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Abstract. Let L be a field of positive characteristic p with a fixed algebraic closure L, and
let α1, α2, β ∈ L. For an integer d ≥ 2, we consider the family of polynomials fλ(z) := zd+λ,

parameterized by λ ∈ L. Define C(α1, α2;β) to be the set of all λ ∈ L for which there exist

m,n ∈ N such that fmλ (α1) = fnλ (α2) = β. In other words, C(α1, α2;β) consists of all λ ∈ L
with the property that the orbit of α1 collides with the orbit of α2 under the same polynomial
fλ precisely at the point β. Assuming α1, α2, β are not all contained in a finite subfield of L,
we provide explicit necessary and sufficient conditions under which C(α1, α2;β) is infinite.

We also discuss the remaining case where α1, α2, β ∈ Fp and provide ample computational
data that suggest a somewhat surprising conjecture. Our problem fits into a long series
of questions in the area of unlikely intersections in arithmetic dynamics, which have been
primarily studied over fields of characteristic 0. Working in characteristic p adds significant
difficulties, but also reveals the subtlety of our problem, especially when some of the points
lie in a finite field or when d is a power of p.

1. Introduction

1.1. Notation. Throughout this paper, we denote by N the set of all positive integers. For
each field K, we denote by K an algebraic closure of K; if K0 is the prime subfield of K,
we let K0 be its algebraic closure inside K. We mention standard definitions from algebraic
dynamics. For any self-map Φ on a quasiprojective variety X and for any n ∈ N, we let Φn

be the n-th compositional iterate of Φ; by convention, Φ0 is the identity map. We define the
(strict) forward orbit of a point α ∈ X as the set of all points Φn(α), for n ≥ 1. Similarly, we
define the (strict) backward orbit of α as the set OΦ(α), which consists of all γ ∈ X such that
there exists m ∈ N with Φm(γ) = α. A point α is preperiodic under the action of Φ if there
exist 0 ≤ m < n such that Φm(α) = Φn(α); if m = 0, then α is periodic.

1.2. The unlikely intersection principle in arithmetic dynamics. Several central ques-
tions in arithmetic geometry are rooted in the principle of unlikely intersections; for more
details, we refer the reader to the excellent book of Zannier [Zan12]. Over the past 30 years,
there has been considerable research in algebraic dynamics on questions framed by this general
principle; we provide a couple of prominent examples below.

The dynamical Mordell-Lang (DML) conjecture considers a quasiprojective variety X with
an endomorphism Φ (over a field L of characteristic 0), an irreducible curve C ⊂ X, and
a point α ∈ X(L). The conjecture predicts that the unlikely occurrence of infinitely many
points in OΦ(α) ∩ C must be explained only by the fact that C is periodic under the action
of Φ (i.e., Φn(C) ⊆ C for some n ∈ N). For more details on the DML conjecture and a survey
of some of the partial results, we refer the reader to [BGT16].
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In a different direction, we describe the problem of simultaneously preperiodic points (which
was itself motivated by [MZ10, MZ12]) for an algebraic family of polynomials. Consider a
family of polynomials fλ of degree d ≥ 2, whose coefficients depend polynomially on λ ∈ C,
and two points α, β ∈ C. The unlikely existence of infinitely many parameters λ ∈ C such
that both α and β are preperiodic for fλ can only occur if α and β are dynamically related
with respect to the entire family of polynomials fλ (see [BD13, Theorem 1.3], which extends
the previous results of [BD11, GHT13]). For a broader survey of recent work and new research
directions on unlikely intersection questions in arithmetic dynamics, we refer the reader to
[BIJMST19].

The vast majority of the proven results and open problems in arithmetic dynamics concern
the algebraic dynamical systems defined over fields of characteristic 0 (see [BIJMST19] and
the references therein). It is only recently that several outstanding conjectures have been
considered in positive characteristic; in each case, new features emerge for the dynamical
systems in characteristic p. These new intricacies are due to the presence of the Frobenius
map (similar to the isotriviality issues appearing in [CHT23]) and the existence of additive
polynomials of degree greater than one (which lead to new unlikely intersection questions
as in [BM17, BM22]). Indeed, the DML conjecture (see [BGT15, CGSZ21, Ghi19, GOSS21,
XY25, XY, Yan24]), the problem of simultaneous preperiodic points for an algebraic family of
polynomials (see [Ghi]), and the Zariski Dense Orbit conjecture (see [MS14] for its formulation
over fields of characteristic 0 and [GS23a, GS23b] for the problem over fields of characteristic
p) are all more subtle when studied in a positive characteristic setting.

Motivated by [BD11], the second author studied the following problem in [Ghi]. Given an
integer d ≥ 2, a field L of characteristic p, and points α1, α2 ∈ L, we obtained (see [Ghi,
Theorem 1.1]) necessary and sufficient conditions for the existence of infinitely many λ ∈ L
such that both α1 and α2 are preperiodic for the polynomial fλ(z) := zd+λ. In this article, we
extend the problem studied in [Ghi] to the following setting. Working again with the family
of polynomials fλ(z) := zd + λ and given two starting points α1, α2, we study the conditions
under which the strict forward orbits of these starting points contain a given target point β.
We refer to this setting as the colliding orbits problem. A similar question of colliding orbits
was previously studied in the context of Drinfeld modules (see [Ghi24]).

1.3. Our main result. In the present paper, we prove the following statement.

Theorem 1.1. Let L be a field of characteristic p > 0, let α1, α2, β ∈ L and let d ≥ 2 be an
integer. Consider the family of polynomials fλ(z) = zd + λ, parameterized by λ ∈ L. Assume
α1, α2, β are not all contained in a finite subfield of L. Then the set

(1.3.1) C(α1, α2;β) :=
{
λ ∈ L : there exist m,n ∈ N such that fmλ (α1) = fnλ (α2) = β

}
is infinite if and only if exactly one of the following two conditions holds:

(A) αd1 = αd2;
(B) d = p` for some ` ∈ N and there exists a finite subfield Fq ⊂ L such that δ1 :=

α2 − α1 ∈ F∗q and δ2 := β − α1 ∈ Fq. Furthermore, the system of two equations:

(1.3.2)

 δ1 =
∑s1−1

i=0 γp
ik`

δ2 =
∑s2−1

i=0 γp
ik`

has a solution (γ, k, s1, s2) ∈ F∗q × N× N× N.
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Remark 1.2. At first glance, alternative (B) in Theorem 1.1 appears asymmetrical, as the
roles of α1 and α2 apparently cannot be interchanged. However, as we will show in Lemma 8.1,
we can always reduce the problem to the system (1.3.2), where the constants are defined
relative to α1 as δ1 := α2 − α1 and δ2 := β − α1.

Furthermore, the condition α1 6= α2 in alternative (B) (since δ1 ∈ F∗q) ensures that alter-

natives (A) and (B) are mutually exclusive. For d = p`, alternative (A) becomes αp
`

1 = αp
`

2 ,
which is equivalent to α1 = α2 in characteristic p.

By definition, for each λ ∈ C(α1, α2;β), we have β ∈ Ofλ(α1) ∩ Ofλ(α2), i.e., the orbits of
α1 and α2 under the action of fλ collide at the point β. The existence of infinitely many such
parameters λ is clearly an unlikely event, which we show occurs only when α1, α2, and β are
dynamically related. Indeed, condition (A) in Theorem 1.1 states that the orbits of α1 and
α2 merge after one iteration for all parameters λ, i.e., Ofλ(α1) = Ofλ(α2).

Condition (B) provides a more subtle dynamical relation between our three points when

d = p`. For any λ ∈ L, a suitable iterate of the polynomial fλ(z) = zp
`

+ λ commutes with
any given translation polynomial Tξ(z) := z + ξ for ξ ∈ Fp. Specifically, if ξ ∈ Fpr` then

f rλ ◦ Tξ = Tξ ◦ f rλ (see equation (8.3.1) for f rλ). Since α1, α2, β differ by elements from Fp in
condition (B), this commutativity establishes that three points are indeed dynamically related
with respect to our entire family of polynomials fλ(z). The precise role of the system (1.3.2)
is explained in Section 8 (see Proposition 8.3).

For the converse direction of Theorem 1.1, we prove slightly stronger statements that also
cover the case where α1, α2, β ∈ Fp (see Theorems 2.2 and 2.4). In Section 9, based on exten-

sive numerical experiments, we propose Conjecture 9.1 to address the case where α1, α2, β ∈ Fp
and d is not a power of p. In Section 2, we also formulate a general Conjecture 2.6 regarding
colliding orbits for families of polynomials.

1.4. Further connections for our results. Another motivation for our Theorem 1.1 arises
from [GHT18]. A special case of [GHT18, Theorem 1.1] can be formulated for the Legendre
family of elliptic curves Et given by the equation y2 = x(x− 1)(x− t) as we vary t ∈ Q. We
denote by [k]t the multiplication-by-k map (for any k ∈ Z) on Et. We also let E be the elliptic
surface corresponding to the Legendre family and let [k] be the corresponding multiplication-
by-k map on E . Any section P on E corresponds to an algebraic family of points Pt ∈ Et
(for all but finitely many t ∈ Q). Then [GHT18, Theorem 1.1] asserts that for any 3 sections
P,Q,R on E , if the set

C (P,Q;R) :=
{
t ∈ Q : there exist m,n ∈ Z such that [m]t(Pt) = [n]t(Qt) = Rt

}
is infinite, then at least one of the following two conditions must hold:

• there exist a, b ∈ Z, not both equal to 0, such that [a](P) = [b](Q);
• there exists c ∈ Z such that either [c](P) = R or [c](Q) = R.

In other words, if there exist infinitely many t ∈ Q such that the cyclic groups generated
by both Pt and Qt contain Rt (in Et), then at least 2 of the 3 sections must be linearly
dependent globally, on the elliptic surface. Once again, we encounter the principle of unlikely
intersections: the existence of infinitely many t ∈ Q for which Rt is contained in the orbits of
both Pt and Qt under the action of Z is explained only by a global dynamical relation between
their corresponding sections, P,Q, and R.
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Remark 1.3. The motivation for [GHT18, Theorem 1.1] itself comes from the work of Hsia
and Tucker [HT17] on a dynamical analogue of the classical GCD-problem. Given multi-
plicatively independent a, b ∈ N, the classical GCD-problem (solved by Bugeaud, Corvaja,
and Zannier [BCZ03]) provides good bounds for gcd(an − 1, bn − 1) as a function of n ∈ N.
Several extensions of the result from [BCZ03] were obtained, going beyond the classical set-
ting and studying the question for function fields, including in positive characteristic (see
[AR04, CZ11, CZ13, GHT17]). Our own work in Theorem 1.1 can be viewed in a similar
light, as it is essentially a question about the greatest common divisor of orbits generated by
two algebraic families of polynomials (see Remark 3.1 and Section 9).

The hypothesis in Theorem 1.1 that β is contained in the forward orbits of both α1 and α2

(under the action of fλ) can be restated as follows: α1 and α2 are contained in the backward
orbit of β (under the action of fλ). The study of backward orbits and their associated arboreal
Galois groups is a topic of great interest (see [BFHJY17, BJ19, BJ07] for only a sample of
the work in this area). It is also worth noting that the case of a polynomial whose critical
points have colliding orbits represents a special case in the study of the corresponding arboreal
Galois groups (see [BD24, BDNSWW25]).

1.5. Plan for our paper. In Section 2, we present the general strategy for our proof of The-
orem 1.1. We split the content of Theorem 1.1 into three distinct results: Theorems 2.1, 2.2,
and 2.4. In Section 2, we also outline future research directions in the area of colliding orbits
by formulating Conjecture 2.6 for arbitrary families of polynomials. For a brief discussion of
the characteristic 0 case, see Remark 2.8.

In Sections 3, 4 and 5, we establish useful preliminary results, which are then employed
in the proof of Theorem 2.1. We finish its proof in Section 6, thus completing the direct
implication in Theorem 1.1.

In Section 7, we complete the proof of Theorem 2.4, while in Section 8, we prove Theo-
rem 2.2. Combined, these two results provide the converse implication in Theorem 1.1.

We conclude by discussing in Section 9 the case of colliding orbits when the starting points
α1, α2 and the target point β all live in a finite field. We believe (see Conjecture 9.1) that
in this case, the set C(α1, α2;β) is infinite, provided d is not a power of p. We have ample
numerical evidence to support this conjecture; furthermore, we formulate additional questions
and conjectures all predicting a higher-than-expected frequency of unlikely intersections when
the entire dynamical system is defined over Fp.

2. Strategy for our proof of Theorem 1.1 and further extensions

In Subsection 2.1, we state Theorem 2.1 and then explain its proof strategy. In Subsec-
tion 2.2, we state Theorems 2.2 and 2.4 and briefly mention key ideas in their proofs. We
discuss possible extensions of our results in Subsection 2.3.

2.1. The direct implication in Theorem 1.1. We will prove the following.

Theorem 2.1. Let L be a field of prime characteristic p, let α1, α2, β ∈ L and let d ≥ 2 be
an integer. Consider the family of polynomials fλ(z) = zd + λ, parameterized by λ ∈ L. Let
Fp denote the algebraic closure of Fp inside L. If the set

(2.1.1) C(α1, α2;β) :=
{
λ ∈ L : there exist m,n ∈ N such that fmλ (α1) = fnλ (α2) = β

}
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is infinite, then at least one of the following conditions must hold:

(i) αd1 = αd2.
(ii) d = p` for some ` ∈ N, and α1 − β, α2 − β ∈ Fp.

(iii) α1, α2, β ∈ Fp.

We now outline the strategy for proving Theorem 2.1. First, assuming condition (iii) does
not hold, the infinitude of the set C(α1, α2;β) implies that either condition (i) is satisfied,
or trdegFp(Fp(α1, α2, β)) = 1; this reduction is proved in Subsection 3.2 through a series
of Lemmas and Propositions. This allows us to set up the height machine in Section 4; in
particular, we obtain a key technical statement (see Proposition 5.2) regarding the variation

of the (global) canonical height ĥλ(α) of a point α (associated to a polynomial fλ from our
family) compared to the Weil heights of λ and α. In turn, Proposition 5.2 allows us to show
(see Proposition 6.2) that there exists a sequence {λk}k∈N ⊆ C(α1, α2;β) such that

(2.1.2) lim
k→∞

ĥλk(α1) = lim
k→∞

ĥλk(α2) = 0.

Equation (2.1.2) is the crucial hypothesis needed to apply Theorem 6.3, which leads to an
equality of the canonical heights of α1 and α2 with respect to each polynomial fλ. Then
Theorem 6.9 immediately provides the desired conclusion in Theorem 2.1 when d is not a
power of p. The remaining case, where d = p` for some ` ∈ N, requires a more in-depth
analysis to arrive at condition (ii) in Theorem 2.1 (see Propositions 6.4 and 6.8). To obtain
the more precise information from condition (B) in Theorem 1.1 regarding system (1.3.2), we
will rely on Theorem 2.2.

2.2. The converse implication in Theorem 1.1. In Section 8, we prove the following
result, which provides (along with Theorem 2.1) the full conclusion in Theorem 1.1 when
d = p`.

Theorem 2.2. Let L be a field of characteristic p, let α1, α2, β ∈ L with α1 6= α2, and let
d = p` for some ` ∈ N. For each λ ∈ L, we let fλ(z) = zd + λ. Consider the set

C(α1, α2;β) =
{
λ ∈ L : there exist m,n ∈ N such that fmλ (α1) = fnλ (α2) = β

}
and let δ1 := α2−α1 and δ2 := β−α1. Assume there exists a finite subfield Fq ⊆ L such that

(2.2.1) δ1 ∈ F∗q and δ2 ∈ Fq.

Then the set C(α1, α2;β) is infinite if the system of two equations:

(2.2.2)

 δ1 =
∑s1−1

i=0 γp
ik`

δ2 =
∑s2−1

i=0 γp
ik`

has a solution (γ, k, s1, s2) ∈ F∗q × N × N × N. Moreover, the set C(α1, α2;β) is empty if the
system (2.2.2) has no solution (γ, k, s1, s2) ∈ F∗q × N× N× N.

Remark 2.3. It is interesting that under the hypotheses (2.2.1) of Theorem 2.2, either
C(α1, α2;β) is infinite or empty. Also, in this case, for each λ ∈ C(α1, α2;β), we have that
α1, α2, β are all preperiodic under the action of fλ (see Lemmas 6.6 and 6.7).

On the other hand, under the assumption that d = p`, it could be that C(α1, α2;β) is finite
and nonempty, but this can only occur if either α1 − α2 or α1 − β is transcendental over Fp.
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The following result shows that condition (A) in Theorem 1.1 implies the existence of
infinitely many parameters λ ∈ C(α1, α2;β) (see (1.3.1)).

Theorem 2.4. Let L be a field of characteristic p, let α, β ∈ L, let d ≥ 2 be an integer,
and let fλ(z) = zd + λ be a family of polynomials parameterized by λ ∈ L. Then there exist
infinitely many λ ∈ L such that fmλ (α) = β for some m ∈ N (where m depends on λ).

Indeed, under the condition (A) from Theorem 1.1 that αd1 = αd2, we have that fnλ (α1) =
fnλ (α2) for all n ∈ N. Applying Theorem 2.4 to starting point α1 and target point β, we
obtain that the set C(α1, α2;β) from equation (1.3.1) must be infinite.

In Section 7, we prove Theorem 2.4 by contradiction. Using the assumption that the
equations in λ of the form fmλ (α) = β (as we vary m) have only finitely many solutions,
we obtain that a certain plane curve (see equation (7.2.4)) contains infinitely many points
from a suitable finitely generated subgroup of G2

m. This allows us to apply the main result
of Moosa-Scanlon [MS04] on the structure of the intersection between a subvariety of a torus
(in characteristic p) with a finitely generated subgroup to derive a contradiction.

Remark 2.5. We emphasize that both Theorems 2.4 and 2.2 also hold when α1, α2, β ∈ Fp,
i.e., the converse implication in Theorem 1.1 does not depend on whether all three points
α1, α2, β are in Fp.

2.3. A general conjecture. It is natural to consider a general colliding orbits problem for
arbitrary families of polynomials in normal form. A polynomial of degree d ≥ 2 is in normal
form if it is monic and its coefficient for the monomial xd−1 is 0. In Conjecture 2.6, we allow
both the starting points α1, α2 and the target point β to vary in an algebraic family as well.

Conjecture 2.6. Let L be a field of characteristic p, and let α1(z), α2(z), β(z) ∈ L[z]. Suppose
fλ(x) ∈ L[x] is a family of polynomials of degree d ≥ 2 (parameterized by λ ∈ L) in normal
form, i.e.

(2.3.1) fλ(x) = xd +

d−2∑
i=0

ci(λ) · xi,

for some polynomials ci(z) ∈ L[z] for i = 0, . . . , d− 2. We let

C(α1, α2;β) =
{
λ ∈ L : fmλ (α1(λ)) = β(λ) and fnλ (α2(λ)) = β(λ) for some m,n ∈ N

}
.

If C(α1, α2;β) is infinite, then at least one of the following conditions must hold:

(1) there exists a family of polynomials gλ(x) (similar to (2.3.1), but not necessarily nor-
malized) and there exist integers k > 0 and m,n ≥ 0 such that

(2.3.2) fkλ ◦ gλ = gλ ◦ fkλ and fmλ (α1(λ)) = gλ (fnλ (α2(λ))) (or fmλ (α2(λ)) = gλ (fnλ (α1(λ)))),

for all λ ∈ L.
(2) there exists k ∈ N such that for some j ∈ {1, 2}, we have that fkλ (αj(λ)) = β(λ) for

all λ ∈ L.
(3) for each λ ∈ L, the polynomial f̃λ(x) := fλ(x) − c0(λ) is additive (i.e., f̃λ(x + y) =

f̃λ(x) + f̃λ(y) for all x, y). Furthermore, for each λ ∈ L, we have that δ1(λ) :=

α2(λ)− α1(λ) and δ2(λ) := β(λ)− α1(λ) are preperiodic under the action of f̃λ(x).
(4) ci(z) ∈ Fp[z] for i = 0, . . . , d− 2 and α1(z), α2(z), β(z) ∈ Fp[z].
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Remark 2.7. One could formulate Conjecture 2.6 for an arbitrary (unnormalized) family of
polynomials fλ ∈ L[λ][x] (of degree d ≥ 2), but this would complicate condition (4). When
p - d, this simplification has no loss of generality: any such family can be normalized through
a linear conjugation, at the expense of parameterizing λ by a curve rather than the affine line.

We briefly discuss the statements (1)-(4) in the conclusion of Conjecture 2.6. Statement (1)
is a significant generalization of conclusion (A) in Theorem 1.1; for arbitrary families of poly-
nomials (2.3.1), the starting points α1(λ) and α2(λ) may be dynamically related through the
much more complicated relation (2.3.2) from Conjecture 2.6 (see also [BD13, Theorem 1.3]).
It is likely that to obtain a converse statement in Conjecture 2.6, i.e., that the set C(α1, α2;β)
is infinite, one would need a stronger statement than (1).

Statement (2) does not appear for the dynamical system considered in Theorem 1.1. How-
ever, for general dynamical systems, one needs to account for the possibility that β(λ) is in the
forward orbit of α1(λ) or α2(λ) (for all λ ∈ L). If this were to happen, one would expect the
corresponding set C(α1, α2;β) to be infinite due to a possible extension of our Theorem 2.4.

Statement (3) asks that the only monomials xi in fλ(x) (for i > 0) appearing with a nonzero
coefficient correspond to i = pj for some j ≥ 0; this is the generalization of conclusion (B)
appearing in Theorem 1.1. Again, a converse to Conjecture 2.6 would require a more refined
version of statement (3) (see the system (1.3.2) from Theorem 1.1 for fλ(z) = zd + λ).

Finally, we expect statement (4) from Conjecture 2.6 yields that C(α1, α2;β) is infinite as
long as the family fλ(z) does not satisfy statement (3) (similar to Conjecture 9.1 for the special
family of polynomials fλ(z) = zd+λ) and also assuming that neither α1 nor α2 is persistently
preperiodic for our family of polynomials (i.e., for j = 1, 2, there exists no 0 ≤ m < n such
that fmλ (αj(λ)) = fnλ (αj(λ)) for all λ ∈ L). In Subsection 9.4, we present some numerical
evidence supporting our expectation.

We expect Conjecture 2.6 to be very difficult. The main obstacle is the lack of a generaliza-
tion of Theorem 6.9 (obtained in [Ghi] for fλ(z) := zd+λ) to arbitrary families of polynomials.
This difficulty, in turn, stems from the fact that some of the key tools available in character-
istic 0 for determining the exact dynamical relation between points of equal canonical height
(with respect to the given family of polynomials) do not exist in characteristic p.

Remark 2.8. We expect that the analogue of Conjecture 2.6 for dynamical systems over a
field L of characteristic 0 is more manageable and would only lead to the conclusions (1) and (2).
The general strategy would follow the steps from our paper. While there would be no compli-
cations from additive polynomials (which are nontrivial only in characteristic p), new technical
challenges would arise from dealing with arbitrary polynomial families. A potential line of
attack would be to use the variation of the canonical height in families, as proven by Ingram
[Ing13], to generalize (2.1.2) when C(α1, α2;β) is infinite. Then using [BD13, Theorem 1.3],
together with the description of the periodic plane curves under the coordinatewise action of
polynomials from [MS14], one should be able to derive the conclusions (1)-(2) from Conjec-
ture 2.6. There are further complications when the dynamical system (fλ, α1(λ), α2(λ), β(λ))
is not defined over Q. However, we believe these can be overcome using the methods from
[GHT13, Section 10] and the description of points of canonical height 0 from [Ben05] for
a polynomial defined over a function field. We hope to return to this general question for
dynamical systems over fields of characteristic 0 in a sequel paper.
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3. Preliminary results

Let L be a field of characteristic p with a fixed algebraic closure L. We consider the family
of polynomials fλ(z) = zd + λ parameterized by λ ∈ L.

This Section is divided into two parts. In Subsection 3.1, we gather some information about
the iterates of fλ(z). In Subsection 3.2, we work under the hypotheses of Theorem 2.1 for
the points α1, α2, β ∈ L (i.e., assuming the set C(α1, α2;β) from (2.1.1) is infinite) to obtain
information regarding the transcendence degree of Fp(α1, α2, β)/Fp.

3.1. Iterates of our family of polynomials. Let α ∈ L. Following [Ghi, Subsection 3.1],
for each n ∈ N, there exists a polynomial Pn,α(λ) ∈ L[λ] of degree dn−1 such that

(3.1.1) Pn,α(λ) = fnλ (α) for each λ ∈ L.
Remark 3.1. Using the notation from (3.1.1), we can reformulate the hypotheses from The-
orem 1.1 (or from Theorem 2.1) that C(α1, α2;β) is infinite as follows. Given α1, α2, β ∈ L,
we are asking that there exist infinitely many λ ∈ L such that for some m,n ∈ N,

Pm,α1(λ)− β = Pn,α2(λ)− β = 0;

or alternatively, the set of roots for all polynomials gcd (Pm,α1(x)− β, Pn,α2(x)− β) ∈ L[x]
(as we vary m,n ∈ N) is infinite.

A simple induction on n yields the following result.

Lemma 3.2. For each n ∈ N, the coefficients of the polynomial Pn,α(λ) are themselves
polynomials in α, that is,

(3.1.2) Pn,α(λ) =

dn−1∑
i=0

cn,i(α)λd
n−1−i.

Furthermore, we have the following more precise information:

(a) cn,0(α) = 1;

(b) cn,dn−1(α) = αd
n

;

(c) degα(cn,i(α)) ≤ d · i, for i = 0, . . . , dn−1.

Proof. We prove that statements (a)-(c) hold by induction on n; the case n = 1 is obvious
since fλ(α) = αd + λ and so, c1,0(α) = 1, while c1,1(α) = αd.

Now, we assume the statements (a)-(c) hold for cn,i (for 0 ≤ i ≤ dn−1) and we prove the
same statements also hold for cn+1,i and 0 ≤ i ≤ dn. We have

(3.1.3) Pn+1,α(λ) = Pn,α(λ)d + λ =

dn−1∑
i=0

cn,i(α)λd
n−1−i

d

+ λ.

By inspecting the expansion, cn+1,0(α) = cn,0(α)d and cn+1,dn(α) = cn,dn−1(α)d. Hence,
statements (a)-(b) follow by the inductive hypothesis.

Finally, regarding statement (c), we assign weight d to λ and weight 1 to α. The total
weight of each monomial (in α and λ) from Pn,α(λ) is therefore at most dn (using the inductive
hypothesis for (c) along with equation (3.1.2)). Then using the recurrence relation (3.1.3), we
conclude that each monomial in Pn+1,α(λ) has weight at most dn+1; therefore, the degree of
each cn+1,i(α) is at most d · i, as desired. �
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The following result is an easy consequence of Lemma 3.2.

Lemma 3.3. For each α, β ∈ L and for each n ∈ N, there exist finitely many λ ∈ L such that
fnλ (α) = β.

Proof. Since Pn,α(λ) = β (see (3.1.2)) is an equation of degree dn−1 (in λ), there are only

finitely many solutions λ ∈ L. �

3.2. Transcendence degree for the field generated by our points. We let α1, α2, β ∈ L
and let C(α1, α2;β) be the subset of L (as in (2.1.1)) consisting of all λ for which there exist
some m,n ∈ N such that

(3.2.1) fmλ (α1) = fnλ (α2) = β.

Lemma 3.4. If λ ∈ C(α1, α2;β), then λ ∈ Fp(α1, β)
⋂

Fp(α2, β).

Proof. Writing fmλ (α1) = β as Pm,α1(λ) = β, i.e.,

λd
m−1

+
dm−1∑
i=0

cm,i(α1)λd
m−1−1 = β,

we obtain λ ∈ Fp(α1, β). By symmetry, we also have λ ∈ Fp(α2, β). �

Lemma 3.5. If C(α1, α2;β) is nonempty, then α1 ∈ Fp(α2, β) and α2 ∈ Fp(α1, β).

Proof. Let λ ∈ C(α1, α2;β), i.e., λ satisfies equations (3.2.1). Then Lemma 3.4 yields that

(3.2.2) λ ∈ Fp(α1, β).

Writing fnλ (α2) = β as Pn,α2(λ) = β, i.e.,

(3.2.3) λd
n−1

+ cn,1(α2)λd
n−1−1 + · · ·+ cn,dn−1−1(α2)λ+ αd

n

2 = β,

where for each i = 1, . . . , dn−1 − 1, cn,i(α2) is a polynomial in α2 of degree at most d · i < dn

(according to Lemma 3.2 (c)), we conclude that α2 ∈ Fp(λ, β). Then equation (3.2.2) yields

the desired conclusion that α2 ∈ Fp(α1, β). By symmetry, we also have α1 ∈ Fp(α2, β). �

Lemma 3.6. If C(α1, α2;β) is infinite, then α1 ∈ Fp(α2) and α2 ∈ Fp(α1).

Proof. Suppose C(α1, α2;β) is infinite. Due to the symmetry between α1 and α2, it suffices

to prove that α1 ∈ Fp(α2) (since an identical argument would yield α2 ∈ Fp(α1)).

We let L1 := Fp(α2) and K := L1(α1, β). If K = L1, then α1 ∈ L1 = Fp(α2), as desired.
Henceforth, we assume K/L1 is a function field, either of transcendence degree equal to 1,
or of transcendence degree equal to 2 (in which case, α1 and β are algebraically independent
over L1). We argue by contradiction and assume that α1 /∈ L1.

Let V be a smooth projective variety defined over L1 whose function field equals K (either
V is a curve if trdegL1

K = 1, or V = P2 if α2 and β are algebraically independent over
L1). Let ΩV be an inequivalent set of absolute values on K corresponding to the irreducible
divisors of V . For the function field K/L1, we have:

(3.2.4) |γ|w ≤ 1 for each w ∈ ΩV if and only if γ ∈ L1.

Since α1 /∈ L1, there exists v ∈ ΩV such that |α1|v > 1. We also fix an extension of | · |v to an
absolute value on K ⊆ L.
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Let λ ∈ C(α1, α2;β); so, there exist m,n ∈ N such that fmλ (α1) = fnλ (α2) = β. Since we
assumed that C(α1, α2;β) is infinite, Lemma 3.3 allows us to assume that both m and n are
arbitrarily large; in particular, we may assume that

(3.2.5) |β|v < |α1|d
min{m,n}
v .

The equation fnλ (α2) = β yields Pn,α2(λ) = β and so, using equation (3.1.2) along with the
fact that |α2|v ≤ 1 (see (3.2.4)), we conclude that

(3.2.6) |λ|v ≤ max{|β|v, 1}
1

dn−1 .

On the other hand, the equation fmλ (α1) = β yields Pm,α1(λ) = β, i.e.,

(3.2.7) λd
m−1

+
dm−1∑
i=1

cm,i(α1) · λdm−1−i = β.

Lemma 3.2 (c) yields that deg(cm,i) ≤ d · i for each i = 1, . . . , dm−1; also, cm,dm−1(α1) = αd
m

1 .

Since |β|v < |α1|d
m

v by (3.2.5), there exists some i ∈ {0, . . . , dm−1 − 1} such that

(3.2.8)
∣∣∣cm,i(α) · λdm−1−i

∣∣∣
v
≥ |α1|d

m

v .

Because each cm,i is a polynomial with coefficients in Fp of degree at most d · i (according to
Lemma 3.2 (c)), we have that

(3.2.9) |cm,i(α1)|v ≤ |α1|d·iv for each i = 0, . . . , dm−1 − 1.

Combining inequalities (3.2.8) and (3.2.9), we obtain that

(3.2.10) |λ|v ≥ |α1|dv.
Next, combining inequalities (3.2.6) and (3.2.10), we get

(3.2.11) max {|β|v, 1} ≥ |λ|d
n−1

v ≥ |α1|d
n

v > 1.

Inequalities (3.2.5) and (3.2.11) provide a contradiction; so, we must have that α1 ∈ L1.

This concludes our proof of Lemma 3.6. �

Proposition 3.7. Let α1, α2, β ∈ L and assume C(α1, α2;β) is infinite. Then at least one of
the following two conditions must hold:

(1) αd1 = αd2.

(2) β ∈ Fp(α1) = Fp(α2).

Proof. First, Lemma 3.6 yields the equality Fp(α1) = Fp(α2). So, letting L1 := Fp(α1), it

suffices to prove that if β /∈ L1, then αd1 = αd2.

We let K1 = L1(β); this is a rational function field of transcendence degree 1 (since we
assumed that β /∈ L1). We view K1 as the function field of P1 over L1. Let | · |∞ be the
absolute value on the function field K1/L1 corresponding to the place at infinity from P1

L1
;

hence |β|∞ > 1. We fix an extension of | · |∞ to an absolute value on the algebraic closure K1.

Let j ∈ {1, 2}, let λ ∈ K1 and let ` ∈ N such that f `λ(αj) = β. Then equation (3.1.2) yields

(3.2.12) λd
`−1

+
d`−1∑
i=1

c`,i(αj) · λd
`−1−i = β.
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Since |c`,i(αj)|∞ ≤ 1 (note that αj ∈ L1), we get that

(3.2.13) |λ|∞ = |β|
1

d`−1
∞ > 1.

Now, let λ ∈ C(α1, α2;β), and letm,n ∈ N such that fmλ (α1) = fnλ (α2) = β. Equation (3.2.13)
yields that

|λ|∞ = |β|
1

dm−1
∞ = |β|

1
dn−1
∞ ;

since |β|∞ > 1, we have m = n. Consequently, Pm,α1(λ) = Pm,α2(λ) = β, i.e.

(3.2.14) λd
m−1

+

dm−1∑
i=1

cm,i(α1) · λdm−1−i = λd
m−1

+

dm−1∑
i=1

cm,i(α2) · λdm−1−i,

with the notation for cm,i as in Lemma 3.2. Noting that cm,dm(αj) = αd
m

j for j = 1, 2,

equation (3.2.14) yields

(3.2.15)
dm−1−1∑
i=1

(cm,i(α1)− cm,i(α2)) · λdm−1−i +
(
αd

m

1 − αdm2

)
= 0.

Because λ is transcendental over L1 (due to (3.2.13)), equation (3.2.15) yields that

(3.2.16) αd
m

1 = αd
m

2 and

(3.2.17) cm,i(α1) = cm,i(α2) for each i = 1, . . . , dm−1 − 1.

Now, we write d = pr · s, for some nonnegative integer r and some positive integer s, which
is not divisible by p. If s = 1, i.e., d = pr, then equation (3.2.16) yields that α1 = α2 and
therefore, condition (1) from the conclusion of Proposition 3.7 holds.

Next, we assume s ≥ 2.

Lemma 3.8. With the above notation, we have that cm,i = 0 for i = 1, . . . , p(m−1)r− 1, while

cm,p(m−1)r(αj) = s(pr(m−1)−1)/(pr−1)αp
rms
j for j = 1, 2.

Proof of Lemma 3.8. The result follows readily by induction on m, using the recurrence re-
lation (3.1.3). The desired formula holds trivially also when m = 1. To aid the reader’s
intuition for the general case, we show the computation for m = 2. For the sake of simplifying
our notation in Lemma 3.8), we let α := αj (for j = 1, 2) and observe that

P2,α(λ) =
(
αd + λ

)d
=
(
αsp

r
+ λ
)pr·s

+ λ =
(
αsp

2r
+ λp

r
)s

+ λ,

which yields that

P2,α(λ) = λp
r·s + s · αsp2r · λpr(s−1) + lower order terms,

proving the claimed formula when m = 2. For the inductive step, assume the formula holds
for some m ≥ 1:

Pm,α(λ) = λp
(m−1)r·sm−1

+ s(pr(m−1)−1)/(pr−1)αp
rms · λp(m−1)r·(sm−1−1) + lower order terms.

Then the recurrence relation (3.1.3) yields

Pm+1,α(λ) =
(
λp

(m−1)r·sm−1
+ s(pr(m−1)−1)/(pr−1)αp

rms · λp(m−1)r·(sm−1−1) + · · ·
)pr·s

+ λ.
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Since the field has characteristic p, we can distribute the pr exponent, which gives

Pm+1,α(λ) =
(
λp

mr·sm−1
+ sp

r·(pr(m−1)−1)/(pr−1)αp
r(m+1)s · λpmr·(sm−1−1) + · · ·

)s
+ λ.

We conclude that

Pm+1,α(λ) = λp
mr·sm+s·spr·(pr(m−1)−1)/(pr−1)αp

r(m+1)s ·λpmr·sm−1·(s−1)+pmr·(sm−1−1)+ · · · , i.e.,

Pm+1,α(λ) = λd
m

+ s
prm−1
pr−1 αp

r(m+1)s · λdm−pmr + lower order terms,

which completes the inductive step and thus proves Lemma 3.8. �

Applying Lemma 3.8, the equation (3.2.17) implies that:

(3.2.18) s(pr(m−1)−1)/(pr−1)αp
rms

1 = s(pr(m−1)−1)/(pr−1)αp
rms

2 .

Since s 6= 0 in Fp, equation (3.2.18) yields αs1 = αs2 and therefore, αd1 = αd2, as desired.

This concludes our proof of Proposition 3.7. �

4. Heights

In this Section, we establish the framework of absolute values and heights needed for our
proof of Theorem 2.1. Throughout Section 4, we let t be a transcendental element over Fp.

4.1. Absolute values for the one-variable rational function field. We let Ω0 := ΩFp(t)

be the set of absolute values on Fp(t) defined as follows. For each c ∈ Fp, we have the unique
absolute value | · |vc in Ω0 normalized as follows: for any nonzero rational function g1

g2
(with

g1, g2 ∈ Fp[t] \ {0}), we have ∣∣∣∣g1

g2

∣∣∣∣
vc

:= eordc(g2)−ordc(g1),

where ordc(g) is the order of vanishing at the point c ∈ Fp of any nonzero polynomial g ∈ Fp[t].
Besides the above absolute values | · |vc , we also have the absolute value | · |v∞ ∈ Ω0 normalized
as follows: for any nonzero rational function g1

g2
(with g1, g2 ∈ Fp[t] \ {0}), we have∣∣∣∣g1

g2

∣∣∣∣
v∞

= edeg(g1)−deg(g2).

It is immediate that for each nonzero rational function g ∈ Fp(t), we have the following
product formula:

(4.1.1)
∏
v∈Ω0

|g|v = 1.

4.2. Extending the absolute values to the perfect closure. We let L0 ⊂ L be the
perfect closure of Fp(t), i.e.,

(4.2.1) L0 := Fp
(
t, t1/p, t1/p

2
, · · · , t1/pn , · · ·

)
.

The field L0 is perfect, meaning all its finite extensions are separable.
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Each absolute value | · |v from Ω0 has a unique extension to an absolute value on L0; we
denote by ΩL0 the set of all these extended absolute values. Once again, we have a product
formula for each nonzero γ ∈ L0:

(4.2.2)
∏

v∈ΩL0

|γ|v = 1.

4.3. Heights for any algebraic element. For any real number u, we define log+ |u| :=
log max{|u|, 1}.

We fix a finite extension K of L0. For any absolute value |·|v ∈ ΩL0 , there exist finitely many
places w of K lying above the place v of L0, denoted by w|v. We normalize the corresponding
absolute values | · |w on K, and we denote by Ω := ΩK the corresponding set of absolute
values. For each γ ∈ L0 and each v ∈ ΩL0 , we have the following relation:

(4.3.1) |γ|v =
∏

w∈ΩK
w|v

|γ|w.

Using equations (4.3.1) and (4.2.2), K satisfies the product formula with respect to the abso-
lute values from Ω = ΩK , i.e.,∏

w∈Ω

|γ|w = 1 for each nonzero γ ∈ K.

We fix an algebraic closure K of K. Then for each w ∈ Ω = ΩK , we fix an extension of | · |w
to an absolute value on K.

For any γ ∈ K, we define the Weil height of γ as follows:

(4.3.2) h(γ) := hK(γ) :=
1

[K(γ) : K]
·

∑
σ:K(γ)→K
σ|K=idK

∑
v∈Ω

log+ |σ(γ)|v .

Remark 4.1. By construction, the Weil height depends on our choice of field K. In our
proof of Theorem 2.1, we will choose a field K so that it contains α1, α2, β (for more details,
see Section 6).

4.4. Canonical heights. For any λ ∈ K, we consider the polynomial fλ(z) = zd + λ of
degree d ≥ 2. Let γ ∈ K. For each v ∈ Ω = ΩK , we construct the local canonical height :

(4.4.1) ĥλ,v(γ) := lim
n→∞

log+ |fnλ (γ)|v
dn

.

Equation (4.4.1) yields that for each m ∈ N:

(4.4.2) ĥλ,v (fmλ (γ)) = dm · ĥλ,v(γ).

We define the (global) canonical height ĥλ(γ) as follows:

(4.4.3) ĥλ(α) = lim
n→∞

h (fnλ (γ))

dn
.

Equation (4.4.3) yields that for each m ∈ N:

(4.4.4) ĥλ (fmλ (γ)) = dm · ĥλ(γ).
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For more details regarding the canonical height associated to a polynomial, see [Sil07, Sec-
tion 3.4] and also [CS93]. Furthermore, we have the following connection between the local
and the global canonical heights.

Lemma 4.2. Let α ∈ K and λ ∈ K. Then the following holds:

(4.4.5) ĥλ(α) =
1

[K(λ) : K]
·

∑
σ:K(λ)→K
σ|K=id|K

∑
v∈ΩK

ĥσ(λ),v(α).

Proof. Employing equations (4.4.3), (4.4.1) and (4.3.2), we have:

(4.4.6) ĥλ(α) =
1

[K(λ) : K]
· lim
n→∞

1

dn
·

∑
σ:K(λ)→K
σ|K=id|K

∑
v∈ΩK

log+ |σ (fnλ (α))|v

and so, because α ∈ K, we get

(4.4.7) ĥλ(α) =
1

[K(λ) : K]
· lim
n→∞

1

dn
·

∑
σ:K(λ)→K
σ|K=id|K

∑
v∈ΩK

log+
∣∣∣fnσ(λ)(α)

∣∣∣
v

; therefore,

(4.4.8) ĥλ(α) =
1

[K(λ) : K]
·
∑
v∈ΩK

∑
σ:K(λ)→K
σ|K=id|K

ĥσ(λ),v(α).

The limit and the corresponding summation over all v ∈ ΩK in (4.4.7) can be interchanged,
because the limit equals 0 for all but finitely many places v (see [Ghi, Lemma 3.4]). �

5. Bounds for the canonical height for our family of polynomials

We continue with the framework for local and global canonical heights from Section 4. Let

L0 = Fp
(
t, t

1
p , t

1
p2 , · · ·

)
and let K be a finite extension of L0. We denote by Ω0 the set of absolute values on L0

constructed as in Subsection 4.2. Also, we let Ω := ΩK be the normalized absolute values on
K corresponding to the places of K lying above the places from Ω0 (see Subsection 4.3). In
addition, we fix an extension of each | · |v to an absolute value on K. We construct the local
and global canonical heights (see equations (4.4.1) and (4.4.3)) with respect to polynomials
fλ(z) := zd + γ (for γ ∈ K). The following result is proved in [Ghi, Lemma 3.4].

Lemma 5.1. Let v ∈ Ω and let γ, λ ∈ K.

(i) If |γ|v ≤ 1 and |λ|v ≤ 1, then ĥλ,v(γ) = 0.

(ii) If |γ|dv > max{1, |λ|v}, then ĥλ,v(γ) = log |γ|v > 0.

(iii) If |λ|v > max{1, |γ|dv}, then ĥλ,v(γ) = log |λ|v
d > 0.

Lemma 5.1 yields the following key inequality.

Proposition 5.2. For α ∈ K and λ ∈ K, we have that

(5.0.1)
h(λ)

d
− h(α) ≤ ĥλ(α) ≤ h(λ)

d
+ h(α).
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Proposition 5.2 belongs to a long series of results regarding the variation of the canonical
height in algebraic families. Most of these results are formulated over number fields (see
[CS93, DM23, GM13, Ing13, Sil92, Sil94a, Sil94b, Tat83]); by contrast, only a few such results
are stated over function fields of positive characteristic (see [Ghi24]).

Proof of Proposition 5.2. We first prove the right-hand side inequality from (5.0.1).

Let v ∈ Ω = ΩK and let σ : K(γ) → K be a field homomorphism fixing K pointwise. We
let

(5.0.2) Mv,σ := log+ |α|v +
log+ |σ(λ)|v

d
.

Lemma 5.1 (i) shows that

(5.0.3) if |α|v, |σ(λ)|v ≤ 1, then ĥσ(λ),v(α) = 0 = Mv,σ.

Next, assume that max{|α|v, |σ(λ)|v} > 1, i.e., Mv,σ > 0. If |α|v > |σ(λ)|
1
d
v , then Lemma 5.1 (ii)

yields that

(5.0.4) ĥσ(λ),v(α) = log |α|v ≤Mv,σ.

If |α|v < |σ(λ)|
1
d , then Lemma 5.1 (iii) guarantees that

(5.0.5) ĥσ(λ),v =
log |σ(λ)|v

d
≤Mv,σ.

Now, if |α|v = |σ(λ)|
1
d
v > 1, then we get

∣∣fσ(λ)(α)
∣∣
v
≤ |α|dv = |σ(λ)|v and so,

(5.0.6) log
∣∣fσ(λ)(α)

∣∣
v
< d ·Mv,σ.

For each n ≥ 1, we have

(5.0.7)
∣∣∣fn+1
σ(λ)(α)

∣∣∣
v
≤ max

{∣∣∣fnσ(λ)(α)
∣∣∣d
v
, |σ(λ)|v

}
.

Employing inequalities (5.0.6) and (5.0.7), a simple induction on n results in:

(5.0.8)
∣∣∣fnσ(λ)(α)

∣∣∣
v
≤ dn ·Mv,σ.

Inequality (5.0.8) and the definition (4.4.1) of the local canonical height together give:

(5.0.9) ĥσ(λ),v(α) ≤Mv,σ.

Using equations (5.0.9), (5.0.5), (5.0.3) and (5.0.4), along with Lemma 4.2, we get that

ĥλ(α) =
1

[K(λ) : K]
·

∑
σ:K(λ)→K
σ|K=id|K

∑
v∈Ω

ĥv,σ(λ)(α) ≤ 1

[K(λ) : K]
·

∑
σ:K(λ)→K
σ|K=id|K

∑
v∈Ω

Mv,σ and so,

ĥλ(α) ≤ 1

[K(λ) : K]
·

∑
σ:K(λ)→K
σ|K=id|K

∑
v∈Ω

(
log+ |α|v +

log+ |σ(λ)|v
d

)
, which yields

ĥλ(α) ≤

(∑
v∈Ω

log+ |α|v

)
+

1

d · [K(λ) : K]
·

∑
σ:K(λ)→K
σ|K=id|K

∑
v∈Ω

log+ |σ(λ)|v; hence
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(5.0.10) ĥλ(α) ≤ h(α) +
h(λ)

d
, thus proving the right-hand side of (5.0.1).

Next, we will establish the inequality from the left-hand side of (5.0.1). Again, we obtain

suitable inequalities for each place v ∈ Ω; this time, we define Nv,σ := log+ |σ(λ)|v
d − log+ |α|v.

Immediately, we note that

(5.0.11) if log+ |σ(λ)|v ≤ d · log+ |α|v, then ĥσ(λ),v(α) ≥ 0 ≥ Nv.

On the other hand, if |σ(λ)|v > max
{

1, |α|dv
}

, then Lemma 5.1 (iii) yields that

(5.0.12) ĥσ(λ),v(α) =
log |σ(λ)|v

d
=

log+ |σ(λ)|v
d

≥ Nv.

Combining inequalities (5.0.11) and (5.0.12) along with Lemma 4.2, we obtain

ĥλ(α) =
1

[K(λ) : K]
·

∑
σ:K(λ)→K
σ|K=id|K

∑
v∈Ω

ĥv,σ(λ)(α) ≥ 1

[K(λ) : K]
·

∑
σ:K(λ)→K
σ|K=id|K

∑
v∈Ω

Nv,σ

and so,

ĥλ(α) ≥ 1

[K(λ) : K]
·

∑
σ:K(λ)→K
σ|K=id|K

∑
v∈Ω

(
log+ |σ(λ)|v

d
− log+ |α|v

)
, which yields

ĥλ(α) ≥

 1

d · [K(λ) : K]
·

∑
σ:K(λ)→K
σ|K=id|K

∑
v∈Ω

log+ |σ(λ)|v

−
(∑
v∈Ω

log+ |α|v

)
; hence

(5.0.13) ĥλ(α) ≥ h(λ)

d
− h(α), as desired for the left-hand side of (5.0.1).

Inequalities (5.0.10) and (5.0.13) establish the desired conclusion of Proposition 5.2. �

The following result is instrumental in our proof for Theorem 2.1.

Proposition 5.3. Let d ≥ 2 be an integer, let α, β ∈ K and let λ ∈ K. Let fλ(z) := zd + λ
and let m ∈ N. If fmλ (α) = β, then

(5.0.14) ĥλ(α) ≤ 2h(α) + 2h(β)

dm
.

Proof. From Proposition 5.2, we have the inequalities:

(5.0.15) ĥλ(α) ≥ h(λ)

d
− h(α) and ĥλ(β) ≤ h(λ)

d
+ h(β).

Using the condition fmλ (α) = β and the identity dmĥλ(α) = ĥλ(β) from equation (4.4.4), we
combine the inequalities in (5.0.15) to obtain:

(5.0.16) dm ·
(
h(λ)

d
− h(α)

)
≤ h(λ)

d
+ h(β).
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Rearranging the terms in (5.0.16) gives an upper bound on the height of λ:

(5.0.17) h(λ) ≤ dm · h(α) + h(β)
dm−1
d

.

Using the fact that dm − 1 ≥ dm

2 (since d ≥ 2 and m ≥ 1), inequality (5.0.17) becomes

(5.0.18) h(λ) ≤ 2dm+1 · h(α) + 2d · h(β)

dm
.

Combining inequality (5.0.18) with the second inequality in (5.0.15) leads to

(5.0.19) ĥλ(β) ≤ h(λ)

d
+ h(β) ≤ 2dm+1 · h(α) + 2d · h(β)

dm+1
+ h(β).

Since dm+1 ≥ 2d for d ≥ 2, inequality (5.0.19) implies

(5.0.20) ĥλ(β) ≤ 2h(α) + h(β) + h(β) = 2h(α) + 2h(β).

Finally, using ĥλ(α) = ĥλ(β)
dm from equation (4.4.4) along with inequality (5.0.20), we obtain

ĥλ(α) ≤ 2h(α) + 2h(β)

dm
,

as desired. �

6. Proof of Theorem 2.1

We work with the notation and hypotheses from Theorem 2.1. In particular, we have the
family of polynomials fλ(z) = zd + λ (with a fixed d ≥ 2) parameterized by λ ∈ L, where L
is a field of characteristic p. Furthermore, for some α1, α2, β ∈ L, the set

(6.0.1) C(α1, α2;β) =
{
λ ∈ L : there exist m,n ∈ N such that fmλ (α1) = fnλ (α2) = β

}
is assumed to be infinite. Our goal is to prove that one of the alternatives (i)-(iii) in Theo-
rem 2.1 must hold. We split our analysis into several subsections.

6.1. Reduction to a field of transcendence degree one. We first prove that we may
assume α1 is transcendental over Fp.

Proposition 6.1. Under the hypotheses from Theorem 2.1, at least one of the following three
alternatives must hold:

(A) αd1 = αd2.

(B) α1 is transcendental over Fp, while α2, β ∈ Fp(α1) ⊆ L.

(C) α1, α2, β ∈ Fp.

Proof. Either α1 belongs to Fp or α1 is is transcendental over Fp. First, if α1 ∈ Fp ⊆ L, then

α2 ∈ Fp by Lemma 3.6. Applying Proposition 3.7 yields αd1 = αd2 which is alternative (A), or

β ∈ Fp which is alternative (C).

Next, assume α1 is transcendental over Fp. Lemma 3.6 yields α2 ∈ Fp(α1). Furthermore,

Proposition 3.7 yields β ∈ Fp(α1) which is alternative (B), or αd1 = αd2 which is alternative (A).
The proof of Proposition 6.1 is complete in all cases. �
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The alternatives (A) and (C) from Proposition 6.1 match the alternatives (i) and (iii) from
the conclusion of Theorem 2.1. In light of Lemma 3.6 and Proposition 3.7, we may henceforth
assume that:

(6.1.1) α1 /∈ Fp and also, α2, β ∈ Fp(α1).

We will prove that under hypothesis (6.1.1), at least one of the alternatives (i) or (ii) from
Theorem 2.1 must hold, i.e.,

(i) αd1 = αd2; or
(ii) d is a power of the characteristic p of our field L, and α1 − β, α2 − β ∈ Fp.

6.2. Two sequences of heights tending to zero. Working under the assumption (6.1.1),
let t := α1 (which is transcendental over Fp) and also, let

L0 := Fp
(
t, t

1
p , t

1
p2 , · · · , t

1

pk , · · ·
)
.

Then, according to (6.1.1), there exists a finite extension K of L0 such that α1, α2, β ∈ K.
As a consequence of Lemma 3.4, we have that C(α1, α2;β) ⊂ K. Next, we obtain an easy
consequence of Proposition 5.3, which is key for our argument.

Proposition 6.2. There exist an infinite subset {λk} in K such that

(6.2.1) lim
k→∞

ĥλk(α1) = lim
k→∞

ĥλk(α2) = 0.

Proof. Using Lemma 3.3, for each ` ∈ N there exist finitely many λ ∈ K such that f `λ(α1) =

β (or f `λ(α2) = β). Therefore, there exists an infinite sequence {λk}k∈N of elements in

C(α1, α2;β) ⊂ K for which the corresponding exponents mk, nk ∈ N satisfying

(6.2.2) fmkλk
(α1) = fnkλk (α2) = β,

must also satisfy

(6.2.3) lim
k→∞

mk = lim
k→∞

nk =∞.

Now, applying Proposition 5.3 to the two relations in (6.2.2) yields the following inequalities:

(6.2.4) ĥλk(α1) ≤ 2h(α1) + 2h(β)

dmk
and ĥλk(α2) ≤ 2h(α2) + 2h(β)

dnk
.

Inequalities (6.2.4) combined with equation (6.2.3) lead to the desired conclusion. �

6.3. Equality for all local heights. First, for each v ∈ ΩK , we fix an extension of | · |v to

an absolute value on the entire K; also, we define the local canonical heights ĥλ,v as in (4.4.1).
Next, we state [Ghi, Theorem 4.1], which is instrumental in our proof.

Theorem 6.3. With the above notation for K,α1, α2, assume there exist infinitely many

{λk}k∈N such that limk→∞ ĥλk(α1) = limk→∞ ĥλk(α2) = 0. Then for each λ ∈ K and for
each v ∈ ΩK , we have that

(6.3.1) ĥλ,v(α1) = ĥλ,v(α2).

Proposition 6.2 yields the existence of an infinite sequence {λk}k∈N such that the hypotheses
in Theorem 6.3 are met. Therefore, we conclude that equation (6.3.1) holds for each absolute
value | · |v and for each λ ∈ K.
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6.4. Finishing the proof of Theorem 2.1 in the special case when the degree is a
power of the characteristic. In this Subsection, we work under the additional hypothesis
that d = p` for some ` ∈ N; also, we know that equation (6.3.1) holds. With this new
assumption, we will prove that

• either α1 = α2, i.e., conclusion (i) from Theorem 2.1 holds.
• or α1 − β, α2 − β ∈ Fp, i.e., conclusion (ii) from Theorem 2.1 holds.

Since d = p`, the iterates of fλ(z) = zd + ` have the following explicit form:

(6.4.1) fnλ (z) = zp
`n

+

n−1∑
i=0

λp
i`
,

for each n ∈ N. The formula (6.4.1) will help in the proof of the following result.

Proposition 6.4. With the above assumptions, we have α1 − α2 ∈ Fp.

Proof. We argue by contradiction. Assume α1 − α2 /∈ Fp, which means there exists some
v ∈ ΩK such that |α1 − α2|v > 1. Since |α1 − α2|v ≤ max{|α1|v, |α2|v}, we may assume
without loss of generality that |α2|v > 1. We choose n ∈ N large enough so that

(6.4.2) |α1 − α2|d
n

v > |α2|v.
We let λ ∈ K such that fnλ (α2) = 0. By equation (6.4.1), we have:

(6.4.3) αp
n`

2 + λp
`(n−1)

+ λp
`(n−2)

+ · · ·+ λp
`

+ λ = 0.

First, we compute the local canonical height of α2. Since |α2|v > 1, equation (6.4.3) implies:

(6.4.4) |λ|v = |α2|
1

p`

v = |α2|
1
d
v .

As |fnλ (α2)|v = 0 < |λ|1/dv , we apply Lemma 5.1 (iii) and use (6.4.4) to find:

(6.4.5) ĥλ,v (fnλ (α2)) =
log |λ|v
d

=
log |α2|v
d2

.

Combining equations (6.4.5) and (4.4.2), we obtain:

(6.4.6) ĥλ,v(α2) =
log |α2|v
dn+2

.

Next, we compute the local canonical height of α1. Using equations (6.4.1) and (6.4.3), we
express fnλ (α1) as follows:

(6.4.7) fnλ (α1) = αp
n`

1 +
n−1∑
i=0

λp
i`

= αp
n`

1 − αp
n`

2 = (α1 − α2)d
n

.

Using equations (6.4.7), (6.4.2) and (6.4.4), we deduce that

(6.4.8) |fnλ (α1)|v = |α1 − α2|d
n

v > |α2|v > |α2|
1
d
v = |λ|v.

Equation (6.4.8) allows us to apply Lemma 5.1 (ii), which yields

(6.4.9) ĥλ,v (fnλ (α1)) = log |fnλ (α1)|v = dn log |α1 − α2|v.
From equations (6.4.9) and (4.4.2), it follows that

(6.4.10) ĥλ,v(α1) = log |α1 − α2|v.
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Finally, comparing the local heights from equations (6.4.6) and (6.4.10), our initial choice

of n in inequality (6.4.2) shows that ĥλ,v(α1) > ĥλ,v(α2). This contradicts equation (6.3.1).

Therefore, there is no v ∈ ΩK such that |α1 − α2|v > 1. Hence, α1 − α2 ∈ Fp, as desired. �

We recall the existence of the infinite sequence {λk}k∈N in K for which there exist corre-
sponding exponents mk, nk ∈ N such that

(6.4.11) fmkλk
(α1) = fnkλk (α2) = β

for each k ∈ N. The next lemma shows that if mk = nk for some k ∈ N, then conclusion (i)
from Theorem 2.1 must hold.

Lemma 6.5. If mk = nk for some k ∈ N, then α1 = α2.

Proof. Since d = p`, we have that fλ(z) is a permutation polynomial on K (for each λ ∈ K);
it follows that fmλ also induces a permutation on K for each m ∈ N. Therefore, if mk = nk,
the condition fmkλk

(α1) = fnkλk (α2) becomes fmkλk
(α1) = fmkλk

(α2), which implies α1 = α2. �

Lemma 6.5 thus shows that alternative (i) from the conclusion of Theorem 2.1 holds if
mk = nk for some k ∈ N. From now on, we assume that mk 6= nk for all k ∈ N.

The following result is an easy application of the formula for fnλ (z) from equation (6.4.1).
Furthermore, Lemma 6.6 will also be used in Section 8 in the proof of Theorem 2.2.

Lemma 6.6. Let α, λ ∈ K and let γ ∈ Fp. If for some m ∈ N the following holds:

(6.4.12) fmλ (α) = α+ γ,

then α and α+ γ are periodic under the action of fλ.

Proof. Equation (6.4.1) and our hypothesis (6.4.12) together yield:

(6.4.13) f2m
λ (α) = fmλ (α+ γ) = αp

m`
+ γp

m`
+
m−1∑
i=0

λp
i`

= γp
m`

+ fmλ (α) = γp
m`

+ γ + α.

An easy induction (iterating the computation from (6.4.13) and employing equation (6.4.12))
shows that for each n ≥ 1,

(6.4.14) fmnλ (α+ γ) =
n−1∑
j=0

γp
jm`

+ α.

We choose r ∈ N such that γ ∈ Fpr . Equation (6.4.14) then implies that for each n ≥ 1,

(6.4.15) fmnλ (α+ γ)− α ∈ Fpr .

Equation (6.4.15) shows that the sequence {fmnλ (α+γ)−α}n≥1 takes only finitely many values.

Therefore, there exist positive integers `1 < `2 such that fm`1λ (α+ γ) = fm`2λ (α+ γ). Hence,
α+ γ is preperiodic under the action of fλ. By equation (6.4.12), α must also be preperiodic
under the action of fλ. Finally, because fλ induces a permutation on L (as explained in the
proof of Lemma 6.5), any preperiodic point is necessarily periodic. Thus, both α and α + γ
are periodic points for fλ, as desired. �

The following result is an immediate consequence of Lemma 6.6.
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Lemma 6.7. With the notation as in equation (6.4.11), for each k ∈ N, the points α1, α2,
and β are periodic under the action of fλk .

Proof. Let k ∈ N. By our assumption that mk 6= nk, we may assume without loss of generality
that mk < nk. Because fλ(z) induces a permutation on K, the relation (6.4.11) implies

(6.4.16) α1 = fnk−mkλk
(α2).

Since nk − mk ≥ 1 and α1 − α2 ∈ Fp by Proposition 6.4, equation (6.4.16) provides the
hypothesis needed to apply Lemma 6.6. The lemma then implies that α1 and α2 are periodic
under the action of fλk . From (6.4.11), β is also periodic under the action of fλk . �

We already proved that α1 − α2 ∈ Fp; the following result shows that α1 − β ∈ Fp as well,
which gives the complete picture for alternative (ii) from the conclusion of Theorem 2.1.

Proposition 6.8. We must have α1 − β ∈ Fp.

Proof. Fix k ∈ N, and let λ := λk. According to Lemma 6.7, α1 and β are periodic under the
action of fλ. Using formula (6.4.1), we compute:

(6.4.17) fnλ (α1)− fnλ (β) = (α1 − β)p
n`

for each n ∈ N.

Since both sequences {fnλ (α1)}n≥1 and {fnλ (β)}n≥1 have finitely many elements, the left-
hand side of (6.4.17) takes only finitely many values as n ∈ N varies. Thus, the right-hand

side of (6.4.17) also takes finitely many values, that is, (α1 − β)p
n1`

= (α1 − β)p
n2`

for some
positive integers n1 < n2. Consequently, we obtain α1 − β ∈ Fp. �

To summarize, Propositions 6.4 and 6.8 yield that when d = p`, the hypotheses in The-
orem 2.1 imply that at least one of the alternatives (i)-(iii) from its conclusion must hold.
Therefore, for the remainder of the proof, we assume d is not a power of p.

6.5. Conclusion for our proof of Theorem 2.1. We have now reduced the proof to the
case where α1 /∈ Fp and d is not a power of the characteristic p. The following result, which
is [Ghi, Proposition 5.1], provides the final step.

Theorem 6.9. With the above notation for K,α1, α2, assume equality (6.3.1) holds for each
absolute value | · |v and for each λ ∈ K. If d is not a power of p = char(K), and at least one
of α1, α2 is not in Fp, then αd1 = αd2.

This completes the proof of Theorem 2.1.

7. Proof of Theorem 2.4

In this Section, we prove Theorem 2.4. We work under its hypotheses: d ≥ 2 is an integer,
L is a field of characteristic p, and α, β ∈ L. As before, we consider the family of polynomials
fλ(z) = zd + λ parameterized by λ ∈ L. We will prove that the set

(7.0.1) C(α;β) =
{
λ ∈ L : there exists m ∈ N such that fmλ (α) = β

}
is infinite.
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7.1. Proof of Theorem 2.4 when the degree is a power of the characteristic of our
field. We first prove Theorem 2.4 under the additional assumption that d = p` for some
` ∈ N.

Lemma 7.1. With the above assumptions, C(α;β) is an infinite set.

Proof. Since d = p`, the equation fmλ (α) = β has the following explicit form due to (6.4.1):

(7.1.1) αp
m`

+
m−1∑
i=0

λp
i`

= β.

As the equation (7.1.1) is separable (in λ), it has distinct roots for each m. Therefore, the set
C(α;β), being the union of these roots over all m ∈ N, is infinite. �

7.2. Conclusion of our proof for Theorem 2.4. In light of Lemma 7.1, it suffices to prove
Theorem 2.4 under the assumption that d is not a power of p.

We argue by contradiction and assume C(α;β) is finite. Let C(α;β) = {λ1, λ2, . . . , λr} for
some r ∈ N. For each m ∈ N, the expansion of fmλ (α) from Lemma 3.2 yields the equation:

(7.2.1) Pm,α(λ) = λd
m−1

+

dm−1−1∑
i=1

cm,i(α) · λdm−1−i + αd
m

= β.

Since C(α;β) = {λ1, λ2, . . . , λr}, for each m ∈ N, there exist some nonnegative integers
em,1, . . . , em,r such that the polynomial Pm,α(u)− β ∈ L[u] factors as follows in L[u]:

(7.2.2) Pm,α(u)− β =

r∏
i=1

(u− λi)em,i .

Note that the left-hand side (as a polynomial in L[u]) is a monic polynomial by (7.2.1), which
justifies the right-hand side of (7.2.2) because all the roots of Pm,α(u)−β are among λ1, . . . , λr.
On the other hand, we have the recurrence formula:

Pm+1,α(u) = Pm,α(u)d + u,

which combined with equation (7.2.2) yields

(7.2.3)

(
r∏
i=1

(u− λi)em,i + β

)d
+ u− β =

r∏
i=1

(u− λi)em+1,i .

To interpret the equation (7.2.3), we consider the subgroup Γ of G2
m(L(u)) spanned by all the

elements (u − λi, 1) and (1, u− λi) for i = 1, . . . , r. We also consider the curve V inside G2
m

defined by the equation

(7.2.4) (x+ β)d = y + (β − u).

Since the equation (7.2.4) for V is linear in y, the curve V is geometrically irreducible. Also,
equation (7.2.3) shows that V (L(u)) ∩ Γ is infinite, as it contains all points of the form

(7.2.5) (Pm,α(u)− β, Pm+1,α(u)− β) =

(
r∏
i=1

(u− λi)em,i ,
r∏
i=1

(u− λi)em+1,i

)
.

Note that βd 6= β − u because β ∈ L and u is a transcendental variable over L; thus,
equation (7.2.4) shows that the curve V is not the translate of an algebraic subgroup of G2

m.
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Indeed, the equation of any translate of a proper subtorus of G2
m (defined over L(u)) is of the

form xayb = ζ for some ζ ∈ L(u)
∗

and some integers a and b, not both equal to 0.

We now employ [MS04, Theorem B], which states that the intersection V ∩ Γ is a finite
union of sets of the form

(7.2.6) A(η0, η1, . . . , ηs; k1, . . . , ks) ·H,

where H ⊆ Γ is a subgroup, s ∈ N, while for some given η0, η1, . . . , ηs ∈ G2
m(L(u)) and some

k1, . . . , ks ∈ N, we have that

(7.2.7) A(η0, η1, . . . , ηs, k1, . . . , ks) :=

{
η0 ·

s∏
i=1

ηp
kini

i : ni ∈ N

}
.

In formula (7.2.6), we use the notation C1 ·C2 for any two subsets C1, C2 ⊂ G2
m to denote the

set {c1 · c2 : ci ∈ Ci for i = 1, 2}.
Furthermore, as explained in [MS04, Remark 2.11], there exists some N ∈ N such that

(7.2.8) ηNi ∈ Γ for i = 0, 1, . . . , s.

Since V is an irreducible curve which is not a translate of an algebraic subgroup of G2
m, the

subgroups H from equation (7.2.6) must be finite (see also [Ghi19, Corollary 2.3]). Therefore,
at the expense of replacing each set (7.2.6) by finitely many other sets of the form (7.2.6), we
may assume from now on that H is the trivial subgroup of Γ.

As V is a curve, we have s = 1 in equations (7.2.6) and (7.2.7) by [Ghi19, Corollary 2.3].
Thus, the intersection V ∩ Γ is a union of finitely many sets of the form

A(η0, η1; k) =
{
η0 · ηp

kn

1 : n ∈ N
}
,

for some given η0, η1 satisfying (7.2.8) and some k ∈ N. Next, we write each ηj := (γj,1, γj,2)
for j = 0, 1. Using (7.2.8), we can express

(7.2.9) γNj,1 =:
r∏
i=1

(u− λi)aj,i ,

for some integers aj,i for j = 0, 1 and i = 1, . . . , r. Therefore, the N -th power of the first
components (in G2

m) of the points in A(η0, η1; k) are of the form

(7.2.10)

r∏
i=1

(u− λi)a0,i+a1,ip
kn

,

as we vary n in N. In particular, the degrees in u of the polynomials appearing in equa-
tion (7.2.10) form the set

(7.2.11)
{
A0 +A1p

kn : n ∈ N
}
,

where A0 :=
∑r

i=1 a0,i and A1 :=
∑r

i=1 a1,i. On the other hand, we already know that V ∩ Γ
contains the elements from equation (7.2.5); in particular, each Pm,α(u) − β (as we vary
m ∈ N) appears as the first component of an element from the intersection V ∩ Γ. We have
(see (7.2.1)) that the degree (in u) of Pm,α(u)− β is dm−1. Therefore, the set{

dm−1 : m ∈ N
}
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is contained in the union of finitely many sets of the form (7.2.11). In particular, for some
choice of A0 and A1 (and k ∈ N), there exist infinitely many m ∈ N such that the equation

(7.2.12) A0 +A1p
kn = dm−1,

has some solution n ∈ N. However, because d is not a power of p, equation (7.2.12) can have
only finitely many solutions. This finiteness is a consequence of deep results in Diophantine
analysis; for instance, it is a very special case of Laurent’s famous theorem on the Mordell-
Lang conjecture for algebraic tori in characteristic 0 [Lau84, Théorème 2]. Alternatively, the
same conclusion follows from the theory of the S-unit equation [Sch90, Theorem 1.1]. This
final contradiction shows that the assumption that the equations (7.2.1) (as we vary m ∈ N)
have only finitely many roots λ ∈ L is untenable. Therefore, the set C(α;β) must be infinite.

This concludes our proof of Theorem 2.4.

8. Proof of Theorem 2.2

In this Section, we prove Theorem 2.2. We work under its stated hypotheses: L is a field
of characteristic p with points α1, α2, β ∈ L satisfying α1 6= α2, and d = p` for some ` ∈ N.
As before, we let fλ(z) = zd + λ for each λ ∈ L and consider the set:

C(α1, α2;β) =
{
λ ∈ L : there exist m,n ∈ N such that fmλ (α1) = fnλ (α2) = β

}
.

We let δ1 := α2 − α1 and δ2 := β − α1. Furthermore, we assume

(8.0.1) δ1 ∈ F∗q and δ2 ∈ Fq

for some finite subfield Fq ⊆ L. Our goal is to prove that C(α1, α2;β) is infinite if the system
of two equations:

(8.0.2)

 δ1 =
∑s1−1

i=0 γp
ik`

δ2 =
∑s2−1

i=0 γp
ik`

has a solution (γ, k, s1, s2) ∈ F∗q × N × N × N. Moreover, we will also show that if the sys-
tem (8.0.2) has no such solution, then C(α1, α2;β) is empty. We split our proof of Theorem 2.2
over several Subsections of Section 8.

8.1. Strategy for proving Theorem 2.2. We obtain the desired conclusion from The-
orem 2.2 by first finding explicit conditions which are equivalent with the existence of at
least one λ ∈ C(α1, α2;β) (see Proposition 8.3); more precisely, the existence of some λ ∈
C(α1, α2;β) is equivalent to a solution to the system (8.0.2). Then we prove that one solution
to the system (8.0.2) leads to infinitely many solutions to the system (8.0.2) and in turn, this
leads to infinitely many λ ∈ C(α1, α2;β) (see Proposition 8.4).

We will also prove that equation (8.0.1) alone does not always imply that the set C(α1, α2;β)
is infinite (see Proposition 8.5); in other words, there are examples of δ1, δ2 as in (8.0.1) such
that the system (8.0.2) has no solutions and therefore, C(α1, α2;β) is empty.
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8.2. Reductions in our proof of Theorem 2.2. Since α2−α1, β−α1 ∈ Fp, then α1, α2, β ∈
Fp(α1); so, without loss of generality (see also Lemma 3.4), we may assume that L = Fp(α1).

We first obtain more precise information regarding δ1 = α2−α1 and δ2 = β−α1 under the
assumption that C(α1, α2;β) is nonempty. To that end, let λ ∈ C(α1, α2;β) and let m,n ∈ N
such that

(8.2.1) fmλ (α1) = fnλ (α2) = β.

We will see next that we can, in fact, always assume m > n in (8.2.1).

Lemma 8.1. With the notation as in (8.2.1), we can assume that m > n.

Proof. First, we note that by Lemma 6.5, the case m = n implies α1 = α2, which contradicts
the hypothesis in Theorem 2.2. Thus, it suffices to show that if n > m in (8.2.1), then we can
replace m by a suitable integer larger than n so that (8.2.1) holds.

Assume n > m in (8.2.1). Since fλ induces a permutation on L, equation (8.2.1) implies:

(8.2.2) fn−mλ (α2) = α1.

Since α1 − α2 = −δ1 ∈ Fp, we can apply Lemma 6.6 to equation (8.2.2) to deduce that both
α1 and α2 are periodic points for fλ. Let t0 ∈ N be the period of α1 under the action of fλ.
Define m′ := m + nt0. By periodicity of α1, we have fm

′
λ (α1) = fmλ (α1) = β. This gives us

another instance of (8.2.1), namely, fm
′

λ (α1) = fnλ (α2) = β. Since m′ > n, this concludes our
proof of Lemma 8.1. �

8.3. Different points in the orbit which differ by an element from Fp. According to
Lemma 8.1, we may assume that m > n in equation (8.2.1).

Because d = p`, we recall from (6.4.1) that for every n ∈ N,

(8.3.1) fnλ (z) = zp
n`

+
n−1∑
i=0

λp
i`
.

In particular, we have (for each z and ε)

(8.3.2) fnλ (z + ε) = zp
n`

+ εp
n`

+
n−1∑
i=0

λp
i`

= fnλ (z) + εp
n`
.

Since fλ(z) = zd+λ = zp
`
+λ induces a permutation on L and m > n, equation (8.2.1) yields

that fm−nλ (α1) = α2. We recall that

(8.3.3) δ1 := α2 − α1 ∈ F∗q and δ2 := β − α1 ∈ Fq; also, we let

(8.3.4) k ∈ N be minimal with the property that fkλ (α1)− α1 ∈ Fq.

Note that fmλ (α1) = β = α1 + δ2 and fm−nλ (α1) = α2 = α1 + δ1; so, equation (8.3.3) ensures

that k from (8.3.4) is well-defined. We let γ := fkλ (α1)− α1; due to (8.3.4), we have

(8.3.5) γ ∈ Fq.

For each a ≥ 0, we write ua := fkaλ (α1)− α1; clearly, u0 = 0 and u1 = γ. A simple induction
on a using equation (8.3.2) establishes the recurrence relation

(8.3.6) ua+1 = up
k`

a + γ.
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To show the inductive step, we compute ua+1 = f
k(a+1)
λ (α1)− α1 and so,

ua+1 = fkλ

(
fkaλ (α1)

)
− α1 = fkλ (α1 + ua)− α1

(8.3.2)
= fkλ (α1) + up

k`

a − α1.

Since fkλ (α1)−α1 = γ, we obtain the recurrence relation (8.3.6). In particular, equation (8.3.6)
shows that

(8.3.7) fkaλ (α1)− α1 =
a−1∑
i=0

γp
ik` ∈ Fq.

Lemma 8.2. Let s ∈ N such that fsλ(α1)− α1 ∈ Fq. Then k | s.

Proof. If k - s, then there exists a ≥ 0 and r ∈ {1, . . . , k − 1} such that s = ka + r. Then
equation (8.3.7) yields that ua = fkaλ (α1)− α1 ∈ Fq. Using equation (8.3.2), we compute:

(8.3.8) fsλ(α1) = fka+r
λ (α1) = f rλ

(
fkaλ (α1)

)
= f rλ(α1 + ua) = f rλ(α1) + up

r`

a .

Since ua ∈ Fq and fsλ(α1)−α1 ∈ Fq (our hypothesis), we deduce f rλ(α1)−α1 ∈ Fq from equa-
tion (8.3.8). However, since 1 ≤ r ≤ k − 1, this contradicts the minimality of k from (8.3.4).
Therefore, we must have that k | s, as desired. �

Using Lemma 8.2 along with equation (8.3.3), we conclude that m− n = ks1 and m = ks2

for some positive integers s1 < s2.

8.4. The defining system of two equations and one unknown. According to equa-
tions (8.3.3) and (8.3.7), the original condition from (8.2.1) translates to two equations:

δ1 = fm−nλ (α1)− α1 = fks1λ (α1)− α1 = uks1 and so,

(8.4.1) δ1 =

s1−1∑
i=0

γp
ik`

; and

δ2 = fmλ (α1)− α1 = fks2λ (α1)− α1 = uks2 and so,

(8.4.2) δ2 =

s2−1∑
i=0

γp
ik`
.

We summarize our findings so far in the following Proposition.

Proposition 8.3. With the notation as in Theorem 2.2, assume δ1 = α2 − α1 6= 0 and
δ2 = β − α1 are contained in Fq. Then the set C(α1, α2;β) is nonempty if and only if the
system (8.0.2) has a solution (γ, k, s1, s2) ∈ F∗q × N× N× N.

Proof. First, assume C(α1, α2;β) is nonempty and let λ ∈ C(α1, α2;β). Then fmλ (α1) =
fnλ (α2) = β for some m,n ∈ N. Since α1 6= α2, Lemma 6.5 implies m 6= n, and by Lemma 8.1,
we may assume m > n. This leads to the system (8.0.2) (see also equations (8.4.1) and (8.4.2))
to have a solution (γ, k, s1, s2) ∈ Fq×N×N×N. Furthermore, the assumption δ1 6= 0 ensures
that γ 6= 0 due to equation (8.4.1).

Now, for the converse implication, we assume the system (8.0.2) has a solution (γ, k, s1, s2) ∈
F∗q × N× N× N. From equation (8.3.1) we solve for λ ∈ L such that

(8.4.3) fkλ (α1) = α1 + γ.
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Using again (8.3.1) coupled with (8.4.3), along with equations (8.4.1) and (8.4.2), we obtain

(8.4.4) fks1λ (α1) = α1 + δ1 = α2 and

(8.4.5) fks2λ (α1) = α1 + δ2 = β.

So, choosing m := ks2 and n := k(s2 − s1), we get that equation (8.2.1) holds; therefore,
λ ∈ C(α1, α2;β), as desired.

This concludes our proof of Proposition 8.3. �

8.5. One solution to our system generates infinitely many parameters. We continue
with the notation as in Subsection 8.4. The next Proposition shows that once there exists
one solution γ ∈ F∗q (and k, s1, s2 ∈ Fq) to the system of equations (8.4.1) and (8.4.2), then
C(α1, α2;β) is infinite.

Proposition 8.4. If there exists a solution (γ, k, s1, s2) ∈ F∗q × N × N × N to the equa-
tions (8.4.1) and (8.4.2), then C(α1, α2;β) is infinite.

Proof. We write q := pr for some r ∈ N. We note that once we have a solution (γ, k, s1, s2)
to the system (8.4.1)-(8.4.2), (γ, k + r, s1, s2) also solves the above system. However, this
new solution to the system leads to a different element in C(α1, α2;β). Indeed, for any such
solution (γ, k, s1, s2), the corresponding parameter λ ∈ C(α1, α2;β) satisfies

(8.5.1) fkλ (α1) = α1 + γ, fks1λ (α1) = fm−nλ (α1) = α1 + δ1 and fks2λ (α1) = fmλ (α1) = α1 + δ2.

Combined with (8.3.1), the first equation from (8.5.1) yields that

(8.5.2) αp
k`

1 +
k−1∑
i=0

λp
i`

= α1 + γ.

Equation (8.5.2) in λ is a separable equation of degree p(k−1)` and hence has distinct solutions.
So, increasing k leads to additional solutions to the new equation (8.5.2). Therefore, we
have infinitely many elements in C(α1, α2;β) simply assuming the existence of one solution
(γ, k, s1, s2) to the system of equations (8.4.1) and (8.4.2). �

8.6. Conclusion of our proof for Theorem 2.2. If the system (8.0.2) has no solutions,
then C(α1, α2;β) must be empty by Proposition 8.3. Now, if the system (8.0.2) has a solution,
then Proposition 8.4 yields that there are actually infinitely many λ ∈ C(α1, α2;β).

This concludes our proof of Theorem 2.2.

8.7. Sometimes the set C(α1, α2;β) is empty. Next, we show that condition (8.0.1) alone
from Theorem 2.2 does not always guarantee the existence of infinitely many λ ∈ C(α1, α2;β);
in other words, there are instances when the system (8.0.2) is not solvable (despite the fact
that α2 − α1, β − α1 ∈ Fp) and therefore, C(α1, α2;β) is empty.

Proposition 8.5. Let d = p` and let α1, α2, β ∈ L. If δ1 = α2 − α1 and δ2 = β − α1

simultaneously satisfy the following conditions:

(1) δ1, δ2 ∈ Fp2 \ Fp,
(2) δ1 − δ2 /∈ Fp, and

(3) δ1
δ2
/∈ Fp,
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then C(α1, α2;β) is empty.

Remark 8.6. For each prime p > 2, one can construct examples where Proposition 8.5
applies. For instance, choosing (δ1, δ2) = (ε, 2ε + 1) for any ε ∈ Fp2 \ Fp satisfies the condi-
tions (1)-(3) in Proposition 8.5. Therefore, the corresponding set C(α1, α2;β) is empty, even
though the points α1, α2, β satisfy the alternative (ii) from the conclusion of Theorem 2.1.

Proof of Proposition 8.5. We argue by contradiction and assume C(α1, α2;β) 6= ∅. Therefore,
there exists λ ∈ L and m,n ∈ N such that fmλ (α1) = fnλ (α2) = β. As shown in Lemma 8.1,

we may assume that m > n. By Proposition 8.3, this triple (λ,m, n) ∈ L× N× N leads to a
solution (γ, k, s1, s2) ∈ Fp2 × N× N× N to the system of equations (8.4.1) and (8.4.2). Note
that, due to (8.3.5), we can assume γ ∈ Fp2 because δ1, δ2 ∈ Fp2 . We will show that there are
no solutions (γ, k, s1, s2) ∈ Fp2 ×N×N×N to the system (8.4.1)-(8.4.2). The proof is divided
into two cases based on the parity of k · `.

Lemma 8.7. With the above notation, there are no solutions to the system (8.4.1)-(8.4.2) if
k · ` is even.

Proof of Lemma 8.7. Since any sought solution γ of the system (8.4.1)-(8.4.2) lives in Fp2 , we

have γp
ik`

= γ for each i ≥ 0. So, the system (8.4.1)-(8.4.2) simplifies to

(8.7.1) s1 · γ = δ1 and s2 · γ = δ2.

However, (8.7.1) implies δ1/δ2 = s1/s2, which contradicts condition (3) from the hypotheses
of Proposition 8.5. Thus, no solutions exist when k` is even. �

Lemma 8.8. With the above notation, there are no solutions to the system (8.4.1)-(8.4.2) if
k · ` is odd.

Proof of Lemma 8.8. In this case, we know that for any even s ∈ N, we have that

(8.7.2)
s−1∑
i=0

γp
ik`

=
s

2
· TrFp2/Fp(γ),

while for any odd s ∈ N, we have that

(8.7.3)
s−1∑
i=0

γp
ik`

= γ +
s− 1

2
· TrFp2/Fp(γ).

So, if sj is even for some j = 1, 2, then (8.7.2) shows that the system (8.4.1)-(8.4.2) leads to
δj ∈ Fp, which contradicts condition (1) from the hypotheses of Proposition 8.5. If both s1

and s2 are odd, then (8.7.2) yields that δ1 − δ2 ∈ Fp, which contradicts condition (2) from
the hypotheses of Proposition 8.5. In all cases, we reach a contradiction, so no solution to the
system (8.4.1)-(8.4.2) can exist if k` is odd. �

Combining Lemmas 8.7 and 8.8 concludes our proof of Proposition 8.5. �
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9. The case when all the points live in a finite field

Throughout this Section, we work with α1, α2, β ∈ Fp and the family of polynomials

fλ(z) := zd + λ parameterized by λ ∈ Fp. Our goal is to determine whether the set

(9.0.1) C(α1, α2;β) =
{
λ ∈ Fp : there exist m,n ∈ N such that fmλ (α1) = fnλ (α2) = β

}
.

is infinite. Note that restricting λ to Fp is sufficient, as Lemma 3.4 implies that if fmλ (α1) = β,

then we have that λ ∈ Fp(α1, β) = Fp because α1, β ∈ Fp.
Since Theorem 2.2 provides an explicit answer when d = p` (everything depends on the

existence of a solution to a system (1.3.2) of equations), we assume that d is not a power of
p. Under this hypothesis, as long as αd1 6= αd2, there is no visible dynamical relation globally
between α1 and α2 with respect to the entire family of polynomials fλ(z). So, drawing
on the intuition from Theorem 1.1, one would expect that if αd1 6= αd2, then C(α1, α2;β) is
finite. However, based on extensive computation (of more than 100 examples), we believe the
opposite is true.

Conjecture 9.1. Let d ≥ 2 be an integer which is not a power of p and let α1, α2, β ∈ Fp.
For any λ ∈ Fp, let fλ(z) := zd + λ. Then the set C(α1, α2;β) (see (9.0.1)) is infinite.

This Section is organized as follows. In Subsection 9.1, we describe the algorithm used for
testing various cases in Conjecture 9.1. In Subsection 9.2, we formulate Conjecture 9.2, which
is a refinement of Conjecture 9.1 in the special case α1 = β. We gathered in Subsection 9.3
some of the many examples we tested, all of which support both Conjectures 9.1 and 9.2. In
Subsection 9.4, we present an example for a different family of polynomials, which in turn
suggests Question 9.9. Finally, in Subsection 9.5, we conclude our paper with a brief discussion
about the collision of multiple orbits and formulate Question 9.10.

9.1. Algorithm for testing Conjecture 9.1. Since we are now studying the case where
α1, α2, β ∈ Fp, we fix a sufficiently large q such that α1, α2, β ∈ Fq. For a fixed α and n ∈ N,
recall that Pn,α(λ) := fmλ (α) is a polynomial in λ with degree dn−1. By definition, fmλ (α1) = β
if and only if λ is a root of Pm,α1(λ) − β = 0. Directly finding the roots of the polynomials
Pm,α1(λ)− β and Pn,α2(λ)− β is often infeasible due to their high degrees. We now describe
a more efficient algorithm for finding values of λ in C(α1, α2;β) by searching for common
factors of these polynomials over finite fields.

The algorithm proceeds by checking, for each irreducible polynomial g(λ) over a finite field
Fq, whether it divides Pn,α(λ)− β for some n ∈ N. This check is performed efficiently in the
quotient ring Fq[λ]/〈g(λ)〉. For a given α, β ∈ Fq and an irreducible polynomial g(λ) ∈ Fq[λ],
the procedure is as follows:

(a) We recursively compute the sequence of remainders rn := fnλ (α) (mod g(λ)) by setting

r0 = α and computing rn = rdn−1 + λ in Fq[λ]/〈g(λ)〉 for n ≥ 1.
(b) If rn = β for some n ∈ N, then g(λ) divides Pn,α(λ) − β and the algorithm stops for

this particular polynomial g(λ). Consequently, every root of g(λ) = 0 is a solution to
fnλ (α) = β.

(c) If we encounter a remainder rn that has appeared previously (i.e., rn = ri for some i <
n) and none of the remainders r1, . . . , rn are equal to β, a cycle has been detected. We
conclude that β will not be reached, and we terminate the search for this polynomial
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g(λ). Also, as an aside, the pair (i, n) (where i and n are minimal with the property
that f iλ(α) = fnλ (α)) is called the preperiodicity portrait for α (under the action of fλ).

The length of the sequence before repetition is bounded by qdeg(g). For practical imple-
mentation, we must set a maximum number of iterations. If this threshold is reached without
finding β or a cycle, the algorithm terminates inconclusively for g(λ).

To find elements in C(α1, α2, β), we apply this procedure to both α1 and α2. For each
monic irreducible polynomial g(λ) ∈ Fq[λ], we search for an integer m such that g(λ) divides
Pm,α1(λ) − β. If successful, we then search for an integer n such that g(λ) also divides
Pn,α2(λ)− β. If both searches succeed, all roots of g(λ) belong to the set C(α1, α2;β).

9.2. The case where α1 = β. We describe a special case in which permutation polynomials
naturally arise. Suppose α1 = β ∈ Fq. We are searching for λ ∈ Fp such that for some
m,n ∈ N, the following equalities hold:

fmλ (α1) = α1 and fnλ (α2) = α1.

We now explain how first condition, fmλ (α1) = α1, is automatically satisfied for certain choices
of λ. Suppose the polynomial Pn,α2(λ) − α1 has an irreducible factor h(λ) of degree k over

Fq. Let λ0 ∈ Fqk be any root of h(λ). If gcd(d, qk − 1) = 1, the map z 7→ zd is a permutation

of Fqk , which implies that fλ0(z) = zd +λ0 is also a permutation of Fqk . Since α1 ∈ Fq ⊆ Fqk ,
then α1 must be periodic under fλ; thus, fmλ0(α1) = α1 for some m ∈ N. The argument shows

that when gcd(d, qk − 1) = 1, each root λ0 ∈ Fqk of h(λ) satisfies fmλ0(α1) = fnλ0(α2) = α1 for
some m,n ∈ N. Therefore, to prove that the set C(α1, α2;α1) is infinite, it suffices to show
that the polynomials Pn,α2(λ) − α1 for n = 1, 2, 3, . . . have irreducible factors of arbitrarily

large degrees k satisfying gcd(d, qk − 1) = 1. We state this prediction as a conjecture.

Conjecture 9.2. Suppose α, β ∈ Fq. For λ ∈ Fp, let fλ(z) := zd + λ. Define, as before,
Pn,α(λ) = fnλ (α); so, Pn,α(λ) ∈ Fq[λ] is a polynomial of degree dn−1. Suppose gcd(d, q−1) = 1.
Then for each M > 0, there is some n ∈ N such that the polynomial Pn,α(λ) − β has an

irreducible factor g(λ) ∈ Fq[λ] of degree k > M satisfying gcd(d, qk − 1) = 1.

The hypothesis gcd(d, q− 1) = 1 is necessary. Indeed, if gcd(d, q− 1) > 1, then gcd(d, qk −
1) > 1 for each k ≥ 1. If gcd(d, q − 1) = 1, then we can find infinitely many integers k ≥ 1
such that gcd(d, qk − 1) = 1, so the conclusion of Conjecture 9.2 makes sense. Note that
Conjecture 9.2 implies Conjecture 9.1 in the special case when α1 = β.

9.3. Computational evidence. We list several examples that provide evidence for both
Conjecture 9.1 and Conjecture 9.2. When counting irreducible polynomials over a finite field
with specific properties, we always restrict our attention to monic irreducible polynomials.

Example 9.3. We work over F2. Let d = 3, α1 = 1, α2 = 0, and β = 1. We are in the
special case when α1 = β. Since gcd(3, 2k − 1) = 1 if and only if k ∈ N is odd, we seek
any odd-degree irreducible factors of the polynomial Pn,0(λ) − 1 = fnλ (0) − 1. Any root of
such a factor will belong to C(1, 0; 1). Table 1 lists the degrees of the irreducible factors of
Pn,0(λ)− 1 for 1 ≤ n ≤ 11; newly appearing odd degrees are highlighted.

The presence of factors with large odd degrees, such as 16189 and 42859 for n = 11, strongly
suggests that C(1, 0; 1) is infinite. Thus, Table 1 numerically supports Conjecture 9.2.
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Table 1. Degrees of irreducible factors of Pn,0(λ)− 1 for n = 1, . . . , 11

n Degrees of irreducible factors (all factors are simple)
1 1
2 3
3 1, 3, 5
4 27
5 1, 38, 42
6 18, 21, 43, 71, 90
7 1, 5, 38, 121, 564
8 3, 97, 214, 375, 1498
9 1, 12, 16, 1205, 5327
10 3, 15, 22, 22, 34, 61, 82, 161, 240, 334, 428, 4429, 13852
11 1, 16189, 42859

As direct factorization of Pn,0(λ)−1 (a polynomial of degree 3n−1) is computationally inten-
sive, we also use the general algorithm. Table 2 shows the number of irreducible polynomials
g(λ) of a given degree that divide gcd(Pm,1(λ)− 1, Pn,0(λ)− 1) for some m,n ∈ N.

Table 2. Irreducible polynomials that divide gcd(Pm,1(λ)− 1, Pn,0(λ)− 1)

degree of the irreducible polynomial 1 2 3 4 5 6 7 8 9 10 11 12 13
number of successful polynomials 1 0 2 0 3 0 7 0 31 1 89 4 325

The final entry shows 325 distinct irreducible polynomials of degree 13 over F2. These alone
yield 325 · 13 = 4225 different values of λ ∈ F2 in the set C(1, 0; 1). Even without Table 1, we
see that Table 2 supports Conjecture 9.1.

Example 9.4. We work over F5. Let d = 3, α1 = 2, α2 = 1, and β = 2. Again, we
are in the special case α1 = β. Next, gcd(3, 5k − 1) = 1 if and only if k ∈ N is odd. We
seek any odd-degree irreducible factors of the polynomial Pn,1(λ) − 2 = fnλ (1) − 2. Table 3
lists the degrees of irreducible factors of Pn,1(λ) − 2 for each 1 ≤ n ≤ 12; newly appearing
odd degrees are highlighted. The presence of factors with large odd degrees, such as 163341
for n = 12, strongly suggests that C(2, 1; 2) is infinite. Thus, Table 3 numerically supports
Conjecture 9.2.

Example 9.5. We work over F3. Let d = 2, α1 = 0, α2 = 1, and β = 2. Table 4 shows the
number of irreducible polynomials of a given degree dividing gcd(Pm,0(λ)− 2, Pn,1(λ)− 2) for
some m,n ∈ N. The steadily growing counts suggest that C(0, 1; 2) is infinite, thus supporting
Conjecture 9.1.

Example 9.6. We work over F9 and let ε ∈ F9 \ F3 with ε2 = −1. Let d = 2, α1 = 1,
α2 = ε + 1, and β = ε. The growing counts in Table 5 suggest that C(1, ε + 1; ε) is infinite,
again supporting Conjecture 9.2.

Example 9.7. We work over F8 and let ξ ∈ F8\F2 be an element that satisfies ξ3 = ξ+1. Let
d = 3, α1 = 1, α2 = ξ, and β = ξ2 + ξ+ 1. Table 6 shows the count of irreducible polynomials
of a given degree over F8 that divide gcd(Pm,1(λ)− (ξ2 + ξ + 1), Pn,ξ(λ)− (ξ2 + ξ + 1)). The
growing numbers suggest that C(1, ξ; ξ2 + ξ + 1) is infinite, which supports Conjecture 9.1.
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Table 3. Degrees of irreducible factors of Pn,1(λ)− 2 for n = 1, . . . , 12

n Degrees of irreducible factors (all factors are simple)
1 1
2 1, 2
3 3, 6
4 4, 7, 16
5 1, 1, 11, 22, 45
6 2, 5, 10, 226
7 26, 52, 250, 401
8 1, 3, 3, 4, 5, 6, 13, 23, 64, 95, 149, 353, 1468
9 1, 20, 27, 757, 1082, 4674
10 2, 4, 21, 1632, 3932, 14092
11 1, 6, 99, 106, 205, 280, 446, 778, 2370, 22642, 32116
12 3, 3, 4, 7, 38, 71, 13680, 163341

Table 4. Irreducible polynomials that divide gcd(Pm,0(λ)− 2, Pn,1(λ)− 2)

degree of the irreducible polynomial 1 2 3 4 5 6 7 8 9 10 11 12 13
number of successful polynomials 2 1 1 4 1 4 7 15 24 29 53 70 120

Table 5. Irreducible polynomials that divide gcd(Pm,1(λ)− ε, Pn,ε+1(λ)− ε)

degree of the irreducible polynomial 1 2 3 4 5 6
number of successful polynomials 3 1 4 7 40 60

This example also exhibits an interesting feature: there appear to be considerably more values
of λ whose minimal polynomial over F8 has an odd degree compared to an even degree. While
we do not have a full explanation for this phenomenon, this parity imbalance also highlights
the difficulty of Conjecture 9.1. We note that for each λ ∈ F82k+1 (for each k ∈ N), the
polynomial fλ induces a permutation on F82k+1 and therefore, the problem of colliding orbits
becomes a question of having one periodic cycle (see also Subsection 9.2) in F82k+1 (for fλ)
containing all three points α1, α2, β. The numerical evidence from this example suggests that
it is more likely for the three points to belong to the same periodic cycle, rather than for there
to be different preperiodicity portraits for the orbits of α1 and α2, both of which contain β.

Table 6. Irreducible polynomials that divide gcd(Pm,1(λ) − (ξ2 + ξ +
1), Pn,ξ(λ)− (ξ2 + ξ + 1))

degree of the irreducible polynomial 1 2 3 4 5 6
number of successful polynomials 4 2 63 7 2265 31

Example 9.8. We work over F5. Let d = 10, α1 = 1, α2 = 2, and β = 3. We consider this
case because p | d, which one may suspect has a different answer; after all, the case d = p`

does exhibit a special behavior (see Theorem 2.2). Table 7 shows the count of irreducible
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polynomials of a given degree over F5 that divide gcd(Pm,1(λ)−3, Pn,2(λ)−3). Once again, the
growing numbers suggest that C(1, 2; 3) is infinite, thus providing support for Conjecture 9.1.

Table 7. Irreducible polynomials that divide gcd(Pm,1(λ)− 3, Pn,2(λ)− 3)

degree of the irreducible polynomial 1 2 3 4 5 6 7 8 9
number of successful polynomials 1 1 1 2 8 13 18 43 103

9.4. Numerical evidence for a more general question. We switch now to a different
family of polynomials:

(9.4.1) gλ(z) = z3 + z + λ (parameterized by λ ∈ F5);

also, we consider two starting points α1, α2 and one target point β. As before, we are interested
in whether the set

(9.4.2) Cg(α1, α2;β) :=
{
λ ∈ F5 : there exist m,n ∈ N such that gmλ (α1) = gnλ(α2) = β

}
is infinite. For α1 = 1, α2 = 3 and β = 2, we define the corresponding recurrence polynomials
(for all m,n ∈ N):

Pg,m,1(λ) := gmλ (1) and Pg,n,3(λ) := gnλ(3).

Table 8 shows the count of (monic) irreducible polynomials of a given degree over F5 that
divides gcd (Pg,m,1(λ)− 2, Pg,n,3(λ)− 2). The steadily growing numbers suggest that the set

Cg(1, 3; 2) ⊆ F5 corresponding to this polynomial fλ(z) = z3 + z + λ is infinite.

Table 8. Irreducible polynomials that divide gcd(Pg,m,1(λ)− 2, Pg,n,3(λ)− 2)

degree of the irreducible polynomial 1 2 3 4 5 6 7 8 9
number of successful polynomials 1 0 1 5 6 17 24 32 114

This leads us to believe that the following Question has a positive answer.

Question 9.9. Let g ∈ Fp[z] be a polynomial of degree d ≥ 2, which is not an additive
polynomial. We consider the family of polynomials gλ(z) = g(z) + λ, parameterized by
λ ∈ Fp. Is it true that for each α1, α2, β ∈ Fp, the set

(9.4.3) Cg(α1, α2;β) :=
{
λ ∈ Fp : there exist m,n ∈ N such that gmλ (α1) = gnλ(α2) = β

}
is infinite?

A positive answer to Question 9.9 supports the relevance of condition (4) from Conjec-
ture 2.6.

9.5. Collision of multiple orbits. We conclude the paper with a new question that leads
us to an uncharted territory in the study of collision of orbits. Conjecture 9.1 considers the
intersection of two orbits, which is the focus of this paper. This naturally leads to a more
general question. So, given a polynomial g ∈ Fp[z] of degree d, which is not an additive

polynomial, we let gλ(z) := g(z) + λ be a family of polynomials parameterized by λ ∈ Fp.
Then for any integer s ≥ 2 and any given α1, . . . , αs, β ∈ Fp, we define:
(9.5.1)
Cg(α1, . . . , αs;β) := {λ ∈ Fp : there exists ni ∈ N such that fniλ (αi) = β for i = 1, . . . , s}.
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Question 9.10. Given a polynomial g ∈ Fp[z] of degree d ≥ 2, which is not an additive
polynomial, then using the notation from (9.5.1), what is the smallest integer s ≥ 2 with the
property that there exist α1, . . . , αs, β ∈ Fp such that the corresponding set Cg(α1, . . . , αs;β)
is finite?

We present one of the many examples we tested for our Question 9.10.

Example 9.11. We work over F5, and let α1 = 1, α2 = 2, α3 = 3, β = 4. We consider the
two families of polynomials fλ(z) = z3 + λ and gλ(z) = z4 + z + λ. Tables 9 and 10 show the
counts of (monic) irreducible polynomials in both settings. The growing counts suggest that
the sets Cf (1, 2, 3; 4) and Cg(1, 2, 3; 4) are both infinite. We also see a qualitative difference:
the counts for Cf (1, 2, 3; 4) exhibit a parity imbalance (with a clear bias for odd degrees),
while the counts for Cg(1, 2, 3; 4) show a general upward trend as the degree increases.

We believe that the imbalance from Table 9 for odd degree polynomials may again be a
consequence of the fact that for each λ ∈ F52k+1 , the polynomial fλ(z) induces a permutation
polynomial on F52k+1 . It seems far more likely that α1, α2, α3, β all live in the same periodic
cycle (under the action of fλ(z)) rather than any other configuration of the preperiodicity
portraits for the orbits of α1, α2, α3 intersecting at β. The latter scenario could happen when
λ ∈ F52k since the points may no longer be periodic under the action of fλ(z).

Table 9. Irreducible polynomials that divide gcd(Pf,m,1(λ) − 4, Pf,n,2(λ) −
4, Pf,k,3(λ)− 4)

degree of the irreducible polynomial 1 2 3 4 5 6 7 8
number of successful polynomials 0 1 8 2 154 6 2732 28

Table 10. Irreducible polynomials that divide gcd(Pg,m,1(λ) − 4, Pg,n,2(λ) −
4, Pg,k,3(λ)− 4)

degree of the irreducible polynomial 1 2 3 4 5 6 7 8
number of successful polynomials 1 0 3 5 7 10 24 43

Our numerical data suggest that the original intuition for collision of orbits must be revised
when working over Fp due to the underlying finite combinatorics. More precisely, when the
starting points αj (for j = 1, . . . , s), the target point β, and the parameter λ all belong to a
finite field Fpk , we are asking whether β is contained in each of the finite subsets Ofλ(αj) for
1 ≤ j ≤ s. Even though this is unlikely for any given λ, the positive answer becomes likely
once we look over all λ ∈ Fpk . In contrast, when the field of definition for the starting points
αj and for the target point β has positive transcendence degree, the collision of orbits is un-
likely without a well-defined global dynamical relation between the points (see Theorem 1.1).
This new perspective in characteristic p is reminiscent of the likely, unlikely, and impossible
intersections studied in [CGMM13], where the transcendence degree of the base field was also
the crucial factor in determining the nature of an intersection.
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