM}n≥0. We split our analysis in
two cases:

Case 1. V ⊆ Φ−M (V ).
In this case, whenever i ∈ SV then i +Mn ∈ SV for all n ≥ 0; hence SV is a

finite union of arithmetic progressions, which is a contradiction.
Case 2. W := V ∩ Φ−M (V ) is a proper subvariety of V .
Then W /∈ V (by the minimality of dim(V )) and moreover, for each j =

0, . . . ,M − 1, we have that each

(11.5.0.6) Wj := Φj(W ) has dimension less than dim(V ).
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Furthermore Φj+�+nM (α) ∈ Wj for each j = 0, . . . ,M − 1. So, apart from a finite
set, SV is the union of the sets Sj ·M + j + �, for j = 0, . . . ,M − 1, where

Sj := {n ∈ N0 : Φ
j+�+nM (α) ∈ (Wj ∩ V )(C)}.

However, since Wj ∩ V /∈ V (using (11.5.0.6) and the minimality of dim(V ) among
all subvarieties contained in V), we get that each Sj is a union of at most finitely
many arithmetic progressions along with a set Tj satisfying condition (11.5.0.5).
But then V ∈ V , a contradiction. �

Now, for any subvariety V ⊆ (P1)N , if one removes from V all positive di-
mensional subvarieties which are fixed by ΦM , then the intersection of that set
with OΦ(α) should be a set very sparse as described by alternative (ii) in Theo-
rem 11.5.0.2. Indeed, once one removes the positive dimensional subvarieties of V
which are fixed by ΦM , then alternative (i) cannot occur on the intersection of this
set with OΦ(α). Furthermore, all the positive dimensional subvarieties of V fixed
by ΦM are contained in the closed subset of V given by⋂

k∈N0

(
ΦkM

)−1
(V ).

Hence Theorem 11.5.0.2 says that if the Dynamical Mordell-Lang Conjecture were
to fail, then any such counterexample would produce a set

{n ∈ N0 : Φn(α) ∈ V (C)}
which is very sparse. This suggests that finding such a counterexample is very
unlikely, and hence the Dynamical Mordell-Lang Conjecture should hold at least
for endomorphisms of (P1)N .

When our points and maps are defined over a number field K, we may phrase
this discussion in terms of Weil heights; see Section 2.6 for background on heights.
If α is not preperiodic, then the Weil height h(Φn(α)) grows at least as fast as
degmin(Φ)

n, where
degmin(Φ) := min

j
deg(fj).

Indeed, for any point
P := (x1, . . . , xN ) ∈ (P1)N (Q),

we let
h(P ) := h(x1) + · · ·+ h(xN ),

where h(·) is the usual Weil height of points in P1(Q). Also, as proven in Proposi-
tion 2.6.4.2, for a map ψ of degree d > 1, we have that

|h(ψ(x))− h(x)| is uniformly bounded on P1(Q).

Hence h(Φn(α))� degmin(Φ)
n, as claimed. Thus, we obtain the following dynam-

ical analogue of Theorem 11.5.0.1.

Corollary 11.5.0.7 ([BGKT10]). Let α, Φ, and V be as in Theorem 11.5.0.2,
and let nk denote the k-th integer n such that Φn(α) ∈ V (C). Assume that α and Φ
are defined over some number field K, that degmin(Φ) ≥ 2, that αi is not preperiodic
for fi for each i, and that the set

S := {n ∈ N0 : Φn(α) ∈ V }
does not contain any infinite arithmetic progressions. Then h(Φni(P )) grows faster
than exp(k)(i) for any k ≥ 1.
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This growth is much more rapid than that of the “gap principles” of Mumford
[Mum65] and Davenport-Roth [DR55]. If C is a curve of genus greater than 1,
Mumford showed (see Theorem 11.5.0.1) that there are constants a, b > 0 such that
if we order the K-rational points of C (for some number field K) according to Weil
height, then the �-th point has Weil height at least ea+b�. Of course, later Faltings
[Fal83] proved Mordell’s conjecture therefore showing that there are at most finitely
many K-rational points on C. In his proof, Mumford embedded points of C into
Rd (where d is the rank of the Mordell-Weil group of the Jacobian); Mumford’s gap
principle roughly states that there is a constant c > 1 such that if v1, v2 ∈ Rd are
the images of two points on the curve lying in a small sector, then either |v1| > c·|v2|
or |v2| > c · |v1|. More precisely (see [HS00, Theorem B.6.6 (b)]), Mumford’s gap
principle yields that there exist positive constants c1 and c2 such that for any two
points P,Q ∈ C(K), we have

ĥ(P −Q) ≥ c1 ·
(
ĥ(P ) + ĥ(Q)

)
− c2.

Similarly, in our Theorem 11.5.0.2, two indices n1, n2 lying in the same con-
gruence class modulo N can be considered analogous to two vectors v1, v2 lying in
a small sector. In fact, in [BGKT10, Theorem 4.1], one shows that the pair of
constants (N,C) in the conclusion of Theorem 11.5.0.2 may be replaced by the pair
(eN,Ce−ε), for any positive integer e and any positive real number ε > 0. Hence,
by the same analogy to Mumford’s gap principle, one proves that “the smaller the
angles” between two indices, “the larger the gap” between them.

Our proof of Theorem 11.5.0.2 uses p-adic dynamics by combining all possible
p-adic parametrizations of orbits under rational maps (see Section 6.1). First we
find a suitable prime number p such that V , Φ, and α are defined over Qp, and Φ
has good reduction modulo p. Then, using Lemmas 6.2.1.1 and 6.2.2.1, we find a
positive integer M , and for each � = 0, . . . ,M − 1 and for each H in the vanishing
ideal of V , we construct a p-adic power series GH,�(z0, z1, . . . , zm) such that for n
sufficiently large, we have

(11.5.0.8) Φ�+nM (α) ∈ V if and only if GH,�(n, p
n, p2

n

, . . . , pm
n

) = 0 for all H.

We then show that either GH,� is identically zero for all H (which implies conclu-
sion (i) of Theorem 11.5.0.2), or the integers n with Φ�+nM (α) ∈ V (C) grow as in
conclusion (ii).

For each prime number p, we also construct an example (see Proposition
11.10.0.1 and also, [BGKT10, Proposition 7.1]) of a power series f ∈ Zp[[z]] such
that for an infinite increasing sequence {nk}k≥1 ⊆ N we have

f(pnk) = nk, and moreover nk+1 < nk + p2nk

for each k ≥ 1. This example shows that Theorem 11.5.0.2 cannot be improved to
finding a proof of the Dynamical Mordell-Lang Conjecture merely by sharpening
our p-adic methods; some new technique would be required for a full proof of
Conjecture 1.5.0.1 even in the case of endomorphisms of (P1)N . Our example
shows that the set SV in Theorem 11.4.2.1 may be very sparse (but infinite) in the
context of rigid analytic spaces.

If V is a curve defined over a number field, then we can prove the following
more precise result.
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Theorem 11.5.0.9 ([BGKT10]). Let P , Φ, and V be as in Theorem 11.5.0.2.
Assume further that V is an irreducible curve that is not periodic, and that both V
and P are defined over a number field K. Then for any ε > 0, there are infinitely
many primes p and associated constants

C = C(p) > p− ε and N = N(p) = O(p2[K:Q])

with the following property: For any integers n > m ≥ 0 and � ∈ {1, 2, . . . , N}, if
m is sufficiently large and if

Φ�+mN (P ) and Φ�+nN (P ) ∈ V,

then n−m > Cm.

Theorem 11.5.0.9 was obtained by the last two authors together with Benedetto
and Kurlberg while writing [BGKT10], but it was ultimately not included in the
final version of [BGKT10].

We remark that the Dynamical Mordell-Lang Conjecture is still open in the
case considered by Theorem 11.5.0.9, i.e.:

• the ambient variety X is (P1)N ,
• the subvariety V ⊆ X is a curve; and
• the endomorphism Φ is given by coordinatewise action of one-variable
rational maps fi.

Xie’s theorem [Xieb] (see Theorem 5.10.0.6) covers only the case each fi is a poly-
nomial map.

We proceed as follows: in Sections 11.6 and 11.7 we construct the p-adic ana-
lytic functions GH,� (see (11.5.0.8)); we conclude the proof of Theorem 11.5.0.2 in
Section 11.8, and then in Section 11.9 we prove Theorem 11.5.0.9. Finally, in Sec-
tion 11.10 we prove Proposition 11.10.0.1 which yields the limitation in our current
p-adic approach for extending Theorem 11.5.0.2 to a proof of Conjecture 1.5.0.1 for
endomorphisms of (P1)N .

11.6. Reductions in the proof of Theorem 11.5.0.2

We continue with the notation from Theorem 11.5.0.2. First note that we lose
no generality if we replace α by an iterate of it under Φ since the orbit of Φ�(α)
under Φ differs by only finitely many points from the orbit of α under Φ (see also
Proposition 3.1.2.4).

Secondly, it suffices to prove Theorem 11.5.0.2 if we replace Φ by Φk for some
suitable k ∈ N and replace α by Φj(α) for j = 0, . . . , k − 1. Indeed, for each
j = 0, . . . , k − 1, we let

(Mj , Cj) ∈ N× R+

be the corresponding constants appearing in the conclusion of Theorem 11.5.0.2 for
each pair (endomorphism and starting point)

(Φk,Φj(α))

and then we let

M := k · lcm [M0, . . . ,Mk−1] and C := min
0≤j≤k−1

Cj .

Then Theorem 11.5.0.2 holds for the pair (Φ, α) with the constants (M,C).
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Thirdly, we note that we may assume that each αi is not preperiodic for fi.
Indeed, otherwise if αN is preperiodic for fN , say, then we may reduce N to N − 1
by replacing V with the subvariety

⋃
i Wi of (P

1)N−1, where for each i ∈ N0,

Wi = (π |V )−1 (f i
N (αN )),

where π |V is the restriction to V of the projection map

π : (P1)N −→ (P1)N−1

on the first N − 1 coordinates. Note that OfN (αN ) is finite since αN is fN -
preperiodic and thus

⋃
i Wi is a union of finitely many subvarieties.

We may assume V is a hypersurface in (P1)N since any subvariety is an in-
tersection of hypersurfaces, and once we know that Theorem 11.5.0.2 holds for the
subvarieties V1 and V2 with corresponding constants (M1, C1) and (M2, C2), then
Theorem 11.5.0.2 holds for the subvariety V1∩V2 with the constants (M,C), where

M = lcm[M1,M2] and C = min{C1, C2}.

So, we assume from now on that V is the Zariski closure in (P1)N of a hypersurface
in AN given by the zero set of a polynomial H ∈ C[x1, . . . , xN ].

There exists a finitely generated Z-algebra R such that each fi is defined over R,

and also α ∈
(
P1
)N

(R). We choose a prime p such that there exists an embedding
into Zp of R such that each fi has good reduction modulo p (the argument is similar
to the one presented in Subsection 4.4.1; see Propositions 4.4.1.3 and 4.4.1.4). At
the expense of enlarging the ring R we may assume R contains the (m− 1)-st root
of the coefficient cm of each leading term of degree m appearing in an expansion
at each one of the finitely many super-attracting points for each fj (see the super-
attracting case in Lemma 6.2.1.1 (2) with its corresponding notation). For more
details, we refer the interested reader to Step (i) from [BGKT10, Section 4].

Each residue class of αj modulo p is preperiodic under the induced action of
fj , i.e., there exist nonnegative integers �j and positive integers kj such that the

residue class of f
�j
j (αj) is fixed by f

kj

j modulo p. So, at the expense of replacing α

by Φ�(α), where

� := max
j

�j ,

and replacing Φ by Φk, where

k = lcm [k1, . . . , kN ] ,

we may assume that the residue class of α is fixed by the action of Φ modulo p. In
Section 11.7 we use the three possible p-adic parametrizations for the orbit of αj

under fj (see Lemmas 6.2.1.1 and 6.2.2.1) to construct the aforementioned p-adic
analytic function GH,� (z0, z1, z2, . . . , zm) for which

(11.6.0.10) Φ�+nM (α) ∈ V if and only if GH,�(n, p
n, p2

n

, . . . , pm
n

) = 0.

11.7. Construction of a suitable p-adic analytic function

The construction of the desired p-adic analytic function GH,� (z0, z1, z2, . . . , zm)
satisfying (11.6.0.10) follows along the steps (ii)—(vii) outlined in the proof of
[BGKT10, Theorem 1.4, Section 4].
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We continue with the reductions from Section 11.6; in particular, the residue
class of each αj is fixed by fj modulo p. If

|f ′
j(αj)|p = 1,

then Corollary 6.2.2.2 yields the existence of a positive integer κj and of p-adic
analytic functions

uj,� ∈ Qp[[z0]] for � = 0, . . . , κj − 1

such that for each n ∈ N0 we have

f
nκj+�
j (αj) = uj,�(n).

Note that uj,� is slightly changed by a linear factor from the corresponding uj from
Corollary 6.2.2.2.

If

0 < |f ′
j(αj)|p < 1,

then Corollary 6.2.1.2 yields the existence of a p-adic analytic function uj such that
for all n ∈ N0 we have

fn
j (αj) = uj

(
λn
j

)
, where λj := f ′

j(αj).

On the other hand, λj = pej · εj , where εj is a unit in Zp and ej ∈ N. We let
κj ∈ {1, . . . , p− 1} such that

|εκj

j − 1|p ≤
1

p
.

Hence the function

z 	→
(
ε
κj

j

)z
is p-adic analytic (see Lemma 2.3.4.2) and therefore there exist p-adic analytic
functions

uj,� ∈ Qp[[z0, z1]] for each � = 0, . . . , κj − 1

such that

f
nκj+�
j = uj,� (n, p

n) .

If

f ′
j(αj) = 0,

then Corollary 6.2.1.2 yields the existence of an integer mj ≥ 2, and of a number
γj ∈ pZp (defined as the corresponding number c from the conclusion of Corol-
lary 6.2.1.2 (ii)) such that for all n ∈ N0 we have

fn
j (αj) = uj

(
γ
mn

j

j

)
.

Again we write γj = pej · εj , where εj is a p-adic unit. There exist then κj,0 ∈ N0

and κj ∈ N such that ∣∣∣∣εmκj,0
j

j − ε
m

κj,0+κj
j

j

∣∣∣∣
p

≤ 1

p
.

If p � mj , then for each � = 0, . . . , κj − 1 there exists a p-adic analytic function

uj,� ∈ Zp[[z0, zmj
]]

such that for each integer n ≥ κj,0/κj we have that

f
nκj+�
j (αj) = uj,�

(
n, pm

n
j

)
.
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Now, if p | mj , then one still finds similar power series uj,� only that they will
involve three variables z0, z1, zmj

and thus

f
nκj+�
j (αj) = uj,�

(
n, pn, pm

n
j

)
.

For more details on this construction, see [BGKT10, Step (iv), Theorem 1.4].
We let

κ :=
∏
j

κj ,

with κj defined for each coordinate j = 1, . . . , N . Also we let

m := max
j

mj

with each mj defined as previously in this section for each αj which lies in a super-
attracting cycle for the action of fj . Hence for each � = 0, . . . , κ− 1 there exists a
p-adic analytic function

GH,� ∈ Qp[[z0, z1, z2, . . . , zm]]

such that

(11.7.0.1) Φ�+nκ(α) ∈ V if and only if GH,�(n, p
n, p2

n

, . . . , pm
n

) = 0.

If GH,� = 0 identically, then Φnκ+� ∈ V for all n ≥ 0 thus showing that
alternative (i) holds in Theorem 11.5.0.2. So, from now on, assume that

GH,� is not identically zero.

In Section 11.8 we show that the set of n ∈ N such that the p-adic analytic
function GH,� vanishes at

(
n, pn, p2

n

, . . . , pm
n)

is very sparse (as prescribed in The-
orem 11.5.0.2 (ii)). First we set up additional notation for GH,�. We may write

GH,�

(
z0, p

n, p2
n

, . . . , pm
n
)
=
∑

w∈Nm

gw(z0)p
fw(n)

where for any m-tuple w = (a, b2, . . . , bm) ∈ Nm and n ≥ 0, define fw : N→ N by

(11.7.0.2) fw(n) = an+

m∑
j=2

bjj
n,

while gw ∈ Qp[[z]] is p-adic analytic. For each w := (w1, . . . , wm) ∈ Nm we let
|w| := w1 + · · ·wm. As shown in [BGKT10, Step (vii), Section 4] there exists a
positive real number B such that all coefficients of gw have absolute value at most
pB|w|, for every w ∈ Nm.

We order Nm
0 using a lexicographic ordering reading right-to-left. That is,

(b1, . . . , bm) ≺ (b′1, . . . , b
′
m)

if either bm < b′m, or bm = b′m but bm−1 < b′m−1, or bm = b′m and bm−1 = b′m−1

but bm−2 < b′m−2, etc. Note that this order ≺ gives a well-ordering of Nm
0 . Then

we may write

GH,� ∈ Qp[[z0, z1, . . . , zm]]

uniquely as

(11.7.0.3) GH,�(z0, z1, . . . , zm) =
∑

w∈Nm

gw(z0)z
w,
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where gw ∈ Qp[[z0]], and for w = (a, b2, . . . , bm) ∈ Nm
0 , zw denotes

zw = za1z
b2
2 zb33 · · · zbmm .

Assume GH,� is not identically equal to 0. Then there exists v ∈ Nm minimal with
respect to ≺ such that gv is a nonzero p-adic analytic function. By Lemma 2.3.6.1
there exist (at most) finitely many zeros of gv in D(0, 1) (where we see this closed
disk inside Zp; so, D(0, 1) = Zp). So, there exists s ∈ (0, 1] such that for all

x ∈ D(0, 1), there exists at most one zero of gv in D(x, s). We let k ∈ N such that
p−k < s; then we can cover D(0, 1) = Zp by the finitely many disks D(i, s) with
i = 0, . . . , pk − 1.

11.8. Conclusion of the proof of Theorem 11.5.0.2

The following technical result (Lemma 11.8.0.1; see also [BGKT10, Lem-
ma 3.1]) finishes the proof of Theorem 11.5.0.2; note that the previously constructed
function GH,� (see Section 11.7) satisfies the technical hypotheses of the following
result.

Lemma 11.8.0.1 ([BGKT10]). Let

G(z0, z1, z2, . . . , zm) ∈ Qp[[z0, z1, z2, . . . , zm]]

be a non-trivial power series in m+ 1 ≥ 1 variables. Write

G =
∑
w

gw(z0)z
w

as in Equation (11.7.0.3), and let v ∈ Nm be the minimal index with respect to ≺
such that gv �= 0. Assume that gv converges on D(0, 1), and let s be a positive real
number such that for all x ∈ Zp, gv does not vanish at more than one point of the

disk D(x, s). Assume also that there exists B > 0 such that for each w  v, all
coefficients of gw have absolute value at most pB|w|.

Then there exists C > 1 with the following property: If x ∈ D(0, 1), and
if {ni}i≥1 is a strictly increasing sequence of positive integers such that for each
i ≥ 1,

(a) |ni − x|p ≤ s, and

(b) G
(
ni, p

ni , p2
ni
, p3

ni
, . . . , pm

ni
)
= 0,

then ni+1 − ni > Cni for all sufficiently large i.

We observe that the rate of growth from Lemma 11.8.0.1 of the p-adic absolute
value of the coefficients of each gw appearing in GH,� follows from the construction
of GH,�; see Section 11.7.

Before proceeding to the proof of Lemma 11.8.0.1, we show how to deduce
the conclusion of Theorem 11.5.0.2 from Lemma 11.8.0.1 (our argument follows
[BGKT10, Step (viii), Section 4]).

Proof of Theorem 11.5.0.2. We apply Lemma 11.8.0.1 (with the radius s
established in the previous Section) to GH,�, and let C0 > 1 be the constant from
the conclusion of Lemma 11.8.0.1 and let

C := Cpk−1
0 > 1,

where k is related to s as in Section 11.7, i.e., p−k < s. Also, we let

M := pk · κ;
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we recall from (11.7.0.1) that Φnκ+�(α) ∈ V if and only if GH,�

(
n, pn, p2

n

, . . . , pm
n)

= 0.
Unless conclusion (ii) of Theorem 11.5.0.2 holds with the values C and M

defined in the above paragraph, there is � ∈ {0, . . . ,M − 1} and there are infinitely
many pairs (n, n′) of positive integers such that:

(a) Φ�+nM (α),Φ�+n′M (α) ∈ V , and
(b) 0 < n′ − n ≤ Cn.

For any fixed n ≥ 1, there are only finitely many choices of n′ for which condition (b)
holds; thus, there are pairs (n, n′) with n arbitrarily large satisfying these two
conditions. Using the pigeonhole principle, we obtain that there are

�1 ∈ {0, . . . , κ− 1} and j ∈ {0, . . . , pk − 1},
and there are infinitely many pairs (n1, n

′
1) such that

(1) Φ�1+n1κ(α),Φ�1+n′
1κ(α) ∈ V ,

(2) n1 ≡ n′
1 ≡ j (mod pk), and

(3) 0 <
n′
1−n1

pk ≤ C
n1−j

pk .

We navigate between conditions (a)—(b) above and conditions (1)—(3) as follows:

• � = �1 + jκ;
• n1 = npk + j and n′

1 = n′pk + j.

Recalling that

C = Cpk−1
0 > 1 and j ≥ 0,

condition (3) becomes

(3’) 0 < n′
1 − n1 ≤ pkC

(n1−j)(1−p−k)
0 ≤ Cn1

0 ,

for n1 sufficiently large (more precisely, for n1 ≥ kpk log p
logC0

). However, conditions (1),

(2) and (3’), along with (11.7.0.1) contradict the conclusion of Lemma 11.8.0.1.
Hence Theorem 11.5.0.2 must hold. �

We conclude this section by proving the technical Lemma used in the proof of
Theorem 11.5.0.2; we reproduce the proof of [BGKT10, Lemma 3.1].

Proof of Lemma 11.8.0.1. If gw = 0 for all w �= v, then G = gv(z0)z
v. By

hypothesis (b), then, the one-variable nonzero power series gv(z0) vanishes at all
points of the sequence {ni}i≥1, a contradiction; hence, no such sequence exists. In
particular, if m = 0, then G is a non-trivial power series in the one variable z0, and
therefore G vanishes at only finitely many points ni. Thus, we may assume that
gw is nonzero for some w  v.

For any w,w′ ∈ Nm, note that w ≺ w′ if and only if fw(n) grows more slowly
than fw′(n) as n→∞.

Claim 11.8.0.2. For any A > 0, there is an integer M = M(v,A) ≥ 0 such
that for each w  v and n ≥M ,

fw(n)− fv(n) ≥ n+A(|w| − |v| − 1).

Proof of Claim 11.8.0.2. Write v = (a, b2, . . . , bm), and choose M ≥ A large
enough so that

jx ≥ (a+ 1)x+

j−1∑
k=2

bkk
x
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for all x ≥M , and for all j = 2, . . . ,m. Write

w = (a′, b′2, . . . , b
′
m).

Then

fw(n)− fv(n) = (a′ − a)n+ (b′2 − b2)2
n + · · ·+ (b′m − bm)mn.

We consider two cases:
Case 1. If b′k = bk for each k = 2, . . . ,m, then a′ > a, and therefore

fw(n)− fv(n)− n = (a′ − a− 1)n ≥ (a′ − a− 1)A = A(|w| − |v| − 1)

for n ≥M , because M ≥ A.
Case 2. Otherwise, there exists k = 2, . . . ,m such that b′k > bk. Let j be the

largest such k, so that b′k = bk for k > j. Then

fw(n)− fv(n)−A|w|+A|v| = (a′ − a)(n−A)

+

j−1∑
k=2

(b′k − bk)(k
n −A) + (b′j − bj)(j

n −A)

≥ −an−
j−1∑
k=2

bkk
n + jn −A

≥ n−A,

where the first inequality is because n ≥ A and b′j − bj ≥ 1, and the second is
because n ≥M . The proof of Claim 11.8.0.2 is now complete. �

By hypothesis (b), for any i such that ni ≥M(v,B), we have

(11.8.0.3) |gv(ni)|p =

∣∣∣∣ ∑
w�v

gw(ni)p
fw(ni)−fv(ni)

∣∣∣∣
p

≤ p−ni+B|v|+B ,

where the inequality is by Claim 11.8.0.2, the fact that |ni|p ≤ 1, and the fact that

the absolute values of all coefficients of gw are at most pB|w|. Let y ∈ D(x, s) ∩ Zp

be a limit point of the sequence {ni}i≥1. Then by inequality (11.8.0.3), we have
gv(y) = 0. Thus, gv can be written as

gv(z) =
∑
i≥δ

ci(z − y)i,

where δ ≥ 1 and cδ �= 0. In fact, we must have

|cδ|psδ > |ci|psi for all i > δ;

otherwise, inspection of the Newton polygon shows that gv would have a zero besides
y in D(x, s). Thus, for i sufficiently large (i.e., such that ni ≥ M(v,B) with the
notation as in Claim 11.8.0.2), we have

|cδ(ni − y)δ|p = |gv(ni)|p ≤ p−ni+O(1),

by hypothesis (a) and inequality (11.8.0.3), and hence

(11.8.0.4) |ni − y|p ≤ |cδ|
− 1

δ
p p−

ni
δ +O(1).

It follows that

(11.8.0.5) ni+1 ≡ ni mod p
ni
δ −O(1)�.
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Hence, if we choose C such that 1 < C < p
1
δ , we have

ni+1 − ni > Cni

for i sufficiently large, as desired. Finally, note that C depends only on G since
there exist at most finitely many zeros of gv in Zp, and thus finitely many possible
limit points for the sequence {ni}i in Zp (and thus finitely many possibilities both
for δ and for the O(1)-constant in (11.8.0.4) and in (11.8.0.5)). �

We note that Lemma 11.8.0.1 holds also if G is defined over a finite extension
K of Qp; the only significant change is that the constant C will depend also on the
ramification index e of K/Qp.

11.9. Curves

In this section we prove Theorem 11.5.0.9; we thank Rob Benedetto and Par
Kurlberg for giving us the permission of using the proof that was discovered while
writing [BGKT10].

The proof of Theorem 11.5.0.9 is simpler than the proof of Theorem 11.5.0.2,
but it requires an additional ingredient that is only available over number fields,
namely, the existence of a suitable indifferent cycle in at least one of the variables
(which one obtains over number fields by Lemma 7.1.1.1, which in turn, relies on
[Sil93, Theorem 2.2]). Because of the p-adic example which we will present in
Proposition 11.10.0.1 (which shows that for rigid analytic spaces, the set SV in
Theorem 11.4.2.1 may be infinite, but very sparse), it seems likely that a proof of
Conjecture 1.5.0.1 would also have to involve extra information beyond what is used
in the proof of Theorem 11.5.0.2. Thus, although Theorem 11.5.0.9 only applies to
curves, it may well be that the techniques used to prove it are better adapted to a
general proof of Conjecture 1.5.0.1.

To prove Theorem 11.5.0.9 we need a sharper version of Lemma 6.2.2.1, giv-
ing an upper bound on k. We first recall the following special case of [Bel06,
Theorem 3.3] (see also Lemma 6.2.2.1).

Theorem 11.9.0.1. Let p > 3 be prime, let Kp/Qp be a finite unramified ex-
tension, and let Op denote the ring of integers in Kp. Let

g(z) = a0 + a1z + a2z
2 + · · · ∈ Op[[z]]

be a power series with |a0|p, |a1−1|p < 1 and for each i ≥ 2, |ai|p ≤ p1−i. Then for

any z0 ∈ Op, there is a power series u ∈ Op[[z]] mapping D(0, 1) ⊂ Kp into itself
such that

u(0) = z0, and u(z + 1) = g(u(z)).

Remark 11.9.0.2. In [Bel06], Theorem 11.9.0.1 is only stated for Kp = Qp,
but the proof goes through essentially unchanged for any finite unramified extension
of Qp. This is another instance of the p-adic arc lemma; see Chapter 4, especially
Theorem 4.4.2.1.

We can now give an explicit bound on k. However, we give up any claims on
the size of the image of u. In fact, if z0 is a periodic point, the map u is constant.
On the other hand, if z0 is not periodic, then the derivative of u is non-vanishing
at zero, and hence u is a local bijection.
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Proposition 11.9.0.3. Let p > 3 be prime, let Kp and Op be as in Theo-
rem 11.9.0.1, let h(z) ∈ Op[[z]] be a power series, and let z0 ∈ Op. Suppose that

|h(z0)− z0|p < 1 and |h′(z0)|p = 1.

Then there is an integer 1 ≤ k ≤ p[Kp:Qp] and a power series u ∈ Op[[z]] mapping

D(0, 1) ⊂ Kp into itself such that

u(0) = z0 and hk(u(z)) = u(z + 1).

In particular, hnk(z0) = u(n) for all n ≥ 0.

Proof. Let q = p[Kp:Qp] denote the cardinality of the residue field of Op.
Conjugating by a translation we may assume that z0 = 0. Let

g(z) := h(pz)/p = b0 + b1z + b2z
2 + · · · ∈ Op[[z]]

We find that |b0|p ≤ 1, |b1|p = 1, and |bi|p ≤ p1−i for each i ≥ 2. By considering
the iterates of the map

z 	→ b0 + b1z,

we have

gk(z) ≡ z (mod p) for some 1 ≤ k ≤ q.

Hence,

gk(z) = a0 + a1z + a2z
2 + · · ·

satisfies the hypotheses of Theorem 11.9.0.1, giving a power series ũ ∈ Op[[z]]

mapping D(0, 1) into itself, with ũ(0) = 0 and ũ(z + 1) = gk(ũ(z)). It follows that
u(z) = pũ(z) has the desired properties. �

Now we are ready to prove Theorem 11.5.0.9.

Proof of Theorem 11.5.0.9. For simplicity we assume that X = P1 × P1,
and that V ⊂ X is an irreducible curve; the argument can be easily modified to
include the general case (by considering projections on two coordinates at a time;
see also Section 5.10). If xi is preperiodic under fi for either i = 1 or i = 2,
the result is trivial. If both f1 and f2 are of degree one, V can be shown to be
be periodic, either by the Skolem-Mahler-Lech theorem, or by the main result of
[Bel06]. Thus, possibly after permuting indices, we may assume that the degree
of f1 is greater than 1. Define

π1 : V → P1 by (z1, z2)→ z1.

By taking a periodic cycle D = {d1, . . . , da} of f1 of sufficiently large cardinality a,
defined over some number field L, we may assume that

• D is not super-attracting (i.e., no di is a critical point of f1);
• all points (α1, α2) ∈ π−1

1 (D) ∩ V are smooth points on V ; and
• for (z1, z2) near (α1, α2), we have

(11.9.0.4) z1 − α1 = γα · (z2 − α2) +O
(
(z2 − α2)

2
)
,

for some γα �= 0.

Note that only finitely many points violate these conditions.
Since f1 is not preperiodic, by [Sil93, Theorem 2.2] (or Lemma 7.1.1.1), we

can find infinitely many primes p such that

|fn
1 (x1)− d1|p < 1 for some n,
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where | · |p denotes the extension of the p-adic absolute value on Q to L. We may
of course assume that L/Q is unramified at p and that

|γα|p = |(fa
1 )

′(d1)|p = 1

for all sufficiently large p, as there are only finitely many p not fitting these condi-
tions. In particular, the orbit of x1 under f1 ends up in a domain of quasiperiodicity.

If the orbit of x2 under f2 also has quasiperiodic behavior, then V is periodic
by [BGKT12, Theorem 3.4] (see also Theorem 6.2.3.1). Otherwise, the orbit of x2

ends up in an attracting or super-attracting domain. The arguments in these two
cases are very similar, and we shall only give details for the attracting case. Hence,
assume that fn

2 (x2) tends to an attracting cycle

E = {e1, e2, . . . , eb},
with multiplier λ2 satisfying 0 < |λ2|p < 1. Since λ2 and E are defined over Kp,
and Kp/Qp is unramified, we have

|λ|p ≤ 1/p.

Note that b ≤ p[Kp:Qp] + 1 ≤ p[K:Q] + 1. Let N = lcm(a, b), so that

N ≤ a · (p[K:Q] + 1) = O(p[K:Q]).

Choose representatives {αij : 1 ≤ i ≤ a, 1 ≤ j ≤ b} for Z/NZ such that

|fαij+Nn
1 (x1)− di|p < 1, |fαij+Nn

2 (x2)− ej |p < 1

for n sufficiently large. At the cost of increasing a (and hence N) by a factor
bounded by p[K:Q], by Proposition 11.9.0.3 and Lemma 6.2.1.1 there exist p-adic
power series Ai, Bj , such that

(11.9.0.5) f
αij+Nn
1 (x1)− di = Ai(k), f

αij+Nn
2 (x2)− ej = Bj(λ

k
2)

for n sufficiently large. If n > m and φmN+αij (P ), φnN+αij (P ) ∈ V , then (11.9.0.4)
and (11.9.0.5) yield that

|Ai(n)−Ai(m)|p = O(|λ2|mp ),

since we had |γα|p = 1 in (11.9.0.4). Hence n ≡ m (mod pm−Op(1)), where the
Op(1) depends on the derivative of Ai. Thus, if we take C < p, we find that
n ≥ m+ Cm for m sufficiently large. �

11.10. An analytic counterexample to a p-adic formulation of the
Dynamical Mordell-Lang Conjecture

In this section we present the example from [BGKT10, Section 7] which shows
that there are indeed nonzero p-adic analytic functions

G ∈ Zp[[z0, z1, z2, . . . , zm]]

such that the set of n ∈ N0 for which

G
(
n, pn, p2

n

, . . . , pm
n
)
= 0

is infinite and very sparse. More precisely, we will show that there exists a p-adic
analytic function f ∈ Zp[[z]] such that the set of n ∈ N0 such that pn = f(n) is
infinite, but very sparse.
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Proposition 11.10.0.1 ([BGKT10]). For any prime p ≥ 2 and for any pos-
itive integer n1, there is an increasing sequence {nj}j≥2 of positive integers and a
power series f(z) ∈ Zp[[z]] such that

f(pnj ) = nj and nj + pnj ≤ nj+1 ≤ nj + pn1+···+nj

for all j ≥ 1. Moreover, n1 + · · ·+ nj−1 ≤ nj, and hence

nj + pnj ≤ nj+1 ≤ nj + p2nj .

Proof. We will inductively construct the sequence {nj : j ≥ 2} of positive
integers and a sequence {fj(z) : j ≥ 1} of polynomials fj ∈ Zp[z], with deg(fj) =
j − 1. The power series f will be then

f = lim
j→∞

fj .

Let f1 be the constant polynomial equal to n1. Then, for each j ≥ 1, suppose we
are already given

f1, . . . , fj and n1, . . . , nj

such that

fk(p
ni) = ni

for each i, k with 1 ≤ i ≤ k ≤ j. Choose nj+1 to be the unique integer such that

nj + 1 ≤ nj+1 ≤ nj + pn1+···+nj

and

(11.10.0.2) |nj+1 − fj(0)|p ≤ |p|n1+···+nj
p .

Note that because fj ∈ Zp[z] and fj(p
nj ) = nj , we have

|fj(0)− nj |p = |fj(0)− fj(p
nj )|p ≤ |p|nj

p ,

and therefore |nj+1 − nj |p ≤ |p|nj
p , implying that

nj+1 ≥ nj + pnj

and that

nj+1 ≥ n1 + n2 + · · ·+ nj ,

as claimed in the proposition. Define

gj(z) := (z − pn1)(z − pn2) · · · (z − pnj ),

and set

cj :=
nj+1 − fj(p

nj+1)

gj(p
nj+1)

∈ Qp,

and

fj+1(z) := fj(z) + cjgj(z) ∈ Qp[z].

We claim that |cj |p ≤ 1. Indeed, we have

(11.10.0.3) |fj(0)− fj(p
nj+1)|p ≤ |p|nj+1

p ,

because fj ∈ Zp[[z]]. Therefore,

|nj+1 − fj(p
nj+1)|p ≤ max{|nj+1 − fj(0)|p, |fj(0)− fj(p

nj+1)|p}
≤ max{|p|n1+···+nj

p , |p|nj+1
p }

= |p|n1+···+nj
p = |gj(pnj+1)|p,
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where the second inequality follows from equations (11.10.0.2) and (11.10.0.3). It
follows immediately that |cj |p ≤ 1, as claimed.

Clearly, fj+1(p
ni) = ni for all i = 1, . . . , j + 1. Since cj ∈ Zp, we obtain that

fj+1 ∈ Zp[z], completing the induction. In fact, because (for any fixed m ≥ 0) the
size of the zm-coefficient of gj goes to zero as j →∞, it follows that

lim
j→∞

fj

converges coefficient-wise to some power series f ∈ Zp[[z]]. Since every fj also lies
in Zp[[z]], it follows that the convergence fj → f is uniform on pZp. Hence,

f(pni) = ni for all i ≥ 1,

as desired. �

In particular the example constructed in Proposition 11.10.0.1 shows that for
the endomorphism

Φ : A2 −→ A2 given by Φ(x, y) = (px, y + 1),

there exists an infinite (very sparse) set of n ∈ N such that Φn(1, 0) lies on the
p-adic analytic curve X = f(Y ). Hence there exists no p-adic analytic version of
the Dynamical Mordell-Lang Conjecture.

11.11. Approximating an orbit by a p-adic analytic function

We have seen in Chapter 4 that for an étale endomorphism of a quasiprojective
variety X, one can find a suitable p-adic parametrization of each orbit; this leads to
the proof of the Dynamical Mordell-Lang Conjecture for all étale endomorphisms
(see Theorem 4.3.0.1). The p-adic arc lemma was used also in Chapter 7 to prove
other instances of Conjecture 1.5.0.1. On the other hand, we saw in Chapter 8 that
is not always reasonable to expect that the p-adic arc lemma can be employed to
construct a p-adic analytic parametrization of any orbit of any endomorphism.

On the other hand, in Section 11.7 we saw that for endomorphisms of (P1)N

one can always find almost a p-adic arc lemma; the construction of the function
G�,H from Sections 11.7 and 11.8 is the appropriate substitute for a p-adic analytic
parametrization of an orbit for arbitrary endomorphisms of (P1)N . Our analysis
from Sections 11.6 to 11.8 leads to proving that, if it were for Conjecture 1.5.0.1 to
fail for a subvariety V ⊂ (P1)N , then the set

S(V,Φ, α) := {n ∈ N0 : Φ
n(α) ∈ V }

is very sparse (see Theorem 11.5.0.2). In this section, building on our previous
work from Chapter 4, we show that often one can find a p-adic analytic function
which approximates the orbit of a point. Our result leads to showing that the
gap principle from Theorem 11.5.0.2 extends beyond endomorphisms of (P1)N ; see
Theorem 11.11.3.1 for an application for our method.

11.11.1. A p-adic approximating function. Let p be a prime number, and
let K be a complete valued field with respect to a valuation satisfying

|p| = 1

p
.

Let R be the valuation ring of K. For an integer d ≥ 1, we let

R[x] := R[x1, . . . , xd],
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and for f ∈ R[x] we let ||f || be the supremum of the absolute values of the coef-
ficients of f . We let R〈x〉 be the completion of R[x] with respect to || · ||; this is
called the Tate algebra and it consists of all power series in x with the property
that the absolute values of its coefficients tends to 0.

We let c be a positive real number. For two power series F,G ∈ R〈x〉, we write

F ≡ G (mod pc)

if each coefficient aα of F −G satisfies |aα| ≤ p−c. More generally, for two d-tuples
of power series

F := (F1, . . . , Fd) and G := (G1, . . . , Gd)

contained in R〈x〉d, we write

F ≡ G (mod pc) if Fi ≡ Gi (mod pc)

for each i. Finally, for each n ∈ N we denote by Fn the composition of F with
itself n times. Since the coefficients of each Fi converge to 0, the composition Fn

is well-defined.

Theorem 11.11.1.1. Let E be a d-by-d idempotent matrix. If f ∈ R〈x1, . . . , xd〉d
satisfies

f(x) ≡ Ex (mod pc)

for some c > 1/(p− 1), then there exists g ∈ R〈x1, . . . , xd, z〉 such that

||g(x, n)− fn(x)|| ≤ p−nc

for each n ∈ Z≥0.

Proof. This proof is similar to Poonen’s proof [Poo14]. We let Δ denote the
linear operator defined by

(Δh)x = h(f(x))− h ◦ E(x).

Then Δ maps R〈x〉d into pcR〈x〉d. We define

g(x, z) :=
∑
s≥1

(z − 1)(z − 2) · · · (z − s+ 1)

(s− 1)!

×
∑

j0,js≥0,j1,...,js−1≥1

Δj0EΔj1E · · ·Δjs−1EΔjs(x).

Notice that the coefficient of (z−1)(z−2)···(z−s+1)
(s−1)! is a sum of terms of the form

Δj0EΔj1E · · ·Δjs−1EΔjs(x)

and by assumption we must have at least s− 1 copies of Δ in each term and thus
the coefficient is in p(s−1)cR〈x〉d and so g(x, z) converges in R〈x, z〉d with respect

to || · || (note also that z 	→ z(z−1)···(z−s+1)
s! is a p-adic analytic function for z ∈ Zp).

Observe that for n ∈ Z≥0 we have

fn(x) = (E +Δ)n(x) =
n∑

s=0

∑
i0+···+is=n−s

Ei0ΔEi1Δ · · ·Eis−1ΔEis(x).
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For s < n, the condition i0 + · · · + is = n − s implies that ij ≥ 1 for some j.
Moreover, E2 = E and hence∑

i0+···+is=n−s

Ei0ΔEi1Δ · · ·Eis−1ΔEis

=
∑
t≥1

∑
j0,jt≥0,j1,...,jt−1≥1

j0+···+jt=s

(
n− 1

t− 1

)
Δj0EΔj1E · · ·Δjt−1EΔjt(x).

It follows that all terms appearing in fn(x) − g(x, n) have at least n copies of Δ
appearing and hence fn(x)− g(x, n) ∈ pncR〈x〉d for n ∈ Z≥0. �

11.11.2. The geometric setting. Power series in a Tate algebra R〈x〉 ap-
pear naturally in a geometric setting as described in Subsection 4.4.1 (see also
[BGT10]). So, consider a quasiprojective variety X defined over a field K of char-
acteristic 0 endowed with an endomorphism Φ, and let x ∈ X(K). As always, we
are interested in describing the intersection Y (K) ∩ OΦ(x) for some subvariety Y
of X, i.e., according to the Dynamical Mordell-Lang Conjecture we would like to
conclude that

S := SY := {n ∈ N0 : Φ
n(x) ∈ Y (K)} is a finite union of arithmetic progressions.

AssumeX is a smooth variety of dimension d. Arguing as in Propositions 4.4.1.3
and 4.4.1.4 we find a suitable prime number p and a smooth Zp-model X such that:

• Φ extends to an endomorphism of X sharing the same properties that the
original endomorphism of X may have (unramified, flat, etc.); and

• x extends to a section α ∈ X (Zp).

Using Propositions 3.1.2.4 and 3.1.2.5, we may replace x by Φm(x) (for some m ∈
N0) and replace Φ by Φ�, and therefore assume that the reduction x of x modulo
p (in other words, x is the intersection of the section α with the special fiber of X )
is fixed by the induced action of the reduction of Φ modulo p. We let Ux be the
p-adic neighborhood of X (Zp) containing all points β with the same reduction x
modulo p. Arguing exactly as in the proof of [BGT10, Proposition 2.2] (see also
Subsection 4.4.1) we then obtain that there is a p-adic analytic isomorphism

ι : Ux −→ Zd
p,

such that there are power series F1, . . . , Fd ∈ Zp[[z1, . . . , zd]] with the properties
that

(i) each Fi converges on Zd
p;

(ii) for all (β1, . . . , βd) ∈ Zd
p, we have

(11.11.2.1) ι(Φ(ι−1(β1, . . . , βd))) = (F1(β1, . . . , βd), . . . , Fd(β1, . . . , βd)); and

(iii) each Fi is congruent to a linear polynomial modulo p (in other words, all
the coefficients of terms of degree greater than one are in the maximal
ideal of Zp). Moreover, for each i, we have

Fi(z1, . . . , zd) =
1

p
·Hi(pz1, . . . , pzd),

for some Hi ∈ Zp[[z1, . . . , zd]].
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Denoting �β = (β1, . . . , βd) and ιΦι−1 as FΦ, we thus have

(11.11.2.2) FΦ(�β) ≡ CΦ + LΦ(�β) (mod p)

for some CΦ ∈ Zd
p and some d×d matrix LΦ with coefficients in Zp. Since the reduc-

tion of LΦ modulo p is a matrix with entries in Fp, then a power of it is idempotent.
So, at the expense of replacing again Φ by an iterate (see Proposition 3.1.2.5) we
assume

L2
Φ ≡ LΦ (mod p).

From now on assume

p ≥ 3.

An idempotent matrix M ∈ Md(Z/pZ) can be diagonalized using a matrix
in SLd(Z/pZ) since all of its eigenvalues are in {0, 1}. Since diagonal idempotent
matrices in Md(Z/pZ) clearly lift to diagonal idempotent matrices in Md(Z) and
since the natural map

SLd(Z)→ SLd(Z/pZ)

is surjective, we see that there is an idempotent matrix E ∈ Md(Z) such that

L ≡ E (mod p).

The key thing here is that E2 = E—not just when we look mod p.
Now, if CΦ ≡ 0 (mod p), then we are in position to apply Theorem 11.11.1.1.

We sketch below possible applications of Theorem 11.11.1.1 to the Dynamical
Mordell-Lang Conjecture.

11.11.3. Applications. We present an application of Theorem 11.11.1.1 in
a very explicit case which cannot be proven using Theorem 4.3.0.1. Also, we note
that the case we consider is not covered by other known instances of the Dynamical
Mordell-Lang Conjecture, such as the ones contained in [Xieb].

Theorem 11.11.3.1. Let p ≥ 3 be a prime number, let N ≥ 2 be an integer, let

Φ : A2 −→ A2

be an endomorphism defined over Qp, let V ⊆ AN be a subvariety defined over Qp

and let α ∈ AN (Qp) be a point. Assume the following conditions are met:

(1) α := (α1, . . . , αN ) and each αi ∈ pZp;
(2) V contains no positive dimensional periodic subvariety;
(3) the endomorphism Φ is given by

(x1, . . . , xN ) 	→ (f1(x1, . . . , xN ), . . . , fN (x1, . . . , xN ))

for some polynomials fi ∈ Zp[x1, . . . , xN ] and furthermore for each i =
1, . . . , N we have

fi(x1, . . . , xN ) ≡
N∑
j=1

ai,jxj (mod p)

for some ai,j ∈ Zp;
(4) for any n ∈ N, the orbit OΦn(α) does not converge p-adically to a periodic

point of Φ lying on V .
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Then the set SV := {n ∈ N0 : Φ
n(α) ∈ V (Qp)} has the property that

#{i ≤ n : i ∈ SV } = o
(
log(m)(n)

)
,

for any m ∈ N (where log(m) is the m-th iterated logarithmic function).

We already know (see Theorem 11.1.0.7) that SV has Banach density 0. How-
ever, Theorem 11.11.3.1 yields a much stronger statement than the one from The-
orem 11.1.0.7 or Theorem 11.1.0.8; note that even in the case V is a curve, Theo-
rem 11.1.0.8 yields only that

#{i ≤ n : i ∈ SV } = O

(
n

log(n)

)
.

Before proceeding to the proof of Theorem 11.11.3.1 we make several remarks
regarding the hypotheses of our result. First of all, as previously discussed (see
Section 4.4.2), we can always assume there exists a suitable prime number p such
that V , Φ and α are defined over Zp (as long as V and Φ are defined over a field of
characteristic 0). We added the extra condition that

αi ≡ 0 (mod p) for each i = 1, . . . , N

for the coordinates of α just so we simplify the technical conditions needed later,
i.e. the fact that Φ fixes α modulo p. This condition is not necessary, and can
easily be achieved at the expense of replacing both α and Φ by iterates.

In condition (2), we assumed that V contains no positive dimensional periodic
subvariety. As proven in Subsection 3.1.3, Conjecture 3.1.3.2 is equivalent to Con-
jecture 1.5.0.1, and thus under condition (2), one expects (assuming the Dynamical
Mordell-Lang Conjecture) that the set SV is finite. We are proving that, if it is
infinite, then it is very sparse.

In condition (3), we needed to assume there are no constant terms for the poly-
nomial maps fi modulo p in order to apply Theorem 11.11.1.1. Even though it is a
technical restrictive condition, often it holds, and more importantly, it is immediate
to check whether it is satisfied in each explicit example of an endomorphism Φ of
AN .

Finally, in condition (4), we ask that (even passing to an iterate of Φ) the
orbit OΦ(α) does not converge p-adically to a periodic point contained on V . So,
condition (4) is automatically satisfied if V contains no periodic point (which may
happen quite often if V is a curve). Essentially, condition (4) is equivalent with
asking that the point α does not lie in an attracting periodic cycle modulo p. In
Chapter 8 we showed heuristics supporting the idea that for general endomorphisms
of Am (or of Pm) it may not be possible to avoid the ramification locus of Φ
modulo any prime p, and thus the orbit of α might always land in an attracting
periodic cycle modulo each prime number. Hence, condition (4) is in reality the
most restrictive condition out of the four conditions imposed in the hypotheses of
Theorem 11.11.3.1.

Proof of Theorem 11.11.3.1. Clearly, it suffices to assume V is irreducible.
Also, we may assume the set SV is infinite; otherwise the conclusion of Theo-
rem 11.11.3.1 is trivial. Now, if SV is infinite, then condition (4) from the hypothe-
ses can be strengthen by asking that for any k ∈ N, the orbit OΦk(α) does not
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converge p-adically to a point in AN . Indeed, if

OΦk(α) converges to β ∈ AN (Qp),

then for each � = 0, . . . , k − 1 we have that

(11.11.3.2) OΦk(Φ�(α)) converges to Φ�(β) ∈ AN (Qp).

Since SV is infinite, then by the pigeonhole principle, there exists some � ∈ {0, . . . ,
k − 1} such that

(11.11.3.3) Φnk+�(α) ∈ V (Qp) for infinitely many n ∈ N0.

Combining (11.11.3.2) and (11.11.3.3), we get that

(11.11.3.4) Φ�(β) ∈ V (Qp).

But then (11.11.3.4) and (11.11.3.2) contradict condition (4) in Theorem 11.11.3.1.
We let A := (ai,j) be the corresponding N -by-N matrix. At the expense

of replacing Φ by an iterate Φk we may assume the reduction of A modulo p is
idempotent. (Note that we are allowed to replace Φ by a power of it and conclusion
of Theorem 11.11.3.1 is unchanged.)

If A modulo p is invertible, then we can apply Theorem 4.3.0.1 and conclude
that SV is finite.

On the other hand, because of condition (4) in Theorem 11.11.3.1, we know
that A modulo p cannot be nilpotent; otherwise Φn(α) converges to the origin in
AN (note that, as explained in the begining of our proof, condition (4) can be
relaxed to asking that there is no accumulation point for OΦk(α) for any k ∈ N).
Then arguing as in Section 11.11.2, at the expense of replacing Φ by a suitable
conjugate (through a matrix with entries in Zp—hence this conjugation preserves
condition (1) in Theorem 11.11.3.1) we may assume there exists an idempotent
matrix E with entries in Zp such that

A ≡ E (mod p).

Thus the hypotheses of Theorem 11.11.1.1 are met for Φ (with c = 1) and then
there exists a p-adic analytic function

G : Zp −→ ZN
p

such that for each n ∈ N0 we have

(11.11.3.5) ||Φn(α)−G(n)|| ≤ p−n,

where ||(x1, . . . , xN )|| := max{|x1|p, . . . , |xN |p}, while in general, we let

(a1, . . . , aN )− (b1, . . . , bN ) := (a1 − b1, . . . , aN − bN )

for any two points (a1, . . . , aN ) and (b1, . . . , bN ) in AN (Zp). Now, since each fi has
coefficients in Zp (and also that α,G(n) ∈ ZN

p ) we obtain that

(11.11.3.6) ||Φn+1(α)− Φ(G(n))|| ≤ p−n.

Combining (11.11.3.5) and (11.11.3.6) we obtain that

(11.11.3.7) ||Φ(G(n))−G(n+ 1)|| ≤ p−n.

On the other hand, the function H(z) := Φ(G(z))−G(z + 1) given by

H(z) := (H1(z), . . . , HN (z))

satisfies the following properties:
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(1) Hi : Zp −→ Zp is p-adic analytic for each i = 1, . . . , N ; and
(2) |Hi(n)|p ≤ p−n for each n ≥ 1 and each i = 1, . . . , N .

Since N is dense in Zp we obtain that Hi is identically equal to 0; so

(11.11.3.8) Φ(G(n)) = G(n+ 1) for all n.

There are now two cases.
Case 1. G is not constant.
There are then two additionally subcases.
Subcase (i). There exists N ∈ N such that for all n ≥ N , we have G(n) ∈

V (Qp).
Since the orbit of G(N) under Φ is exactly the set {G(n)}n≥N (see (11.11.3.8)),

Proposition 3.1.2.14 yields that V contains a positive dimensional periodic subva-
riety (we also use here that G is not constant). This contradicts condition (2) from
Theorem 11.11.3.1.

Subcase (ii). There exist infinitely many positive integers n such that G(n) /∈
V (Qp).

We let {F1, . . . , Fm} be a finite set of polynomials in Zp[x1, . . . , xN ] which
generate the vanishing ideal of V . Then for each i = 1, . . . ,m, we let

Li := Fi ◦G : Zp −→ Zp,

which is a p-adic analytic function. By our assumption from Subcase (ii), there
exists some i0 ∈ {1, . . . ,m} such that

L := Li0 is nonzero.

Claim 11.11.3.9. For each n ∈ SV , we have |L(n)|p ≤ p−n.

Proof. Using (11.11.3.5) and Taylor expansion (noting that each coefficient of
Fi0 is in Zp and that Fi0(Φ

n(α)) = 0 if n ∈ SV ), we obtain the desired conclusion.
�

Since L is not identically equal to 0, then L has at most finitely many zeros in
Zp. We let s ∈ (0, 1] (as in Lemma 11.8.0.1) such that for each x ∈ Zp there is at

most one zero of L in D(x, s). We let k ∈ N such that p−k < s and we cover Zp by

the disks D
(
i, p−k

)
with i = 0, . . . , pk − 1. For each i ∈ {0, . . . , pk − 1}, we let

SV,i := {n ∈ SV : n ≡ i (mod pk)};
then

(11.11.3.10) SV =

pk−1⋃
i=0

SV,i.

Claim 11.11.3.11. Let i ∈ {0, . . . , pk − 1}. If there are no zeros of L in
D
(
i, p−k

)
, then SV,i is finite.

Proof. Indeed, otherwise there is an accumulation point γ ∈ D
(
i, p−k

)
for the

elements of SV,i. Using Claim 11.11.3.9 we obtain that L(γ) = 0, contradiction. �

Claim 11.11.3.12. Let i ∈ {0, . . . , pk−1} and assume SV,i is an infinite set. If
we list the elements in SV,i in increasing order as {nj}j≥1, then there exists C > 1
such that for all sufficiently large j, we have

nj+1 − nj ≥ Cnj .
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Proof. The proof is similar to the proof of Lemma 11.8.0.1. We let γ ∈
D
(
i, p−k

)
(be the unique point) such that L(γ) = 0 (see also Claim 11.11.3.11).

Letting δ be the order of the zero γ for L, and arguing similarly as in the proof of
Lemma 11.8.0.1 (see (11.8.0.4) and (11.8.0.5)) we obtain (for sufficiently large j)
that

|nj − γ|p ≤ p−
nj
δ +O(1) and thus, |nj+1 − nj |p ≤ p−

n
δ +O(1).

Hence Claim 11.11.3.12 holds with C := p
1
δ−ε for any ε > 0. �

Using Claims 11.11.3.11 and 11.11.3.12 (and (11.11.3.10)) coupled with a simple
counting argument (as in the proof of Theorem 11.1.0.9) we obtain that

(11.11.3.13) #{i ≤ n : i ∈ SV } = o
(
log(m)(n)

)
,

for each m ∈ N, as desired.
Case 2. G is constant.
So, letting β ∈ ZN

p such that G(n) = β (identically), (11.11.3.5) yields that the
orbit OΦ(α) converges p-adically to β (which must be a point on V since there exist
infinitely many points of the orbit landing on V ). This contradicts assumption (4)
above. �
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CHAPTER 12

Denis-Mordell-Lang Conjecture

12.1. Denis-Mordell-Lang Conjecture

12.1.1. The beginning of the Dynamical Mordell-Lang Conjecture.
In this chapter we discuss a variant of the Dynamical Mordell-Lang Conjecture in
the context of Drinfeld modules, which is a conjecture of Denis [Den92a]. Ac-
tually, Denis’ Conjecture (see Conjecture 12.1.3.1) was the starting point for the
Dynamical Mordell-Lang Conjecture. Informally speaking (for the exact connection
with Denis’ question stated in Conjecture 12.1.3.1, see Corollary 12.1.7.1), Denis
[Den92a] asked for a description of the set

SV,Φ,α := {n ∈ N0 : Φ
n(α) ∈ V (K)},

where Φ is an endomorphism of AN given by the coordinatewise action of some
additive one-variable polynomials ϕ1, . . . , ϕN defined over a field K of characteristic
p, while α ∈ AN (K) and V ⊆ AN is a subvariety defined over K. We recall that a
polynomial ϕ is additive if

ϕ(x+ y) = ϕ(x) + ϕ(y)

for any x and y. Over a field of characteristic 0, all additive polynomials are of the
form

x 	→ cx for some constant c.

Over a field K of characteristic p, there are many more additive polynomials. In-
deed, any polynomial

ϕ(z) :=

m∑
i=0

ciz
pi

,

for some coefficients ci ∈ K is additive. On the other hand, not any additive
polynomials ϕi appearing in the definition of the endomorphism Φ of AN lead to
the set S(V,Φ, α) being a finite union of arithmetic progressions; Example 3.4.5.1
shows that if each ϕi is linear, then S(V,Φ, α) might be infinite, but very sparse.

If Φ is an arbitrary endomorphism of AN , one cannot expect that the Dynamical
Mordell-Lang principle holds; the set S(V,Φ, α) can have a more complicated struc-
ture. In Chapter 13 we discuss a version of the Dynamical Mordell-Lang Conjecture
for any endomorphism of a variety defined over a field of positive characteristic. In
the present Chapter we confine ourselves to discussing Denis’ original conjecture
which is formulated solely in the context of additive polynomials.

Motivated by the deep analogy between abelian varieties defined over fields of
characteristic 0 and Drinfeld modules, Denis [Den92a] conjectured (essentially)
that if Φ is an endomorphism of AN given by the diagonal action of a Drinfeld
module (which is an additive polynomial of special type; for more details, see Defi-
nition 12.1.2.1), then S(V,Φ, α) should be a finite union of arithmetic progressions.

217
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218 12. DENIS-MORDELL-LANG CONJECTURE

It was precisely Denis’ question (see Conjecture 12.1.3.1) along with the classical
Mordell-Lang Conjecture which motivated the authors of [GT09] to conjecture
that the same Dynamical Mordell-Lang principle should hold quite generally for
endomorphisms of quasiprojective varieties defined over a field of characteristic 0.

12.1.2. Drinfeld modules. The main results that we present in this chapter
are from [GT08b]; for some results we include the proofs from [GT08b] in entirety,
and in other cases we give only a sketch. The results of [GT08b] offer a partial
answer to Denis’ conjecture from [Den92a]. First, we define a Drinfeld module (of
generic characteristic); for more details on Drinfeld modules see [Gos96].

Definition 12.1.2.1. Let p be a prime number and let K be a field containing
Fp(t). We call the ring homomorphism

ϕ : Fp[t] −→ EndK(Ga)

a Drinfeld module (of generic characteristic) if for each f(t) ∈ Fp[t], ϕf := ϕ(f)
is a (separable) endomorphism of Ga defined over K such that ϕ′

f (z) = f , and
moreover ϕt is not a linear endomorphism.

If ϕt(z) = tz +
∑r

i=1 aiz
pi

, then we call r the rank of ϕ. Note that by our
hypothesis, ϕt is non-linear, and therefore r ≥ 1.

If there exists some nonzero f ∈ Fp[t] such that ϕf is not separable, then ϕ is
called a Drinfeld module of special characteristic. There is a rich theory for Drinfeld
modules of special characteristic (again we refer the reader to [Gos96]), but in this
book we restrict our attention to Drinfeld modules of generic characteristic—hence
we will simply call them Drinfeld modules.

We also define naturally the notion of submodule under a Drinfeld module
action.

Definition 12.1.2.2. Let g ∈ N, and let ϕ1, . . . , ϕg be Drinfeld modules defined
over a field K. We say that Γ ⊂ Ag(K) is a (ϕ1, . . . , ϕg)(Fp[t])-submodule if it is
mapped into itself by the coordinatewise action on Ag given by

(ϕ1, . . . , ϕg).

More generally, a Drinfeld module is a ring homomorphism from a ring A of
functions defined on a Fp-curve C which are regular away from a given point η of
C. In our Definition 12.1.2.1,

A = Fp[t], and thus (C, η) = (P1,∞).

All the results we will be stating in this chapter are equivalent to the more general
definition of a Drinfeld module, since a ring A as above is always a finite integral
extension of Fp[t] and thus a subset S of K has a structure of finitely generated
ϕ(Fp[t])-submodule if and only if it is a finitely generated ϕ(A)-submodule. In
particular, the notion of torsion for a Drinfeld module is the same regardless of
which definition we use.

Definition 12.1.2.3. Let

ϕ : Fp[t] −→ EndK(Ga)

be a Drinfeld module. For each a ∈ Fp[t] \ {0}, we denote by ϕ[a] the set of all

x ∈ K such that ϕa(x) = 0. Each such point x is called torsion for ϕ, and we
denote by ϕtor (which is called the torsion submodule of ϕ) the set of all torsion
points for ϕ.
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12.1.3. Denis’ Conjecture. The following conjecture was raised by Denis in
[Den92a].

Conjecture 12.1.3.1 (Denis-Mordell-Lang [Den92a]). Let K be a field of
characteristic p, let g ∈ N, let

Φ1, . . . ,Φg : Fp[t] −→ EndK(Ga)

be Drinfeld modules, let Γ ⊆ Gg
a(K) be a finitely generated (Φ1, . . . ,Φg)(Fp[t])-

submodule (where Φi acts on the i-th coordinate of Gg
a), and let V ⊆ Ag be an

affine K-subvariety. Then
V (K) ∩ Γ

is a union of at most finitely many (Φ1, . . . ,Φg)(Fp[t])-submodules of Γ.

Remark 12.1.3.2. If one were to extend the above conjecture to Drinfeld mod-
ules of special characteristic, then the conclusion would not hold in its full gener-
ality, in the sense that one can only expect that the intersection has the structure
of finitely generated subgroups invariant under some infinite subring of Fp[t], as
proven in [Ghi05].

12.1.4. Questions generalizing Denis-Mordell-Lang Conjecture. Note
that Denis [Den92a] formulated Conjecture 12.1.3.1 more generally for T -modules,
which includes the case of product of Drinfeld modules as stated in Conjecture
12.1.3.1.

Furthermore, Denis also asked Conjecture 12.1.3.1 for the division hull of Γ,
i.e., when Γ is replaced by Γ⊗Fp[t] Fp(t). In particular, when Γ = {0}, and thus its
division hull is the set of torsion points under the action

(x1, . . . , xg) 	→ (Φ1(x1), . . . ,Φg(xg)),

this more general problem reduces to the description of the intersection between
any affine subvariety of Ag with the torsion submodule under the Drinfeld module
action. This latter problem is called the Denis-Manin-Mumford conjecture since
it is modelled after the classical Manin-Mumford Conjecture for abelian varieties.
The Denis-Manin-Mumford conjecture was proven by Scanlon in [Sca02] when

(12.1.4.1) Φ1 = · · · = Φg.

Quite surprisingly, Demangos [Dem] found counterexamples to the Denis-Manin-
Mumford conjecture if (12.1.4.1) does not hold, i.e., if the Drinfeld modules Φi are
distinct. In [Dem], Demangos formulated a new version of Denis-Manin-Mumford
conjecture which takes into account the families of counterexmaples found by him.
Also, it is worth pointing out that Demangos’ new conjecture is consistent with
the behaviour exhibited by Drinfeld modules of special characteristic for the Denis-
Mordell-Lang conjecture; for more details, see [Ghi05]. Loosely speaking, Deman-
gos’ counterexamples arise from having Drinfeld modules of different rank which
satisfy a skew-commutation relation; so, Demangos’ examples are reminiscent of the
necessity of imposing the polarizability condition in the Dynamical Manin-Mumford
Conjecture that we will be discussing in Section 14.1.

12.1.5. Known results towards Conjecture 12.1.3.1. There are only a
few cases when the Denis-Mordell-Lang conjecture is known to hold (see [Ghi05,
Ghi10, GT08b]). The first two cited results hold in the case when

ϕ := Φ1 = · · · = Φg,
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and moreover, ϕ is not isomorphic to a Drinfeld module defined over a field of
transcendence degree 1 over Fp; in particular,

trdegFp
K ≥ 2.

The results of [Ghi05, Ghi10] can be viewed as the “function field” version of
Conjecture 12.1.3.1; in addition, they hold only for the case when V does not contain
a translate of a positive dimensional algebraic subgroup of Gg

a. The method of proof
from [Ghi05] follows the general strategy employed by Hrushovski to deduce the
classical Manin-Mumford Conjecture by reduction to positive characteristic through
a specialization argument (for more details, see [Hru99]).

On the other hand, [GT08b, Theorem 2.5] is valid for Drinfeld modules Φi not
necessarily equal to each other, which are defined over finite extensions of Fp(t).

Theorem 12.1.5.1 ([GT08b]). Let K be a finite extension of Fp(t), let

Φ1 : Fp[t]→ EndK(Ga), . . . ,Φg : Fp[t]→ EndK(Ga)

be Drinfeld modules, let α := (α1, . . . , αg) ∈ Gg
a(K), and let Γ ⊆ Gg

a(K) be the cyclic
(Φ1, . . . ,Φg)-submodule generated by (α1, . . . , αg). If V ⊆ Gg

a is an affine subvariety
defined over K, then V (K)∩Γ is a finite union of cosets of (Φ1, . . . ,Φg)-submodules
of Γ.

Remark 12.1.5.2. Moreover, each submodule of Γ whose coset appears in
the above intersection is of the form Bi(K) ∩ Γ, where each Bi is an algebraic
(Φ1, . . . ,Φg)-submodule of Gg

a, i.e., Bi is an algebraic subgroup of Gg
a invariant

under the action

(x1, . . . , xg) 	→ (Φ1(x1), . . . ,Φg(xg)).

Indeed, if (b+H) ⊆ V (K) is a coset of a submodule H of Γ, then

(b+D) ⊆ V,

where D is the Zariski closure of H. Since H is a (Φ1, . . . ,Φg)-submodule, each
D is mapped into itself by the (Φ1, . . . ,Φg)-action. Hence, it is a finite union of
translates (bi + Bi) of algebraic (Φ1, . . . ,Φg)-submodules Bi of G

g
a (see [Den92a,

Lemme 4]). Therefore, we may write

(b+H) ⊆
⋃
i

(ci + (Bi(K) ∩ Γ)) ⊆ V (K),

where ci ∈ (bi +Bi(K)) ∩ Γ for each i.

From now on, in order to simplify the notation, we write Φ-submodule instead
of (Φ1, . . . ,Φg)-submodule.

12.1.6. The method of proof for Theorem 12.1.5.1. The idea behind the
proof of our Theorem 12.1.5.1 is very similar to the use of the p-adic arc lemma in
Chapter 4. Assuming that an affine variety V ⊆ Gg

a has infinitely many points in
common with a cyclic Φ-submodule Γ, we can then find a suitable submodule Γ0 ⊆ Γ
whose coset lies in V . Indeed, applying the logarithmic map to Γ0 (associated to
a suitable place v; for the technical details, see Section 12.2) yields a line in the
vector space Cg

v.
Each polynomial f that vanishes on V , then gives rise to an analytic function

F on this line (by composing with the exponential function); this idea was used
already several times for the Dynamical Mordell-Lang Conjecture and it originated

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



12.1. DENIS-MORDELL-LANG CONJECTURE 221

in [GT08b]. Since we assumed there are infinitely many points in V ∩Γ, the zeros
of F must have an accumulation point on this line, which means that F vanishes
identically on the line. This means that there is an entire translate of Γ0 contained
in the zero locus of f .

As mentioned before, the inspiration for this idea comes from the Skolem-
Mahler-Lech method discussed in Section 2.5 (see also Chapter 4). Also, the authors
of [GT08b] took inspiration from the method employed by Chabauty in [Cha41]
(and later refined by Coleman in [Col85]) to study the intersection of a curve C
of genus g, embedded in its Jacobian J , with a finitely generated subgroup of J
of rank less than g. Finally, our technique also bears a resemblance to Skolem’s
method for treating Diophantine equations (see [BS66, Chapter 4.6]).

Note that for a Drinfeld module Φ (of generic characteristic), Φt is an étale
map; however the geometric approach from Chapter 4 fails in this case since we
work in positive characteristic. For example, note that the self-map

Ψ : A2 −→ A2 given by Ψ(x, y) = (tx, (1− t)y)

is also étale, and so one might think that the Dynamical Mordell-Lang principle
would also apply for the intersection of the plane line V given by the equation

x+ y = 1

defined over Fp(t) with the orbit of (1, 1) under Ψ. However, as seen in Exam-
ple 3.4.5.1, the set of n ∈ N0 such that

Ψn(1, 1) ∈ V (Fp(t))

is the set of all powers of p, thus contradicting the Dynamical Mordell-Lang prin-
ciple. The reason for which a similar v-adic parametrization works for Drinfeld
modules is not because they are a family of étale maps, but because there exists
a global analytic parametrization with respect to the place at infinity (very similar
to the classical exponential map associated to abelian varieties in characteristic 0)
which induces a local v-adic analytic parametrization for all finite places v (i.e.,
places which do not lie over the place at infinity from Fp(t); for more details re-
garding places of Fp(t), see Subsection 12.2.1).

Finally, we note that one needs to use a v-adic analytic parametrization with
respect to finite places v because with respect to such a place (as opposed to the
place at infinity from Fp(t)) the elements of Fp[t] accumulate near 0, and therefore
we can apply Lemma 2.3.6.1 which states that an analytic function vanishing on a
non-discrete set of points must be identically equal to 0.

So, similar to the p-adic arc lemma and the proof of Theorem 4.4.1.1, the
proof of Theorem 12.1.5.1 relies on constructing a v-adic analytic parametrization
of the cyclic module Γ with respect to a suitable place v of K; this will be done in
Section 12.2. Then we finish the proof of Theorem 12.1.5.1 in Section 12.3.

12.1.7. A dynamical variant of Theorem 12.1.5.1. Since a Drinfeld mod-
ule is a family of polynomial actions on the affine line, we can extract from Theo-
rem 12.1.5.1 a Dynamical Mordell-Lang statement for endomorphisms of the addi-
tive group scheme in characteristic p.

Corollary 12.1.7.1. Let p be a prime number, let K be a finite extension of
Fp(t), let

Ψ1, . . . ,Ψg ∈ EndK(Ga)
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such that Ψi is non-linear and

Ψ′
i(z) = t for each i = 1, . . . , g,

let α ∈ Kg, and let V ⊆ Ag be an affine K-subvariety. We let

Ψ := (Ψ1, . . . ,Ψg)

be the endomorphism of Gg
a given by the coordinatewise action of the Ψi’s. Then

the set of n ∈ N0 such that
Ψn(α) ∈ V (K)

is a union of finitely many arithmetic progressions.

Proof. For each i = 1, . . . , g we let Φi : Fp[t] −→ EndK(Ga) be the Drinfeld
module defined by

(Φi)t = Ψi.

Then Theorem 12.1.5.1 yields that V intersects the cyclic

(Φ1, . . . ,Φg)(Fp[t])-submodule Γ generated by α

in a union of at most finitely many cosets of submodules of Γ. Clearly, each sub-
module of Γ is also cyclic (since Fp[t] is a PID), and so the above cosets of Γ are of
the form

Γ0 := {(Φ1(a+ bc), . . . ,Φg(a+ bc))(α) : c ∈ Fp[t]}
for some given a, b ∈ Fp[t]. Hence

Ψn(α) ∈ Γ0

if and only if there exists cn ∈ Fp[t] such that for each i = 1, . . . , g we have that

(12.1.7.2) Φi(t
n − a− bcn)(αi) = 0,

where α := (α1, . . . , αg). Let Ji be the ideal of Fp[t] which kills αi under the action
of Φi (if αi is non-torsion, then Ji = (0)). Then (12.1.7.2) is equivalent to

(12.1.7.3) tn ≡ a (mod J̃i),

where J̃i := Ji + (b). Clearly the solutions n to (12.1.7.3) form an arithmetic
progression (possibly constant, or empty). Since the intersection of arithmetic
progressions is also an arithmetic progression, we conclude our proof. �

12.2. Preliminaries on function field arithmetic

In this section, we set up the basic notation and also introduce some technical
results used in the proof of Theorem 12.1.5.1. Some of the contents of this section
overlap with Chapter 2, particularly the construction of absolute values for a set of
inequivalent places for a given function field.

12.2.1. Valuations. The contents of this subsection are from [GT08b].
Let MFp(t) be the set of inequivalent places on Fp(t); for more details, see

Subsection 2.3.6. We denote by v∞ the place in MFp(t) such that

v∞

(
f

g

)
= deg(g)− deg(f)

for every nonzero f, g ∈ A = Fp[t]. We let MK be the set of valuations on K. Then
MK is a set of valuations which satisfies a product formula (see [Lan83] and also
Section 2.6). Thus
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• for each nonzero z ∈ K, there are finitely many v ∈MK such that |z|v �= 1;
and

• for each nonzero z ∈ K, we have
∏

v∈MK
|z|v = 1.

Definition 12.2.1.1. Each place in MK which lies over v∞ is called an infinite
place. Each place in MK which does not lie over v∞ is called a finite place.

When we fix some infinite place of K, we simply denote it by ∞ ∈MK .
For v ∈MK we let Kv be the completion of K with respect to v. Let Cv be the

completion of an algebraic closure of Kv. Then | · |v extends to a unique absolute
value on all of Cv. We fix an embedding

ι : K −→ Cv.

For z ∈ K, we denote |ι(z)|v simply as |z|v, by abuse of notation.

12.2.2. Logarithms and exponentials associated to a Drinfeld mod-
ule. The contents of this subsection are from [GT08b] and provide the technical
details for the v-adic analytic parametrization of a cyclic module under the diagonal
action of g Drinfeld modules acting on Ag.

Let v ∈ MK . According to [Gos96, Proposition 4.6.7], there exists a unique
formal power series expΦ,v ∈ Cv{τ} such that for every a ∈ Fp[t], we have

(12.2.2.1) Φa = expΦ,v a exp
−1
Φ,v .

In addition, the coefficient of the linear term in expΦ,v(X) is equal to 1. We let

logΦ,v be the formal power series exp−1
Φ,v, which is the inverse of expΦ,v.

If v = ∞ is an infinite place, then expΦ,∞(z) is convergent for all z ∈ C∞
(see [Gos96, Theorem 4.6.9]). There exists a sufficiently small ball B∞ centered
at the origin such that expΦ,∞ is an isometry on B∞ (see [GT08a, Lemma 3.6]).
Hence, logΦ,∞ is convergent on B∞. Moreover, the restriction of logΦ,∞ on B∞ is
an analytic isometry (see also [Gos96, Proposition 4.14.2]).

If v is a finite place, then expΦ,v is convergent on a sufficiently small ball
Bv ⊆ Cv (this follows identically as the proof of the analyticity of expΦ,∞ from
[Gos96, Theorem 4.6.9]). Similarly as in the above paragraph, at the expense of
replacing Bv by a smaller ball, we may assume expΦ,v is an isometry on Bv. Hence,
also logΦ,v is an analytic isometry on Bv.

For every place v ∈ MK , for every z ∈ Bv and for every polynomial a ∈ Fp[t],
we have (see (12.2.2.1))

(12.2.2.2) a logΦ,v(z) = logΦ,v(Φa(z)) and expΦ,v(az) = Φa(expΦ,v(z)).

By abuse of language, expΦ,∞ and expΦ,v will be called exponentials, while
logΦ,∞ and logΦ,v will be called logarithms.

12.2.3. Integrality and reduction. The following definition is essentially
Definition 6.1.1.1 in the context of Drinfeld modules.

Definition 12.2.3.1. A Drinfeld module Φ has good reduction at a place v if
for each nonzero a ∈ Fp[t], all coefficients of Φa are v-adic integers and the leading
coefficient of Φa is a v-adic unit. If Φ does not have good reduction at v, then we
say that Φ has bad reduction at v.
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It is immediate to see that Φ has good reduction at v if and only if all coeffi-
cients of Φt are v-adic integers, while the leading coefficient of Φt is a v-adic unit.
All infinite places of K are places of bad reduction for Φ. We also note that our def-
inition for places of good reduction is not invariant under isomorphisms of Drinfeld
modules. Finally, the notion of good reduction for Drinfeld modules is equivalent to
the notion of good reduction for the polynomial Φt as defined in Subsection 6.1.1.

12.3. Proof of our main result

In this section we prove Theorem 12.1.5.1 using the background introduced in
Section 12.2. We follow the proof from [GT08b] by presenting the main ingredients
of the argument from that paper.

Let K be a finite extension of Fp(t), let Φ1, . . . ,Φg be Drinfeld modules defined
over K, and let Φ denote the action of

(Φ1, . . . ,Φg)

on Gg
a. Also, let (α1, . . . , αg) ∈ Gg

a(K) and let Γ be the cyclic Φ-submodule of
Gg

a(K) generated by

α := (α1, . . . , αg).

Unless otherwise stated, V ⊆ Gg
a is an affine subvariety defined over K.

The following easy combinatorial result is proved in [GT08b, Lemma 3.1].

Lemma 12.3.0.1 ([GT08b]). Let Γ be a cyclic Φ-submodule of Gg
a(K), let Γ0

be a non-trivial Φ-submodule of Γ, and let S ⊆ Γ be an infinite set. Suppose that
for every infinite subset S0 ⊆ S, there exists a coset C0 of Γ0 such that

C0 ∩ S0 �= ∅ and C0 ⊆ S.

Then S is a finite union of cosets of Φ-submodules of Γ.

Proof. The main observation in our proof is that a cyclic, infinite Φ-submodule
is isomorphic to Fp[t]. Thus Γ0 is isomorphic to a non-trivial ideal I of Fp[t]. Since
Fp[t]/I is finite, there are finitely many cosets of Γ0 in Γ. Thus S contains at most
finitely many cosets of Γ0. So let

{yi + Γ0}�i=1

be all of the cosets of Γ0 that are contained in S. Suppose that

(12.3.0.2) S0 := S \
�⋃

i=1

(yi + Γ0) is infinite.

If S0 is infinite, then there is a coset of Γ0 that is contained in S but is not one
of the cosets (yi + Γ0) (because it has a non-empty intersection with S0). This
contradicts the fact that

{yi + Γ0}�i=1

are all the cosets of Γ0 that are contained in S. Therefore S0 must be finite. Since
any finite subset of Γ is a finite union of cosets of the trivial submodule of Γ, this
completes the proof of Lemma 12.3.0.1. �

We will also use the following result in the proof of Theorem 12.1.5.1.
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Lemma 12.3.0.3 ([GT08b]). Let

θ : A→ K{τ} and ψ : A→ K{τ}
be Drinfeld modules, let v be a place of good reduction for θ and ψ, let x, y ∈ Cv,
and let rv ∈ (0, 1) and

Bv := {z ∈ Cv : |z|v < rv}
be a sufficiently small ball centered at the origin with the property that both logθ,v
and logψ,v are analytic isometries on Bv. Then for every polynomials P,Q ∈ Fp[t]
such that

(θP (x), ψP (y)) ∈ Bv ×Bv and (θQ(x), ψQ(y)) ∈ Bv ×Bv,

we have

logθ,v(θP (x)) · logψ,v(ψQ(y)) = logθ,v(θQ(x)) · logψ,v(ψP (y)).

Proof. This is [GT08b, Lemma 3.2]. The proof is a simple application of
(12.2.2.2). �

The following result is an immediate corollary of Lemma 12.3.0.3.

Corollary 12.3.0.4. With the notation as in Theorem 12.1.5.1, assume in
addition that

α1 /∈ (Φ1)tor .

Let v be a place of good reduction for each φi. Suppose Bv ⊂ Cv is a small ball
(of radius less than 1) centered at the origin such that each logΦi,v is an analytic
isometry on Bv. Then for each i ∈ {2, . . . , g}, the fractions

λi :=
logΦi,v ((Φi)P (αi))

logΦ1,v ((Φ1)P (α1))

are independent of the choice of the nonzero polynomial P ∈ Fp[t] for which we
have

ΦP (α1, . . . , αg) ∈ Bg
v .

We are ready to prove the main result of this chapter.

Proof of Theorem 12.1.5.1. We may assume V (K)∩Γ is infinite (otherwise
the conclusion of Theorem 12.1.5.1 is obviously satisfied). Assuming V (K) ∩ Γ is
infinite, we will show that there exists a non-trivial Φ-submodule Γ0 ⊆ Γ such that
each infinite subset of points S0 in V (K) ∩ Γ has a non-empty intersection with a
coset C0 of Γ0, and moreover, C0 ⊆ V (K) ∩ Γ. Theorem 12.1.5.1 will then follow
immediately from Lemma 12.3.0.1.

First we observe that Γ is not a torsion Φ-submodule. Otherwise Γ is finite,
contradicting our assumption that V (K) ∩ Γ is infinite. Hence, from now on, we
assume without loss of generality that α1 is not a torsion point for Φ1.

We fix a finite set of polynomials {f1, . . . , f�} ⊆ K[z1, . . . , zg] which generate
the vanishing ideal of V .

Let v ∈MK be a place ofK which is of good reduction for all Φi (for 1 ≤ i ≤ g).
In addition, we assume each xi is integral at v (for 1 ≤ i ≤ g). Then for each
P ∈ Fp[t], we have

ΦP (α1, . . . , αg) ∈ Gg
a(ov),

where ov is the ring of v-adic integers in Kv (the completion of K at v). Since
ov is a compact space (we use the fact that K is a function field of transcendence
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degree 1 and thus it has a finite residue field at v), we conclude that every infinite
sequence of points

ΦP (α1, . . . , αg) ∈ V (K) ∩ Γ

contains a convergent subsequence in ogv. Using Lemma 12.3.0.1, it suffices to show
that there exists a non-trivial Φ-submodule Γ0 ⊆ Γ such that every convergent
sequence of points in V (K)∩Γ has a non-empty intersection with a coset C0 of Γ0,
and moreover,

C0 ⊆ V (K) ∩ Γ.

Now, let S0 be an infinite subsequence of distinct points in V (K)∩Γ which converges
v-adically to

(α0,1, . . . , α0,g) ∈ ogv,

let 0 < rv < 1, and let

Bv := {z ∈ Cv : |z|v < rv}
be a small ball centered at the origin on which each of the logarithmic functions
logΦi,v is an analytic isometry (for 1 ≤ i ≤ g). Since

(α0,1, . . . , α0,g) is the limit point for S0,

there exist d ∈ Fp[t] and an infinite subsequence {Φd+Pn
(α)}n≥0 ⊆ S0 (with Pn = 0

if and only if n = 0), such that for each n ≥ 0, we have

(12.3.0.5)
∣∣(Φi)d+Pn

(αi)− α0,i

∣∣
v
<

rv
2

for each 1 ≤ i ≤ g.

We will show that there exists an algebraic group Y0, independent of S0 and invari-
ant under Φ, such that

Φd(α1, . . . , αg) + Y0 ⊆ V , and moreover, Φd+Pn
(α1, . . . , αg) ∈ Φd(α1, . . . , αg) + Y0,

for all Pn. Thus the submodule

Γ0 := Y0(K) ∩ Γ

will satisfy the hypothesis of Lemma 12.3.0.1 for the infinite subset V (K)∩ Γ ⊆ Γ;
this yields the conclusion of Theorem 12.1.5.1.

Using (12.3.0.5) for n = 0 (we recall that P0 = 0), and then for arbitrary n, we
see that

(12.3.0.6)
∣∣(Φi)Pn

(αi)
∣∣
v
<

rv
2

for each 1 ≤ i ≤ g.

Hence logΦi,v is well-defined at (Φi)Pn
(αi) for each i ∈ {1, . . . , g} and for each

n ≥ 1. Moreover, the fact that(
(Φi)Pn+d (αi)

)
n≥1

converges to a point in ov

yields that
(
(Φi)Pn

(αi)
)
n≥1

converges to a point which is contained in Bv (see

(12.3.0.6)).
Without loss of generality, we may assume

(12.3.0.7) | logΦ1,v

(
(Φ1)P1

(α1)
)
|v =

g
max
i=1

| logΦi,v

(
(Φi)P1

(αi)
)
|v.

In (12.3.0.7), we used the fact that the maximum cannot be attained at a torsion
point αi, because the logarithm vanishes precisely on the torsion points (actually,
the only torsion point contained in Bv is 0 because logΦi,v is an analytic isometry
on Bv for each i).
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Using the result of Corollary 12.3.0.4, we conclude that for each i ∈ {2, . . . , g},
the following fraction is independent of n and of the sequence {Pn}n:

(12.3.0.8) λi :=
logΦi,v

(
(Φi)Pn

(αi)
)

logΦ1,v

(
(Φ1)Pn

(α1)
) .

Since α1 is not a torsion point for Φ1, the denominator of λi (12.3.0.8) is nonzero.
From Equation (12.3.0.7), we may then conclude that |λi|v ≤ 1 for each i.

The fact that λi is independent of the sequence {Pn}n≥1 will be used later to
show that the Φ-submodule Γ0 that we construct is independent of the sequence
{Pn}n≥1.

For each n ≥ 1 and each i ∈ {2, . . . , g}, we have

(12.3.0.9) logΦi,v

(
(Φi)Pn

(αi)
)
= λi · logΦ1,v

(
(Φ1)Pn

(α1)
)
.

For each i, applying the exponential function expΦi,v to both sides of (12.3.0.9)
yields

(12.3.0.10) (Φi)Pn
(αi) = expΦi,v

(
λi · logΦ1,v

(
(Φ1)Pn

(α1)
))

.

Since Φd+Pn
(α1, . . . , αg) ∈ V (K), for each j ∈ {1, . . . , �} we have

(12.3.0.11) fj (Φd+Pn
(α1, . . . , αg)) = 0 for each n.

For each j ∈ {1, . . . , �} we let fd,j ∈ K[z1, . . . , zg] be defined by

(12.3.0.12) fd,j (z1, . . . , zg) := fj (Φd(α1, . . . , αg) + (z1, . . . , zg)) .

We let Vd ⊆ Gg
a be the affine subvariety defined by the equations

fd,j(z1, . . . , zg) = 0 for each j ∈ {1, . . . , �}.
Using (12.3.0.11) and (12.3.0.12), we see that for each j ∈ {1, . . . , �} we have

(12.3.0.13) fd,j (ΦPn
(α1, . . . , αg)) = 0

for each n, and so,

(12.3.0.14) ΦPn
(α1, . . . , αg) ∈ Vd(K).

For each j ∈ {1, . . . , �}, we let Fd,j(u) be the analytic function defined on Bv

by

Fd,j(z) := fd,j

(
z, expΦ2,v

(
λ2 logΦ1,v(z)

)
, . . . , expΦg,v

(
λg logΦ1,v(z)

))
.

Using (12.3.0.7) and the fact that logΦ1,v is an analytic isometry on Bv, we see that
for each z ∈ Bv, we have

(12.3.0.15) |λi · logΦ1,v(z)|v = |λi|v · | logΦ1,v(z)|v ≤ |z|v < rv.

Equation (12.3.0.15) shows that λi ·logΦ1,v(z) ∈ Bv, and so, expΦi,v

(
λi · logΦ1,v(z)

)
is well-defined.

Using (12.3.0.10) and (12.3.0.13) we obtain that for every n ≥ 1, we have

(12.3.0.16) Fd,j

(
(Φ1)Pn

(α1)
)
= 0.

Thus
(
(Φ1)Pn

(α1)
)
n≥1

is a sequence of zeros for the analytic function Fd,j which

has an accumulation point in Bv. Lemma 2.3.6.1 then implies that

Fd,j = 0,
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and so, for each j ∈ {1, . . . , �}, we have

(12.3.0.17) fd,j

(
z, expΦ2,v

(
λ2 logΦ1,v(z)

)
, . . . , expΦg,v

(
λg logΦ1,v(z)

))
= 0.

For each z ∈ Bv, we let

Qz :=
(
z, expΦ2,v

(
λ2 logΦ1,v(z)

)
, . . . , expΦg,v

(
λg logΦ1,v(z)

))
∈ Gg

a(Cv).

Then (12.3.0.17) implies that

(12.3.0.18) Qz ∈ Vd for each z ∈ Bv.

Let Y0 be the Zariski closure of {Qz}z∈Bv
. Then Y0 ⊆ Vd. Note that Y0 is inde-

pendent of the sequence {Pn}n (because the λi are independent of the sequence
{Pn}n, according to Corollary 12.3.0.4).

We claim that for each z ∈ Bv and for each P ∈ Fp[t], we have

(12.3.0.19) ΦP (Qz) = Q(Φ1)P (z).

Note that for each z ∈ Bv, we also have that (Φ1)P (z) ∈ Bv for each P ∈ Fp[t],
because each coefficient of Φ1 is a v-adic integer. To see that (12.3.0.19) holds, we
use (12.2.2.2), which implies that for each i ∈ {2, . . . , g} we have

expΦi,v

(
λi logΦ1,v ((Φ1)P (z))

)
= expΦi,v

(
λi · P · logΦ1,v(z)

)
= expΦi,v

(
P · λi logΦ1,v(z)

)
= (Φi)P

(
expΦi,v

(
λi logΦ1,v(z)

))
.

Hence, (12.3.0.19) holds, and so Y0 is invariant under Φ. Furthermore, since all of
the expΦi,v and logΦi,v are additive functions, we have

Qz1+z2 = Qz1 +Qz2 for every z1, z2 ∈ Bv.

Hence Y0 is an algebraic group, which is also a Φ-submodule of Gg
a. Moreover, Y0

is defined independently of Γ.
Let Γ0 := Y0(K) ∩ Γ. Since Y0 is invariant under Φ, we have that Γ0 is a

submodule of Γ. Since Y0 ⊆ Vd, it follows that

Φd(α1, . . . , αg) + Y0 ⊆ V,

and moreover,

Φd+Pn
(α1, . . . , αg)}n ⊂ Φd(α1, . . . , αg) + Y0.

In particular, the (infinite) translate C0 of Γ0 by Φd(α1, . . . , αg) is contained in
V (K) ∩ Γ. Hence, every infinite sequence of points in V (K) ∩ Γ has a non-trivial
intersection with a coset C0 of (the non-trivial Φ-submodule) Γ0, and moreover,
C0 ⊆ V (K) ∩ Γ. Applying Lemma 12.3.0.1 thus finishes the proof of Theo-
rem 12.1.5.1. �

In the course of our proof of Theorem 12.1.5.1 we also proved the following
statement.

Theorem 12.3.0.20 ([GT08b]). Let Γ be an infinite cyclic Φ-submodule of
Gg

a. Then there exists an infinite Φ-submodule Γ0 ⊆ Γ such that for every affine
subvariety V ⊆ Gg

a, if

V (K) ∩ Γ is infinite,

then V (K) ∩ Γ contains a coset of Γ0.
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Proof. This is [GT08b, Theorem 3.5]. With the notation as in the proof of
Theorem 12.1.5.1, there exists a positive dimensional algebraic group Y0, invariant
under Φ, and depending only on Γ and v (but not on V ), such that a translate of
Y0 by a point in Γ lies in V . Moreover,

Γ0 := Y0(K) ∩ Γ is infinite.

Hence Γ0 satisfies the conclusion of Theorem 12.3.0.20. �
In particular, Theorem 12.3.0.20 shows that if the intersection V (K) ∩ Γ is

infinite, then there exists a uniform bound for the number of cosets of (maximal)
submodules of Γ which are contained in V .
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CHAPTER 13

Dynamical Mordell-Lang Conjecture in positive
characteristic

In this chapter we discuss a version of the Dynamical Mordell-Lang Conjecture
for endomorphisms of varieties defined over fields of characteristic p—see Conjec-
ture 13.2.0.1. It is somewhat surprising to see that there are almost no partial
results towards Conjecture 13.2.0.1. On the other hand, this phenomenon mirrors
the history of the classical Mordell-Lang Conjecture which was proven in the func-
tion field case of positive characteristic by Hrushovski [Hru96] a few years after the
result was established over C by Faltings [Fal91]. Furthermore, Hrushovski’s proof
was very much different than Faltings’ proof thus showing the intrinsic difficulties
posed by the function field arithmetic in positive characteristic. We expect that
similarly, the characteristic p Dynamical Mordell-Lang question posed in Conjec-
ture 13.2.0.1 is very difficult.

We begin the chapter by presenting in Section 13.1 Hrushovski’s result [Hru96]
for the characteristic p classical Mordell-Lang problem, and then state the refine-
ment proven by Moosa and Scanlon [MS03, MS04] in the case of semiabelian
varieties defined over a finite field. This leads us naturally in Section 13.2 to the for-
mulation of the characteristic p version of the Dynamical Mordell-Lang Conjecture.
We continue in Section 13.3 by presenting a special case of Conjecture 13.2.0.1—
essentially, this is the only significant case known of the conjecture (besides the
case of translations on a semiabelian variety). We conclude this chapter with what
might seem to be a detour from the Dynamical Mordell-Lang problem, but we con-
sider the problems discussed in Section 13.4 be relevant to the main theme of our
book. So, in Section 13.4 we go back to the classical Skolem-Mahler-Lech problem
of describing the set

(13.0.0.1) Sa := {n ∈ N0 : an = 0},
for some linear recurrence sequence {an}. When the sequence is defined over a
field of characteristic 0, the problem was completely solved in Section 2.5 and
its proof was the building block in developing the p-adic arc lemma which was
employed in Chapter 4 for proving the Dynamical Mordell-Lang Conjecture for
étale maps. However, when the field of definition for the sequence {an} has positive
characteristic, then the set Sa from (13.0.0.1) is no longer a finite union of arithmetic
progressions. The structure of the set Sa is similar to the one encountered in the
characteristic p case of the Mordell-Lang problem, as proven by Moosa and Scanlon
[MS03]. However, the methods we employ in Section 13.4 are quite different than
the algebraic geometric and model theoretic techniques used in [MS03]. Instead,
we use automata theory . For the results of Section 13.4 we follow both [Der07]
(where Derksen reproved using the automata theory a special case of the Mordell-
Lang theorem established by Moosa and Scanlon [MS03]), and also [AB12] where
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a similar problem is solved in the context of algebraic power series. More precisely,
the main result of [AB12] is to show that for a power series

F (z) =

∞∑
n=0

cnz
n

defined over a field K of positive characteristic with the property that F (z) is
algebraic over K(z), the set

{n ∈ N0 : cn = 0}
is p-automatic. We believe that the results of Section 13.4 besides their intrinsic
interest also could be of use for a further study of the characteristic p Dynamical
Mordell-Lang Conjecture.

13.1. The Mordell-Lang Conjecture over fields of positive characteristic

As previously discussed there are counterexamples (see Examples 3.4.5.1 and
11.1.0.6) to an immediate translation of the Dynamical Mordell-Lang conjecture in
characteristic p. Even the classical Mordell-Lang conjecture, which was the main
motivation for Conjecture 1.5.0.1 does not hold identically in positive character-
istic. Hrushovski [Hru96] gave a complete description of the special subvarieties
for the Mordell-Lang conjecture in characteristic p; for an interpretation of the
Mordell-Lang problem in terms of special points and special subvarieties, see Sub-
section 3.4.3.

Theorem 13.1.0.1 (Hrushovski [Hru96]). Let X be a semiabelian variety de-
fined over an algebraically closed field K of characteristic p, let Γ ⊂ X(K) be a
finitely generated subgroup, and let V ⊂ X be an irreducible subvariety. If

V (K) ∩ Γ is Zariski dense in V ,

then there exists

• a semiabelian subvariety X1 ⊆ X defined over K,
• a semiabelian variety X0 defined over Fp,

• a point α ∈ X1(K), a subvariety V0 ⊆ X0 defined over Fp, and
• an algebraic group endomorphism h : X1 −→ X0 defined over K

such that V = α+ h−1(V0).

However, Theorem 13.1.0.1 leaves open the description of the intersection of
the subvariety V of with the finitely generated subgroup Γ. If X is defined over a
finite field (i.e., K = Fp in Theorem 13.1.0.1), Moosa and Scanlon [MS04, MS03]
gave a concrete description of the intersection (see Theorem 13.1.0.3). To describe
their result, we first need a definition from [MS04].

Definition 13.1.0.2. Let X be a semiabelian variety defined over a finite field
Fq (where q is a power of the prime number p), let F be the corresponding Frobenius
map for the finite field Fq which extends thus to an endomorphism of X, let K be
an algebraically closed field of characteristic p, and let Γ ⊆ X(K) be a finitely
generated subgroup.

(a) By a sum of F -orbits in Γ we mean a set of the form

S(a1, . . . , am; δ1, . . . , δm) :=
m∑
j=1

{
Fnδjaj : n ∈ N0

}
⊆ Γ
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where a1, . . . , am ∈ X(K) and δ1, . . . , δm are positive integers.
(b) An F -set in Γ is a set of the form b+ C + Γ′ where b ∈ Γ, C is a sum of

F -orbits in Γ, and Γ′ ⊆ Γ is a subgroup.

As shown in Example 11.1.0.6, the intersection of a subvariety of Gn
m (defined

over a field K of characteristic p) with a finitely generated subgroup of Gn
m(K) may

contain sums of orbits under the Frobenius endomorphism. Moosa and Scanlon
[MS04, MS03] show that for all subvarieties V of semiabelian varieties X defined
over Fq, their intersection with a finitely generated subgroup of X(K) (where K is
any field containing Fq) is a finite union of F -sets.

Theorem 13.1.0.3 (Moosa-Scanlon [MS04]). Let Fq, K, X, Γ be as given in
Definition 13.1.0.2, and let V ⊆ X be a subvariety defined over K. If Γ is invariant
under F , then V (K) ∩ Γ is a union of at most finitely many F -sets in Γ.

We note, very importantly, that in Theorem 13.1.0.3 the semiabelian variety
X is assumed to be defined over Fq, but V is not necessarily defined over Fq. If X
is not defined over a finite field, there are only some conjectural statements made
regarding the intersection V (K) ∩ Γ (see [MS03]).

The proof of Theorem 13.1.0.3 uses the model theoretic interpretation of the
Mordell-Lang Conjecture as in the proof of Hrushovski [Hru96] for the positive
characteristic Mordell-Lang Conjecture. For a thorough model theoretic treatment
of the Mordell-Lang conjecture we refer the reader to [Pil98].

Ghioca [Ghi08b] extended the result of Theorem 13.1.0.3 to all finitely gener-
ated subgroups Γ. The proof from [Ghi08b] uses a combinatorial argument coupled
with the use of the classical Mordell-Lang conjecture for tori. Independently, using
arguments from automata theory, Derksen [Der07] proved Theorem 13.1.0.3 for
linear subvarieties V of a tori X = Gg

m. Later, Derksen and Masser [DM12] gave
an effective proof of Derksen’s result using Diophantine techniques.

13.2. Dynamical Mordell-Lang Conjecture over fields of positive
characteristic

Theorem 13.1.0.3 suggests the following conjecture for the Dynamical Mordell-
Lang problem in characteristic p.

Conjecture 13.2.0.1 (Ghioca-Scanlon). Let X be a quasiprojective variety
defined over a field K of characteristic p. Let α ∈ X(K), let V ⊆ X be a closed
subvariety defined over K, and let

Φ : X −→ X

be an endomorphism defined over K. Then the set of integers n ∈ N0 such that
Φn(α) ∈ V (K) is a finite union of finitely many arithmetic progressions, and finitely
many sets of the form

(13.2.0.2)

⎧⎨⎩
m∑
j=1

cjp
kjnj : nj ∈ N0 for each j = 1, . . .m

⎫⎬⎭ ,

for some cj ∈ Q, and some kj ∈ N0.

As showed in Example 11.1.0.6, it is possible to construct examples so that sets
of the form

{pm + pn : m,n ∈ N}
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appear in (13.2.0.2) corersponding to an intersection of a subvariety with a given
orbit. We also note that we already know by Theorem 11.1.0.7 that apart from
finitely many arithmetic progressions, the set

SV := {n ∈ N0 : Φ
n(α) ∈ V (K)}

has Banach density 0. However, Conjecture 13.2.0.1 predicts a much more precise
structure for the set SV . Already, in the special case of semiabelian varieties defined
over Fp, Conjecture 13.2.0.1 leads to deep Diophantine questions as we will explain
in Section 13.3. Also in Section 13.3 we prove an instance of Conjecture 13.2.0.1
when X = GN

m and Φ is an algebraic group endomorphism.

13.3. Dynamical Mordell-Lang Conjecture for tori in positive
characteristic

The setup for this section is as follows:

• K is an algebraically closed field of characteristic p,
• V ⊆ GN

m is a subvariety defined over K,
• α := (α1, . . . , αN ) ∈ GN

m(K), and
• Φ : GN

m −→ GN
m is an algebraic group endomorphism defined over K.

Our goal is to describe V (K) ∩ OΦ(α).
Since Φ ∈ End(GN

m), we know that Φ acts on any point (x1, . . . , xN ) ∈ GN
m by

Φ(x1, . . . , xN ) =

⎛⎝ N∏
j=1

x
a1,j

j , · · · ,
N∏
j=1

x
aN,j

j

⎞⎠ ,

where the matrix (ai,j) is the Jacobian of Φ at the identity of GN
m. So, we let

Γ := ΓN
0 ⊆ GN

m(K),

where Γ0 ⊆ Gm(K) is the subgroup generated by α1, . . . , αN . Clearly thenOΦ(α) ⊆
Γ. Since Γ is finitely generated (and even invariant under the Frobenius endo-
morphism of GN

m corresponding to Fp, which is simply the p-th powering map),
Theorem 13.1.0.3 yields that

V (K) ∩ Γ is a finite union of F -sets.

Thus the problem reduces to understanding the intersection (inside Γ) between an
F -set U and OΦ(α). We discuss next a special case in which we can completely
describe the intersection U ∩ OΦ(α).

Since Φ is an algebraic group endomorphism of GN
m, it is integral over Z

(which is seen as a subring of End(GN
m)); more precisely there exists m ∈ N and

c0, . . . , cm−1 ∈ Z such that

(13.3.0.1) Φm =

m−1∑
i=0

ciΦ
i,

where the sum in (13.3.0.1) is made with respect to the natural group operation of
GN

m. Furthermore, the polynomial

f(z) := zm −
m−1∑
i=0

ciz
i
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is the minimal polynomial for the matrix (ai,j); so in particular m ≤ N . If all the
nonzero roots of the polynomial f(z) are distinct, then we can describe completely
the intersection U ∩ OΦ(α).

Proposition 13.3.0.2. With the notation for Φ, α, Γ, U and f as in the
beginning of this section, assume in addition that the nonzero roots of f are distinct.
Then the set of all n ∈ N0 such that Φn(α) ∈ U is a finite union of arithmetic
progressions.

Proof. Without loss of generality we may assume all roots of f are nonzero
since otherwise (if z = 0 is a root of order k for f), then we may simply replace
m by m − k and disregard Φi(α) for i = 0, . . . , k − 1, and then obtain a linear
recurrence relation of order m− k which is valid starting with the k-th iterate of Φ
in place of (13.3.0.1). In other words, this amounts to replacing α by Φk(α) which
does not change the desired conclusion, as shown by Proposition 3.1.2.4.

Now, since for each n ∈ N0 we have

Φn+m(α) =
m−1∑
i=0

ciΦ
n+i(α),

(where each time the sums are taken inside GN
m) we conclude that there exist linear

recurrence sequences {bi,n}n∈N0
(for i = 0, . . . ,m−1) such that for each n ∈ N0 we

have

Φn(α) =
m−1∑
i=0

bi,nΦ
i(α),

and moreover, each sequence {bi,n}n satisfies the same linear recurrence relation:

bi,n+m =

m−1∑
j=0

cjbi,n+j .

So, letting r1, . . . , rm be the distinct (nonzero) roots of the polynomial f and using
Proposition 2.5.1.4, we obtain that there exist constants di,j ∈ Q such that for each
i = 0, . . . ,m− 1 we have

bi,n =

m−1∑
j=0

di,jr
n
j , for each n ∈ N0.

On the other hand, each element in U is of the form

β0 + pδ1k1β1 + · · · pδsksβs + γ0,

for some ki ∈ N0, where βi ∈ Γ are given (we can enlarge Γ so that it contains all
the points βi above), and δ1, . . . , δs ∈ N are given, and also γ0 ∈ U0, where U0 is a
given subgroup of Γ. It follows that

Φn(α) ∈ U

if and only if there exist k1, . . . , ks ∈ N0 such that

(13.3.0.3)

(
m−1∑
i=0

bi,nΦ
i(α)

)
−
(
β0 +

s∑
i=1

pδikiβi

)
∈ U0.

Since Γ is a finitely generated group, its torsion subgroup is finite, and the same is
true for U0. Hence, at the expense of replacing (13.3.0.3) by finitely many similar
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conditions (the only difference being a different β0 each time, altered by a torsion
point in Γ) we may assume Γ (and thus also U0) is torsion-free.

We fix a Z-basis γ1, . . . , γ� for Γ and express each Φi(α) for i = 0, . . . ,m − 1,
and each βi in terms of this basis. Then (13.3.0.3) is equivalent to a simultaneous
solution to finitely many equations which are of the form

(13.3.0.4)

m−1∑
i=0

fir
n
i +

s∑
j=1

gjp
δjkj = g0

or

(13.3.0.5)
m−1∑
i=0

fir
n
i +

s∑
j=1

gjp
δjkj ≡ g0 (mod M),

for some constants fi, gj ∈ Q and some positive integer M . The derivation of the
two equations (13.3.0.4) and (13.3.0.5) follows verbatim using the argument from
the proof of [Ghi08b, Claim 3.4].

Now, it is elementary to see that the set of n ∈ N0 for which there exist some
ki ∈ N0 such that (13.3.0.5) holds is a finite union of arithmetic progressions because
the set of residue classes of rni (mod M) is preperiodic.

On the other hand, (13.3.0.4) also yields a set of solutions n which is a fi-
nite union of arithmetic progressions by an easy application of Laurent’s theorem
[Lau84] (the classical Mordell-Lang conjecture for finitely generated subgroups
of algebraic tori; see Theorem 3.4.1.1). This concludes the proof of Proposi-
tion 13.3.0.2. �

So, as proven in Proposition 13.3.0.2, when the roots of the minimal polynomial
for the (algebraic group) endomorphism Φ of GN

m are all distinct, then the set of
integers n ∈ N0 such that Φn(α) ∈ V is simply a finite union of arithmetic progres-
sion, and thus one does not need the more complicated sets from the conclusion of
Conjecture 13.2.0.1.

If we drop the hypothesis that the (nonzero) roots of the minimal polynomial
f(z) for the endomorphism Φ are distinct, then the problem is much harder. In-
deed, the difference is that the linear recurrence relations satisfied by the sequences
{bi,n}n∈N0

from the proof of Proposition 13.3.0.2 do not have distinct characteristic
roots, and so, one obtains (see Proposition 2.5.1.4) that the formula for the general
element bi,n is of the form

k∑
j=1

Pj(n)r
n
j ,

where the rj ’s are the distinct roots of f(z), while Pj ∈ Q[z]. Hence, going through
the same argument as in the proof of Proposition 13.3.0.2 one obtains that the set
of solutions n correspond to equations of the form

(13.3.0.6)
m−1∑
i=0

fi(n)r
n
i +

s∑
j=1

gjp
δjkj = g0

or

(13.3.0.7)
m−1∑
i=0

fi(n)r
n
i +

s∑
j=1

gjp
δjkj ≡ g0 (mod M),
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for some constants gj ∈ Q and M ∈ N, and polynomials fi ∈ Q[z]. Now, Equation
(13.3.0.7) yields the solutions n are in a set which is a finite union of arithmetic
progressions because the values fi(n) (mod M) are also preperiodic as n ranges over
all nonnegative integers. On the other hand, the polynomial-exponential Equation
(13.3.0.6) is very difficult. For example, even the simpler case

(13.3.0.8) f(n) =

s∑
j=1

gjp
kj

is unknown in general (see [BBM13, CZ00, CZ13] for more details). We would
expect (cf. Conjecture 13.2.0.1) that the set of n ∈ N0 for which there exist
k1, . . . , ks ∈ N0 such that (13.3.0.8) holds would always be of the form given in
(13.2.0.2). For example, even the special case

(13.3.0.9) n2 =
s∑

j=1

gjp
kj

is not known unless g1 = 1 (where k1 < · · · < ks) and s ≤ 4. However, we would
always expect that solutions n to (13.3.0.9) are of the form

�∑
i=1

fip
mi

for some � ∈ N and constants fi. Informally, Equation (13.3.0.9) says that if n2 has
at most s nonzero p-adic digits, then n has at most � nonzero p-adic digits (where
� is bounded solely on s).

13.4. The Skolem-Mahler-Lech Theorem in positive characteristic

We recall that the Skolem-Mahler-Lech theorem gives a concrete description
of the zero sets of linear recurrence sequences over fields of characteristic zero.
Furthermore, in Chapter 4, we showed the connection between this theorem and
the Dynamical Mordell Lang theorem, which can be seen as proposing a sweeping
generalization of the Skolem-Mahler-Lech result.

As we have noted many times, in positive characteristic these results do not
hold. In particular, Example 3.4.5.1 can be suitably modified to give an example
of a linear recurrence sequence over Fp(t) whose zero set is precisely the powers
of p. In this section, we give a presentation of Derksen’s analogue of the Skolem-
Mahler-Lech theorem in positive characteristic, which shows that the zero sets of
linear recurrences over a field of characteristic p > 0 are given by finite unions of
(possibly finite) arithmetic progressions along with what he calls p-normal sets,
which roughly speaking are sets that are built from powers of p, exactly as in
(13.2.0.2) (see also the definition of F -sets from Definition 13.1.0.2 which generalizes
the p-normal sets).

Unlike earlier results from this chapter, Derksen’s methods have the advan-
tage of being effective. In particular, he provides algorithms which allow one to
completely determine whether a linear recurrence sequence over a field of positive
characteristic takes the value zero and moreover, it allows one to describe the zero
set completely. This is in stark contrast with the zero characteristic case, where it is
currently unknown whether or not it is decidable to determine if an integer-valued
linear recurrence sequence has a zero. The bulk of Derksen’s argument rests with
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using finite-state automata and we give an overview of these ideas. To present Derk-
sen’s ideas, we must give the notion of an automatic sequence and an automatic
set.

Definition 13.4.0.1. Let p be a prime number, let Δ be a finite set, and let

f : N0 → Δ.

For each j ∈ {0, 1, . . . , p− 1}, we define a map

ej : N0 → N0 by ej(n) = pn+ j

and we let Σ denote the semigroup generated by the collection of all ej under
composition. We say that f is a p-automatic sequence if the set of distinct sequences
in

{f ◦ e : e ∈ Σ}
is a finite set. We say that a subset S ⊆ N0 is a p-automatic set if the characteristic
sequence of S is a p-automatic sequence.

We note that this is not the conventional definition of an automatic sequence,
which is generally defined in terms of sequences whose n-th term is produced via a
finite-state machine that accepts as input the base-p expansion of n. Nevertheless,
the definition we give can be seen to be equivalent (cf. Allouche and Shallit [AS03,
Theorem 6.6.2]).

Theorem 13.4.0.2 (Derksen [Der07]). Let f(n) be a sequence satisfying a
recurrence over a field K of characteristic p. Then the set of natural numbers n
such that f(n) = 0 is a p-automatic set.

In fact, Derksen gives a further refinement of Theorem 13.4.0.2, which we shall
describe in Subsection 13.4.2 (see Theorem 13.4.2.3). The main ingredient of his
proof, however, is the fact that the zero set is p-automatic. In light of the equiv-
alences given in Proposition 2.5.1.4, we note that this can be recast in terms of
describing the set of zero coefficients of the power series expansion of a rational
function over a field of positive characteristic. We prove an extension of this re-
sult for algebraic power series in Subsection 13.4.1, following the exposition from
[AB12].

13.4.1. Algebraic power series.

Definition 13.4.1.1. Let K be a field. We say that a power series

F (t) =
∞∑

n=0

f(n)tn ∈ K[[t]]

is algebraic if there exists a natural number d and rational functions

φ0(t), . . . , φd−1 ∈ K(t)

such that

F (t)d +

d−1∑
j=0

φj(t)F (t)j = 0.
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Remark 13.4.1.2. It is clear that rational power series form a subset of alge-
braic power series. In fact, Theorem 13.4.0.2, when recast in terms of coefficients
of rational functions, holds at the level of algebraic power series.

It is interesting to note that the Skolem-Mahler-Lech theorem in characteristic
0 has no analogue for multivariate rational functions. For instance,

G(x, y) =
∑
m,n

(2m − n2)xmyn

is a bivariate rational power series and its zero set is

{(m,n) : m ≡ 0 (mod 2), n = 2m/2}.

Thus we cannot expect the zero set to be given in terms of arithmetic progressions.
Remarkably, in positive characteristic an analogue of Derksen’s result holds for
multivariate rational power series—in fact it even holds for multivariate algebraic
power series!

In this subsection, we give a proof of the following result (see [AB12]).

Theorem 13.4.1.3. Let K be a field of characteristic p > 0 and let F (x) ∈
K[[x]] be the power series expansion of an algebraic function over K(x). Then the
set of n in N0 for which the coefficient of xn in F (x) is zero is p-automatic.

As noted in Remark 13.4.1.2, Theorem 13.4.1.3 can in fact be done at the level
of multivariate algebraic power series [AB12], but we do not prove this in the book.
In order to prove Theorem 13.4.1.3 we need to introduce some notation. We also
recall that a field K of characteristic p > 0 is perfect if the map x 	→ xp is surjective
on K.

Definition 13.4.1.4. Let p be a prime number and let K be a perfect field of
characteristic p. For a power series

F (x) =

∞∑
n=0

f(n)xn ∈ K[[x]]

we define the j-th Cartier operator

Ej(F (x)) :=
∞∑

n=0

(f ◦ ej(n))1/pxn

for j ∈ {0, 1, . . . , p−1}. We let Ω denote the semigroup generated by the collection
of Ej under composition and we let Ω(F ) denote the K-vector space spanned by
all power series of the form E ◦ F with E ∈ Ω.

We point out that if G ∈ Ω(F ) then E ◦ G ∈ Ω(F ) for all E ∈ Ω. Cartier
operators are particularly useful in that they can be used to decompose power
series over fields of positive characteristic.

Remark 13.4.1.5. Let p be a prime number an let K be a perfect field of
characteristic p. For a power series

F (x) =

∞∑
n=0

f(n)xn ∈ K[[x]]
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we have a decomposition

F (x) =
∑

j∈{0,...,p−1}
xjEj(F (x))p.

Using Proposition 2.5.1.4, it is straightforward to show that if F (x) ∈ K[[x]] is
the power series expansion of a rational function, then Ω(F ) is finite-dimensional.
More generally, a result due to Sharif and Woodcock [SW88, Corollary 5.4] gives
a characterization of the algebraic power series over a perfect field of positive char-
acteristic in terms of this property.

Theorem 13.4.1.6 (Sharif and Woodcock [SW88]). Let p be a prime number
and let K be a perfect field of characteristic p. A power series

F (x) ∈ K[[x]]

is algebraic over K(x) if and only if Ω(F ) is a finite-dimensional K-vector space.

One can rephrase the theorem of Sharif and Woodcock in terms of the coeffi-
cients of an algebraic power series.

Lemma 13.4.1.7. Let p be a prime number, let K be a perfect field of charac-
teristic p, and let f : N0 → K be a sequence with the property that

F (x) :=
∞∑

n=0

f(n)xn ∈ K[[x]]

is the power series expansion of an algebraic function over K(x). Then there exists
a positive integer m and there exist maps

f1, . . . , fm : N0 → K

such that:

(1) Fi(x) :=
∑∞

n=0 fi(n)x
n ∈ Ω(F ) with 1 ≤ i ≤ m form a basis for Ω(F ) as

a K-vector space;
(2) F1 = F ;
(3) if g : N0 → K has the property that

G(x) :=
∑
n∈N0

g(n)xn ∈ Ω(F ),

then g ◦ ej ∈ Kfp
1 + · · ·+Kfp

m for j ∈ {0, . . . , p− 1}.

Proof. Since F (x) is algebraic, dimK(Ω(F )) is finite by Theorem 13.4.1.6. It
follows that there exist maps

f1, . . . , fm : N→ K

such that the m power series

Fi(x) :=

∞∑
n=0

fi(n)x
n ∈ Ω(F )

with i ∈ {1, . . . ,m} form a basis for Ω(F ) as a K-vector space. Let

g : N0 → K

be such that

G(x) :=

∞∑
n=0

g(n)xn ∈ Ω(F ).
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Then

(13.4.1.8) G(x) =
∑

j∈{0,...,p−1}
xjEj(G(x))p.

Let j ∈ {0, 1, . . . , p− 1}. By assumption,

Ej(G(x)) ∈ KF1(x) + · · ·+KFm(x)

and hence
Ej(G(x))p ∈ KF1(x)

p + · · ·+KFm(x)p.

Considering the coefficient of xpn+j in Equation (13.4.1.8), we see g ◦ ej(n) is equal
to the coefficient of xpn in Ej(G(x))p, which is in

Kf1(n)
p + · · ·+Kfm(n)p,

as desired. �
We are almost ready to prove Theorem 13.4.1.3. Before doing so, we fix some

notation. Given a finitely generated field extension K0 of Fp we let K
〈p〉
0 denote

the subfield consisting of all elements of the form cp with c ∈ K0. Given Fp-vector
subspaces V and W of K0 we let VW denote the Fp-subspace of K0 spanned by all

products of the form vw with v ∈ V,w ∈ W and we let V 〈p〉 denote the Fp-vector
subspace consisting of all elements of the form vp with v ∈ V . Since K0 is a finitely

generated field extension of Fp, K0 is a finite-dimensional K
〈p〉
0 -vector space. If we

fix a basis

K0 =
r⊕

i=1

K
〈p〉
0 hi

then we have projections π1, . . . , πr : K0 → K0 defined by

(13.4.1.9) c =

r∑
i=1

πi(c)
phi.

Remark 13.4.1.10. For 1 ≤ i ≤ r and a, b, c ∈ K0 we have

πi(c
pa+ b) = cπi(a) + πi(b).

The last ingredient of the proof is a technical result due to Derksen.

Proposition 13.4.1.11 (Derksen [Der07]). Let K0 be a finitely generated field
extension of Fp and let

π1, . . . , πr : K0 → K0

be as in Equation ( 13.4.1.9). If V is a finite-dimensional Fp-vector subspace of
K0, then there exists a finite-dimensional Fp-vector subspace W of K0 containing
V such that

πi(WV ) ⊆W for 1 ≤ i ≤ r.

Proof. This is [Der07, Proposition 5.2]. �
Proof of Theorem 13.4.1.3. By enlarging K if necessary, we may assume

that K is perfect. By Lemma 13.4.1.7 we can find maps

f1, . . . , fm : N0 → K

such that:

(1) Fi(x) :=
∑∞

n=0 fi(n)x
n ∈ Ω(F ), i = 1, . . . ,m, form a basis for Ω(F ) as a

K-vector space;
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(2) F1 = F ;
(3) if g : N0 → K has the property that

G(x) :=

∞∑
n=0

g(n)xn ∈ Ω(F ),

then g ◦ ej ∈ Kfp
1 + · · ·+Kfp

m for j ∈ {0, . . . , p− 1}.
It follows that there exist elements λ

(�)
i,j for i, j ∈ {1, . . . ,m} and � ∈ {0, 1, . . . , p−1}

such that

(13.4.1.12) fi ◦ e� =
m∑
j=1

λ
(�)
i,j f

p
j .

Since F1, . . . , Fm are algebraic power series, we have that there is a finitely generated
field extension of Fp such that all coefficients of F1, . . . , Fm are contained in this
field extension. It follows that the subfield K0 of K, generated by the coefficients of

F1(x), . . . , Fm(x) and the elements λ
(�)
i,j for i, j ∈ {1, . . . ,m} and � ∈ {0, 1, . . . , p−1},

is a finitely generated field extension of Fp.

Since K0 is a finite-dimensional K
〈p〉
0 space, we can fix a basis {h1, . . . , hr};

that is,

K0 =
r⊕

i=1

K
〈p〉
0 hi.

This then gives projections π1, . . . , πr : K0 → K0 defined by

(13.4.1.13) c =
r∑

i=1

πi(c)
phi.

We let V denote the finite-dimensional Fp-vector subspace of K0 spanned by the

elements λ
(�)
i,j for 1 ≤ i, j ≤ d and � ∈ {0, 1, . . . , p − 1} and by 1. In particular, by

Equation (13.4.1.12) for 1 ≤ i, j ≤ d and � ∈ {0, 1, . . . , p− 1} we have

(13.4.1.14) fi ◦ e� ∈
m∑
j=1

V fp
j .

By Proposition 13.4.1.11 there is a finite-dimensional Fp-vector subspace W of K0

that contains V and has the property that πi(WV ) ⊆W for 1 ≤ i ≤ r. Let

U = Wf1 +Wf2 + · · ·+Wfm ⊆ {g : g : N0 → K0}.

Then |U | ≤ |W |m <∞, since we are working with vector spaces over finite fields. If
� ∈ {1, . . . , r}, i ∈ {1, . . . ,m}, and j ∈ {0, 1, . . . , p−1} then by equation (13.4.1.14)
and Remark 13.4.1.10 we have

π�(Wfi ◦ ej) ⊆ π�(WV fp
1 + · · ·+WV fp

m)

⊆
m∑

k=1

π�(WV )fk

⊆
m∑

k=1

Wfk

= U.
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Thus by Remark 13.4.1.10, if g ∈ U and j ∈ {0, 1, . . . , p−1}, then g� := π�(g ◦ej) ∈
U for 1 ≤ � ≤ r. In particular, g(pn+ j) = 0 if and only if g1(n) = g2(n) = · · · =
gr(n) = 0. Given

g : N0 → K0,

we let χg : N0 → {0, 1} be defined by

χg(n) =

{
0 if g(n) �= 0;
1 if g(n) = 0.

Let

(13.4.1.15) S = {χg1 · · ·χgt : t ≥ 0, g1, . . . , gt ∈ U}.

Since χ2
g = χg for all g ∈ U and U is finite, S is finite. Moreover, if g ∈ U and

j ∈ {0, 1, . . . , p− 1}, then gj,� := g� := π�(g ◦ ej) ∈ U for 1 ≤ � ≤ r. Then we have

(χg ◦ ej)(n) =
r∏

�=1

χg�(n),

and so we see that if χ ∈ S then χ ◦ e ∈ S for all e ∈ Σ. Since S is finite we then
have that

χ : N0 → {0, 1} is p-automatic.

In particular since f(n) = f1(n) ∈ U , we see that χf is p-automatic, and so the
set of n ∈ N0 such that f(n) = 0 is a p-automatic set. This completes the proof of
Theorem 13.4.1.3. �

13.4.2. Derksen’s theorem on p-normal sets. In this subsection we give
a refinement of Theorem 13.4.0.2, as proven by Derksen [Der07] (see Theorem
13.4.2.3). So, if

f : N0 → K

is a linear recurrence sequence over a field K of characteristic p > 0, then the zero
set of f(n) is p-automatic. In fact, in this case, the proof shows that if χ(n) is
the characteristic sequence of the zero set of f(n) then for e ∈ Σ, χ ◦ e is a finite
intersection of characteristic sequences of zero sets of linear recurrences. Moreover,
it is easily checked that if f(n) is a simple non-degenerate linear recurrence then
χ ◦ e is a finite intersection of characteristic sequences of zero sets of simple non-
degenerate linear recurrence sequences.

As stated earlier, the notion of automatic sets and sequences is generally defined
using finite-state automata, which, roughly speaking, are machines with a finite set
of states, some of which are accepting states and the others which are rejecting
states, and transition rules between the states based on input fed into the machine.
Derksen was able to give bounds on the number of states needed in a finite-state
automaton that describes the zero set of a linear recurrence sequence in terms of
the recurrence and the initial conditions and from this he was able to show that
the decidability results mentioned earlier hold.

In fact, by analyzing the types of automata which can occur, Derksen showed
that the zero set of a linear recurrence sequence in positive characteristic is much
more constrained. To describe Derksen’s refinement, we must give the notion of a
p-normal set.
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Definition 13.4.2.1. Let p be a prime number. A subset S ⊆ N is p-normal
if it is a finite union of (possibly finite) arithmetic progressions along with a finite
union of sets of the form

Sq(c0; . . . , cd) := {c0 + c1q
k1 + · · ·+ cdq

kd : k1, . . . , kd ∈ N} ∩ N,

where q is a power of p and c0, . . . , cd are nonzero rational numbers satisfying

c0 + · · ·+ cd ∈ Z and (q − 1)ci ∈ Z,

for i = 0, . . . , d.

Remark 13.4.2.2. If S and T are p-normal and a and b are natural numbers
then S ∩ T and aS + b are both p-normal.

Derksen’s main result is then the following.

Theorem 13.4.2.3. [Der07, Theorem 1.8] Let f(n) be a sequence satisfying a
recurrence over a field K of characteristic p. Then the set of natural numbers n
such that f(n) = 0 is a p-normal set.

To prove Theorem 13.4.2.3, we will again make use of some of the ideas from the
theory of finite-state automata. Rather than introduce the formalism of automata,
however, we will instead use the more well-known notion of directed graphs.

For the remainder of this subsection, we assume that g(n) is the characteristic
sequence of the zero set of a simple non-degenerate linear recurrence. We let

g1(n), . . . , gm(n)

denote the distinct sequences of the form g ◦ e with e ∈ Σ, which is a finite set
by Theorem 13.4.0.2. By the remarks following the proof of Theorem 13.4.1.3, we
have that these are characteristic sequences of intersections of zero sets of simple
non-degenerate linear recurrences.

We now construct a directed graph G whose set of vertices is {1, 2, . . . ,m} and
in which we draw a directed edge with label � ∈ {0, 1, . . . , p− 1} from i to j if and
only if

gi(pn+ �) = gj(n).

We then put an equivalence relation on the set of vertices by declaring that i ∼ j
if there is a directed (possibly empty) path from i to j and a directed path from j
to i and we let [i] denote the equivalence class containing the vertex i. We put a
partial order on the collection of equivalence classes by declaring that

[i] ! [j]

if and only if there is a directed path (possibly empty) from vertex i to j.
To each path s = u1u2 · · ·un on G, where u1, . . . , un are labeled edges, we can

associate a natural number

(13.4.2.4) [s]p := pn−1�1 + pn−2�2 + · · ·+ �n

where �i is the label of edge ui. The following remark can be easily obtained using
the formula for geometric series.

Remark 13.4.2.5. Let t1, . . . , tr be cycles in G and let s1, . . . , sr+1 be paths
on G such that for i ∈ {1, . . . , r} the terminal vertex of si is equal to the initial
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vertex of ti and such that the initial vertex of si is equal to the terminal vertex of
ti−1 for i ∈ {2, . . . , r + 1}. Then

{[s1tm1
1 s2t

m2
2 · · · srtmr

r sr+1]p : m1, . . . ,mr ≥ 0}
is p-normal.

To obtain Derksen’s refinement from Theorem 13.4.2.3, we first show that the
directed paths that begin and end at the same vertex are all generated by a unique
cycle.

Lemma 13.4.2.6. Let G be the graph described above and let i ∈ {1, . . . ,m}. If
t1 and t2 are two paths from i to i then there is a cycle t and natural numbers a
and b such that t1 = ta and t2 = tb.

Proof. We first show that if t1 and t2 have the same length then t1 = t2. To
do this, suppose that we have two distinct paths, t1 and t2, from vertex i to itself
with the same length. We let r denote the length of t1 and t2 and we let

�1 = [t1]p and �2 = [t2]p.

We next let d be the smallest natural number such that gi(n) is the characteristic
sequence of an intersection of the zero sets of a finite set of simple non-degenerate
linear recurrences of length at most d. Then gi(n) is the characteristic sequence of
the zero sets of h1, . . . , hq, where each hj is a simple non-degenerate linear recur-
rence of length at most d. By assumption we have that

gi(n) = 0

if and only if

h1(n) = · · · = hq(n) = 0.

Furthermore, this holds if and only if

hj(p
rn+ �1) = hj(p

rn+ �2) for j = 1, . . . q.

Let j ∈ {1, . . . , q}. Then we have

hj(n) =

e∑
i=1

ciα
n
i

is a simple non-degenerate linear recurrence of length e ≤ d. Then

h′
j(n) := hj(p

rn+ �1) and h′′
j (n) := hj(p

rn+ �2)

are both zero if and only if

h′
j(n) :=

e∑
i=1

ciα
�1
i αprn

i and h′′
j (n) :=

e∑
i=1

ciα
�2
i αprn

i

are both zero. Notice that

g′j(n) := α�2
1 h′

j(n)− α�1
1 h′′

j (n) =

e∑
i=2

ci(α
�1
i α�2

1 − α�2
i α�1

1 )αprn
i

and

g′′j (n) := α�2
e h′

j(n)− α�1
e h′′

j (n) =

e−1∑
i=1

ci(α
�1
i α�2

e − α�2
i α�1

e )αprn
i
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are both recurrence sequences of length at most e− 1 < d. Since our sequences are
non-degenerate, the matrix (

α�1
1 −α�2

1

α�1
e −α�2

e

)
is invertible, we have that

{n : h′
j(n) = h′′

j (n) = 0} = {n : g′j(n) = g′′j (n) = 0}

and so gi(n) is given by
q⋂

j=1

(
Z(h′

j) ∩ Z(h′′
j )
)
,

which is a finite intersection of zero sets of simple non-degenerate linear recurrences
of length less than d, contradicting the minimality of d. It follows that for each
positive integer r, there is at most one path of length r from vertex i to itself in G.

We now let t denote the shortest path of positive length from vertex i to itself;
if no such path exists, there is nothing to prove. We claim that every path from
vertex i to itself is of the form tn for some n. To see this, suppose that there is a
path t′ from vertex i to itself that is not of this form. We may choose t′ to be the
shortest such path with this property. Then we necessarily have that the length of
t′ is strictly greater than the length of t. We let r′ denote the length of t′. Then

tr
′
and (t′)r both have length rr′

and so from what we have just shown we have that

tr
′
= (t′)r.

It follows that

t′ = tu

for some path u from i to itself. Moreover, we cannot have that u is a power of
t since otherwise t′ would also have this property. But now u has length strictly
less than that of t′, which contradicts the minimality of the length of t′. The result
follows. �

Proof of Theorem 13.4.2.3. We first consider the case when f(n) is a simple
non-degenerate linear recurrence sequence and we let g(n) denote the characteristic
sequence of the zero set of f(n). We let

g1(n) = g(n), . . . , gm(n)

denote the distinct sequences of the form g◦e with e ∈ Σ and we construct a directed
graph G whose set of vertices is {1, 2, . . . ,m} and in which we draw directed edge
with label � ∈ {0, 1, . . . , p− 1} from i to j if

fi(pn+ �) = fj(n).

As previously constructed, we have an equivalence relation on the set of vertices of
G and a partial order on the equivalence classes.

By Lemma 13.4.2.6, if there are two distinct paths t1 and t2 from edge i to
itself then there is some path t and natural numbers m and n such that

t1 = tm and t2 = tn.
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It follows that each equivalence class C has a unique cycle t such that if i and j are
in C and q is a path from i to j then q is a subpath of tn for some n. If C and C ′

are two equivalence classes with the property that

C ≺ C ′

and such that there does not exist an equivalence class C ′′ such that

C ≺ C ′′ ≺ C ′

then for i ∈ C and j ∈ C ′ there are at most finitely many minimal paths from
vertex i to j. It follows that for each pair of vertices i, j, the collection of directed
paths on G is a finite union of sets of paths of the form

P(s1, . . . , sr+1; t1, . . . , tr) := {s1tm1
1 s2 · · · srtmr

r sr+1 : m1, . . . ,mr ≥ 0} ,
where t1, . . . , tr are cycles and si are paths with no repeated vertices. We recall
that to each path s = e1e2 · · · en on G whose source vertex is 1 we can associate a
natural number

[s]p := pn−1�1 + pn−2�2 + · · ·+ �n

where �i is the label of edge ei. Then by construction

f([s]p) = 0 if and only if g1([s]p) = 1,

which occurs if and only if

gj(0) = 1 where j is the terminal vertex of the path s.

We now let T denote the set of j for which gj(0) = 1. Then the collection of paths
from vertex 1 to a vertex j ∈ T is a finite union of sets of the form

P(s1, . . . , sr+1; t1, . . . , tr).

By Remark 13.4.2.5, the set

{[s1tm1
1 s2t

m2
2 · · · srtmr

r sr+1]p : m1, . . .mr ≥ 0}
is p-normal. The result now follows.

In general, if f(n) is not simple and non-degenerate, then we have nonzero
α1, . . . , αd ∈ K and polynomials q1, . . . , qd such that

(13.4.2.7) f(n) =

d∑
i=1

qi(n)α
n
i

for all n sufficiently large. We may assume without loss of generality that Equation
(13.4.2.7) holds for all n ∈ N0. We can find some natural number a such that if
αi/αj is a root of unity then αa

i = αa
j . It then follows that for b ∈ {0, 1 . . . , a− 1}

then f(an + b) is either identically zero or it is a non-degenerate nonzero linear
recurrence sequence. Next notice that for j ∈ {0, 1, . . . , p− 1} we have

qi(pn+ j) = qi(j)

and so each f(pn + j) is a simple linear recurrence sequence. It follows that for
j ∈ {0, 1, . . . , ap− 1} we either have

f(apn+ j) = 0 for all n,

or f(apn + j) is a simple non-degenerate linear recurrence sequence and hence in
either case we have that the zero set is p-normal. We now obtain the desired result
from Remark 13.4.2.2. �
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CHAPTER 14

Related problems in arithmetic dynamics

In recent years there have been many interesting arithmetic problems studied
in the context of dynamics. Some of them had their original motivation in deep
conjectures from arithmetic geometry. In the next sections we will survey some
of these problems and show their connection to the Dynamical Mordell-Lang Con-
jecture. In each case, we will first start with the classical problem in arithmetic
geometry and then describe the dynamical analogue, which often was formulated in
order to generalize the classical case. For a more thorough discussion of the major
problems in arithmetic dynamics, we recommend the excellent book of Silverman
[Sil07] to the interested reader.

14.1. Dynamical Manin-Mumford Conjecture

14.1.1. The classical Manin-Mumford Conjecture. TheManin-Mumford
conjecture, proven by Raynaud (see [Ray83a] for the case of curves, and [Ray83b]
for the general case), states that if V is a subvariety of an abelian variety A defined
over C, then V contains a Zariski dense set of torsion points if and only if V is a
torsion translate of an abelian subvariety of A. The direct implication is immediate
since the torsion points are Zariski dense in any abelian subvariety. Over number
fields, a stronger theorem, conjectured by Bogomolov and proven by Ullmo [Ull98]
(in the case of curves embedded in their Jacobian) and Zhang [Zha98] (in the case
of arbitrary subvarieties of abelian varieties), states that V ⊆ A contains a Zariski
dense set of points with Néron-Tate height tending to zero if and only if V is a tor-
sion translate of an abelian subvariety of A (for more details regarding the canonical
height on abelian varieties see Section 2.6). The proofs of Ullmo [Ull98] and Zhang
[Zha98] make important use of an equidistribution theorem of Szpiro-Ullmo-Zhang
for points of small canonical height on abelian varieties (see [SUZ97]). Recently,
dynamical analogues of this equidistribution theorem have been proved by various
authors [BR06, CL06, FRL06, Yua08].

14.1.2. The dynamical formulation. Motivated by the above results,
Zhang [Zha06] formulated dynamical analogues of both the Manin-Mumford and
the Bogomolov conjectures. Essentially, Zhang asked whether a subvariety V of
a projective variety X defined over Q must be preperiodic under the action of a
suitable endomorphism Φ of X once it contains a Zariski dense set of preperiodic
points. One has to define carefully the notion of suitable endomorphism since oth-
erwise there would be obvious counterexamples to such a statement. Indeed, if

X = P1 × P1 and Φ = (ϕ1, ϕ2)

is the endomorphism induced by the action of the polynomials

ϕ1(z) = z2 and ϕ2(z) = z3,

249
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then clearly the diagonal subvariety of X contains infinitely many Φ-preperiodic
points even though it is not preperiodic under the action of Φ. The reason for this is
that Φ acts with different weights on the two projective lines. This prompted Zhang
to ask the Dynamical Manin-Mumford conjecture for polarizable endomorphisms
Φ, i.e., morphisms for which there exists an ample line bundle L of the projective
variety X such that

Φ∗(L) is linearly equivalent to L⊗d

for some integer d ≥ 2. However, there are counterexamples even to this formula-
tion which come from CM endomorphisms of elliptic curves (for more details see
[GTZ11a] and [Paz10]). Again the problem is that for an endomorphism Φ of
E × E (where E is a CM elliptic curve), even if Φ acts with same weights on the
elliptic curves (and thus Φ is polarizable), it could be that its action on the two
elliptic curves has different angles (which can be seen by looking at the induced
action on the tangent subspaces). Thus the diagonal subvariety of E×E might still
contain infinitely many Φ-preperiodic points, even though the diagonal is not Φ-
preperiodic. Hence the authors of [GTZ11a] proposed the following revised version
of the Dynamical Manin-Mumford Conjecture:

Conjecture 14.1.2.1 ([GTZ11a]). Let X be a projective variety, let

Φ : X −→ X

be an endomorphism defined over C with a polarization, and let V be a subvariety
of X which has no component included into the singular part of X. Then V is
preperiodic under Φ if and only if there exists a Zariski dense subset of smooth
points

x ∈ V ∩ PrepΦ(X)

such that the tangent subspace of V at x is preperiodic under the induced action
of Φ on the Grassmannian Grdim(V ) (TX,x). (Here we denote by TX,x the tangent
space of X at the point x.)

In [GTZ11a] it was proven that Conjecture 14.1.2.1 holds for algebraic group
endomorphisms of abelian varieties, and also for lines V contained in

X := P1 × P1

under the action of

(x, y) 	→ Φ(x, y) := (f(x), g(y)),

where f, g ∈ C(z). The proof for abelian varieties is a simple consequence of
Raynaud’s theorem [Ray83a]. On the other hand, the proof for lines contained
in P1 × P1 follows by using the equidistribution results of Baker-DeMarco [BD11]
and of Yuan-Zhang [YZ] for preperiodic points under the action of rational maps.
The equidistribution results yield that two rational maps f and g must share the
same Julia set (and same equivariant measure on the Julia set—see [BD11, YZ])
once f and g share an infinite set of preperiodic points. The equality of the Julia
sets is sufficient to infer the desired conclusion in the Dynamical Manin-Mumford
Conjecture if neither f nor g is a Lattès map; in the latter case one needs to use
the full strength of the hypotheses from Conjecture 14.1.2.1 and a classification of
Lattès maps done by Douady and Hubbard [DH93].
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An outstanding open case of Conjecture 14.1.2.1 is the case when X = P2. In
this case it is expected that one does not need the extra assumption from Conjec-
ture 14.1.2.1 regarding the action of Φ on the tangent subspaces, and thus Zhang’s
original question from [Zha06] has a positive answer. In this direction, we note the
partial result of Dujardin and Favre [DF] towards the Dynamical Manin-Mumford
Conjecture for rational self-maps of P2 which are induced by polynomial automor-
phisms of A2.

It is also important to note that Fakhruddin [Fak14] proved that Zhang’s
original conjecture (without the strengthening from Conjecture 14.1.2.1) holds for
generic endomorphisms of PN since for generic endomorphisms of PN there are no
proper preperiodic subvarieties, and also no proper subvariety contains infinitely
many preperiodic points in this case. We recall that a generic endomorphism of
PN of degree d is given by N + 1 homogeneous polynomials of degree d in the
variables

X0, . . . , XN

with the property that the coefficients of all these polynomials are algebraically
independent.

14.1.3. Combining the two conjectures. One may formulate a conjec-
ture which combines both the Dynamical Mordell-Lang and the Dynamical Manin-
Mumford conjectures as follows.

Definition 14.1.3.1. For an endomorphism Φ of a quasiprojective variety X
defined over C, and for a point α ∈ X(C), we let OΦ(α) be the grand orbit of α
defined as follows:

OΦ(α) = {β ∈ X(C) : there exist m,n ∈ N0 such that Φm(β) = Φn(α)} .

Conjecture 14.1.3.2. Let X be a smooth projective variety defined over C,
let V ⊆ X be an irreducible subvariety, let α ∈ X(C), and let Φ be a polarizable
endomorphism of X. Then V is preperiodic under Φ if and only if there exists a
Zariski dense subset of points x ∈ V ∩OΦ(α) such that the tangent subspace of V at
x is preperiodic under the induced action of Φ on the Grassmanian Grdim(V ) (TX,x).

If OΦ(α) is replaced by OΦ(α) and we drop the condition regarding the action
on the tangent space, then the above question reduces to the Dynamical Mordell-
Lang conjecture. If α is a preperiodic point, then OΦ(α) ⊆ PrepΦ(X) and thus we
reduce the above question to the Dynamical Manin-Mumford Conjecture.

Using a strategy similar to the proof of Theorem 11.4.2.1 one can prove (see
[BGT15b]) the following result regarding coherent backward orbits which are sub-
sets of grand orbits (see also Definition 14.1.3.1).

Definition 14.1.3.3. Let X be a quasiprojective variety defined over a field
K, let

Φ : X −→ X

be an endomorphism defined over K, and let α ∈ X(K). A coherent backward orbit
of x (with respect to Φ) is a sequence {x−n}n≥0 such that

x0 = x
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and for each n ≥ 0, we have

Φ (x−n−1) = x−n.

Then arguing as in the proof of Proposition 11.4.3.1 (see [BGT15b]), one
proves that if V ⊆ X is a subvariety, {x−n}n≥0 is a coherent backward orbit of a
point in X, and the set

SV := {n ∈ N0 : x−n ∈ V }
has positive Banch density, then SV contains an infinite arithmetic progression.
Then the following result (see [BGT15b]) follows almost identically as the proof
of Proposition 11.4.3.1.

Theorem 14.1.3.4. Let X be a quasiprojective variety, let Φ : X −→ X be an
endomorphism, let {x−n}n≥0 be a coherent backward orbit of a point x ∈ X, and
let V ⊆ X be a subvariety. If the set

SV := {n ∈ N : x−n ∈ V }
has positive Banach density, then V contains a periodic subvariety.

In [BGT15b], Theorem 14.1.3.4 is proven in the more general context of coher-
ent backward orbits under the action of continuous endomorphisms of Noetherian
spaces. Actually, similar to the proof of Theorem 11.4.2.1, in [BGT15b] the au-
thors prove the more precise result that for any subvariety V , the set SV is a union
of at most finitely many arithmetic progressions along with a set of Banach density
0. Theorem 14.1.3.4 can also be proven (even in the higher generality of coherent
backward orbits in Noetherian spaces) by employing measure-theoretic techniques
similar to those of [Gig, Gig14].

14.2. Unlikely intersections in dynamics

14.2.1. The classical setting. The Dynamical Mordell-Lang Conjecture can
be interpreted as saying that a subvariety V of a given quasiprojective variety X is
unlikely to intersect an orbit OΦ(α) of a point α ofX under a self-map Φ in a infinite
set of points. More precisely, the intersection can be infinite only if V contains a
positive dimensional subvariety which is periodic under Φ (see Conjecture 3.1.3.2),
and of course, this is unlikely to happen for a generic subvariety V of X. In
this section we describe another problem of unlikely intersections in arithmetic
geometry which also has a counterpart in algebraic dynamics. For a comprehensive
discussion of this exciting direction of research for the unlikely intersections in
arithmetic geometry, we refer the reader to the beautiful book of Zannier [Zan12].
Roughly speaking, the principle of unlikely intersections refers to the fact that if
an intersection of two geometric objects has larger dimension, or more generally, is
larger than expected (if we refer at number of points, for example), then there is a
robust geometric reason for why this happens. Next we illustrate this principle in
the context of algebraic dynamical systems.

14.2.2. The dynamical setting. In [BD11], Baker and DeMarco proved
the following result.

Theorem 14.2.2.1 (Baker-DeMarco [BD11]). Let a, b ∈ C, and let d ≥ 2 be
an integer. Then there exist infinitely many λ ∈ C such that both a and b are
preperiodic for the action of

fλ(x) := xd + λ
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on C if and only if ad = bd.

One of the main ingredients in the beautiful proof from [BD11] is the theorem
on equidistribution for points of small canonical height on Berkovich spaces (see
[BR06, CL06, FRL06]). In particular, Theorem 14.2.2.1 yields that once there
exist infinitely many λ ∈ C such that both a and b are preperiodic under the action
of xd + λ, then for all λ ∈ C, we have that a is preperiodic if and only if b is
preperiodic.

The problem solved in Theorem 14.2.2.1 was originally suggested by Zannier, as
a dynamical analogue of a question on families of elliptic curves studied by Masser
and Zannier in [MZ08, MZ10, MZ12]. In [MZ08], Masser and Zannier show
that there exist at most finitely many λ ∈ C such that the points(

2,
√
2(2− λ)

)
and

(
3,
√
6(3− λ)

)
are both torsion on the elliptic curve given by the equation

y2 = x(x− 1)(x− λ).

The techniques used by Masser and Zannier are much different than the ones
employed by Baker and DeMarco since they use the method of Pila and Zan-
nier [PZ08] based on o-minimality (for the definition of o-minimality see Defini-
tion 10.2.3.2) to count algebraic points on real analytic curves. The problem from
[MZ08, MZ10, MZ12] was motivated by the Pink-Zilber conjectures in arithmetic
geometry regarding unlikely intersections between a subvariety V of a semiabelian
variety A and families of algebraic subgroups of A of codimension greater than the
dimension of V (see [BMZ99, Hab09, Pin]). A thorough treatment of Pink-Zilber
conjectures can be found in [Zan12].

In [GHT13, GHT15] additional instances of the unlikely intersection principle
in dynamics are proven which generalize the results from [BD11]. In particular,
one considers two families of dynamical systems at the same time, and also one
allows the starting points also depend on the parameter λ. The following question
is implicitly raised in [GHT13, GHT15]:

Conjecture 14.2.2.2. Let X be a smooth projective curve defined over C. Let
η ∈ X(C) and let Y := X \ {η}. We let A be the ring of rational functions on X
defined over C that are regular on Y . Suppose that we have rational functions

f1 = P1(x)/Q1(x) and f2 = P2(x)/Q2(x)

such that Pi, Qi ∈ A[x] and the leading coefficients of Pi and of Qi are nonzero
constants for i = 1, 2. For each λ ∈ Y (C) and i = 1, 2, we denote by fλ,i the
rational function obtained by evaluating each coefficient of Pi and of Qi at λ. For
each i = 1, 2, let

ci =
ai
bi

where ai,bi ∈ A. If there exists an infinite family of λn ∈ Y (C) such that both
c1(λn) and c2(λn) are preperiodic points for the actions of fλn,1 respectively of fλn,2,
then at least one of the following conditions holds:

(a) for each λ ∈ Y (C), we have that c1(λ) is preperiodic for fλ,1;
(b) for each λ ∈ Y (C), we have that c2(λ) is preperiodic for fλ,2;
(c) for each λ ∈ Y (C), we have that c1(λ) is preperiodic for fλ,1 if and only

if c2(λ) is preperiodic for fλ,2.
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We note that the results from [BD11, MZ08, MZ10, MZ12] can be inter-
preted as special cases of the above conjecture. Indeed, the point(

2,
√

2(2− λ)
)

is torsion for the elliptic curve y2 = x(x− 1)(x− λ)

if and only if the point

2 is preperiodic for the Lattès map
(x2 − λ)2

4x(x− 1)(x− λ)

corresponding to the multiplication-by-2-map on the above elliptic curve. In [BD11,
BWY, MZ08, MZ10, MZ12] precise relations between the starting points c1 and
c2 were proven so that—in the instances discussed in those papers—condition (c)
is satisfied by c1 and c2.

Conjecture 14.2.2.2 was proven in [GHT13] when Y = A1 and each fi and
also ci is a polynomial. In [GHT15] additional cases of Conjecture 14.2.2.2 were
proven when X is no longer the projective line, and each fi is a family of rational
maps. Furthermore, a higher dimensional variant of this problem was considered.
The key for these extensions lies in the deep equidistribution results of small points
on metrized line bundles of Yuan and Zhang [YZ] (for more details, see [GHT15]).

The problem of finding explicit relations between the starting points c1 and
c2 so that condition (c) holds is much more delicate. In [BD11] it is shown that
the explicit relation ad = bd holds between the starting points a and b under the
assumption that they are simultaneously preperiodic for xd + λ for infinitely many
λ ∈ C. This result is obtained using techniques from complex analysis which are
specific to families of polynomial mappings. Masser and Zannier [MZ10, MZ12]
proved that two families of points Pλ and Qλ on a given family of elliptic curves
Eλ are simultaneously torsion points for infinitely many values λ ∈ C if and only
if Pλ and Qλ are linearly dependent over Z, i.e., on the generic fiber of the elliptic
family we have an identity of the form mPλ + nQλ = 0 for some nonzero integers
m and n. This special relation was obtained exploiting the group structure of the
family of elliptic curves. For a generic family of dynamical systems as in Conjec-
ture 14.2.2.2 one cannot use either of the above tools for finding an explicit relation
between the two starting points c1 and c2 assuming they satisfy condition (c) from
Conjecture 14.2.2.2 (see [GHT15] for some partial results in this direction).

The area of unlikeley intersections in a dynamical setting is very rich and grows
very fast, as shown by additional new results being proven in [BD13, GH13,
GHT].

14.3. Zhang’s conjecture for Zariski dense orbits

14.3.1. Original setting. Zhang conjectured that if Φ is a polarizable endo-
morphism of an irreducible projective variety X defined over Q, then there exists
α ∈ X(Q) such that OΦ(α) is Zariski dense in X (see [Zha06, Conj. 4.1.6]). Now,
let Y be the union of all proper subvarieties V of X (defined over Q) which are
Φ-preperiodic. In light of the following lemma, Zhang’s conjecture can be reformu-
lated as asserting that X �= Y .

Lemma 14.3.1.1. If X, Y , Φ are as above, then Y consists of the points α ∈ X
for which OΦ(α) is not Zariski dense in X.
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Proof. Pick α ∈ Y , and let V ⊆ Y be a proper Φ-preperiodic subvariety of
X such that α ∈ V ; moreover, pick k ≥ 0 and N ≥ 1 such that Φk+N (V ) ⊆ Φk(V ).
Then OΦN (Φk(α)) ⊆ Φk(V ), so

OΦ(α) ⊆
k+N−1⋃

i=0

Φi(V ).

Since V �= X and X is irreducible, it follows that OΦ(α) is not Zariski dense in X.
Conversely, pick α ∈ X \Y , and let Z be the Zariski closure of OΦ(α). Proposi-

tion 3.1.2.14 yields that Z is periodic under Φ (actually, it is fixed by Φ). Therefore,
each irreducible component (including the component containing α) is preperiodic
under Φ. Since α /∈ Y , it follows that Z = X. �

On the other hand, a positive answer to the Dynamical Mordell-Lang Conjec-
ture yields that each Zariski dense orbit OΦ(α) intersects any proper subvariety V
of the irreducible quasiprojective variety X in at most finitely many points. Indeed,
if OΦ(α)∩V (C) is infinite, then, by the Dynamical Mordell-Lang Conjecture, there
exists k,N ∈ N such that OΦN (Φk(α)) ⊆ V (C). Therefore

OΦ(α) ⊆ {Φi(α) : 0 ≤ i ≤ k − 1}
⋃(

∪N−1
j=0 Φj(V )

)
,

and since dim(V ) < dim(X) it follows that OΦ(α) is not Zariski dense in X.

14.3.2. Medvedev-Scanlon variant. Medvedev and Scanlon [MS14] con-
sider a situation inspired by Zhang’s conjecture, but which is at one level more
general in that they drop the polarizability hypothesis, but in another sense more
special in that the map Φ is assumed to be given by a sequence of univariate poly-
nomials. In [MS14, Fact 2.25], Medvedev and Scanlon state the characterization
of periodic subvarieties of arbitrary dimension in terms of periodic curves (which is
proven in Medvedev’s PhD thesis [Med]).

Theorem 14.3.2.1 (Medvedev, Scanlon). Let K be a field of characteristic
0, and let f1, . . . , fN ∈ K[z] be polynomials of degree d ≥ 2. Assume that the
polynomials

f1(z), . . . , fN (z)

are not conjugate to zd or Td(z) (the d-th Chebyshev polynomial) for any positive
integer d. Let Φ denote the action of (f1, . . . , fN ) on AN and let V be a Φ-periodic
irreducible subvariety of AN defined over K. Then V is of the form

(14.3.2.2) V =
�⋂

i=1

π−1
i,j (Ci,j),

for some � ∈ N, where for each i, j ∈ {1, . . . , N}, the curve Ci,j ⊆ A2 is (fi, fj)-
periodic, and πi,j : A

N −→ A2 is the projection map of AN onto the corresponding
two coordinates i and j.

The proof of Theorem 14.3.2.1 is based on Medvedev’s PhD thesis [Med] for
classifying group-like σ-degree 1 minimal sets in the model theory of ACFA (the
theory of algebraically closed fields with a distinguished automorphism). So, Theo-
rem 14.3.2.1 shows that all periodic subvarieties are boolean combinations of pull-
backs of periodic plane curves under projection maps from AN to various pairs of
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coordinates of the N -dimensional affine space. Using the above powerful classifi-
cation result for periodic subvarieties of AN under the coordinatewise action of N
one-variable polynomials, Medvedev and Scanlon prove the following result.

Theorem 14.3.2.3 (Medvedev-Scanlon [MS14]). Let K be a field of charac-
teristic 0, let

f1, . . . , fN ∈ K[z]

be polynomials of degree at least equal to 2, and let Φ : AN −→ AN be given by

Φ(x1, . . . , xN ) := (f1(x1), . . . , fN (xN )).

Then there exists α ∈ AN (K) such that OΦ(α) is Zariski dense.

14.3.3. A more general conjecture. Motivated by their result ([MS14,
Theorem 7.16]) and also by a geometric reformulation of Zhang’s conjecture made
by Amerik and Campana [AC08] (see also [BGZ] for a generalization of [AC08]
to arbitrary semigroups of endomorphisms), Medvedev and Scanlon [MS14, Con-
jecture 7.14] formulated the following strengthening of Zhang’s conjecture:

Conjecture 14.3.3.1. Let K be an algebraically closed field of characteristic
zero, let X be an irreducible algebraic variety over K, and let

Φ : X −→ X

be a rational self-map. Suppose there is no positive dimensional algebraic variety
Y and dominant rational map g : X −→ Y for which g ◦ Φ = g generically. Then
there is some point α ∈ X(K) such that OΦ(α) is Zariski dense in X.

Theorem 14.3.2.3 is a special case of Conjecture 14.3.3.1. Amerik, Bogo-
molov and Rovinsky [ABR11] prove other instances of Conjecture 14.3.3.1 using
a parametrization of the orbit similar to our p-adic parametrization of orbits un-
der étale maps (see Chapter 4). We will describe in the next subsection how the
approach from [ABR11] can be used to prove a certain special case of Conjec-
ture 14.3.3.1.

In a somewhat different (but related) direction we also mention the work of
Amerik [Ame11] who proves the existence of a non-preperiodic algebraic point
for a rational self-map of infinite order. Using the p-adic parametrization from
[BGT10] of the orbit of a smooth point α ∈ X under a map Φ which is unramified
at α, Amerik showed the existence of a non-preperiodic algebraic point which lies
sufficiently close p-adically to α. In a (yet, another) related direction, the authors
used the same p-adic methods to derive upper bounds for the period of arbitrary
dimension periodic subvarieties under the action of étale maps (see [BGT15a]);
this is discussed in Section 14.4.

14.3.4. Special cases of Conjecture 14.3.3.1. In [ABR11] it was proven
that if there exists a fixed point x0 ∈ X(Q) for ΦN (for some positive integer N)
such that the Jacobian of ΦN at x has multiplicatively independent eigenvalues,
then Conjecture 14.3.3.1 has a positive answer. The strategy from [ABR11] was
to show that choosing a non-preperiodic point x sufficiently close p-adically to x0

(where p is a suitable prime of good reduction for Φ) yields a Zariski dense orbit
OΦ(x) (see [ABR11, Corollary 2.7]).

We work now with endomorphisms Φ := (f1, . . . , fN ) of X := (P1)N where
each rational function fi is defined over a number field K and it has degree larger
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than 1. In addition we assume each fi is not post-critically finite (PCF), i.e., each
fi has at least one critical point which is not preperiodic. So in order to apply
the main result of [ABR11] it suffices to find for each fi some periodic point xi

such that all multipliers λi are multiplicatively independent. The following Lemma
yields the desired conclusion.

Lemma 14.3.4.1. Let K be a number field and let f ∈ K(x) be a non-PCF
rational map of degree larger than 1. Then there exist infinitely many primes p

of K such that for each such prime there exists some periodic point of f whose
multiplier is nonzero and divisible by p.

Proof. Let x0 be a critical point of f(x) which is not preperiodic. Using
[BGKT12, Lemma 4.1] (see also Lemma 6.2.2.1) we know there exist infinitely
many primes p of K (of good reduction for f) such that for some positive integer
n we have that fn(x0) and x0 are in the same residue class modulo p. Therefore
there exists some point x1 in the same residue class as x0 modulo p such that
fn(x1) = x1. Then

(fn)′(x1) ≡ (fn)′(x0) ≡ 0 (mod p).

Furthermore, since there exist at most finitely many primes p such that x0 is in
the same residue class modulo p as a periodic critical point of f , we obtain that
there exist infinitely many primes p such that for some periodic point xp for f the
multiplier of xp is nonzero and in addition, it is in the maximal ideal p. �

Lemma 14.3.4.1 shows that indeed we may find periodic points xi for each fi
with multipliers λi multiplicatively independent (since the periodic points xi can
be chosen so that each λi is divisible by a different prime than the other λj ’s).
Then [ABR11, Corollary 2.7] finishes the proof of Conjecture 14.3.3.1 in this case
and yields the following result.

Theorem 14.3.4.2. Let f1, . . . , fN ∈ Q(z) be rational maps which are not PCF.
Then there exist α1, . . . , αN ∈ P1(Q) such that the orbit of (α1, . . . , αN ) under the
action of (f1, . . . , fN ) is Zariski dense in (P1)N .

We expect that Zhang’s Conjecture also holds when the maps fi are PCF, but
in this case one needs a different strategy since for any given PCF map f , there exist
only finitely many primes p such that there exists some f -periodic point x of order
n such that fn(x) ≡ 0 (mod p). If each fi is a Lattès map, or each fi is a monomial,
or each fi is a Chebyshev polynomial, then Zhang’s Conjecture follows easily using
the fact that each fi is induced by an endomorphism of an algebraic group, as
described in [MS14]. However, if each fi is PCF, but it is neither a Lattès map,
nor a Chebyshev polynomial, nor a monomial, then one needs a different approach.

14.4. Uniform boundedness

In [MS94], Morton and Silverman conjectured that there is a constant
C(N, d,D) such that for any morphism

f : PN −→ PN

of degree d defined over a number field K with [K : Q] ≤ D, the number of
preperiodic points of f in PN (K) is less than or equal to C(N, d,D). This conjecture
remains open, but in the case where f has good reduction at a prime p, a great
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deal has been proved about bounds depending on p, N , d, D (see [Ziea, Pez05,
Hut09]). In [BGT15a] we proved a more general uniform boundedness result for
the period of arbitrary dimension periodic subvarieties of a quasiprojective variety
endowed with an étale endomorphism.

Theorem 14.4.0.1 ([BGT15a]). Let K be a finite extension of Qp, let ov be
the ring of integers of K, let kv be its residue field and let e be the ramification
index of K/Qp. Let X be a smooth ov-scheme whose generic fiber X has dimension
g, let

Φ : X −→ X
be étale, let Y be a subvariety of X , and assume there is a point on Y(ov) which is
smooth on the generic fiber of Y. We let X be the special fiber of X , and let r be
the smallest nonnegative integer larger than

(log(e)− log(p− 1))/ log(2).

If Y is preperiodic under the action of Φ, then the length of its orbit is bounded
above by

p1+r ·#GLg(kv) ·#X (kv).

Once again, the p-adic arc lemma is instrumental in proving this result; for
more details, we refer the interested reader to [BGT15a].

14.5. Integral points in orbits

According to Siegel’s classical theorem (see Theorem 5.5.0.1) we know that
a curve of positive genus defined over a number field has at most finitely many
points with coordinates in any given finitely generated ring of algebraic integers.
Silverman [Sil93, Theorem A] later gave a dynamical variant of Siegel’s theorem,
proving that if

f : P1 −→ P1

is a rational function such that f ◦ f is not a polynomial and α ∈ P1(Q) is not
preperiodic for f , there are only finitely many n such that fn(α) is integral relative
to the point at infinity (see our Definition 14.5.0.1).

Definition 14.5.0.1. Let K be a number field, let oK be the ring of algebraic
integers of K, and let S be a finite subset of places of K (containing all archimedean
places of K). We say that a point β ∈ P1(K) is S-integral with respect to a point
α ∈ P1(K) if the Zariski closures of β and α in P1(oK) do not meet over any primes
v /∈ S.

Similarly, we say that a point β ∈ P1(K) is S-integral with respect to a subva-
riety V ⊆ P1×P1 defined over K, if the Zariski closures of β and V in (P1×P1)(oK)
do not meet over any primes v /∈ S.

Corvaja, Sookdeo, Tucker, and Zannier (see [CSTZ, Theorem 1.1]) proved
the following result which is related to both the Dynamical Mordell-Lang Conjec-
ture (especially the more general Question 3.6.0.1) and also to Silverman’s result
regarding integral points in orbits.

Theorem 14.5.0.2. Let K be a number field, let S a finite set of primes in K,
let f : P1 −→ P1 be a rational function with degree d ≥ 2 that is not conjugate to
a powering map z±d, and let α, β ∈ P1(K) be points that are not preperiodic for f .
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Then the set of (m,n) ∈ N2
0 such that fm(α) is S-integral relative to fn(β) is finite

and effectively computable.

Other results regarding integral points in orbits were recently proven (see
[Ghi14, Soo11, BIR08, GI13]). It is conceivable that the following question
has a positive answer.

Question 14.5.0.3. Let f : V −→ V be a polarizable self-map of a projective
variety, let Z be a codimension 1 subvariety of V , let β ∈ V (K), and let S be a
finite set of places of K containing all the archimedean places and all the places of
bad reduction for f . Does the set of n such that fn(β) is S-integral relative to β
form a finite union of arithmetic progressions?

This has be proved in the case where V is an semi-abelian variety in [Tuc14],
using the fact that Conjecture 1.5.0.1 has been proved in that case along with deep
results of Faltings [Fal94] and Vojta [Voj96, Voj99].

Note that a positive answer to Question 14.5.0.3 would imply that there are
infinitely many primes p such that fn(α) meets D modulo p for some n. One
obvious possible explanation for this is that it may be that for all sufficiently large
n, there is some p such that fn(α) meets D modulo p but fm(α) does not meet D
modulo p for any m < n; in other words, after a certain point, one gets a “new”
place p for each n.

In dimension 1, some results along these lines have been proven by Bang
[Ban86], Zsigmondy [Zsi92], Schinzel [Sch74], and, more recently, Ingram-
Silverman [IS09] and Faber-Granville [FG11]. Understanding this question more
generally would give a better understanding of Conjecture 14.6.0.1, since it would
say (essentially) that one gets a low density of primes not because one fails to get
“new primes” for large n but because one doesn’t get that many “new primes” for
each given n. In dimension 1, a general result along these lines follows from the abc
conjecture as explained in [GNT13] and [GNT15].

The connection with the abc and Vojta conjectures (see [Voj87], for example)
appears to go fairly deep. Recently, Levin [Lev12] has given counterexamples to
a possible strengthening of Vojta’s conjecture, using integral points and dynamics
on elliptic surfaces. So we raise the following general question.

Question 14.5.0.4. What forms of Question 14.5.0.3 are implied by Vojta’s
conjecture?

Some work on this question has been done by Levin-Yasufuku [LY], Silverman
[Sil13], and Yasufuku [Yas11, Yas14, Yas15], but this connection has yet to be
explored in full generality.

14.6. Orbits avoiding points modulo primes

As previously explained in our book, only special instances of Conjecture 1.5.0.1
when the map Φ is ramified are known. In almost all known ramified cases, Φ is
given by the coordinatewise action through one-variable rational maps on (P1)m,
i.e. Φ(x1, . . . , xm) = (ϕ1(x1), . . . , ϕm(xm)) for some rational maps ϕi.

The main difficulty in this case is avoiding the ramification of Φ modulo primes
p (assuming all maps are defined over a number field). For example, even the
following basic question is at the moment unsolved.
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Question 14.6.0.1. Let f ∈ Q[x] be a polynomial of degree ≥ 2 and let α ∈ Q be
a point such that Of (α) does not meet the critical points of f . For what proportion
of primes p is there an n such that fn(α) is congruent to a critical point of f modulo
p?

We believe that the answer is “zero” in most cases. On the other hand, we be-
lieve that the answer to Question 14.6.0.1 may often be “one” in higher dimensions
(see our heuristics and probabilistic data from Chapter 8). Indeed, it is possible
that in some cases, an orbit of a point can fail to pass through a divisor over a num-
ber field yet pass through that divisor mod p for every prime p. Finding such an
example would demonstrate the limitations of the p-adic parametrization method
described in the previous chapters (see Chapters 4 and 7 especially) and indicate
the need for a new approach to the Dynamical Mordell-Lang Conjecture. On the
other hand, we mention here the following result of Nguyen [Ngu15, Theorem 1.1]
which provides partial evidence that the p-adic method might work for endomor-
phisms of (P1)n given by the diagonal action of a 1-variable polynomial (or even a
rational map).

Theorem 14.6.0.2. Let K be a number field, f be a polynomial of degree at
least 2 in K[X], and ϕ = (f, . . . , f) : (P1

K)n −→ (P1
K)n. Let V be an absolutely

irreducible preperiodic curve or hypersurface in (P1
K)n, and P ∈ (P1)n(K) such that

the ϕ-orbit of P does not intersect V (K). Then there are infinitely many primes p

of K such that the p-adic closure of the orbit of P does not intersect V (Kp), where
Kp is the p-adic closure of K.

An alternative way of approaching Conjecture 1.5.0.1 is by inferring its conclu-
sion after studying the completion in the adelic topology of the orbit OΦ(α). More
precisely, we expect that assuming X, V , α and Φ are all defined over a number
field K, then

V (K) ∩ OΦ(α) = V (AK) ∩ OΦ(α),

where AK are the partial adeles corresponding to the number field K by omitting
finitely many places, and for any set S ⊂ K ⊂ AK , we let S be the closure of S in
the adelic topology. We expect that a positive answer to our Conjecture 1.5.0.1 may
be obtained by using the local information from various primes. This approach may
be viewed as complementary to the one described above since in the first instance
all we need is one good prime p which would allow us to construct a p-adic analytic
uniformization of OΦ(α). With the adelic approach, one would use infinitely many
primes at once in order to infer the desired result.

For example, assume V does not contain any positive dimensional subvariety
which is periodic under the action of Φ; any generic subvariety V would have this
property. Then Conjecture 1.5.0.1 predicts that for each α ∈ X(K) the intersection
V (K) ∩ OΦ(α) would consist of finitely many points. However, in this case it is
conceivable that a stronger, uniform statement would hold.

Question 14.6.0.3. Let X be a quasiprojective variety defined over a number
field K, let Φ : X −→ X be a morphism defined over K, and let V ⊆ X be a
subvariety defined over K with the property that V contains no positive dimensional
subvariety periodic under the action of Φ. Does there exist m ∈ N such that V (AK)∩
Φm(X(AK)) is finite?

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



14.7. A DYNAMICAL MORDELL-LANG CONJECTURE FOR VALUE SETS 261

There are only some partial results for the above Question: either in the case
dim(V ) = 0 (see [SV09]), or X is a semiabelian variety (see [PV10] and [Sun]),
or in the context of Drinfeld modules (see [GS13]).

14.7. A Dynamical Mordell-Lang conjecture for value sets

Recently, Jones and Silverman have posed the following question.

Question 14.7.0.1. Let K be a number field, let Z and X be varieties defined
over K, and let α ∈ X(K). Let f : X −→ X and g : Z −→ Z be morphisms of
K-varieties. Is {n | fn(α) ∈ g(Z(K))} a finite union of arithmetic progressions?

As with Question 3.6.0.1, problems arise with automorphism. In particular,
the answer to the question is “no” over Q when

f, g : P1 −→ P1 with f(x) = x+ 1 and g(x) = x2.

Note however, that this is only a restriction on f not on g, since when g is an
automorphism of X, the problem is trivial, and when g is an automorphism (defined
over K) of a subvariety of X, the problem is the same as the Dynamical Mordell-
Lang conjecture. Moreover, the answer to Question 14.7.0.1 is “yes” when f and
g are group endomorphisms of a semiabelian variety X (see [JCS]). Hence, in
particular, we avoid the sorts of counterexamples that arise in Section 3.6 in the
context of Question 3.6.0.1 and in Section 14.1 in the context of the Dynamical
Manin-Mumford Conjecture. Treating Question 14.7.0.1 in the case where

f, g : P1 −→ P1 and deg f > 1

is already subtle. Jones, Cahn, and Spears [JCS] have shown that when g is a pow-
ering map g(x) = xm, the answer to Question 14.7.0.1 is “yes”. The set of rational
functions f which give infinite progressions of n such that fn(α) ∈ g(P1(K)) (for
some given starting point α ∈ P1(K)) turns out to be quite complicated, including
not only polynomials with roots of multiplicity m but also Lattès maps and other
families of rational functions.

One natural restriction one might place on f is that it be “polarizable” in
the sense of Subsection 2.2.4. This eliminates the possibility of f being an au-
tomorphism of X or acting as an automorphism on any subvariety of X. With
this restriction in mind, we present the following strategy for attacking Question
14.7.0.1. We let

Φ : X ×X −→ X × Z given by Φ(x, z) = (f(x), z).

For each n, we let Yn be the subvariety of X × Z given by fn(x) = g(z) (for
(x, z) ∈ X × Z). Then

Yn = Φ−1(Yn−1).

One might then expect that unless Y is periodic, the components of Yn to become
more geometrically complicated (especially if f is not unramified) as n goes to
infinity, and that for sufficiently large n that every component of Yn will be of
general type. Then the Bombieri-Vojta-Lang conjectures (see [Voj87], for example)
would imply that for sufficiently large Yn, the set Yn(K) is contained in a proper
(and thus lower-dimensional) Zariski closed subset of Yn. One might then hope to
proceed by induction on the dimension. One problem here is that in general there
are examples of polarizable morphisms

Φ : V −→ V
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of projective varieties V with non-periodic positive dimensional subvarietiesW such
that for every n, each component of Φ−n(W ) is not of general type. One example is
the counterexample to the original formulation of the Dynamical Manin-Mumford
conjecture, discussed in Section 14.1.2 (see [GTZ11a]). Take an elliptic curve E
with complex multiplication, and take ψ1 and ψ2 to be two elements of End(E) with
the same odd degree greater than one such that there is no m for which ψm

1 = ψm
2

(one might for example take ψ1 and ψ2 to be complex conjugates, thinking of
End(E) as a subring of C). Let

V = E × E,

and let
Φ : V −→ V given by Φ(x1, x2) = (ψ1(x1), ψ2(x2)).

Let W be the diagonal subvariety consisting of all (x, x) ∈ E × E. Then W is not
periodic but for every n, we have that Φ−n(W ) is a group subvariety of V and thus
every component of Φ−n(W ) has genus 1.

On the other hand, the construction above cannot yield any sort of negative
answer to Question 14.7.0.1, since Question 14.7.0.1 has a positive answer for any
endomorphism of a semiabelian variety. We also believe that the strategy of passing
to general type subvarieties in sufficiently high inverse images should work in many
cases, in particular when f and g are polynomial morphisms of P1 of degree greater
than one.
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CHAPTER 15

Future directions

In this chapter (see Section 15.1) we recall the known results towards the Dy-
namical Mordell-Lang Conjecture and also speculate about the future of the conjec-
ture in two directions. One direction is to present from our perspective what would
be the first still unknown cases of the conjecture but which are both most inter-
esting and also best suited for the known methods (see Section 15.2). The second
direction is presenting possible generalizations of the conjecture (see Section 15.4).

15.1. What is known?

As stated in Conjecture 1.5.0.1, the Dynamical Mordell-Lang conjecture is a
statement regarding an endomorphism Φ of a quasiprojective variety X, and a
subvariety V of X. We know the Dynamical Mordell-Lang Conjecture holds in the
following instances:

(1) For unramified endomorphisms Φ of any quasiprojective variety (see
[BGT10], and also our Chapter 4). In particular, the Dynamical Mordell-
Lang conjecture holds for all endomorphisms of a semiabelian variety (see
[GT09], and also our Chapter 9).

(2) For all endomorphisms Φ := (f1, . . . , fN ) of AN , where each fi is a
one-variable polynomial, and the subvariety V is a line (see [GTZ08,
GTZ12], and also our Chapter 5).

(3) For certain subvarieties V of X = (P1)N and for endomorphisms Φ :=
(f1, . . . , fN ) of X, where each fi is a rational function satisfying certain
hypotheses as in [BGKT12, BGHKST13] (see also our Chapter 7).

(4) For all endomorphisms of A2 (see [Xieb] and Section 10.3 for the case of
polynomial birational endomorphisms of A2).

All of these results hold for an arbitrary starting point α ∈ X. However, there
are other known cases of the Dynamical Mordell-Lang Conjecture which hold when
α is in a certain basin of attraction for the map Φ (as explained in Section 10.1; see
[GT09, Sca]). Also, there are a few known extensions of the Dynamical Mordell-
Lang principle to the case of endomorphisms of Riemann surfaces (see [NW13])
and to real-analytic maps under certain hypotheses (see [Sca11]).

15.2. What is next?

It would be very interesting to solve the following instances of the Dynamical
Mordell-Lang Conjecture; we list the next special cases in what we consider to be
increasing order of their difficulty:

(a) X = (P1)N and Φ(x1, . . . , xN ) := (f1(x1), . . . , fN (xN )) where each fi is a
one-variable rational map.

(b) X = P2, V is a plane curve, and Φ is any endomorphism.
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Case (a) might be proven using a refinement of the argument from [BGHKST13]
since it is expected (see the heuristics we introduced in Chapter 8) that for such
endomorphisms Φ there always exists a prime number p such that each starting
point αi falls into a quasiperiodic domain for fi, where α := (α1, . . . , αN ).

Case (b) is harder, even though Xie [Xieb] proved the special case when Φ
reduces to an endomorphism of A2. Now, if one attempts to use the p-adic methods
described in this book, heuristically we would still expect that there exists a prime
number p such that the orbit of α under Φ avoids modulo p the ramification divisor
of Φ (see the heuristics from Chapter 8), however proving that such a prime number
exists would be more difficult. Also note that (as explained in Chapter 8) this same
approach is not expected to work for endomorphisms of PN for N ≥ 5. On the
other hand, we mention again Fakhruddin’s result [Fak14], which shows that for
generic endomorphisms of PN , Conjecture 1.5.0.1 does indeed hold.

15.3. Varieties with many rational points

The study of the Dynamical Mordell-Lang Conjecture for endomorphisms Φ
of an arbitrary variety X (defined over a number field K) leads to deep questions
in Diophantine geometry. Indeed, if V ⊂ PN is a subvariety which contains a
Zariski dense set of points from a given orbit OΦ(α) of a point α ∈ PN under
an endomorphism Φ of PN , then V contains (in particular) a Zariski dense set of
points which are all rational. So, if both Φ and α are defined over a number field
K, then V (K) is Zariski dense in V . This imposes strict geometric restrictions
on V ; for example, V is not of general type (for more details, see [Lan83]). In
the special case when V is a curve, then V must be of genus 0 or 1 (by Faltings
classical theorem [Fal83]). So, in the case of curves, generically the intersection
V (K) ∩ OΦ(α) is indeed finite and thus the Dynamical Mordell-Lang Conjecture
holds, but it is very hard to show that in the cases when V is already of small genus
(most notably, when V is a rational curve), then the intersection is indeed infinite
only if V is periodic under Φ.

One may also ask whether the Dynamical Mordell-Lang Conjecture holds for
rational self-maps Φ (see Question 3.2.0.1); it is conceivable that the same statement
would hold, but we do not yet have examples where this is true and the map Φ is
not already regular.

15.4. A higher dimensional Dynamical Mordell-Lang Conjecture

One can formulate a more general Dynamical Mordell-Lang conjecture by re-
placing the orbit of a point by the orbit of a subvariety.

Conjecture 15.4.0.1. Let X be a quasiprojective variety defined over C, let
Φ : X −→ X be an endomorphism, and let Y and V be irreducible subvarieties
of X. Is the set of n ∈ N0 such that Φn(Y ) ⊆ V a finite union of arithmetic
progressions?

A special case of Conjecture 15.4.0.1 was asked by Bell and Lagarias [BL15] for
automorphisms Φ of affine varieties X. Also in [BL15] the above problem is placed
in a purely algebraic context by discussing inclusions of ideals; see the following
result from [BL15].

Theorem 15.4.0.2 (Bell-Lagarias [BL15]). Let K be any field of characteristic
zero and let A be a finitely generated commutative K-algebra. If σ : A −→ A is a
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K-algebra automorphism and I and J are ideals of A, then {n ∈ Z : J ⊆ σn(I)}
is a finite union of complete doubly infinite arithmetic progressions augmented by
a finite set.

We explain below how one can deduce Conjecture 15.4.0.1 from the Dynamical
Mordell-Lang Conjecture. To do this, we require a basic result about varieties over
an uncountable algebraically closed field.

Lemma 15.4.0.3. Let k be a field and let K be an extension of k such that the
dimension of K as a k-vector space is strictly less than #k. Then K is algebraic
over k.

Proof. Let x ∈ K \ k. Then {1/(x−λ) : λ ∈ k} is a set of cardinality #k and
hence must be linearly dependent. Let

m∑
i=1

ci/(x− λi) = 0

be a non-trivial dependence. Clearing denominators, we see that there is a nonzero
polynomial P (t) ∈ k[t] such that P (x) = 0. It follows that K is algebraic over
k. �

In the following arguments we identify a subvariety with the set of its points
over an uncountable algebraically closed field.

Proposition 15.4.0.4. Let k be an uncountable algebraically closed field and
let X be an irreducible quasiprojective variety over k. Then X cannot be written as
a union of countably many proper closed subsets.

Proof. We may immediately reduce to the case where X is affine. We let A
denote the ring of regular functions of X. Suppose that there exist closed subsets
Y1, Y2, . . . of X such that X =

⋃∞
i=1 Yi. For each i ∈ N, we let fi ∈ I(Yi) ⊆ A.

Then X =
⋃∞

i=1 V (fi). Let S be the multiplicatively closed subset of A generated
by the fi and let B = S−1A. Then since A is finitely generated and S is countable,
we see that B is at most countably infinite dimensional as a k-vector space. Let
P be a maximal ideal of B. Then B/P is a field extension of k and is countable-
dimensional as a k-vector space. It follows that B/P ∼= k by Lemma 15.4.0.3 and
since A/(P ∩A) embeds in B/P , we see that P ∩A is a maximal ideal of A (more

precisely, A/(P ∩A)
∼→ k). It follows that there is some point x ∈ X that is not in

the zero set of any of the fi, a contradiction. �
Conjecture 1.5.0.1 yields Conjecture 15.4.0.1. Assume that dim(Y ) ≥

1. For each n ∈ N0 we let
Yn = Y ∩ (Φn)−1 (V ).

If Φn(Y ) is not contained in V , then Yn is a proper subset of Y , and since Y is
irreducible (and Yn is closed by construction), we conclude that dim(Yn) < dim(Y ).
Now let

S := {n ∈ N0 : Φn(Y ) ⊆ V }
and let

U :=
⋃
n/∈S

Yn(C).

As explained above, we know that for each n /∈ S we have dim(Yn) < dim(Y ), and
thus U is a proper subset of Y (C) by Proposition 15.4.0.4. So, let α ∈ Y (C) \
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U . Then Φn(α) ∈ V (C) precisely when n ∈ S. So, assuming the Dynamical
Mordell-Lang Conjecture holds, we conclude that S is a finite union of arithmetic
progressions, as desired. �

The above proof coupled with Theorem 11.1.0.7 yields the following result.

Theorem 15.4.0.5. Let K be an uncountable algebraically closed field, let X
be a quasiperojective variety defined over K, let Φ : X −→ X be an endomorphism
defined over K, let V ⊆ X and Y ⊆ X be subvarieties defined over K. Then the set
{n ∈ N0 : Φ

n(Y ) ⊆ V } is a union of at most finitely many arithmetic progressions
along with a set of Banach density 0.
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Sud XI - Orsay, 2000.

[FJ11] C. Favre and M. Jonsson, Dynamical compactification of C2, Ann. Math. (2) 173
(2011), 211–248.
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is abelian, 17

translation by a point, 5, 181

Absolute value, 31

archimedean, 31

equivalence, 31

extension, 31

non-archimedean, 31

norm, 31

p-adic, 24

place, see also Place

triangle inequality, 31

ultrametric inequality, 31

valuation, 31

Affine space, xii, 11

Algebraic group, 17

Algebraic power series, 238

Algebraically stable, 176

Analytic variety, 169

Analytic Zariski dense, 169

André-Oort Conjecture, 59

Arithmetic progression, xii

common difference, xii

infinite, xii

one-sided, xii

two-sided, xii

Automata theory, 231, 233

Automatic sequence, 232, 238, 243

Automatic set, 238

Automorphism, 68, 71

Bad reduction, see also Good reduction

Banach density, 179

Banach density, 52, 179, 183, 185

is subadditive, 184

Berkovich space, 190

Birational equivalence, 14

Birthday paradox, 144

Bogomolov Conjecture, 59

Canonical height, see also Height, canonical

polarizable endomorphism, see also
Height, polarizable endomorphism

Chebotarev Density Theorem, 32, 141

Chebyshev polynomial, 102, 133, 255

homogeneous, 93

Codimension, 15

Cohen Structure Theorem, 76
Coherent backward orbit, 251

Compactification, 176

Coordinate ring, 11

Critical point, see also Ramification point,
127, 206

Definable sets, 172

Deformed torus, 170

Degree

rational map, 14

Denis-Manin-Mumford conjecture, 219
Denis-Mordell-Lang Conjecture, 61

Difference operator, 29

Differential, 16

1-form, 16

Differential equations, 52

Dimension, 15

Divisor, 17
Cartier, 18

effective, 17

linear equivalence, 18

principal, 18

support of, 17

Weil, 18
Drinfeld module, 61, 217, 218

algebraic submodule, 220

exponential, 223

generic characteristic, 218

logarithm, 223

special characteristic, 218, 219

submodule, 218
torsion point, 218

torsion submodule, 218

Dynamical degree, see also Degree,
dynamical

Dynamical Mordell-Lang Conjecture, 2, 5,
47
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p-adic analytic version, 209
positive characteristic, 231

rational maps, 52, 181
split case, 56, 57, 85, 110, 112, 113, 127,

151
Dynamical Mordell-Lang principle, 171,

181, 217, 218
Dynamical system, xiii

Eigenvalue, 124, 156, 158
Endomorphism

automorphism, see also Automorphism

conjugated, 49
étale, 55, 113
generic, 54, 251
polarizable, 24, 44, 113, 261
split, 56

Exceptional point, 120, 127

Fiber, 21
Finite-state automata, 238, 243, 244

First-order language, 172
Flat

map, 18
module, 18

Formal diffeomorphism, 124

Forward difference operator, 29
F -set, 233
Function field, 13

Gaussian distribution, 145
Generic fiber, 21
Genus, 16
Global field, 40
Global sections, 22

Good reduction, 100, 118, 119, 223
Grand orbit, 251
Group scheme

additive, xii, 17

multiplicative, xii, 17

Height, 40, 41
abelian variety, 45

canonical, 42
local canonical, 42
polarizable endomorphism, 45
projective space, 44
Weil, 41, 128, 196

Hensel’s Lemma, 25, 26
Hilbert’s Irreducibility Theorem, 38
Homothety, 154
Hypersurface, 11

Independent events, 149
Indeterminacy locus, 14, 176
Iterational special variety, 169
Iterational variety, 169

Jacobian, 15
Jordan block, 160

Jordan matrix, 160

Laurent’s theorem, 104

Line bundle, 20

ample, 22

very ample, 22, 44

Linear recurrence sequence, 1, 2, 33, 36

characteristic equation, 36

characteristic roots, 36

exceptional zeros, 39

Fibonacci, 2

length, 35

non-degenerate, 35

recurrence relation, 1

simple, 35

Local parameters

at a smooth point, 15

Local ring, 13

Locally free sheaf, see also Sheaf

rank of, 20

Locally ringed space, 20

Mahler series, 28

analytic, 30

Manin-Mumford Conjecture, 59

Monomializable map, 173

Mordell-Lang Conjecture, 57, 60

Morphism, 13

automorphism, 68

birational, 13

closed, 15

dominant, 14

endomorphism, see also Endomorphism,
13

étale, 8, 18, 70, 82

finite, 14

flat, 18

immersion, 21

isomorphism, 13

of presheaves, 19

of ringed spaces, 21

of schemes, 21

of S-schemes, 21

unramified, 18

Néron-Severi group, 175

Natural density, 179, 183

Noetherian space, 181, 189

Nonsingular point, see also Smooth point

Normal form, 133

Normalization, 16

Northcott’s Theorem, 41

o-Minimal, 172

o-minimal structure, 171, 172, 253

Orbit

of a point, xiii, 22

of a subvariety, 24
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p-adic
analytic curve, 209
analytic function, 28, 120, 156, 160, 199
analytic manifold, 156
integer, 24
logarithm, 28
unit, 25

p-adic arc lemma, 8, 55, 57, 60, 62, 68, 73,
129, 145, 150, 153, 156, 158, 167, 182,
205, 209, 221, 258

approximation, 209
p-adic lemma, 143
Perfect field, 239
Periodic

cycle, see also Periodic point, cycle
point, see also Periodic point
subvariety, 22, 23, 50, 111, 179, 258

Periodic point, 119
attracting, 117, 119, 120, 125, 153, 169,

207, 213
cycle, 206
indifferent, 117, 125, 153, 205
minimal period, 22
period, 22
super-attracting, 117, 119, 125, 169, 206

Picard group, 18
Pink-Zilber Conjectures, 59
Place, 31

finite, 223
infinite, 223

lying above, 31
lying below, 31

Polynomial
additive, see also Drinfeld module
Chebyshev, see also Chebyshev

polynomial
isotrivial, 43
normal form, 128, 133

Polynomial-exponential equation, 3, 237
Preperiodic

point, 22, 43, 49
subvariety, 22

Product formula, 40
field, 40

Projective space, xii, 11
Projective variety, 11

is complete, 16
Projectively linearizable map, 173
Push-forward, 20

Quasiperiodic
domain, 122, 127, 129, 131, 137, 207
map, 120

Quasiperiodic disk, see also Quasiperiodic
domain

Quasiperiodic map, 207
Quasiprojective variety, see also Variety

Ramification, 18, 83

locus, 143, 144
point, 120

Random map behavior, see also Random
model

Random model, 145, 146, 148, 150
Rational map, 13

post-critically finite, 128, 136, 257

Regular function, see also Regular map
Regular map, 13

at a point, 12
Residue field, xii
Rigid analytic space, 197
Rigid analytic topology, see also Rigid

analytic space
Ringed space, 20
Ritt’s theorem, 90, 94, 102

Scheme, 20, 21
S-scheme, 21
affine, 21
morphism, 21

Self-map, xiii
Semiabelian variety, 17, 56

characteristic p, 232
endomorphism, 17

translation by a point, 231
Sheaf, 18

invertible, 20
locally free, 20
of regular functions, 19
presheaf, 18
restricted, 20
stalk, 19
tensor power, 20
tensor product, 20

Siegel curve, see also Siegel factor, 93, 103
Siegel factor, 32, 103, 104, 113
Siegel’s Theorem, 32, 98
S-integer, 32
S-integral, 258
Skolem’s method, 36, 38, see also p-adic

arc lemma
Skolem-Mahler-Lech Theorem, 33, 39, 206,

237
Smooth point, 15, 83

set of all smooth points, 15
Smooth variety, 15

is normal, 16

Special fiber, 75
Specialization, 98
Spectral radius, 175
Spectrum of a ring, 20
Szemerédi’s theorem, 182

Tangent space, 15, 154
Tate algebra, 189, 210
T -module, 219
Torus

algebraic, 17, 170

Author's preliminary version made available with permission of the publisher, the American Mathematical Society.



280 INDEX

deformed, 170

Valuation, 24

p-adic, 24
Vanishing ideal, 11
Variety, 12

abelian, see also Abelian variety
affine, xii, see also Affine variety
as a scheme, 21
complete, 16
defined over a field, xii
degree of, 15
dimension of, 15
geometrically irreducible, 12
irreducible, xii, 12
model of, 21
normal, 16
projective, xii, see also Projective variety
quasiprojective, xii, 12
rational points of, xii
semiabelian, see also Semiabelian variety
smooth locus, see also Smooth point, 154
subvariety, 12

Very dense set, 68, 180, 183
Very sparse set, 179, 181, 195, 197, 207, 209

Weil bounds, 144, 148

Zariski closure, 12
Zariski topology, 11
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