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Abstract. The isotrivial Mordell-Lang theorem of [MS04] describes
the set X ∩ Γ when X is a subvariety of a semiabelian variety G over a
finite field Fq and Γ is a finitely generated subgroup of G that is invari-
ant under the q-power Frobenius endomorphism F . That description is
here made effective, and extended to arbitrary commutative algebraic
groups G and arbitrary finitely generated Z[F]-submodules Γ. The ap-
proach is to use finite automata to give a concrete description of X ∩Γ.
These methods and results have new applications even when specialised
to the case when G is an abelian variety over a finite field, X ⊆ G a
subvariety defined over a function field K, and Γ = G(K). As an ap-
plication of the automata-theoretic approach, a dichotomy theorem is
established for the growth of the number of points in X(K) of bounded
height. As an application of the effective description of X ∩ Γ, decision
procedures are given for the following three diophantine problems: Is
X(K) nonempty? Is it infinite? Does it contain an infinite coset?
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1. Introduction

The Mordell-Lang theorem, proved by Faltings [Fal94], is a celebrated result,
which describes the intersection of an algebraic subvarietyX of a semiabelian
variety G, defined over a field of characteristic zero, with a finitely generated
subgroup Γ of G. Faltings’ theorem says that this intersection is a finite
union of cosets of subgroups of Γ, which, in particular, illustrates connections
between the underlying geometric and algebraic structures on G.

In positive characteristic the naive translation of Faltings’ theorem is no
longer true. For example, if one takes a smooth curve X of genus at least
two defined over a finite field Fq, then X embeds in its Jacobian, G. If
one then picks a finitely generated extension K of Fq such that X has a

K-point x that is not a Falg
q -point of X then the orbit of x under the action

of the q-power Frobenius is infinite in X and lies entirely in G(K), which
is a finitely generated subgroup. But X(K) cannot contain a coset of an
infinite subgroup of G(K), since X would then be the Zariski closure of this
coset and hence itself an abelian variety, contradicting the fact that it is of
genus at least two.

Groundbreaking work of Hrushovski [Hru96] showed that in a natural
sense all counterexamples to the naive translation of the Mordell-Lang theo-
rem to the positive characteristic setting are of this type; namely, they arise
from semiabelian varieties over finite fields – the so-called isotrivial case. In-
deed, Hrushovski [Hru96] proved a relative function field version of positive
characteristic Mordell-Lang in the mid-nineties that treated the isotrivial
case as exceptional. Hrushovski, however, did not give a description of what
general intersections look like in the isotrivial case and this exceptional case
was dealt with in later work of the third author and Scanlon as follows:

Theorem 1.1 (Moosa-Scanlon [MS04]). Suppose G is a semiabelian variety
over a finite field Fq of prime characteristic p, and let F : G → G be the
endomorphism induced by the q-power Frobenius. Suppose X ⊆ G is a
closed subvariety defined over a field extension of Fq, and Γ ≤ G is a finitely
generated F -invariant subgroup. Then X ∩ Γ is a finite union of sets of the
form S + Λ where S ⊆ Γ is a translate of a sum of F -orbits and Λ is a
subgroup.

Here, we are identifying G and X with their points in a sufficiently large
algebraically closed field that serves as a universal domain for algebraic
geometry in characteristic p. Also, see Definition 2.1 below for a precise
explanation of what we mean by a “translate of a sum of F -orbits”, and for
a comparison with the exact formulation in [MS04].

Many classical diophantine problems can be realised as special cases of the
Mordell-Lang theorem. For example, a special case of the Skolem-Mahler-
Lech theorem (see [EvdPSW03]) – asserting that the zero set of a simple
linearly recurrent sequence over a characteristic zero field is a finite union
of arithmetic progressions along with a finite set – can be obtained from
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Faltings’ theorem by taking the semiabelian variety to be Gd
m for some d ≥ 1

and Γ to be an infinite cyclic subgroup. More generally, theorems on S-unit
equations can be cast in this framework as well.

In light of these classical diophantine connections, it is very natural to ask
whether an effective version of the Mordell-Lang theorem exists. Questions
of effectivity and decidability within the context of diophantine problems
enjoy a long history and it is often the case that even basic questions of
this nature are very difficult (see, for example, [CMP87]). For example,
Skolem’s problem (see [OW12]), which asks whether one can decide whether
an integer-valued linearly recurrent sequence takes the value zero, is still
open. This simple question can be recast in a general Mordell-Lang frame-
work as asking whether one can decide if certain cyclic subgroups of com-
mutative affine algebraic groups intersect certain hypersurfaces non-trivially.
When one goes beyond the cyclic case, questions of this nature are known to
be undecidable. For example, the solution to Hilbert’s tenth problem (see
[DMR76, Mat93]) shows that if Γ = Zd ⊆ Cd then it is undecidable whether
Γ intersects a hypersurface non-trivially for d sufficiently large. On the other
hand, in positive characteristic there has been a lot of recent work dealing
with decidable phenomena of this type and many positive results have been
obtained; see, for example, [Der07, AB12, DM12, DM15, DM18].

In this paper we show that in the isotrivial case one indeed has an effective
version of a general Mordell-Lang theorem.

Theorem A. Let G be a commutative algebraic group defined over a finite
field Fq, let F : G → G be the q-power Frobenius, let X ⊆ G be a closed
subvariety defined over a field extension of Fq, and let Γ ≤ G be a finitely
generated Z[F]-submodule. Given presentations of G and X, along with
a finite list of generators for Γ as a Z[F]-submodule, there is an effective
procedure for determining X ∩ Γ.

Our approach is not to make effective the proof of Theorem 1.1 from [MS04],
but rather to establish a new finiteness statement (Propoisition 5.1, below),
effectively, and then use that to explicitly construct, from the given data, a
finite automaton that recognises X ∩ Γ. This is done in Sections 4–6 below
(see Theorem 6.3 and the discussion following it in §6.1).

A word about how the theory of finite automata entered the picture.
Inspired by Dersken’s [Der07] proof of the Skolem-Mahler-Lech theorem in
positive characteristic (whose non-effective version is itself a very special case
of Theorem 1.1), the first and third authors developed in [BM19] a theory
of automatic sets that applies to the general isotrivial Mordell-Lang setting.
Recall that, classically, a subset S of the integers is said to be d-automatic,
for some positive integer d, if there is a finite automaton which recognises
precisely the set of base-d expansions of the elements of S. In [BM19] a
generalisation is formulated where the integers are replaced by an arbitrary
abelian group (e.g., an isotrivial commutative algebraic group), and the
positive integer d (or rather multiplication-by-d) is replaced by an arbitrary
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injective endomorphism of the abelian group (e.g., the Frobenius). This
gives rise to a well-behaved theory of F -automatic subsets of isotrivial com-
mutative algebraic groups. Details on F -automatic sets are both reviewed
and appropriately generalised (from finitely generated groups to finitely gen-
erated Z[F]-modules) in Section 3 below. Theorem A is proved by showing
that X ∩ Γ is effectively F -automatic.

As an application of Theorem A we focus on the central concern of the
Mordell-Lang problem: the set of rational points on a subvariety of an
abelian variety.

Corollary 1.2. Suppose G is an abelian variety over Fq and X ⊆ G is
a closed subvariety over a function field extension K. Given presentations
of G,X, and K, there is an effective procedure for deciding the following
problems:

(1) Is X(K) nonempty?
(2) Is X(K) infinite?
(3) Does X(K) contain a coset of an infinite subgroup of G?

Such procedures are given in Section 7. Besides Theorem A, we make use
of an algorithm for producing generators forG(K) coming from the finiteness
of the Tate-Shafarevich group for abelian varieties over finite fields [Mil68].

The decision procedure for problem (3) of Corollary 1.2 makes use of
the dichotomy between sparse and non-sparse regular languages. That di-
chotomy yields the following gap theorem for the growth in the number of
rational points of bounded height:

Corollary 1.3. Suppose G is an abelian variety over Fq and X ⊆ G is a
closed subvariety over a function field extension K. Consider the Néron-
Tate canonical height on G. Then the number of points in X(K) of height
at most H is either bounded above by C(logH)d for some positive constants

C and d, for H sufficiently large, or it is bounded below by C ′
√
H for some

positive constant C ′.

This appears as part of a stronger result (Theorem 8.1 below).
Beyond simply determining the intersection X ∩ Γ in Theorem A, we are

able to give a general structure theorem that comes naturally from a careful
analysis of the F -automatic sets we produce. In particular, we generalise
Theorem 1.1 as follows:

Theorem B. Let G be a commutative algebraic group defined over a finite
field Fq, let F : G → G be the q-power Frobenius, let X ⊆ G be a closed
subvariety defined over a field extension of Fq, and let Γ ≤ G be a finitely
generated Z[F]-submodule. Then X ∩ Γ is a finite union of sets of the form
S + Λ where S ⊆ Γ is is a translate of a sum of F -orbits and Λ = H ∩Γ for
some H ≤ G an algebraic subgroup over a finite field.

This appears as Theorem 9.1 below. The extension from semiabelian
varieties to arbitrary commutative algebraic groups is relatively straightfor-
ward, and is covered in Section 2. But letting Γ be finitely generated as
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a Z[F]-module rather than as a group takes more work and requires new
methods. For example, the case of finitely generated Z[F]-submodules of
vector groups was dealt with already by the second author in [Ghi08, The-
orem 2.6], but it does not seem possible to combine this with Theorem 1.1
to deduce Theorem B. We instead use the fact that X ∩ Γ is F -automatic
(this is Corollary 6.4 below) and then carefully analyse the structure of F -
automatic subsets of isotrivial commutative algebraic groups in Section 9.
So this does not rely on, but rather recovers and unifies, the results of [MS04]
and [Ghi08]. In particular, we get an entirely new, automata-theoretic, proof
of Theorem 1.1.

Although the results from [Ghi08, Theorem 2.6] and Theorem 1.1 are
arguably the two most important instances of Theorem B, there are never-
theless interesting diophantine problems that involve interactions between
the additive and multiplicative structures of fields and are not covered by
either result. For example, a very special case of our Theorems A and B that
may be of of independent interest is the following. Given a finitely gener-
ated Z[F]-submodule Γ1 ⊂ Ga and a finitely generated subgroup Γ2 ⊂ Gm,
we can consider the intersection Γ1 ∩ Γ2 inside the affine line. Theorem B
applies by considering G := Ga × Gm and intersecting Γ := Γ1 × Γ2 with
the diagonal X in G. We thus obtain a description of Γ1 ∩ Γ2. In fact, as
the diagonal is an F -invariant curve that is not the translate of an algebraic
subgroup, we conclude that Γ1 ∩ Γ2 is a finite union of F -orbits. Moreover,
using Theorem A, given generators for Γ1 and Γ2, we obtain an effective al-
gorithm for determining the points P1, . . . , P` such that Γ1∩Γ2 is the union
of the F -orbits of P1, . . . , P`.

Finally, let us note that the work of Derksen [Der07] on linear recurrences
and much of the work of Derksen and Masser [DM12, DM15, DM18] on
S-unit equations in positive characteristic can be recast in a way that is
covered by our Theorem A (see [BM19] for details). On the other hand, the
effective result of Adamczewski and the first author [AB12, Theorem 4.1]
is not obviously covered by our work due to the fact that we must work
inside a commutative algebraic group; the ineffective version, however, can
be deduced from Theorem B.

Acknowledgements. We thank Bjorn Poonen and Felipe Voloch for many
useful remarks. We are also grateful to the anonymous referee for their useful
comments and suggestions, which improved our paper.

2. Mordell-Lang for finitely generated subgroups of
isotrivial commutative algebraic groups

It does not seem to have been observed before, though it follows rather
readily from combining Theorem 1.1 with known structure theorems about
algebraic groups, that the conclusions in fact hold for all commutative al-
gebraic groups over finite fields, and not just semiabelian varieties. This is
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a very different situation than the Mordell-Lang theorem in characteristic
zero, which fails, for example, in any vector group of dimension greater than
1 (vector groups do not pose a problem here because in positive character-
istic their finitely generated subgroups are all finite). For a more detailed
discussion of the Mordell-Lang problem in characteristic 0 for commutative
algebraic groups, we refer the reader to [GHSZ19].

We record the aforementioned generalisation in this section for the sake
of completeness. But first, let us make precise what is meant by “translates
of sums of F -orbits”. The following notation and terminology will be used
throughout the paper.

Definition 2.1. Suppose M is an abelian group equipped with an endo-
morphism F : M →M . Then by an F -orbit we mean a set of the form

S(a; δ) :=
{
Fnδa : n < ω

}
where a ∈ M and δ is a fixed positive integer. That is, it is the orbit of an
element of M under the iterates of a fixed power of F . We will denote the
set-sum of F -orbits as follows:

S(a1, . . . , ar; δ1, . . . , δr) := S(a1; δ1) + S(a2; δ2) + · · ·+ S(ar; δr).

Finally, we denote by S(M,F ) the collection of all translates of sums of
F -orbits; i.e., of subsets of M of the form a+ S(a1, . . . , ar; δ1, . . . , δr) where
a, a1, . . . , ar ∈ M and δ1, . . . , δr are positive integers.1

So, in the conclusion of Theorem 1.1, when we say that “S ⊆ Γ is a trans-
late of a sum of F -orbits” we mean that S is in S(G,F ). This description of
X∩Γ differs on the face of it from the original in two ways. First of all, The-
orem 7.8 of [MS04] is stated in terms of “F -cycles” rather than F -orbits,
but it is explained there (in Lemma 7.1 and the paragraph following the
proof of the Theorem 7.8, of that paper) how one can rephrase it in terms of
F -orbits, and this formulation is more suitable for our purposes. Secondly,
the assumption is made in [MS04, Theorem 7.8] that Γ ≤ G(K) where K
is a regular function field extension of Fq. But, as explained in [MS04, Re-
mark 7.11], it is not hard to see that one can always attain this situation
at the expense of replacing q by qr and F by F r, for an appropriate choice
of r > 0. Since every F r-orbit is an F -orbit this does not take us out of
S(G,F ).

Here is the promised generalisation to arbitrary commutative algebraic
groups.

Theorem 2.2. Let G be any commutative algebraic group defined over a
finite field Fq, let F : G → G be the q-power Frobenius, let X ⊆ G be a
closed subvariety defined over a field extension of Fq, and let Γ ≤ G be a
finitely generated subgroup which is also invariant under F . Then X ∩ Γ

1In [MS04], finite unions of sets from S(M,F ) were called “cycle-free groupless F -sets”
and the collection of such were denote by OrbM . We will not use this terminology here.
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is a finite union of sets of the form S + Λ where S ⊆ Γ is in S(G,F ) and
Λ = H ∩ Γ for some algebraic subgroup H ≤ G over a finite field.

Proof. When G is a semiabelian variety this is precisely Theorem 1.1. (One
takes H to be the Zariski closure of Λ, which, by rigidity of semiabelian
varieties, is an algebraic subgroup over a finite field.) It remains therefore
to reduce the general case to the case of semiabelian varieties.

First of all, we observe that the desired description of X ∩ Γ is preserved
under images by isogeny. That is, suppose G′ is a commutative algebraic
group and φ : G′ → G is a surjective morphism of algebraic groups with
finite kernel, all defined over a finite field. Supposing the theorem holds of
G′, we prove it of G. Let r > 0 be such that G′ and φ are defined over Fqr ,
and consider X ′ := φ−1(X) and Γ′ := φ−1(Γ). Note that Γ′ is still a finitely

generated group since kerφ is finite. So we have that X ′ ∩ Γ′ =
⋃̀
i=1

S′i + Λ′i

where each S′i ⊆ Γ′ is in S(G′, F r) and each Λ′i ≤ Γ′ is of the form H ′i ∩ Γ′

where H ′i is an algebraic subgroup over Falg
q . Now, one observes that φ(S′i) ∈

S(G,F r) ⊆ S(G,F ) and φ(Λ′i) = φ(H ′i ∩ Γ′) = φ(H ′i) ∩ Γ, while φ(H ′i) is an

algebraic subgroup of G over Falg
q . Hence X ∩ Γ =

⋃̀
i=1

φ(S′i) + φ(Λ′i) has the

desired form.
Now, suppose G is a commutative algebraic group over a finite field.

According to [Bri17, §5.6], there exists a largest semiabelian subvariety G0 ⊂
G and a largest connected unipotent algebraic subgroup U ⊂ G, such that
G = U+G0 and U∩G0 is finite. In particular, the group multiplication map
is an isogeny φ : U × G0−→G. Because of their characteristic properties,
both G0 and U are also defined over finite fields. We may therefore assume
that G = U×G0. Note that U is of finite exponent; in characteristic p every
unipotent commutative algebraic group is a p-group.

Since Γ is finitely generated, so is its projection on the first factor of
U ×G0. Since U has finite exponent, that projection must be finite. Letting
Γ0 := Γ ∩ ({0} ×G0), we obtain that Γ is a finite union of cosets of Γ0, say,

Γ =
⋃̀
i=1

(hi + Γ0). Therefore X ∩ Γ =
⋃̀
i=1

(hi + ((−hi +X) ∩ Γ0)). Now,

for each i = 1, . . . , `, letting Xi := (−hi + X) ∩ ({0} ×G0) and applying
the semiabelian case to Xi ∩ Γ0 in G0, we get the desired description for
X ∩ Γ. �

Remark 2.3. In the statement of Theorem 2.2, and indeed throughout this
paper, we are implicitly identifying G with the set of its U-points where
U is a sufficiently large algebraically closed field that serves as a universal
domain for algebraic geometry in characteristic p. In fact, however, the
sets S appearing in the conclusion of the theorem can be taken to be in
S(G(L), F ) where L is any algebraically closed field such that Γ ≤ G(L).
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Remark 2.4. Next, we discuss briefly the case when one drops the require-
ment that Γ is invariant under the Frobenius endomorphism. For arbitrary
finitely generated subgroups Γ of semiabelian varieties G, it is no longer true
that the intersection X(K) ∩ Γ is a finite union of sets of the form S + H,
where S ∈ S(G,F ) and H is a subgroup of Γ; in fact, the intersection can
be quite wild (see [GY23, Example 2.3]). The second author was able to
prove (see [Ghi24, Theorem 1.9]) a structure theorem for the intersection
X(K) ∩ Γ when Γ is a finitely generated subgroup, no longer F -invariant.
The building blocks of the structure theorem from [Ghi24] are no longer
F -orbits, but instead we have sets of the form

{an · P : n ≥ 1} ,

where P is some given point in G, while {an}n≥1 is a linear recurrence se-
quence of integers with the extra property that the roots of its characteristic
equation are distinct algebraic integers of the form rm, where m is a positive
integer and r is a root of the equation witnessing the fact that F is integral
over Z inside End(G).

3. F -automaticity

Our goal is to give an effective version of Theorem 2.2. Furthermore, we
will be able to weaken the assumption that Γ is finitely generated as a group
to it being finitely generated as a Z[F ]-module. Note that in the original
Mordell-Lang context, when G is assumed to be semiabelian, the map F is
integral over Z and hence every finitely generated Z[F ]-submodule is finitely
generated as a group. This is no longer true for arbitrary commutative
algebraic groups, and the generalisation is both natural and significant (see
the discussion at the end of the Introduction for an application of the general
case).

Our effectivity will come from explicitly describing a finite automaton
that recognises the sets X ∩ Γ. In order to make sense of this we need
to review the notion of “F -automaticity” developed by the first and third
authors in [BM19]. That, as well as the generalisation of the relevant results
of [BM19] from finitely generated F -invariant groups to finitely generated
Z[F ]-modules, are the goals of this section.

Definition 3.1 (Expansions). Suppose M is an abelian group, F : M →M
is an injective endomorphism, and Σ ⊆ M is finite. Given a word w =
x0x1 · · ·xm ∈ Σ∗ we set

[w]F := x0 + Fx1 + · · ·+ Fmxm ∈ M

and call this the F -expansion of w. Given L ⊆ Σ∗ we denote by [L]F the
set of F -expansions of the words in L. That is, [L]F := {[w]F : w ∈ L}.
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Definition 3.2 (Spanning sets). Suppose M is an abelian group and F :
M →M is an injective endomorphism. By an F -spanning set for M we will
mean a finite subset Σ ⊆M satisfying the following properties:2

(i) [Σ∗]F = M ,
(ii) Σ contains 0 and is symmetric (i.e., if x ∈ Σ then −x ∈ Σ),
(iii) for all x1, . . . , x5 ∈ Σ there exist t, t′ ∈ Σ such that x1 + · · · + x5 =

t+ Ft′, and
(iv) If x1, x2, x3 ∈ Σ and x1 + x2 + x3 ∈ F (M), then there exists t ∈ Σ

such that x1 + x2 + x3 = Ft.

If Σ satisfies all but property (iv) then we will say it is a weak spanning set.

The key property here is (i) which says that every element of M has an
F -expansion using Σ as “digits”. Note that we do not ask for this expansion
to be unique. Conditions (ii) and (iii) are technically useful and can in
practice always be attained by expanding Σ. Condition (iv) is a strong form
of “F -purity” of Σ in M , and while much of the basics can be done without
it, the full development of F -automaticity does require it.

Definition 3.3 (Automaticity). Suppose M is an abelian group and F is
an injective endomorphism of M such that M admits an F r-spanning set
for some r > 0. A subset S ⊆ M is defined to be F -automatic if for some
r > 0 and some F r-spanning set Σ, the set of words {w ∈ Σ∗ : [w]F r ∈ S} is
a regular language (see [AS03, Chapter 4]). In other words, there is a finite
automaton A which takes as inputs finite words on the alphabet Σ, which
it reads left to right, such that a word x0x1 · · ·xm is accepted by A if and
only if x0 + F rx1 + · · ·+ Fmrxm ∈ S.

Remark 3.4. (a) Already in [BM19, Proposition 6.3] it is shown that
this notion does not depend on the choice of F r-spanning set Σ. But
in fact, as Hawthorne later observed in [Haw22, Proposition 2.6], it
does not depend on r either. That is, if S is F -automatic then for
any r > 0 and any Σ an F r-spanning set, {w ∈ Σ∗ : [w]F r ∈ S} is
regular.

(b) If M has an F r-spanning set then it has an F rk-spanning set for
every k > 0, this is [BM19, Lemma 5.7]. It follows that a subset is
F -automatic if and only if it is F `-automatic for some, equivalently
for all, ` > 0.

We can only discuss F -automaticity in M if M admits an F r-spanning
set for some r > 0 in the first place. While this is not always the case, it is
shown in [BM19] to be so in the context of Theorem 2.2.

Fact 3.5 (Bell-Moosa [BM19]). Suppose G is a commutative algebraic group
over Fq and F : G→ G is the endomorphism induced by the q-power Frobe-
nius map. Fix K a function field over Fq. Suppose Γ ≤ G(K) is a subgroup

2This differs slightly from [BM19, Definition 5.1] where injectivity of F was not assumed
but an additional condition – which follows from injectivity together with our (iv) above
– appears.
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that is preserved by F and such that Γ/F (Γ) is finite. Then Γ has an F r-
spanning set for some r > 0.

This appears as Corollary 5.9 of [BM19] but for Γ ≤ G a finitely generated
(F -invariant) subgroup of G. However, an inspection of the proof given there
shows that the only uses of finite-generatedness are to embed Γ ≤ G(K) for
some function field K and to ensure that Γ/F (Γ) is finite. (To see that the
latter is a consequence of finite-generatedness, note that F (Γ) and Γ will
have the same rank and hence the quotient, being finitely generated, will
be finite.) This justifies our more general formulation, which will be useful
when we consider the case of finitely generated Z[F]-modules below.

But first, let us observe that combining Theorem 2.2 with some work
in [BM19], we obtain an F -automaticity result in the context of Mordell-
Lang for commutative algebraic groups over finite fields:

Corollary 3.6. Let G be a commutative algebraic group over a finite field
Fq, let F : G→ G be the q-power Frobenius, let X ⊆ G be a closed subvariety
defined over a field extension of Fq, and let Γ ≤ G be an F -invariant finitely
generated subgroup. Then X ∩ Γ is F -automatic in (Γ, F ).

Proof. This is basically Theorem 2.2 together with [BM19, Theorem 6.9],
but some words of explanation are in order. First of all, by Fact 3.5, Γ does
admit an F r-spanning set for some r > 0, so the question of F -automaticity
makes sense.

Theorem 2.2 tells us that X ∩ Γ =

m⋃
i=1

Si + Λi where each Si ⊆ Γ is in

S(G,F ) and each Λi ≤ Γ is of the form Hi ∩ Γ where Hi is an algebraic

subgroup over Falg
q . We need to show that these sets are F -automatic. To

do so we apply Theorem 6.9 of [BM19] which says, under precisely the
assumptions of this corollary, that the “F -subsets” of Γ are F -automatic.
So we must first introduce this additional notion from [MS04].

Given any abelian group M together with an endomorphism F : M →M ,
an F -cycle in M is a set of the form

C(a, δ) := {a+ F δ(a) + F 2δ(a) + · · ·+ Fnδ(a) : n < ω},

where a ∈M and δ is a positive integer. An F -subset of M is a finite union
of sets of the form C + Λ where Λ is an F -invariant subgroup of Γ and
C is a translate of a finite sum of F -cycles. The connection between F -
cycles and F -orbits is made in [MS04]. First of all, every F -orbit is a finite
union of translates of F -cycles; indeed, it is easily checked that S(a; δ) =
{a}∪

(
a+C(F δ(a)−a; δ)

)
. But more is true: a short combinatorial argument

given in Lemma 2.9 of [MS04] shows that if S ⊆M and S ∈ S(M ′, F ), where
M ′ is a an extension of M to which F extends, then in fact S is a finite
union of translates of sums of F -cycles in M itself.

The Si appearing in our description of X ∩ Γ are subsets of Γ that come
from S(G,F ). So by the above remarks, they are each a finite union of
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translates of F -cycles in Γ. Note, however, that the Λi appearing in X ∩ Γ
need not be F -invariant, so we do not necessarily get that X ∩ Γ is an
F -subset.

But the Λi will be F `-invariant for some ` > 0 because Λi = Hi ∩ Γ and
Hi is an algebraic subgroup defined over a finite field. And the Si are also
finite unions of translates of F `-cycles. This is because, in general, as long
as F δ − 1 is not a zero divisor in Z[F ] ⊆ End(M) for any positive integer δ,
then every F -cycle in M is a finite unions of translates of F `-cycles (this is
also done in [MS04] but see the explanation in [BM19, Fact 2.3]). To observe
that F δ− 1 is not a zero divisor in our context see the proof of Theorem 6.9
of [BM19].

In conclusion then, X ∩ Γ is an F `-subset of Γ for some ` > 0. So we
get by [BM19, Theorem 6.9] that X ∩ Γ is F `-automatic in (Γ, F `). By
Remark 3.4, it is thus F -automatic in (Γ, F ), as desired. �

Remark 3.7. The above argument is not effective. This is because of
its reliance on the isotrivial Mordell-Lang theorem of [MS04]; we did not
construct an automaton that recognises X ∩ Γ. In Section 6 we will do
precisely that.

As mentioned before, we want to work in the more general setting where
Γ is a finitely generated Z[F]-submodule of G. But even to make sense of
F -automaticity in that context, we have to prove that such Γ also admit
spanning sets. This is the reason we presented Fact 3.5 with weaker hy-
potheses than appear in [BM19]. We only need to show that Γ/F (Γ) is
finite. That is Theorem 3.10 below, but we need a preliminary proposition.

Proposition 3.8. Let G be a commutative algebraic group over Fq, F :
G → G the q-power Frobenius, K a finitely generated extension of Fq, and

Γ ≤ G(K) a finitely generated Z[F ]-submodule. Let Γ̃ be the F -pure hull of
Γ in G(K). That is,

Γ̃ := {x ∈ G(K) : there exists n ≥ 0 such that Fn(x) ∈ Γ}.

Then there exists n0 ≥ 0 such that Fn0(Γ̃) ⊆ Γ for j = 1, 2.

Proof. First of all, observe that if we have an exact sequence

0 // G1
// G

π
// G2

// 0

of commutative algebraic groups over Fq and the result holds of G1 and G2

then it holds of G. Indeed, let Γ1 := Γ∩G1 and Γ2 := π(Γ). Then, for each
j = 1, 2, Γj is a finitely generated Z[F ]-submodule of Gj(K), and so suppose

nj is such that Fnj (Γ̃j) ⊆ Γj . One checks readily that Fn1+n2(Γ̃) ⊆ Γ.
Now, by Chevalley’s theorem, there is a short exact sequence

0 // L // G
π
// A // 0
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over Fq, where L is a linear algebraic group and A is an abelian variety. By
the previous paragraph we have thus reduced the proposition to the case of
abelian varieties and commutative linear algebraic groups.

Consider the case when G = A is an abelian variety over Fq. The Lang-

Néron theorem [LN59] tells us that A(K), and hence Γ̃, is a finitely generated
group. Fixing a finite set of generators, and letting n be large enough that
Fn takes each of them into Γ, we see that Fn(Γ̃2) ⊆ Γ2, as desired.

We may therefore assume that G = L is a commutative linear algebraic

group over Fq. Then G admits a decomposition series over Falg
q where each

quotient is isomorphic to either Ga or Gm (see [Mil17, Proposition 17.38]).
Working with a power of F if necessary, we may assume this decomposition
series is over Fq. Hence, using short exact sequences as in the first paragraph
of this proof (and induction on dimG) it remains to prove the proposition
in the cases when G = Gm and G = Ga.

Consider therefore the case of G = Gm. We claim that, as in the case of
abelian varieties, Γ̃ is a finitely generated group, which, as in that case, will
suffice. Let S be the finite set of places v of K such that the generators of Γ
are not v-adic units, and let E be the S-unit group of K. Since Γ ≤ E and
E is F -pure in G(K), we have that Γ̃ ≤ E. But by [Ros73], E is a finitely
generated group.

Finally, it remains only to consider the case when G = Ga. Fix generators
γ1, . . . , γr of Γ. Our strategy is described by the following reduction.

Claim 3.9. It suffices to prove that there exists a finitely generated Z[F ]-
module Λ satisfying the following properties:

(i) Γ ⊆ Λ ⊆ Γ̃; and
(ii) for some generators λ1, . . . , λs for Λ as a Z[F ]-module, if

∑s
i=1 ciλi =

F (x) for some ci ∈ Fp and some x ∈ Ga(K) then x ∈ Λ.

Proof of Claim 3.9. First of all, condition (i) yields that Λ̃ = Γ̃, where Λ̃ is
(as usually) the F -pure hull of Λ in Ga(K).

Now, condition (ii) from above yields that Λ̃ = Λ. Indeed, pick x ∈ Ga(K)
and also, let n ≥ 0 be minimal such that Fn(x) ∈ Λ; furthermore, assume
n > 0 since otherwise we would have that x ∈ Λ, as claimed. Now, since
Fn(x) ∈ Λ and the λ1, . . . , λs generate Λ as a Z[F ] module, there exists
some k ≥ 0 and Fp-linear combinations of the λj ’s, say ξ0, . . . , ξk, such that

Fn(x) = ξ0 + F (ξ1) + · · ·+ F k(ξk).

But then condition (ii) above yields that ξ0 = F (ξ′0) (note that we assumed
n > 0) for some ξ′0 ∈ Λ. So, actually Fn−1(x) ∈ Λ, which contradicts the

minimality of n. Therefore, indeed n = 0 and so, Λ̃ = Λ.
We have that Λ = Γ̃. But there exists n1 ≥ 0 such that Fn1(λj) ∈ Γ for

each j = 1, . . . , s. Hence Fn1(Γ̃) ⊆ Γ, as desired. �

Now, if λi = γi (for i = 1, . . . , r) were to satisfy properties (i)-(ii) from
Claim 3.9, then we are done already (and in this case, as previously observed,
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we would actually have that Γ = Γ̃). So, we assume that condition (ii) above
is not satisfied by λi = γi (since clearly condition (i) is). This means that
there exist some c1, . . . , cr ∈ Fp and there exists δ ∈ Ga(K) \ Γ such that

F (δ) = δq = c1γ1 + · · ·+ · · · crγr.

Let h(·) be the Weil height associated to the function field K/Fq (note that
if K is a finite extension of Fq, then the conclusion we seek would be obvious
because then Ga(K) is a finite set). The above relation yields that for each
place v of the function field K/Fq, we would have that

max{1, |δ|v} ≤ max{1, |γ1|v, . . . , |γr|v}.

Let i1 ∈ {1, . . . , r} such that ci1 6= 0. Then we replace the tuple (γ1, . . . , γr)
by (λ1, . . . , λr) where each λi = γi for i 6= i1, while λi1 := δ. Clearly, the
Z[F ]-module Λ spanned by λ1, . . . , λr satisfies condition (i) from Claim 3.9.
If also condition (ii) were to be satisfied by the generators λ1, . . . , λr of Λ,
then we would be done. Otherwise, we proceed as before. However, note
that each time when we replace a set λ1, . . . , λr by another set η1, . . . , ηr
(generating a larger Z[F ]-submodule of Γ̃), the Weil height of the point

Pλ := [1 : λ1 : · · · : λr] ∈ Pr(K)

does not increase (note that the Weil height of the above point is computed
as
∑

v log max{1, |λ1|v, · · · , |λr|v}, after a suitable normalisation of the ab-
solute values v of the function field K/Fq). Since Northcott’s Theorem
yields the finiteness of the number of points of bounded Weil height from
Pr(K), we conclude that after finitely many steps, we no longer produce
new tuples (λ1, . . . , λr) beyond the tuples already produced in our previous
steps. Therefore, at some step, we must have the two conditions (i)-(ii) from
Claim 3.9 are satisfied.

This concludes our proof of the Proposition 3.8. �

We can now prove that in our context spanning sets exist.

Theorem 3.10. Suppose G is a commutative algebraic group over a finite
field Fq and F : G → G is the q-power Frobenius. If Γ ≤ G is a finitely
generated Z[F ]-submodule then Γ/F (Γ) is finite. In particular, Γ admits an
F r-spanning set for some r > 0.

Proof. Let us deal first with the case when the following properties hold:

(1) there is an exact sequence

0 // L // G
π
// A // 0

over Fq, where L = U × Gt
m for some commutative unipotent alge-

braic group U , and A is an abelian variety; and
(2) there is a function field K over Fq such that Γ ≤ G(K) is F -pure

in G(K) in the sense that if x ∈ G(K) is such that F (x) ∈ Γ then
x ∈ Γ.
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Afterwards we will remove these assumptions.
Note, first of all, that for some s > 0 we have [qs](L(K)) ⊆ F (L(K)).

This is because multiplication by some power of p kills the commutative
unipotent algebraic group U , and on Gt

m multiplication by q agrees with F .
We claim that there exists n > 0 such that [n](G(K)) ⊆ F (G(K)). In-

deed, let Λ := π(G(K)) ≤ A(K). By the Lang-Neron theorem, A(K), and
hence Λ, is a finitely generated group. Hence Λ/F (Λ) is finite. Let m > 0 be
such that mΛ ⊆ F (Λ). We show that n := qsm works. Suppose x ∈ G(K).
Then

π(mx) = mπ(x)

= F (λ) for some λ ∈ Λ

= F (π(y)) for some y ∈ G(K)

So mx − F (y) ∈ L(K). Hence qsmx − F (qsy) = F (z) for some z ∈ L(K),
so that qsmx = F (qsy + z) ∈ F (G(K)), as desired.

Now, by the F -purity of Γ in G(K), this implies that nΓ ⊆ F (Γ). Hence
Γ/F (Γ) is n-torsion. But Γ/F (Γ) is a finitely generated group as Γ is a
finitely generated Z[F ]-module. So Γ/F (Γ) is finite.

Next, we consider the general case; that is, we drop assumptions (1)
and (2). By the structure of commutative linear algebraic groups (see [Mil17,
Theorem 17.17]), together with Chevalley’s theorem, we know that there is
an ` ≥ 1 such that G does satisfy property (1) over Fq` . Let K be a function
field extension of Fq` such that Γ ≤ G(K). Note that Γ is a finitely generated

Z[F `]-submodule of G(K); one can take {F i(γj) : 0 ≤ i < `, 1 ≤ j ≤ k}
as generators where {γ1, . . . , γk} generate Γ as a Z[F ]-module. Let Γ̃ be
the F `-pure hull of Γ in G(K). By Proposition 3.8 there is an n0 ≥ 0 such

that F `n0Γ̃ ≤ Γ. In particular, Γ̃ is a finitely generated Z[F `]-submodule of

G(K) in which it is F `-pure. That is, (G, q`, F `, Γ̃,K) satisfies properties (1)

and (2). Hence, by the first part of the proof, we have that Γ̃/F `(Γ̃) is finite.

Applying the Z[F `]-isomorphism F `n0 , we have that Γ̃/F `(n0+1)(Γ̃) is finite

too. As F `(n0+1)Γ̃ ≤ F `Γ ≤ FΓ ≤ Γ ≤ Γ̃, we have that Γ/F (Γ) is finite.
The “in particular” clause follows by Fact 3.5. �

4. Explicit weak spanning sets

Theorem 3.10 does not explicitly construct an F r-spanning set; indeed, we
are not aware of an effective procedure for doing so except in the case of Γ =
G(K), see §7.4 below. In general, we can, however, explicitly construct (r,Σ)
where Σ is a weak F r-spanning set. Recall that this means Σ satisfies all
but property (iv) of Definition 3.2. It will turn out that weak spanning sets
suffice for giving an effective description of X ∩ Γ in the isotrivial Mordell-
Lang setting.

We begin with a general construction of a weak spanning set.
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Lemma 4.1. Suppose (M,F ) is an abelian group with an injective endo-
morphism. Assume there exist positive integers r, b and integers b1, . . . , br,
satisfying:

(i) bx =

r∑
i=1

biF
i(x) for all x ∈M , and

(ii) |bi| <
b

6r
for all i = 1, . . . , r.

Suppose M is generated as a Z[F]-module by u1, . . . , us. Then

(1) Σ :=


s∑
i=1

r−1∑
j=0

ai,jF
j(ui) : ai,j ∈ Z, 0 ≤ |ai,j | < 6b


is a weak F r-spanning set for M .

Proof. Note that every element of M is of the form
∑s

i=1

∑`i
j=0 ci,jF

j(ui)

and that if each |ci,j | < 6b then this has an F r-expansion with digits in
Σ. So, toward a contradiction, suppose that there is an element x =∑s

i=1

∑`i
j=0 ci,jF

j(ui) ∈ M that does not have an F r-expansion with digits

in Σ and such that N := maxi,j |ci,j | is least such. So N ≥ 6b. Dividing each
ci,j by b we write ci,j = bc′i,j + ri,j where |ri,j | < b. Then x = y + z where

y =
∑s

i=1

∑`i
j=0 c

′
i,jF

j(bui) and z =
∑s

i=1

∑`i
j=0 ri,jF

j(ui). Using (i) we get

y =

s∑
i=1

`i∑
j=0

r∑
k=1

c′i,jbkF
j+k(ui)

=
s∑
i=1

`i+r∑
`=0

di,`F
j(ui)

where di,` :=
∑
j+k=`

c′i,jbk. But by (ii) and the fact that |c′i,j | ≤ N
b , we have

|di,`| ≤ r
N

b

b

6r
=
N

6
.

Since the coefficients of z also satisfy |ri,j | < b ≤ N
6 , we have that

x = y + z =
s∑
i=1

Li∑
j=0

ei,jF
j(ui)

where ei,j ≤ N
6 + N

6 < N contradicting the minimal choice of N .
Next we show if x1, . . . , x5 ∈ Σ then x := x1 + · · ·+x5 = t+F rt′ for some

t, t′ ∈ Σ. We can write x =
∑s

i=1

∑r−1
j=0 ai,jF

j(ui) with each |ai,j | < 30b.

As before, we divide by b, writing ai,j = ba′i,j + ri,j with |ri,j | < b. Hence



16 JASON BELL, DRAGOS GHIOCA, AND RAHIM MOOSA

x = y + z where z :=
∑s

i=1

∑r−1
j=0 ri,jF

j(ui) and

y :=
s∑
i=1

r−1∑
j=0

a′i,jF
j(bui)

=

s∑
i=1

r−1∑
j=0

r∑
k=1

a′i,jbkF
j+k(ui)

=
s∑
i=1

2r−1∑
`=0

di,`F
j(ui)

where di,` :=
∑
j+k=`

a′i,jbk, and so |di,`| < r30 b
6r = 5b. We have that

x =
s∑
i=1

r−1∑
j=0

(ri,j + di,j)F
j(ui) + F r

 s∑
i=1

r−1∑
j=0

di,jF
j(ui)


and all coefficients are bounded by 6b. So, t :=

∑s
i=1

∑r−1
j=0(ri,j +di,j)F

j(ui)

and t′ :=
∑s

i=1

∑r−1
j=0 di,jF

j(ui) are in Σ and x = t+ F rt′, as desired.
Finally, it is clear that Σ contains 0 and is symmetric. Hence Σ satisfies all

but property (iv) of Definition 3.2, and is thus a weak F r-spanning set. �

We can now effectively construct weak spanning sets in the isotrivial
Mordell-Lang setting:

Proposition 4.2. Suppose G is a commutative algebraic group over Fq,
presented to us as a Zariski open subset of a Zariski closed subset of Pn.
Let F : G → G be the q-power Frobenius. Then conditions (i) and (ii) of
Lemma 4.1 hold of M = G with an effective choice of b and r as a function
of n. In particular, if Γ ≤ G is a Z[F]-submodule generated by u1, . . . , us
then formula (1) of that lemma gives an explicit weak F r-spanning set for
Γ.

Proof. By Chevalley’s theorem, there is a short exact sequence

0 // L // G
π
// A // 0

over Fq, where L is a linear algebraic group and A is an abelian variety. On
the other hand, L = U ×M where M is isomorphic to a multiplicative torus

over Falg
q and U is unipotent; see, for example, [Bri17, Theorem 5.3.1].

Choose ` > 0 sufficiently large so that

(a) M is isomorphic to a multiplicative torus over Fq` , and

(b) q` > q
`
2 6`(2n+ 1)4n.

It is pointed out in Proposition A.1 below that this can be done effectively;
that ` = max(21111!, 2nn!) satisfies (a).

We show that b := q`(n+1) and r := `(2n + 1) satisfy the conditions of
Lemma 4.1.
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Let a = dimA and u = dimU . Then qu annihilates U by unipotency, and
hence so does q`u. By (a) we have that (F `− q`) annihilates M . As A is an
abelian variety over Fq` we have that F ` on A is the root of a monic integer

polynomial of the form Q(x) :=
∑2a

i=0 cix
i where |c0| = q`a, c2a = 1, and

|ci| ≤
(

2a

i

)
q`a−

`i
2 for all i.(2)

See [Mil, Theorem 1.1, Chapter 2, p. 75]. In any case, on G,

0 = q`u(F ` − q`)Q(F `)

= q`u

(
2a∑
i=0

ciF
`i+`

)
− q`u+`

(
2a∑
i=0

ciF
`i

)
.

so that

q`(u+1)c0 =
2a−1∑
i=0

(q`uci + q`(u+1)ci+1)F `(i+1) + q`uF `(2a+1).

Noting that u + a ≤ dimG ≤ n, we can multiply through by q`(n−u−a) to
get

(3) q`(n−a+1)c0 =
2a−1∑
i=0

(q`(n−a)ci + q`(n−a+1)ci+1)F `(i+1) + q`(n−a)F `(2a+1).

Note that |q`(n−a+1)c0| = q`(n+1) = b and the degree in F on the right hand
side is `(2a+ 1) ≤ `(2n+ 1) = r. So to show that conditions (i) and (ii) of
Lemma 4.1 hold with b and r it suffices to show that all the coefficients on
the right hand side of (3) are strictly bounded in absolute value by b

6r .

First consider the coefficient of F `(2a+1) in (3), which is q`(n−a). By con-
dition (b) on the choice of `, q` > 6`(2n+ 1). Thus

q`(n−a) =
q`(n+1)

q`(a+1)
≤ q`(n+1)

q`
<

q`(n+1)

6`(2n+ 1)
=

b

6r

as desired.
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Next, for each i = 0, . . . , 2a − 1, consider the coefficient of F `(i+1). It
satisfies

|q`(n−a)ci + q`(n−a+1)ci+1| ≤ q`(n−a)(|ci|+ q`|ci+1|)

≤ q`n
((

2a

i

)
q−

`i
2 +

(
2a

i+ 1

)
q`−

`i+`
2

)
by (2)

= q`(n+ 1
2

)

((
2a

i

)
q−

`i+`
2 +

(
2a

i+ 1

)
q−

`i
2

)
≤ q`(n+ 1

2
)

((
2a

i

)
+

(
2a

i+ 1

))
≤ q`(n+1)

6`(2n+ 1)
6`(2n+ 1)q−

`
2 4n as a ≤ n

<
b

6r
by choice of ` satisfying property (b)

as desired. �

Remark 4.3. It may be worth extracting the abstract group-theoretic con-
tent of the above proof. Let (M,F ) be an abelian group with an injective
endomorphism. Suppose there is a polynomial P (x) ∈ Z[x] such that P (F )
annihilates M , and such that all the roots of P have modulus at least α > 1.
Then we can effectively find positive integers b and r, in terms of P and α,
which will satisfy the hypotheses of Lemma 4.1. In particular, given a fi-
nite set ∆ ⊆ M , we can effectively find a weak F r-spanning set for the
Z[F]-submodule of M generated by ∆.

Proof. Write P (x) = C(x − c1) · · · (x − cd), where C is a nonzero integer
and each ci is an algebraic number of modulus at least α. Let B = c1 · · · cd.
So B is a rational number of modulus greater than 1. We now pick a
positive integer N with the property that αN > 6Nd2d. Now, P (x) divides
the integer polynomial Q(x) := CN (xN − cN1 ) · · · (xN − cNd ), so that Q(F )

annhilates M as well. Observe that the constant coefficient of Q is CNBN

and every other coefficient is a sum of at most 2d terms that are all at
most |CB|N/αN in modulus. Hence, taking r = Nd, b = |CB|N , and
b1, . . . , br the other coefficients of Q (or their negatives), we have satisfied
the hypotheses of Lemma 4.1. Formula (1) of that lemma now gives an
explicit weak F r-spanning set. �

5. A finiteness result on Frobenius pullbacks

The automaton we build in the next section to recognising X ∩ Γ will be
based on a certain finiteness result. We need two bits of notation to state
the proposition:

First, given a variety W over Fq, with q a power of a prime p, and a closed
subvariety V ⊆W defined over a field extension of Fq, and a natural number
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`, let us denote by V q−` the transform of V by the inverse of the q-power
Frobenius on W . So locally, in an affine chart of W , this means replacing
the coefficients of the defining equations of V with their q` roots.

Secondly, if (M,F ) is an abelian group equipped with an injective endo-
morphism and Σ ⊆M is finite then by Σ(`, F ) we mean3 the set of elements
of M of the form [w]F where w ∈ Σ∗ is a word of length at most `.

Proposition 5.1. Suppose G is a commutative algebraic group over a finite
field Fq, F : G→ G is the endomorphism induced by the q-power Frobenius
map, and X is a closed subvariety of G. Suppose r > 0 is sufficiently large4,
K is a finitely generated extension of Fqr over which X is defined, and
Σ ⊆ G(K) is finite. Consider the following collection of subsets of G(K),

TK :=
{

(X − γ)q
−`r

(K) : ` ≥ 0, γ ∈ Σ(`, F r)
}

Then TK is finite.

The main technique for proving this proposition comes from §5 of [Der07]
where it is called “Frobenius splitting”. The first point is that while the

(X − γ)q
−`r

are varieties defined over the (ever increasing) field extensions

Kq−`r , the set (X − γ)q
−`r

(K) agrees with the K-points of a variety defined
over K, namely the transform of X − γ by “lambda functions”. We now
make this precise.

Fix K a finitely generated extension of Fq. Since K is of finite degree of
imperfection, we can fix a linear basis 1 = h1, . . . , hm for K over Kq. We
obtain additive operators λ1, . . . , λm on K with the property that for all
x ∈ K,

x = λ1(x)qh1 + λ2(x)qh2 + · · ·+ λm(x)qhm.

Definition 5.2 (Lambda functions). For ` ≥ 0, by an order ` lambda func-
tion5 we will mean an `-fold composition of functions from {λ1, . . . , λm}.
We will denote the set of these functions by Λ(`) := {λi1 ◦ λi2 ◦ · · · ◦ λi` :
each 1 ≤ ij ≤ m}.

They have the following multiplicative property.

Lemma 5.3. Suppose P ∈ K[x] is a polynomial in the n variables x =
(x1, . . . , xn). Let λ ∈ Λ(`) and a ∈ Kn. Then

λ
(
P (aq

`
)
)

= P λ(a)

where P λ denotes the polynomial obtained by applying λ to the coefficients
of P .

In particular, P (aq
`
) = 0 if and only if P λ(a) = 0 for all λ ∈ Λ(`).

3In [BM19] this was denoted by the somewhat ambiguous Σ(`).
4As the proof shows, we need r such that qr is an upper bound on the total degree of

a defining set of polynomials over Fq for the group multiplication on G.
5Our terminology here is borrowed from the model theory of separably closed fields.
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Proof. Note first of all that λi(uv
q) = λi(u)v for all u, v ∈ K and i =

1, . . . ,m. Indeed, u = λ1(u)qh1 + · · ·+ λm(u)qhm and so

uvq =
(
λ1(u)v

)q
h1 + · · ·+

(
λm(u)v

)q
hm.

We now prove the ` = 1 case of the lemma for monomials P (x) by induction
on the total degree. The case of P a constant is clear. Writing P (x) =
Q(x)xj for a monomial Q we have

λi
(
P (aq)

)
= λi

(
Q(aq)aqj

)
= λi(Q(aq))aj = Qλi(a)aj = P λi(a)

as desired. By linearity, the ` = 1 case of the lemma follows. By induction

on ` the general case follows: λ ◦ λi
(
P (aq

(`+1)
)
)

= λ
(
P λi(aq

`
)
)

= P λ◦λi(a).
The left-to-right direction of the “in particular” clause is an immediate

corollary. For the converse, we need to observe that for u ∈ K, if λ(u) = 0
for all λ ∈ Λ(`) then u = 0. When ` = 1 this is clear by choice of λ1, . . . , λm,
and the general case follows by induction. �

Corollary 5.4. Suppose V ⊂ An is a variety defined by the vanishing of
polynomials P1, . . . , Ps ∈ K[x1, . . . , xn]. Then

V q−`(K) = {a ∈ Kn : P λi (a) = 0, i = 1, . . . , s, λ ∈ Λ(`)}.

Proof. This is immediate from Lemma 5.3. �

Our proof of Proposition 5.1 will take the following form: Working in an
affine chart we find bounds, independently of `, on the degrees and “heights”
of the coefficients of the polynomials P λ1 , . . . , P

λ
s as λ ranges in Λ(`) and

Zeros{P1, . . . , Ps} = X−γ ranges among the translates ofX by γ ∈ Σ(`, F r).

Since, by Corollary 5.4, (X − γ)q
−`

(K) is the set of K-points of the variety
defined by these P λi , the degree and height bounds on the P λi will imply

that there are only finitely many possibilities for (X − γ)q
−`

(K).
We now describe what our naive notion of “height” will be. We do not

quite use the usual canonical height because we are interested in keeping
everything effective – see §5.1 below. Let W ⊆ K be a finite dimensional
(and hence finite) Fq-subspace such that K = Fq(W ). We set W 0 := Fq and

for ` > 0 denote by W ` the Fq-span of the `-fold products of elements in W .

So Fq[W ] =
⋃
`<ω

W `.

Definition 5.5 (Height). Suppose W ⊆ K is a finite dimensional Fq-
subspace such that K = Fq(W ). Define htW : Fq[W ] → N by htW (x) :=

min{` : x ∈W `}. We can extend this to K by defining htW (u) to be the infi-
mum of max

{
htW (x),htW (y)

}
where u = x

y and x, y ∈ Fq[W ]. More gener-

ally, given a ∈ Pn(K), we define htW (a) to be inf max
{

htW (x0), . . . ,htW (xn)
}

,
where the infimum is taken over all representations a = [x0 : x1 : · · · : xn]
with each xi ∈ Fq[W ].

Note that this height satisfies the Northcott property: the set of points of
height bounded by N is finite because WN itself is a finite set. In order for
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this height function to have the further properties that we desire, we need to
choose W carefully. We follow §5 of [Der07] closely here. The following, for
example, appears in the proof of Proposition 5.2 of [Der07], and we repeat
it here for the sake of completeness.

Lemma 5.6. There exists a finitely generated Fq-subalgebra R of K, con-
taining h1, . . . , hm as well as the generators of K over Fq, such that λi(R) ⊆
R for all i = 1, . . . ,m.

Proof. Let R be the Fq-algebra generated by h1, . . . , hm along with the gen-
erators of K over Fq. So Rqh1 + · · ·+Rqhm ⊆ R, and we need to modify R
so as to get equality. So consider the Rq-module R/(Rqh1 + · · ·Rqhm).

We first claim that it is torsion. Indeed, if a ∈ R then

a = λ1(a)qh1 + λ2(a)qh2 + · · ·+ λm(a)qhm,

and so if we let a nonzero b ∈ Rq be such that bλi(a)q ∈ Rq for each
i = 1, . . . ,m, then ba ∈ Rqh1 + · · ·+Rqhm.

On the other hand, if t1, . . . , tν generate R as an Fq-algebra, then as an
Rq-module it is generated by the finite set {tr11 · · · trνν : each 0 ≤ ri < q}.
So the quotient R/(Rqh1 + · · ·Rqhm) is a finitely generated Rq-module.

Hence there is nonzero g ∈ R such that gqR ⊆ Rqh1+· · ·Rqhm. Localising
at g, it is not hard to see that Rg = Rgq = Rqgh1 + · · ·Rqghm, and so Rg
works. �

Fix R as in the lemma and let W be a finite dimensional Fq-subspace of
R containing h1, . . . , hm as well as generators for R over Fq. We work with
htW . The following is the key property of htW , and it appears in the proof
of Proposition 5.2 of [Der07]. We include it here, again for completeness.

Lemma 5.7. There is a constant D ≥ 0 such that for all i = 1, . . . ,m, and

all a ∈ R, we have htW
(
λi(a)

)
≤ bhtW (a)

q c+D.

Proof. For any set A ⊆ K, let A〈q〉 := {aq : a ∈ A}. Note that when A is a
subring of K we have just been denoting this by Aq, but when working with
Fq-linear subspaces V ⊆ K it is worth being explicit so as to distinguish

between the subspace V 〈q〉 of q-powers and the subspace V ` generated by
the `-fold products.

Now, it suffices to show that for all ` ≥ 0, λi(W
`) ⊆ W

b `
q
c+D

. That is,
we need to prove that

W ` ⊆ (W
b `
q
c+D

)〈q〉h1 + · · ·+ (W
b `
q
c+D

)〈q〉hm

for all ` ≥ 0.
Let d := dimW and fix a basis e1, . . . , ed of W over Fq. Then W ` is

spanned by elements like en1
1 · · · e

nd
d where n1 + · · · + nd = `. Writing each

ni = qmi + ri where 0 ≤ ri < q, we have that

en1
1 · · · e

nd
d = (em1

1 · · · e
md
d )q(er11 · · · e

rd
d ).
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Note that m1 + · · ·md ≤ b `q c while r1 + · · ·+ rd ≤ d(p− 1). So

W ` ⊆ (W
b `
q
c
)〈q〉 ·W d(q−1).

Here for vector subspaces U, V , by U · V we mean the vector subspace
spanned by the product uv where u ∈ U and v ∈ V .

On the other hand, from Lemma 5.6 we have that R = Rqh1 + · · ·+Rqhm.

Since R =
⋃
`<ω

W `, the finite set W d(q−1) must be contained in

(WD)〈q〉h1 + · · ·+ (WD)〈q〉hm

for some D ≥ 0. Putting these together we get

W ` ⊆ (W
b `
q
c+D

)〈q〉h1 + · · ·+ (W
b `
q
c+D

)〈q〉hm

as desired. �

Now, we have a commutative algebraic group G over Fq. Write G as
a Zariski open subset of a Zariski closed subset of Pn over Fq. So htW is
defined on G(K). That it is compatible with the algebraic group structure
is the following.

Lemma 5.8. Let C0 be an upper bound on the total degree of a defining
set of polynomials over Fq for the group multiplication on G. Then, for all
a, b ∈ G(K),

htW (a+ b) ≤ C0 max{htW (a), htW (b)}.

Proof. By definition, for all x, y ∈ R, htW (x + y) ≤ max{htW (x),htW (y)}
and htW (xy) ≤ htW (x) + htW (y). As the coefficients of the polynomi-
als defining the group multiplication are in Fq and hence have height 0, a
straightforward computation shows that htW (a+b) ≤ C0 max{htW (a), htW (b)}.

�

Suppose now that we have a finite set Σ ⊆ G(K). Expanding W if neces-
sary, we may and will assume that every element of Σ has a representation
with all co-ordinates in W .

Corollary 5.9. Let C0 be as in Lemma 5.8 and assume that q ≥ C0. Then,
for all ` ≥ 1, and all γ ∈ Σ(`, F ), we have htW (γ) ≤ C0q

`.

Proof. We prove this by induction on `, the case of ` = 1 being our as-
sumption that every element of Σ has height one. Suppose γ ∈ Σ(`+ 1, F ).
So

γ = x0 + Fx1 + · · ·+ F `x`

where x0, . . . , x` ∈ Σ. Writing x` = [a0 : · · · : an] with each ai ∈W , we have

that F `x` = [aq
`

0 : · · · : aq
`

n ] and aq
`

i ∈W 〈q
`〉 ⊆W q` . Hence, htW (F `x`) ≤ q`.
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So

htW (γ) ≤ C0 max{htW (x0 + · · ·+ F `−1x`−1), htW (F `x`)} by Lemma 5.8

≤ C0 max{C0q
`−1, q`} by induction

= C0q
` as q ≥ C0

as desired. �

We are now ready to prove the proposition.

Proof of Proposition 5.1. WriteG as a Zariski open subset of a Zariski closed
subset G ⊆ Pn over Fq. Fix a finite open cover {Ui : i = 1, . . . , s} of G, and

for each i, j ∈ {1, . . . , s} polynomials P
(i,j)
0 , P

(i,j)
1 , . . . , P

(i,j)
n ∈ Fq[x0, . . . , xn; y0, . . . , yn],

homogeneous in (x0, . . . , xn) and in (y0, . . . , yn), with no common zeros on
Ui × Uj , such that for (p, q) ∈ Ui × Uj ⊆ Pn × Pn, we have

p+ q = [P
(i,j)
0 (p, q) : P

(i,j)
1 (p, q) : · · · : P (i,j)

n (p, q)].

Let C0 be the maximum of the degrees of the P
(i,j)
k s.

Suppose r > 0 is such that qr ≥ C0 and fix a function field extension
K of Fqr such that X is over K, as well as a finite set Σ ⊆ G(K). Fix
h1, . . . , hm an Fqr -linear basis for K over Kqr , and denote by λ1, . . . , λm the
corresponding (order 1) lambda functions. We will be applying the above
lemmas, but with qr replacing q and F r replacing F .

Using Lemma 5.6, fix a finitely generated Fqr -subalgebra R of K, such
that

• h1, . . . , hm ∈ R,
• Frac(R) = K,
• λi(R) ⊆ R for all i = 1, . . . ,m, and
• every element of Σ has a representation with all co-ordinates in R.

Next, fix a finite dimensional Fqr -vector subspace W of R that contains
h1, . . . , hm, as well as generators for R, and such that every elements of Σ has
a representation with all co-ordinates in W . Let htW be the corresponding
height function on R and on Pn(K) studied above.

Let X be the Zariski closure of X in G so that X = X ∩ G, and X is
given by homogeneous polynomials say Q1, . . . , Qt ∈ K[x0, . . . , xn].

Now fix ` ≥ 0, and γ ∈ Σ(`, F r). Suppose γ ∈ Uj . Fixing p ∈ Ui we have
that p ∈ X − γ if and only if p+ γ ∈ X, that is, if and only if

Qν
(
P

(i,j)
0 (p, γ), . . . , P (i,j)

n (p, γ)
)

= 0

for all ν = 1, . . . , t. That is, (X − γ) ∩ Ui is defined by the vanishing of

Qν,γ,i,j(x) := Qν
(
P

(i,j)
0 (x, γ), . . . , P (i,j)

n (x, γ)
)

for ν = 1, . . . , t. It follows by Lemma 5.3 that

(X−γ)q
−`r

(K)∩Ui = {x ∈ Ui(K) : Qλν,γ,i,j(x) = 0 for all ν = 1, . . . , t, λ ∈ Λ(`)}.
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Note that the total degrees of the Qλν,γ,i,j are bounded independently of
` and γ. Indeed, if C1 is the maximum of the total degrees of Q1, . . . , Qt,
then C1C0 is such a bound. So, in order to show that TK is finite, it suffices
to prove that there is a height bound for the coefficients of Qλν,γ,i,j that is

independent of ` and γ. (Note that ν, i, j range over finite sets.) And in
order to give a bound on |TK | it suffices to give a bound on the height of
these coefficients.

By Corollary 5.9, htW (γ) ≤ C0q
`r. (This is where we use that qr ≥ C0.)

The coefficients of P
(i,j)
k (x, γ) therefore have htW bounded by C2

0q
`r. If C2

is the maximum of the heights of the coefficients of the Qν , then we get that
the coefficients of Qν,γ,i,j(x) have htW bounded by C1C

2
0q
`r + C2. Next we

analyze what happens when we apply λ ∈ Λ(`) to these coefficients. Fixing
a ∈ R a coefficient of Qν,γ,i,j(x), we compute the heights of λ1(a), . . . , λm(a).

Since htW (a) ≤ C1C
2
0q
`r + C2, letting D ≥ 0 be is as in Lemma 5.7 but

applied to qr, that lemma implies htW
(
λk(a)

)
≤ C1C

2
0q

(`−1)r + C2
qr +D for

all k = 1, . . . ,m. Iterating ` times, we have that for all λ ∈ Λ(`),

htW
(
λ(a)

)
≤ C1C

2
0 +

C2

q`r
+

D

q(`−1)r
+

D

q(`−2)r
+ · · ·+D ≤ C1C

2
0 +C2 +

Dqr

qr − 1

where the final inequality is by geometric series. So the coefficients of all
the Qλν,γ,i,j have height bounded by C1C

2
0 + C2 + Dqr

qr−1 . �

5.1. Proposition 5.1 is effective. That is, a bound on |TK | can be effec-
tively determined from r and Σ, along with defining equations for G and X
as well as a finite presentation of K. This is more or less clear from the proof
we have given, but we now summarise the justification for this effectivity
claim.

First of all, givenK = Frac(S) with a finite presentation of S := Fq[T1, . . . , Ts]/I,
we can effectively determine a Kq-basis for K. This is argued in Appendix B
below. Let 1 = h1, . . . , hm be such a basis.

Next, the construction of R in Lemma 5.6 is effective. Indeed, letting
c1, . . . , cs be the given generators for S – namely the indeterminates Ti mod-
ulo I – the proof of that lemma effectively finds g ∈ Fq[h1, . . . , hm, c1, . . . , cs]
such that

R := Fq
[
h1, . . . , hm, c1, . . . , cs,

1

g

]
satisfies the lemma.

We thus haveR = Fq[W ] whereW is the Fq-span of h1, . . . , hm, c1, . . . , cs,
1
g .

We can work effectively with htW because we can decide whether two ele-
ments of R are the same. Indeed, we can find h ∈ R such that R ⊆ S[ 1

h ]
and from the given finite presentation of S we obtain a finite presentation
of S[ 1

h ], so that deciding equality reduces to an ideal membership problem,
which is testable by Gröbner bases.



EFFECTIVE ISOTRIVIAL MORDELL-LANG 25

Finally, the constant D found in Lemma 5.7 can, by the proof of that
lemma, be taken to be max{htW (v) : v ∈ W dimW (q−1)}. So it too is effec-
tively determined.

With these effective ingredients the proof we have given of Proposition 5.1
gives explicit bounds on the total degrees and htW of the coefficients of the
polynomials that arise in the description of the elements of TK , thus yielding
an effective bound on |TK |. �

6. An automaton recognising X ∩ Γ

Fix G a commutative algebraic group over Fq, F : G → G the q-power
Frobenius endomorphism, Γ ≤ G a finitely generated Z[F]-submodule, and
X ⊆ G is a closed subvariety defined over some field extension of Fq. By
Proposition 4.2 we have r > 0 and Σ ⊆ Γ a weak F r-spanning set for Γ.
(We know by Theorem 3.10 that we can in fact choose r and Σ so that Σ is
an actual an F r-spanning set, but we do not use this in the construction of
our automaton, and the advantage of asking only for weak spanning sets is
that (r,Σ) can be effectively constructed.)

By the proof of [BM19, Lemma 5.7], for every m > 0, Σ(m,F r) is a weak
F rm-spanning set for Γ. We may therefore assume that r is sufficiently large
so that there are defining polynomials over Fq for the multiplication on G
of degree less than qr. Hence Proposition 5.1 applies.

Fix also a finitely generated extension K of Fqr such that Γ ≤ G(K) and
X is defined over K.

We wish to describe a finite automaton A on the alphabet Σ such that
w ∈ Σ∗ is accepted by A if and only if [w]F r ∈ X ∩ Γ. The set of states
of A will be the TK of Proposition 5.1. The initial state will be X(K),
which corresponds to γ = 0 and ` = 0. The accepting states are those sets

(X − γ)q
−`r

(K) ∈ TK which contain 0. Here’s the transition rule: if the

machine is in state (X − γ)q
−`r

(K) and reads the letter x then it should

move to state (X−γ−F `rx)q
−(`+1)r

(K). Note that γ+F `rx ∈ Σ(`+ 1, F r),
so that this is indeed a state of A. The following shows that the rule is
well-defined.

Lemma 6.1. For any x ∈ G(K), subvarieties V and W of G over K,

and `, `′ ≥ 0, if V q−`(K) = W q−`
′
(K) then (V − F `x)q

−`−1
(K) = (W −

F `
′
x)q
−`′−1

(K).
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Proof. Fix a ∈ G(K). Then

a ∈ (V − F `x)q
−`−1 ⇐⇒ F `+1a ∈ V − F `x

⇐⇒ F `(Fa+ x) ∈ V
⇐⇒ Fa+ x ∈ V q−`

⇐⇒ Fa+ x ∈W q−`
′

by assumption and as Fa+ x ∈ G(K)

⇐⇒ F `
′
(Fa+ x) ∈W

⇐⇒ F `
′+1a ∈W − F `′x

⇐⇒ a ∈ (W − F `′x)q
−`′−1

as desired. �

So the transition function is well-defined, and we have a finite automaton.
It remains to verify that it does what we want.

Lemma 6.2. The automaton A accepts exactly those words w ∈ Σ∗ such
that [w]F r ∈ X ∩ Γ.

Proof. Suppose that w = x0x1 · · ·x`−1 for some ` ≥ 0. Then

w is accepted ⇐⇒ 0 ∈ (X − x0 − F rx1 − · · · − F (`−1)rx`−1)q
−`r

(K)

⇐⇒ 0 ∈ X − x0 − F rx1 − · · · − F (`−1)rx`−1 as 0 ∈ G(Fq)
⇐⇒ [w]F r ∈ X.

Since [w]F r ∈ Γ always, this is as desired. �

We have thus proved:

Theorem 6.3. Let G be a commutative algebraic group defined over a finite
field Fq, let F : G → G be the q-power Frobenius, let X ⊆ G be a closed
subvariety defined over a field extension of Fq, and let Γ ≤ G be a finitely
generated Z[F ]-submodule. Suppose (r,Σ,A) are such that

• qr is an upper bound on the total degree of a given defining set of
polynomials over Fq for the group multiplication on G,
• Σ is a weak F r-spanning set for Γ,
• and A is the automaton described above.

Then X ∩ Γ = [L]F r where L ⊆ Σ∗ is the language recognised by A.

Proof. By Lemma 6.2, L = {w ∈ Σ∗ : [w]F r ∈ X ∩ Γ}. Since Σ is a weak
F r-spanning set, [Σ∗]F r = Γ, and so X ∩ Γ = [L]F r , as desired. �

As a consequence we can deduce the following generalisation of Corol-
lary 3.6.

Corollary 6.4. Suppose G is a commutative algebraic group over Fq, F :
G→ G is the q-power Frobenius, X ⊆ G is a closed subvariety defined over
a field extension of Fq, and Γ ≤ G is a finitely generated Z[F ]-submodule.
Then X ∩ Γ is F -automatic.
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Proof. By Theorem 3.10, we have an r > 0 and an F r-spanning set Σ for
Γ. By [BM19, Lemma 5.7], for every m > 0, Σ(m,F r) is an F rm-spanning
set. We may therefore assume that r is sufficiently large so that there are
defining equations for the multiplication on G of degree less than qr. Let A
be the automaton constructed above with this Σ. Now apply Theorem 6.3
to (r,Σ,A) so that X ∩Γ = [L]F r . But Proposition 6.8(b) of [BM19] tells us
that the expansion of a regular language on an alphabet that is a spanning
set is F -automatic. Hence, as Σ is an actual F r-spanning set, and not just
a weak one, [L]F r is F -automatic. �

6.1. Effectivity. Corollary 6.4 is more general than Corollary 3.6 in that
Γ is only assumed to be a finitely generated Z[F]-submodule rather than an
(F -invariant) finitely generated subgroup. But the real gain here is that we
obtain an effective description of X ∩Γ in Theorem 6.3. Let us reiterate the
grounds for this effectivity claim. We are given the following data:

• defining polynomials for the algebraic group G and the subvariety
X, embedded as locally Zariski closed subsets of Pn
• generators for the Z[F]-submodue Γ, and
• a finite presentation of K over Fq.

From n and the generators of Γ, Proposition 4.2 gives us an effectively
bounded r > 0 and an explicit defining expression for a weak F r-spanning
set Σ. Then, from (r,Σ) together with the given presentations of G,X,
and K, Proposition 5.1 gives us an effective bound on the size of the set
TK which are the states of our automaton A. The automaton itself is then
explicitly constructed. Finally Theorem 6.3 describes X ∩ Γ as the set of
F r-expansions of the words on Σ accepted by A.

7. Deciding rational points on subvarieties of isotrivial
abelian varieties

To illustrate the usefulness of the effective description of X ∩ Γ given by
Theorem 6.3, we now solve some natural decision problems in the arithmetic
geometry of abelian varieties over finite fields. Fix an abelian variety G over
a finite field Fq, a function field extension K of Fq, and a closed subvariety
X ⊆ G defined over K. Understanding the set of rational points X(K) is a
fundamental problem in diophantine geometry. Given presentations of G,X,
and K, we will give decision procedures for the following three questions: Is
X(K) empty? Is it infinite? Does it contain a coset of an infinite subgroup
of G?

Note that Theorem 6.3 does apply to this context as X(K) = X∩Γ where
Γ := G(K) is (by Lang-Néron) a finitely generated F -invariant subgroup of
G. (As usual F : G→ G denotes the q-power Frobenius.)
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7.1. Finding generators for G(K). The effectivity of our description of
X ∩Γ required as input also generators for Γ. In this case, when Γ is the set
of rational points on an isotrivial abelian variety, there is already an algo-
rithm for computing generators of G(K). Indeed, such an algorithm exists
whenever the Tate-Shafarevich group is finite (see, for example, [Sil86, Chap-
ter X], for the case of number fields). That the the Tate-Shafarevich group
of an abelian variety over a finite field is finite is a theorem of Milne [Mil68].

We suppose, therefore, that we have computed generators γ1, . . . , γn for
G(K).

7.2. Whether or not X(K) is empty is decidable. From the generators
for G(K), Proposition 4.2 gives us an explicit r and Σ such that Σ is a weak
F r-spanning set for G(K). Let A be the automaton built in §6 from (r,Σ).
Theorem 6.3 tells us that X(K) = [L]F r where L ⊆ Σ∗ is the language
recognised by A. So X(K) is nonempty if and only if there is in A a path
from the initial state to an accepting state. This is a decidable property of
the shape of the automaton A. �

7.3. Whether or not X(K) is infinite is decidable. This requires a
certain refinement of the automaton built in §6. We make use of the following
lemma that allows us to reduce any given regular language modulo an F -
automatic equivalence relation. In fact we only need the lemma for the
trivial equivalence relation of equality right now, but in §9 below we will
apply it to other equivalence relations, and so we do it in generality.

Lemma 7.1. Suppose F is an injective endomorphism of an abelian group
M , and Σ ⊆ M is a finite set. Suppose ∼ is an equivalence relation on M
such that G := {(v, w) ∈ (Σ × Σ)∗ : [v]F ∼ [w]F } is regular. Then there is
a regular language L0 ⊆ Σ∗ such that for every w ∈ Σ∗ there is a unique
v ∈ L0 with |v| ≤ |w| and such that [v]F ∼ [w]F .

Proof. Note that we are identifying (Σ × Σ)∗ with the {(v, w) ∈ Σ∗ × Σ∗ :
|v| = |w|} in the natural way.

Fix a total ordering on Σ in which 0 is least, and let ≺ denote the induced
total ordering on Σ∗ that first orders by length and then within a given length
orders lexicographically reading right to left. It is not hard to construct the
automaton witnessing that F := {(v, w) ∈ (Σ× Σ)∗ : v ≺ w} is regular.

Let E be the image of G ∩F under projection onto the second coordinate.
Observe that E is the set of words w for which there is some v ≺ w of the
same length such that [v]F ∼ [w]F . Let L0 be the regular language made
up of words that are not in E and that do not end in 0. We show L0 works.

Suppose w ∈ Σ∗. Let u ∈ Σ∗ be shortest such that [u]F ∼ [w]F . If u /∈ L0

then, as u does not end in a 0, it must be that u ∈ E . Hence there exists
v ≺ u of the same length with [v]F ∼ [u]F . Letting v be ≺-least such we
have that v /∈ E . On the other hand, v cannot end in 0 as if v = v′0 then
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v′ would contradict the fact that u was chosen of minimal length. Hence
v ∈ L0, as desired.

For uniqueness, suppose, toward a contradiction, that we have distinct
v1, v2 ∈ L0 with [v1]F ∼ [v2]F . We may assume that |v1| ≤ |v2|. If |v1| = |v2|
then we may assume that v1 ≺ v2. Let n ≥ 0 be such that |v10n| = |v2|. As
v2 does not end in 0, we must have that v10n ≺ v2. So v2 ∈ E , contradicting
v2 ∈ L0. �

Remark 7.2. If the equivalence relation ∼ is just equality then [BM19,
Lemma 6.7(a)] gives that G is regular – and indeed it explicitly constructs
an automaton recognising G – and hence the above lemma applied to a weak
F -spanning set Σ gives us a regular language in which every element of M
has a unique base F representation.

We are now ready to decide the problem of whether X(K) is infinite. As
before, we first produce (r,Σ,A) such that Σ is a weak F r-spanning set for
G(K) and A is the automaton built in §6 from (r,Σ). Let L ⊆ Σ∗ be the
language recognised by A. So X(K) = [L]F r by Theorem 6.3. Let L0 ⊆ Σ∗

be the regular language given by Lemma 7.1 applied to (G(K), F r) with
the trivial equivalence relation (namely, equality). So L0 is regular, and
indeed, by following the proof of Lemma 7.1, one can explicitly construct
an automaton A0 that recognises it. Let L′ := L ∩ L0 and let A′ be the
automaton obtained from A and A0 that recognises L′. By construction,
w 7→ [w]F r is a bijection between L′ and X(K). So X(K) is infinite if and
only if L′ is. By the pumping lemma, L′ is infinite if and only if there exist
strings u, v, w ∈ Σ∗ with |v| ≥ 1 such that uviw ∈ L′ for all i ≥ 0. See,
for example, [AS03, Lemma 4.2.1]. This is something decidable about the
shape of the automaton recognising L′; namely L′ is infinite if and only if
there is a path from the initial state of A′ to an accepting state that includes
a nontrivial loop. �

7.4. Finding an actual spanning set for G(K). In order to deal with
our last decision problem – whether or not X(K) contains an infinite coset –
weak spanning sets will not be sufficient. This is because we will be making
use of some recent results of Christopher Hawthorne [Haw22] that require
actual spanning sets. Fortunately, using methods from [BM19], we can give
an effective algorithm for producing a spanning set for G(K). (Our method
does not extend to arbitrary Z[F]-submodules of G(K), and that is why we
only obtained weak spanning sets in §4.) We give some details.

In §5.1 we showed how to effectively construct an Fq-algebra R with an Fq-
subspace W such that R = Fq[W ] and K = Frac(R). It was also explained
how we can then work effectively with the corresponding height function
htW given by Definition 5.5. For each positive integer N , set

ΣN := {x ∈ G(K) : htW (x) ≤ N or htW (−x) ≤ N}.
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It is shown in [BM19, Proposition 5.8] that this set will be an F r-spanning
set for some r and sufficiently large N . We need to produce such r and N
effectively.

In fact, the proof of [BM19, Proposition 5.8] tells us what r should be:
the requirement is that 6C6 ≤ Dr where C,D > 1 are integers satisfying6

htW (x+ y) ≤ C(htW (x) + htW (y)) for all x, y ∈ G(K),(4)

htW (−x) ≤ C htW (x) for all x ∈ G(K),(5)

htW (F (x)) ≥ D htW (x) for all but finitely many x ∈ G(K).(6)

So to find r we need to effectively find such C and D. The proof of [BM19,
Corollary 5.9] shows that (4) and (5) hold with C being the maximum of
the degrees of the given polynomials defining the group law and inverse on
G. We now describe how to find D witnessing (6).

By construction (see Lemma 5.6), we have a fixed Kq-basis h1, . . . , hm for
K such that R = Fq[W ] =

∑m
j=1 Fq[W ]qhj . Letting λ1, . . . , λm denote the

operators corresponding to h1, . . . , hm, let7

t0 := max{htW (λj(v)) : v ∈W dimW (q−1), j = 1, . . . ,m}.
It follows that

W dimW (q−1) ⊆
m∑
j=1

(W t0)〈q〉hj .

The proof of Lemma 5.7 then shows that

W t ⊆
m∑
j=1

(W
b t
q
c+t0)〈q〉hj

for all t ≥ 0. Letting t1 := d t0q+qq−1 e one computes that t1δ
q + t0 ≤ (t1 − 1)δ

for all δ > 0, and hence

W t1δ ⊆
m∑
j=1

(W (t1−1)δ)〈q〉hj

for all δ > 0. Letting D :=
t21
t21−1

and Z0 := {z ∈ Fq[W ] : htW (z) ≤ t21 + t1},
the proof of [BM19, Corollary 5.9] then shows that htW (xq) ≥ D htW (x) for
all x ∈ Fq[W ] \ Z0. Hence D witnesses (6), with the finite exceptional set
Z being those elements of G(K) that have a homogeneous representation of
the form [x0 : · · · : xn] with each xi ∈ Z0.

Having found an r that works, the proof of [BM19, Proposition 5.8] also
tells us how large N has to be: it must be big enough so that ΣN contains
an exceptional set for (6) as well as a complete set of representatives for

6Note that in our setting the κ of [BM19, Proposition 5.8] is 0 and hence the condi-
tions (i)–(iii) in the proof there are consequences of 6C6 ≤ Dr.

7Recall that for each positive integer ` we use W ` to denote be the Fq-vector space

spanned by the `-fold products of elements from W , while we use W 〈q〉 to denote the
Fq-vector space of q-powers of elements from W .
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G
(
Kqr

)
in G(K). We have already effectively produced an exceptional set

for (6), namely Z. For representatives of G
(
Kqr

)
inG(K) we make use of the

set of generators γ1, . . . , γn for G(K) computed in §7.1. From the fact that
multiplication by qr on G is of the form F r◦V r where V is the Verschiebung,
we get that [qr]G(K) ≤ G(Kqr). Hence {[`]γi : 1 ≤ i ≤ n, 0 ≤ ` ≤ qr} is a
complete set of representatives for G

(
Kqr

)
in G(K). Taking N to be greater

than the height of all these elements, as well as all the elements of Z, we
have that ΣN is an F r-spanning set for G(K).

7.5. Whether or not X(K) contains an infinite coset is decidable.
The strategy for deciding this will be as follows: We have just computed
(r,Σ) such that Σ is an F r-spanning set for G(K). As in §7.3, we can
then produce a regular L′ ⊆ Σ∗ recognised by an explicitly constructed
automaton A′, such that w 7→ [w]F r is a bijection between L′ and X(K).
We saw there that the infinitude of L′ was reflected in the shape of A′.
Similarly, we will show that X(K) contains an infinite coset if and only if
L′ is not “sparse”, and that sparsity can be read off from A′.

First, we need to recall what it means for a language to be sparse. A
sublanguage L ⊆ Σ∗ is said to be sparse if it is regular and the number
of words in L of length n is O(nd) as n grows, for some d ≥ 0. A list
of equivalent formulations that we will make use of is compiled in [BM19,
Proposition 7.1]. Sparsity in the general setting of F -automatic sets has
been studied further recently by Hawthorne in [Haw22], from which we will
use the following two results:

Fact 7.3 (Corollary 5.12 of [Haw22]). Suppose (M,F ) is an abelian group
equipped with an injective endomorphism and S ⊆ M is F -automatic. The
following are equivalent conditions on S:

(i) There exists an r > 0, an F r-spanning set Σ for M , and a sparse
sublanguage L ⊆ Σ∗, such that S = [L]F r . We say that S is F -
sparse.

(ii) Suppose r > 0, Σ is an F r-spanning set for M , and L ⊆ Σ∗ is
regular such that [L]F r = S. Fix any linear ordering ≺ on Σ and
denote also by ≺ the induced length-lexicographic8 ordering on Σ∗.
Then

L≺ := {w ∈ L : w � v for all v ∈ L with [v]F r = [w]F r}
is sparse.

Subsets satisfying condition (i) were called F -sparse in [BM19], but the
seemingly stronger condition (ii) is more concrete and easier both to verify
or falsify in practice. In §9.1 we will return to sparsity, studying in detail
the structure of F -sparse subsets of isotrivial commutative algebraic groups.
The next fact says that F -sparse sets are far from being subgroups.

8So among words of a given length the ordering is lexicographic and if |w| < |v| then
w ≺ v.
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Fact 7.4 (Corollary 5.14 of [Haw22]). Suppose (M,F ) is a finitely generated
abelian group equipped with an injective endomorphism and S ⊆ M is F -
automatic. If S is F -sparse then it does not contain any coset of an infinite
subgroup of M .

We now use F -sparsity to solve our decision problem. Recall that we
already effectively produced an F r-spanning set Σ for G(K), and a regular
language L′ on Σ such that X(K) = [L′]F r and each element of X(K)
has a unique F r-representation in L′. We first argue that X(K) contains
an infinite coset if and only if L′ is not sparse. Indeed, assume that X(K)
contains a coset of an infinite subgroup of G. Then in fact that subgroup is in
G(K), and hence by Fact 7.4 applied toM = G(K) and S = X(K), it follows
that X(K) is not F -sparse. Hence L′ is not sparse. Conversely, suppose that
X(K) does not contain any such infinite coset. Then by Theorem 2.2 – or
indeed by the original isotrivial Mordell-Lang theorem [MS04, Theorem B]
– we have that X(K) is a finite union of sets from S(G,F ). But it was
shown in [BM19], see the proof of Theorem 7.4 of that paper, that such sets
are F -sparse. So condition (ii) of Fact 7.3 holds of S = X(K), and we get
that L′≺ is also sparse. But L′≺ = L′ as each element of X(K) has a unique
F r-representation in L′. Therefore L′ is sparse.

We have reduced the problem to deciding whether or not L′ is sparse. Let
A′ be the automaton recognising L′ that was explicitly constructed in the
proof of Theorem 7.3. We may assume that every state in A′ is accessible, in
the sense that it can be reached by some input. Now, one of the equivalent
conditions for L′ to be sparse, given in [BM19, Proposition 7.1(4)], is that A′
has no “double loops”. This condition is something visibly decidable about
the shape of A′. �

8. A gap theorem for rational points of bounded height on
subvarieties of isotrivial abelian varieties

The sparse/non-sparse dichotomy for regular languages that appeared in §7.5
yields an analogous dichotomy within the context of isotrivial Mordell-Lang.
In order to properly state this, we make use of the Néron-Tate canonical
height on an abelian variety (see [Lan64] or [HS00, Part B] for more de-
tails).

Theorem 8.1. Let G be an abelian variety defined over Fq, let F : G→ G
be the q-power Frobenius endomorphism, let K be a finitely generated field
extension of Fq, and let X be a closed subvariety of G over K. Denote by h
the Néron-Tate canonical height on G. Then the following are equivalent:

(1) X(K) is F -sparse;
(2) there are C > 0 and d ≥ 0 such that for sufficiently large H

#{c ∈ X(K) : h(c) ≤ H} ≤ C(log(H))d;

(3) #{c ∈ X(K) : h(c) ≤ H} = o(H1/2);
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(4) X(K) does not contain a coset of an infinite subgroup of G;
(5) X(K) is a finite union of sets from S(G,F ).

Remark 8.2. The equivalence of (2) and (3) means that there is a gap:
either the number of points on X(K) of height at most H is bounded above

by C(log(H))d or it is bounded below by C ′H1/2.

To prove this result, we require two technical lemmas dealing with esti-
mation. We have a positive quadratic form 〈 · , · 〉 on G(K) × G(K) given
by

〈x, y〉 = h(x+ y)− h(x)− h(y).

Suppose Σ ⊆ G(K) is a finite set. Observe that for c ∈ [Σ]F and x ∈ G(K),

2h(x+ c) = 〈x+ c, x+ c〉 = 〈x, x〉+ 2〈x, c〉+ 〈c, c〉.
We can rewrite the right side as 2h(x) + 2h(c) + 2〈x, c〉. Then since we have
only finitely many choices for c ∈ [Σ]F , Cauchy-Schwarz gives there is some

positive constant κ1 such that 〈x, c〉 ≤ κ1h(x)1/2. So letting κ2 denote the
max of h(c) as c ranges over [Σ]F we get there are positive constants κ1, κ2

such that,

(7) h(x+ c) ≤ h(x) + κ1h(x)1/2 + κ2 for all c ∈ [Σ]F and x ∈ G(K).

In addition (using that the Néron-Tate height differs from the usual Weil
height by a uniform bounded amount), if r is a positive integer, then there
is a constant κ3, which depends upon r, such that

(8) qrh(x)− κ3 ≤ h(F r(x)) ≤ qrh(x) + κ3 for all x ∈ G(K).

Lemma 8.3. Let Σ be an F r-spanning set for G(K) and κ1, κ2, κ3 as in
Equations (7) and (8). Define En recursively by E0 = max{2+κ3+h(a) : a ∈
Σ} and En = En−1(1+(κ1+κ3)/qn/2) for n ≥ 1. Then for all c0, . . . , cn ∈ Σ,
the height of c0+F r(c1)+· · ·+Fnr(cn) is at most Enq

nr. In particular, there
is a positive constant C0 such that for every n ≥ 1 we have c0 + F r(c1) +
· · ·+ Fnr(cn) has height at most C0q

nr.

Proof. We prove the first part by induction on n. When n = 0 this follows
from our choice of E0. Now suppose that the result holds whenever n < k
for some k ≥ 1 and consider an element c0 + · · ·+ F kr(ck). Then

F r(c1) + · · ·+ F kr(ck) = F r(c1 + · · ·+ F r(k−1)(ck))

has height at most qkrEk−1 + κ3 by the induction hypothesis and Equation
(8). We then translate by c0 ∈ Σ and so an application of Equation (7) yields
that the height of c0 + · · ·+F kr(ck) is at most qkrEk−1 +κ3 +κ1(qkrEk−1 +

κ3)1/2 + κ2. This quantity is less than or equal to

qkrEk−1 + (κ1 + κ2)Ek−1q
kr/2 = qkrEk,

so we obtain the first claim. To complete the proof observe that Ek ≤ C0 :=
E0
∏
j≥1(1 + (κ1 + κ2)/qjr/2) and the product on the right converges since
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1/qjr/2 converges, so we have that the height of F r-expansions of length

n is at most C0q
nr for every n ≥ 0. The result now follows. �

Lemma 8.4. Let Σ be an F r-spanning set for G(K) and κ1, κ2, κ3 as in
Equations (7) and (8). Then there is a positive constant C1 such that every
element of G(K) of height at most C1q

nr can be realised as the F r-expansion
of a word in Σ∗ of length at most n.

Proof. Let C = κ1 +κ2 +κ3. We let ` be a positive integer with the property
q`r/2 > C. As before, ∏

j≥`
(1− C/qjr/2)

converges to a positive number θ > 0. Pick B` such that q−`rB`θ > 1. Then
there is some m such that every element of Néron-Tate height at most q`rB`
has an F -expansion of length at most m. We define Bn = Bn−1(1−C/qnr/2)
for n > `. So from the above we have Bn > 1 for all n ≥ `.

We claim that for every n ≥ ` all numbers of height at most qnrBn can
be realised as the F r-expansion of a word in Σ∗ of length at most m + n.
We again prove this by induction on n with the base case, n = `, being
immediate. Now suppose that the claim holds whenever n < k and suppose
that x has height at most qkrBk. Then there is some c0 ∈ Σ such that
x − c0 ∈ G(Kqr). Hence h(x − c0) ≤ h(x) + κ1h(x)1/2 + κ2. So if we let
y = F−r(x− c0) then

h(y) ≤ h(x) + κ1h(x)1/2 + κ2 + κ3

q
.

Since qkrBk ≥ 1, the height of y is at most (qkrBk+(κ1+κ2+κ3)(qkrBk)
1/2)/qr.

Now we claim that Bk−1 ≥ (Bk + (κ1 +κ2 +κ3)(Bk/q
kr)1/2). Once we have

this, we will have that y has height at most q(k−1)rBk−1 and so the result
will then follow by induction.

To show this we must showBk−1 ≥ Bk+C(Bk/q
kr)1/2 = Bk(1+C(Bkq

kr)−1/2).

But Bk = Bk−1(1− C/qkr/2) and so

Bk(1 + C(Bkq
kr)−1/2) = Bk−1(1− C/qkr/2) + CB

1/2
k /qkr/2

≤ Bk−1 − CBk−1/q
kr/2 + CB

1/2
k−1/q

kr/2

≤ Bk−1.

So since Bk ≥ 1 for all k we see that all elements of height at most qkr

have an expansion of length at most m + k and so we see that if we take
C1 = q−mr we obtain the result. �

Corollary 8.5. Let Σ be an F r-spanning set for G(K) and let

L := {v ∈ Σ∗ : [v]F r ∈ X(K)}.
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Fix a linear ordering ≺ on Σ and denote also by ≺ the induced length-
lexicographic ordering on Σ∗. Let

E := {w ∈ L : w � v for all v ∈ L with [v]F r = [w]F r}.

If Θ(m) denotes the number of elements in X(K) of height at most m, then
there are positive constants C0 and C1 such that

(9) Θ(C1q
nr) ≤ #E≤n ≤ Θ(C0q

nr)

for all n ≥ 1, where E≤n is the set of words of length at most n in E.

Proof. By Lemma 8.4, there is a positive constant C1 such that every element
of G(K) of height at most C1q

nr is of the form [v]F r with v ∈ Σ∗ of length
at most n. In particular, for each x ∈ X(K) with h(x) ≤ C1q

nr there is a
word w ∈ E of length at most n such that [w]F = c. This gives the first
inequality. By Lemma 8.3, there is a positive constant C0 such that every
word w in Σ∗ of length at most n has the property that h([w]F r) ≤ C0q

nr.
Since w 7→ [w]F r is a bijection between E and X(K), this gives the second
inequality. �

We can now prove the gap theorem.

Proof of Theorem 8.1. By Corollary 3.6, or indeed by [BM19, Corollary 6.10],
we have that there exists an r > 0 and an F r-spanning set Σ for G(K) such
that

L := {v ∈ Σ∗ : [v]F r ∈ X(K)}
is regular. So Corollary 8.5 applies.

Suppose that (1) holds and let E ⊆ L be as in Corollary 8.5. By Fact 7.3,
noting that E is just what was called L≺ there, we have that E is sparse.
Hence #E≤n is polynomially bounded, and so by Equation (9) we see that
(2) holds.

The implication (2) =⇒ (3) is immediate.
Observe that if (4) does not hold then X(K) contains {a + nb : n ∈ Z}

for some a, b ∈ G(K) with b non-torsion and since a+ nb has height O(n2)
we see that (3) does not hold. So (3) implies (4).

That (4) =⇒ (5) follows from Theorem 2.2, or indeed from [MS04,
Theorem B].

Finally, that (5) =⇒ (1) was already pointed out in §7.5 using results
of [BM19]. �

Remark 8.6. Theorem 8.1 holds more generally for algebraic groups G that
have a height function for which Equations (7) and (8) hold after one replaces
G(K) with a finitely generated F -submodule Γ of G(K). In particular, the
equivalences hold for G(R) when G = Gd

m and R is a finitely generated
Fq-algebra that is an integral domain.
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9. Mordell-Lang for finitely generated Z[F]-submodules of
isotrivial commutative algebraic groups

Recall that S(G,F ) denotes the collection of translates of finite sums of F -
orbits, i.e., subsets of the form a + S(a1, . . . , ar; δ1, . . . , δr) in the notation
of Section 2. Our goal in this final section is to prove the following:

Theorem 9.1. Let G be a commutative algebraic group over a finite field
Fq, let F : G→ G be the q-power Frobenius, let X ⊆ G be a closed subvariety
defined over a field extension of Fq, and let Γ ≤ G be a finitely generated
Z[F]-submodule. Then X ∩ Γ is a finite union of sets of the form S + Λ
where S ⊆ Γ is in S(G,F ) and Λ ≤ Γ is a Z[F r]-submodule for some r > 0.

Remark 9.2. In the conclusion of the theorem we can replace Λ by H ∩ Γ
where H is the Zariski closure of Λ. Indeed, S + Λ ⊆ S + (H ∩ Γ) ⊆ X ∩ Γ.
Note also that H ≤ G is an algebraic subgroup over a finite field since Λ is
F r-invariant.

This is an isotrivial Mordell-Lang statement like Theorem 2.2 but for
finitely generated Z[F]-submodules rather than finitely generated groups
that are F -invariant. When we restrict to G semiabelian, Theorem 9.1 is
precisely Theorem 1.1, the original isotrivial Mordell-Lang theorem of the
third author and Thomas Scanlon from [MS04]. However, our proof even in
that case is new; we deduce the combinatorial structure of X ∩ Γ directly
from the F -automaticity given by Corollary 6.4.

The proof will proceed by a series of reductions, with the key technical
step being an understanding of the structure of “F -sparse” subsets of Γ.

9.1. Sparsity and F -orbits. Suppose we have an abelian groupM equipped
with an injective endomorphism F : M → M and Σ a finite subset of M .
Recall that L ⊆ Σ∗ is said to be sparse if it is regular and the number of
words in L of length n is O(nd) as n grows, for some d ≥ 0. A list of equiv-
alent formulations is compiled in [BM19, Proposition 7.1]. In particular, it
is shown there that every sparse language is a finite union of languages of
the form

u1w
∗
1u2w

∗
2 · · ·umw∗mum+1 := {u1w

n1
1 u2w

n2
2 · · ·umw

nm
m um+1 : n1, . . . , nm ≥ 0}

for some words ui, wi ∈ Σ∗ with the wi all nontrivial. Let us call languages
of this form simple sparse. The F -expansions of a simple sparse language
will have a very special form.

Definition 9.3. Given a1, . . . , ar ∈ M and positive integers δ1, . . . , δr, we
denote{

Fn1δ1a1 + Fn1δ1+n2δ2a2 + · · ·+ F
∑r
i=1 niδiar : n1, . . . , nr ≥ 0

}
by E(a1, . . . , ar; δ1, . . . , δr). As usual, we write E(a1, . . . , ar; δ) in the case
when all the δi = δ.
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Lemma 9.4. Suppose M is an abelian group, F : M → M is an injec-
tive endomorphism, and Σ is a finite subset of M . Suppose (N,F ) is an
extension of (M,F ) for which F − id : N → N is surjective.

If L = u1w
∗
1u2w

∗
2 · · ·umw∗mum+1 is a simple sparse sublanguage of Σ∗ then

[L]F = a0 + E(a1, . . . , ar; δ1, . . . , δr)

for some a0, . . . , ar ∈ N and δ1, . . . , δr > 0. Moreover, if m > 0, we can
choose a0, . . . , ar, δ1, . . . , δr above so that concatenating L with any v ∈ Σ∗

yields

[Lv]F = a0 + E(a1, . . . , ar−1, ar + F `[v]F ; δ1, . . . , δr)

where ` =
∑m+1

i=1 |ui|.

Proof. We proceed by induction on m. If m = 0 then a0 = [u1]F and r = 0
works.

So assume m > 0 and write L as the concatenation L1L2 where L1 = u1w
∗
1

and L2 = u2w
∗
2 · · ·umw∗mum+1. By the induction hypothesis,

(10) [L2]F = a0 + E(a1, . . . , ar; δ1, . . . , δr)

for some a0, . . . , ar from N and positive integers δ1, . . . , δr. Let |u1| = α,
|w1| = β, x = [u1]F , and y = [w1]F . The elements of [L]F are precisely those
of the form [u1w

n
1 ]F + Fα+nβ(z) with z ∈ [L2]F . Note that

[u1w
n
1 ]F +Fα+nβ(z) = x+Fα(y)+Fα+β(y)+· · ·+Fα+(n−1)β(y)+Fα+nβ(z).

Now, since F − id is surjective on N , there exists θ ∈ N such that Fα(y) =
F β(θ)− θ. A simple telescoping argument gives

[a1b
n
1 ]F + Fα+nβ(z) = x− θ + F βn(θ + Fα(z)).

Setting γ := x− θ we get that

[L]F =
⋃

z∈[L2]F

⋃
n≥0

{γ + F βn(θ + Fα(z))}

= γ +
⋃
n≥0

F βn(θ + Fα([L2]F ))

= γ +
⋃
n≥0

F βn(θ + Fαa0 + E(Fαa1, . . . , F
αar; δ1, . . . , δr))

= γ + E(θ + Fαa0, F
αa1, . . . , F

αar;β, δ1, . . . , δr)

as desired.
For the “moreover” clause we must first consider the m = 1. In that case

L2 = {u2} and we have

[L]F =
⋃
n≥0

{γ + F βn(θ + Fα[u2]F )}

= γ + E(θ + Fα[u2]F ;β)
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and for any v ∈ Σ∗,

[Lv]F =
⋃
n≥0

{γ + F βn(θ + Fα[u2v]F )}

= γ + E(θ + Fα[u2]F + Fα+|u2|[v]F ;β).

Since α+ |u2| = |u1|+ |u2| this proves the “moreover” clause when m = 1.
Suppose m > 1. The inductive hypothesis yields that in (10) we can

choose a0, . . . , ar, δ1, . . . , δr so that for any v ∈ Σ∗

[L2v]F = a0 + E(a1, . . . , ar−1, ar + F `[v]F ; δ1, . . . , δr)

where ` =
∑m+1

i=2 |ui|. Hence

[Lv]F = γ +
⋃
n≥0

F βn(θ + Fα([L2v]F ))

= γ +
⋃
n≥0

F βn(θ + Fαa0 + E(Fαa1, . . . , F
α(ar + F `[v]F ); δ1, . . . , δr))

= γ + E(θ + Fαa0, F
αa1, . . . , F

αar−1, F
αar + Fα+`[v]F ;β, δ1, . . . , δr).

As α = |u1|, this proves the “moreover” clause. �

Remark 9.5. Note that while [L]F ⊆ M we have to go to an extension to
find a0, . . . , ar. In the proof this comes from the induction step where x and
y are in M but we have to pass to N to find γ and θ.

The sets E(a1, . . . , ar; δ1, . . . , δr), despite some superficial similarity to
translates of sums of F -orbits, are not expressible as finite unions of such.
However, in our geometric context, they can be so expressed up to Zariski
closure.

Proposition 9.6. Suppose G is a commutative algebraic group over Fq,
F : G→ G is the q-power Frobenius, K is a function field over Fq, and Γ ≤
G(K) is an F -pure Z[F]-submodule. Suppose E := a0+E(a1, . . . , ar; δ1, . . . , δr) ⊆
Γ where a0, . . . , ar ∈ G and δ1, . . . , δr are positive integers. Then there exists
T ⊆ Γ, a finite union of sets from S(G,F ), such that E ⊆ T ⊆ E where the
over line denotes Zariski closure.

Proof. We first consider the case when E = a0 + E(a1, . . . , ar; 1); that is,
when all the δi = 1.

Note that, as E ⊆ Γ, we have Fai − ai ∈ Γ for each i = 1, . . . , r. Indeed,
for i = r this is a because both a0 + · · ·+ar−1 +Far and a0 + · · ·+ar are in
E and hence in Γ, and one simply takes their difference. For i = r − 1 one
notes that a0 + · · ·+ar−2 +Far−1 +Far ∈ E and so subtracting a0 + · · ·+ar
yields that (Far−1 − ar−1) + (Far − ar) ∈ Γ, and hence by the i = r case
Far−1 − ar−1 ∈ Γ. And so on all the way down to i = 1.

It follows, by applying F and taking sums, that Fmai − ai ∈ Γ for all
m ≥ 0.
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For each i = 1, . . . , r, let ji ≥ 0 be maximal such that Fai−ai ∈ G(Kpji ),
if it exists, and set ji =∞ otherwise. Let

T := a0 +

r∑
i=1

{Fnai : n ≥ −ji}

Note that if ji < ∞ then {Fnai : n ≥ −ji} is the F -orbit S(F−jiai; 1). On
the other hand, if ji =∞ then Fai − ai, and hence Fnai − ai for all n ∈ Z,

is in the finite group G(K ∩ Falg
q ). Hence, in that case, {Fnai : n ≥ −ji}

is finite. So T is a finite union of sets from S(G,F ). It is also clear that
E ⊆ T .

We claim that T ⊆ E and that T ⊆ Γ. We proceed by induction on r ≥ 1.
Suppose r = 1. Then E = a0+S(a1; 1). Hence the Zariski closed set E−a0

is F -invariant, and so also F−1-invariant. Since a1 ∈ E − a0 we have that
Fna1 ∈ E−a0 for all n ∈ Z. In particular, T = a0 +{Fna1 : n ≥ −j1} ⊆ E.

Next, still in the case of r = 1, we show that T ⊆ Γ. Since E ⊆ Γ,
it suffices to show that a0 + F−`a1 ∈ Γ for 0 < ` ≤ j1. But we have

that Fa1 − a1 ∈ G(Kpji ), so applying F−1 repeatedly we get that a1 −
F−1a1, . . . , F

−`+1a1 − F−`a1 ∈ G(K), and summing these telescopes to
a1−F−`a1. Hence, a1−F−`a1 ∈ G(K) and F `(a1−F−`a1) = F `a1−a1 ∈ Γ.
By F -purity of Γ in G(K), a1 − F−`a1 ∈ Γ. As a0 + a1 ∈ E ⊆ Γ, we thus
have a0 + F−`a1 ∈ Γ, as desired.

Assume now that r > 1. For each m ≥ 0, consider

Em := a0 + Fma1 + E(Fma2, . . . , F
mar; 1).

So E =
⋃
m≥0

Em. Note that for each i = 2, . . . r, if ji <∞ then

F (Fmai)− Fmai = Fm(Fai − ai) ∈ G(Kpji+m)

and m+ ji is maximal such. If ji =∞ then F (Fmai)−Fmai ∈
⋂
j≥0

G(Kpj ).

Hence the induction hypothesis yields that if we let

Tm := a0 + Fma1 +

r∑
i=2

{Fn(Fmai) : n ≥ −ji −m}

then Tm ⊆ Em ⊆ E and Tm ⊆ Γ. Note that

Tm = a0 + Fma1 +
r∑
i=2

{Fnai : n ≥ −ji}

and
⋃
m≥0

Tm ⊆ T . But we do not get all of T in this way because only

nonnegative F -iterates of a1 appear in this union.
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To show that T ⊆ E consider the Zariski closed set

Z :=
⋂

n2≥−j2,...,nr≥−jr

(E − a0 −
r∑
i=2

Fnii ai).

Since Tm ⊆ E we have that a0+Fma1+
∑r

i=2 F
ni
i ai ∈ E for any fixed tuple of

integers n2 ≥ −j2, . . . , nr ≥ −jr. That is, Fma1 ∈ Z for all m ≥ 0. Hence
S(a1; 1) ⊆ Z. But S(a1; 1) is an F -invariant, and hence F−1-invariant,
Zariski closed set. So F `a1 ∈ Z for all integers `, in particular for all

` ≥ −ji. Hence a0 + F `a1 +

r∑
i=2

{Fnai : n ≥ −ji} ⊆ E for all ` ≥ −j1. That

is, T ⊆ E.
Next, we show that T ⊆ Γ. Since we already know that Tm ⊆ Γ for all

m ≥ 0, it remains only to show that a0 + F−`a1 +
r∑
i=2

{Fnai : n ≥ −ji} ⊆

Γ for all 0 < ` ≤ j1. Fix integers n2 ≥ −j2, . . . , nr ≥ −jr. Note that
a0 + a1 +

∑r
i=2 F

ni
i ai ∈ T0 ⊆ Γ. But, from the argument in the r = 1 case,

using F -purity, we also know that a1 − F−`a1 ∈ Γ. Subtracting, we get
a0 + F−`a1 +

∑r
i=2 F

ni
i ai ∈ Γ, as desired.

We have completed the proof of the proposition in the case when all
the δi = 1. It remains to explain how to reduce to that case. Let δ :=
lcm{δ1, . . . , δr}. Then a0 + E(a1, . . . , ar; δ1, . . . , δr) is equal to the union of

a0 + E(Fm1δ1a1, F
m1δ1+m2δ2a2, . . . , F

∑r
i=1miδiar; δ)

as each mi ranges in the finite set {0, 1, . . . , δδi }. Hence it suffices to prove the
proposition when all the δi = δ. Finally, to deal with this case, noting that
Γ is an F δ-pure Z[F δ]-submodule of G(K), we can apply the already proved
case of the proposition to F δ. Since S(G,F δ) ⊆ S(G,F ), this suffices. �

Remark 9.7. The proof of Proposition 9.6 shows (under the same hypoth-
esis) that if E = a0 + E(a1, . . . , ar; 1) ⊆ Γ then E ⊆ a0 + S(a1, . . . , ar; 1) ⊆
E ∩ Γ. Indeed, clearly E ⊆ a0 + S(a1, . . . , ar; 1) ⊆ a0 +

∑r
i=1{Fnai : n ≥

−ji} =: T , and it was shown in the proof that T ⊆ E ∩ Γ.

Corollary 9.8. Suppose G is a commutative algebraic group over Fq, F :
G → G is the q-power Frobenius, K is a function field extension of Fq,
Γ ≤ G(K) is an F -pure Z[F]-submodule, and Σ ⊆ Γ is finite. Suppose
L ⊆ Σ∗ is sparse. Then there exists T ⊆ Γ, a finite union of elements of
S(G,F ), such that [L]F ⊆ T ⊆ [L]F .

Proof. By [BM19, Proposition 7.1], L is a finite union of simple sparse lan-
guages. Apply the main clause of Lemma 9.4 to each of these with M = Γ
and N = G, noting that F− id is a surjective endomorphism of the algebraic
group G because it has finite kernel. So [L]F is a finite union of sets of the
form a0 +E(a1, . . . , ar; δ1, . . . , δr), each lying in Γ but with the ai’s from G.
Now apply Proposition 9.6. �
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9.2. Intersecting with certain submodules. In order to reduce to the F -
pure setting, as required in the previous results, we will require the following
general property of translates of sums of F -orbits.

Lemma 9.9. Suppose (M,F ) is an abelian group equipped with an injective
endomorphism and A ≤ B ≤ M are Z[F]-submodules with F `B ≤ A for
some ` ≥ 0. If S ⊆ B is from S(M,F ) then S ∩ A is a finite union of sets
from S(M,F ).

Proof. Write S = a0 + S(a1, . . . , ar; δ1, . . . , δr). Note, first of all, that as
S ⊆ B, we have F δiai − ai ∈ B for all i = 1, . . . , r. Indeed,

F δiai − ai = (a0 + a1 + · · ·+ F δiai + · · · ar)− (a0 + a1 + · · ·+ ai + · · · ar).

It follows that Fnδiai − ai ∈ B, for all n ≥ 0. This in turn implies, using
the fact that F `B ≤ A, that

(11) F (`+m)δiai − F (`+n)δiai ∈ A

for all m ≥ n ≥ 0 and i = 1, . . . , r.
We now proceed to prove the lemma by induction on r ≥ 1, dealing with

the base case and induction step at the same time.
For each j = 1, . . . , r and N > 0, consider the subset of S given by

Sj,N := {a0 +

r∑
i=1

Fniδiai : n1, . . . , nr ≥ 0 and nj < N}

=
N−1⋃
m=0

a0 + Fmδjaj + S(a1, . . . , aj−1, aj+1, . . . , ar; δ1, . . . , δj−1, δj+1, δr).

If r = 1 then Sj,N is finite and hence so is Sj,N ∩A, and if r > 1 then Sj,N ∩A
is a finite union of sets from S(G,F ) by induction. Hence, if S∩A = Sj,N∩A
for some j and N then we are done. We thus assume this never happens.
This means, in particular, that there is an element of S ∩ A of the form
a0 +

∑r
i=1 F

niδiai for some n1, . . . , nr ≥ `. Using (11) it follows that

T := a0 + S(Fn1δ1a1, . . . , F
nrδrar; δ1, . . . , δr) ⊆ A.

Hence, S ∩ A = T ∪
r⋃
i=1

(Si,ni ∩ A) which is a finite union of sets from

S(G,F ). �

9.3. Proof of Theorem 9.1. Fix (G,Fq, F,X,Γ) as in the statement of
the theorem. For convenience, let us denote by F ⊆ P(Γ) the collection of
finite unions of sets of the form S + Λ where S ⊆ Γ is from S(G,F ) and
Λ ≤ Γ is an Z[F r]-submodule for some r > 0. We therefore wish to show
that X ∩ Γ ∈ F

Clearly we may assume that X is irreducible. We proceed by induction
on d := dimX. The case of d = 0 being clear, we assume d > 0.
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We start with a series of reductions. Fix a function field extension K of
Fq such that Γ ≤ G(K) and X is over K. By induction, we may assume
that X(K) is Zariski dense in X.

Reduction 1. We may assume that Γ is F -pure in G(K).

Proof. Let Γ̃ be the F -pure hull of Γ in G(K). By Proposition 3.8, there

is r ≥ 0 such that F rΓ̃ ≤ Γ. In particular, Γ̃ is finitely generated as a
Z[F]-submodule. We wish to show that if the theorem holds for Γ̃ then

it holds for Γ. Suppose therefore that X ∩ Γ̃ =
⋃̀
i=1

Si + Λi where each

Si ⊆ Γ̃ is in S(G,F ) and Λi ≤ Γ̃ is a Z[F ri ]-submodule for some ri > 0. By

Theorem 3.10, Λi/F
rΛi is finite, and so in the above expression for X ∩ Γ̃

we may replace the Λi by F rΛi. That is, since F rΛi ≤ Γ, we may assume
that all the Λi ≤ Γ. Hence

X ∩ Γ = (X ∩ Γ̃) ∩ Γ

=
⋃̀
i=1

(Si + Λi) ∩ Γ

=
⋃̀
i=1

(Si ∩ Γ + Λi)

and we are done by Lemma 9.9 applied to A = Γ, B = Γ̃, and M = G. �

Let E be the largest connected algebraic subgroup of Stab(X) that is

defined over Falg
p . (As the class of connected algebraic subgroups over Falg

p

is preserved by summation, this exists.)

Reduction 2. We may assume that Γ admits an F -spanning set Σ such
that G := {(v, w) ∈ (Σ× Σ)∗ : [v]F − [w]F ∈ E} is regular.

Proof. Let µ : G×G→ G be the morphism µ(g, h) = g−h. By Corollary 6.4,
(Γ×Γ)∩µ−1(E) is F -automatic. Hence, there is r > 0 and an F r-spanning
set Σ for Γ such that

{(v, w) ∈ (Σ× Σ)∗ : [v]F r − [w]F r ∈ E}

is regular. Since S(G,F r) ⊆ S(G,F ), and Γ remains F r-pure in G(K), it
suffices to prove the theorem for (G,Fqr , F r, X,Γ). �

Fix, therefore, such an F -spanning set Σ for Γ. We know that X ∩ Γ is
F -automatic by Corollary 6.4. Hence

L := {w ∈ Σ∗ : [w]F ∈ X}

is a regular language. We also know by Lemma 7.1 applied to the equivalence
relation of being in the same coset modulo E, that there is a regular language
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L0 ⊆ Σ∗ such that for every for every w ∈ Σ∗ there is a unique v ∈ L0 with
|v| ≤ |w| and [v]F − [w]F ∈ E. Let

E := {v ∈ L00∗ : there is w ∈ L such that |v| = |w| and [v]F − [w]F ∈ E}.

Note that E is regular as it is the projection onto the first co-ordinate of the
regular language (L00∗ × L) ∩ G. It is easily verified that

(12) [L]F = X ∩ Γ,

(13) E ⊆ L,

(14) for every w ∈ L there is v ∈ E with [v]F − [w]F ∈ E, and

(15) for every v1, v2 ∈ E , if |v1| = |v2| and [v1]F − [v2]F ∈ E then v1 = v2.

Reduction 3. It suffices to prove that [E ]F ⊆ T ⊆ X for some T ∈ F .

Proof. Since E is defined over a finite field, Λ := E∩Γ is a Z[F r]-submodule
of Γ for some r > 0. By (14) we have that [L]F ⊆ [E ]F +Λ. Suppose we have
proved that [E ]F ⊆ T ⊆ X for some T ∈ F . Then [L]F ⊆ T + Λ ⊆ X + Λ.
Since Λ ⊆ Stab(X), this proves that [L]F ⊆ T + Λ ⊆ X. Since T + Λ ⊆ Γ,
we get from (12) that X ∩ Γ = T + Λ. As T + Λ ∈ F , this suffices. �

Let us denote by A the automaton that we built in §6 recognising L,
and by Z1, . . . , Zn the states of A, with Z1 = X(K) the starting state.

Recall that each Zi is of the form (X − γ)q
−`

(K) for some γ ∈ Γ which
has an F -expansion of length `. Hence dimZi ≤ d, and if dimZi = d

then Zi = (X − γ)q
−`

. Reindexing, let us assume that Z1, . . . , Zm are d-
dimensional for some 1 ≤ m ≤ n and that the rest are of dimension strictly
less than d. Since X(K) is Zariski dense in X, we have dimZ1 = d, and
hence such m exists.

Given w ∈ Σ∗, we define δ(w) = (X − [w]F )q
−|w|

(K) ∈ {Z1, . . . , Zn},
where |w| is the length of w. So δ(w) is the state the machine ends up in on
input w. We first observe that once A is in a state of low dimension then it
stays there:

Lemma 9.10. Suppose w ∈ Σ∗. If δ(w) ∈ {Zm+1, . . . , Zn} then, for all
v ∈ Σ∗, δ(wv) ∈ {Zm+1, . . . , Zn}.

Proof. Indeed, (X − [wv]F )q
−|wv|

=
(
(X − [w]F )q

−|w| − [v]F
)q−|v|

. So if Y

is the Zariski closure of δ(w) in (X − [w]F )q
−|w|

then the Zariski closure of

δ(wv) is contained in (Y − [v]F )q
−|v|

whose dimension is at most dimY . �
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We now decompose E into certain auxiliary sublanguages: For each k ≤ m
and ` = m+ 1, . . . , n, let

Ek := {w ∈ E : δ(w) = Zk},
O` := {wa : w ∈ Ek for some k ≤ m and a ∈ Σ moves A moves from Zk to Z`},
N` := {v ∈ Σ∗ : uv ∈ E for some u ∈ O`},
M` := {v ∈ Σ∗ : [v]F ∈ Z`}.

Lemma 9.10 together with (13) implies

(16) E =
m⋃
k=1

Ek ∪
n⋃

`=m+1

O`N`.

Lemma 9.11. For each ` = m+ 1, . . . , n, N` ⊆M` and [O`M`]F ⊆ X.

Proof. Suppose v ∈ N`. Then there is wa ∈ O` such that wav ∈ E . Hence

[wav]F ∈ X =⇒ [wa]F + F |w|+1([v]F ) ∈ X
=⇒ F |w|+1([v]f ) ∈ X − [wa]F

=⇒ [v]F ∈ (X − [wa]F )q
−|w|−1

(K) = Z`.

This proves that N` ⊆M`.
Now, suppose wa ∈ O` and v ∈ M`. Then z := [v]F ∈ Z`(K) = Z`.

(This last equality follows from the fact that Z` is the set of K-points of
some variety.) But as wa moves A into the state Z` we have that Z` =

(X − [wa]F )q
−|w|−1

(K). Hence

[wav]F = [wa]F + F |w|+1(z) ∈ X

as desired. �

Putting Lemma 9.11 together with (16) we get

(17) [E ]F ⊆
m⋃
k=1

[Ek]F ∪
n⋃

`=m+1

[O`M`]F ⊆ X

Lemma 9.12. For each k ≤ m, Ek is sparse.

Proof. It follows from the general theory of regularity that Ek is a regular
sublanguage of E . Suppose Ek is not sparse. Then, by one of the equivalent
characterisations of sparsity given in [BM19, Proposition 7.1], there exist
u, a, b, v ∈ Σ∗ with a and b distinct nonempty words of the same length,
such that u{a, b}∗v ⊆ Ek.

Let w1, w2 ∈ {a, b}∗ be words of the same length. Then

(X − [uw1v])q
−|uw1v|

(K) = Zk = (X − [uw2v])q
−|uw2v|

(K).

Since k ≤ m, taking Zariski closures yields

(X − [uw1v])q
−|uw1v|

= (X − [uw2v])q
−|uw2v|

.
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Transforming by F |uw1v| = F |uw2v| and translating by F |uw1|([v]) = F |uw2|([v]),
we get that g(w1, w2) := [uw1] − [uw2] ∈ Stab(X). Letting λ := |a|, note
that

g(aw1, aw2) = ([a] + F λ([uw1]))− ([a] + F λ([uw2])) = F λg(w1, w2).

So {g(w1, w2) : w1, w2 ∈ {a, b}∗, |w1| = |w2|} is preserved by F λ. Hence, so
is the Zariski closure H ≤ Stab(X) of the subgroup generated by this set.
It follows that H, and hence its connected component H0, is over a finite
field. So H0 ≤ E.

Let N be the index of H0 in H. Fix N + 2 distinct words w0, . . . , wN+1 ∈
{a, b}∗ of the same length. Then {g(w0, wj) : j = 1, . . . , N + 1} ⊆ H cannot
all lie in distinct cosets of H0. So for some i 6= j we have that

[uwjv]− [uwiv] = [uwj ]− [uwi] = g(w0, wi)− g(w0, wj) ∈ H0 ≤ E.
But as uwiv, uwjv ∈ E are distinct but of the same length, this contra-
dicts (15). �

Reduction 4. It suffices to prove that for each sparse O ⊆ Σ∗ and U ∈ F ,
if

[O]F ? U := {[w]F + F |w|(γ) : w ∈ O, γ ∈ U}
then [O]F ? U ⊆ T ⊆ X for some T ∈ F .

Proof. Since Ek is sparse for each k ≤ m by Lemma 9.12, and Γ is F -
pure in G(K) by Reduction 1, we may apply Corollary 9.8 to see that each
Ek ⊆ T ⊆ X for some T ∈ F . Hence, by (17), and Reduction 3, it suffices
to show that, for all ` + m + 1, . . . , n, [O`M`]F ⊆ T ⊆ X for some T ∈ F .
But [O`M`]F = [O`]F ? [M`]F by definition, O` is sparse by Lemma 9.12
as it is contained in

⋃m
k=1 EkΣ, and [M`]F = Z` ∩ Γ ∈ F by induction since

` > m. �

Taking finite unions we may assume that O = u1w
∗
1u2 · · ·ukw∗kuk+1 is a

simple sparse language and that U = b+S+Λ where S = S(b1, . . . , bt; δ) ⊆ Γ
for some b, b1, . . . , b2 ∈ G and Λ ≤ Γ is a Z[F δ]-submodule for some δ > 0.
We may assume that k > 0 as the result is trivial for k = 0. By Lemma 9.4
we have

[O]F = a0 + E(a1, . . . , ar; δ1, . . . , δr)

for some a0, . . . , ar ∈ G and δ1, . . . , δr > 0, and for any v ∈ Σ∗

[Ov]F = a0 + E(a1, . . . , ar−1, ar + F `[v]F ; δ1, . . . , δr)

where ` =
∑k+1

i=1 |ui|. Hence

[O]F ? U =
⋃
γ∈U

[Ovγ ]F where γ = [vγ ]F

=
⋃

γ∈S+Λ

a0 + E(a1, . . . , ar−1, ar + F `(b+ γ); δ1, . . . , δr)

=
⋃

γ∈S+Λ

a0 + E(a1, . . . , ar−1, ar + F `b, F `γ; δ1, . . . , δr, δ)
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where the final equality uses the fact that S+ Λ is F δ-invariant. As pointed
out in the proof of Proposition 9.6, setting ρ = lcm{δ1, . . . , δr, δ}, each

a0 + E(a1, . . . , ar−1, ar + F `b, F `γ; δ1, . . . , δr, δ)

can be written as the union of the sets

a0+E(Fm1δ1a1, F
m1δ1+m2δ2a2, . . . , F

∑r
i=1miδi(ar+F

`b), F
∑r
i=1miδi+mr+1δ+`γ; ρ)

where 0 ≤ mi ≤ ρ
δi

and 0 ≤ mr+1 ≤ ρ
δ . For ease of notation, fix µ :=

(m1, . . . ,mr+1) and let

aµ,j := F
∑j
i=1miδiaj for i = 1, . . . , r − 1

aµ,r := F
∑r
i=1miδi(ar + F `b) and

rµ :=
r∑
i=1

miδi +mr+1δ + `.

We thus have

[O]F ? U =
⋃

γ∈S+Λ

⋃
µ

a0 + E(aµ,1, . . . , aµ,r, F
rµγ; ρ).

It therefore suffices to prove that, for each of these finitely many µ, the set

Eµ :=
⋃

γ∈S+Λ

a0 + E(aµ,1, . . . , aµ,r, F
rµγ; ρ)

is contained in an element of F that is contained in X. Now, by the F -purity
of Γ in G(K) given by Reduction 1, we can apply Proposition 9.6 to see that
each

a0 + E(aµ,1, . . . , aµ,r, F
rµγ; ρ)

is contained in an element of F that is contained in X. In fact, as explained
in Remark 9.7, the proof of that proposition shows that

a0 + E(aµ,1, . . . , aµ,r, F
rµγ; ρ) ⊆ a0 + S(aµ,1, . . . , aµ,r, F

rµγ; ρ) ⊆ X ∩ Γ.

Hence Eµ ⊆ T ⊆ X where T ⊆ Γ is given by

T :=
⋃

γ∈S+Λ

a0 + S(aµ,1, . . . , aµ,r, F
rµγ; ρ)

= a0 + S(aµ,1, . . . , aµ,r; ρ) +
⋃

γ∈S+Λ

S(F rµγ; ρ)

= a0 + S(aµ,1, . . . , aµ,r; ρ) + F rµ(S + Λ)

where the final equality uses that S + Λ, and hence F rµ(S + Λ), is F ρ-
invariant. So T ∈ F , as desired.

This completes the proof of Theorem 9.1. �
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Appendix A. Trivialising multiplicative tori

Proposition A.1. Suppose M is a multiplicative torus over Fq; that is, it

is an algebraic group that is isomorphic to Gd
m over Falg

q . Then there exists

an isomorphism between M and Gd
m over Fq` with ` ≤ max(21111!, 2dd!).

Proof. Write M = Spec(T ) where T is a finitely generated (geometrically)
integral Fq-algebra. Let ` be least such that there exists an isomorphism

between M and Gd
m over Fq` . We have an Fq`-algebra isomorphism Φ : T⊗Fq

Fq` → Fq` [t±1
1 , . . . , t±1

d ]. Let F : Fq` → Fq` denote the q-power Frobenius
automorphism, and τ := id⊗F the induced Fq-algebra automorphism of
T ⊗Fq Fq` . Let σ := ΦτΦ−1 be the corresponding Fq-algebra automorphism

of Fq` [t±1
1 , . . . , t±1

d ]. Note that both τ and σ extend F on Fq` and are of
order `.

For each i = 1, . . . , d we have that σ(ti) = αit
ai,1
1 · · · tai,dd for some αi ∈ F∗

q`

and some integers ai,j such that A = (ai,j) ∈ GLd(Z). Note that A` = id.
We claim that A is of order `. This will suffice because the maximal order
of a torsion element in GLd(Z), at least when d > 10, is 2dd! by a theorem
of Feit [Fei96].

Suppose, toward a contradiction, that the order of A is k < `. Then,
for each i = 1, . . . , d, σk(ti) = αiti for some αi ∈ F∗

q`
. On the other hand,

σ`(ti) = ti. Hence, letting m := `
k , we get that

1 = αiσ
k(αi)σ

2k(αi) · · ·σ(m−1)k(αi) = αiF
k(αi)F

2k(αi) · · ·F (m−1)k(αi).

That is, each αi has norm 1 over Fqm , and so by Hilbert’s Theorem 90,

there exist λi ∈ F∗
q`

such that αi = λi
Fkλi

. Hence, after a change of variables

ti 7→ λiti, which corresponds to modifying Φ, we may assume that σk(ti) = ti
for all i. It follows that the fixed subring of σk is Fqm [t±1

1 , . . . , t±1
d ]. Of

course the fixed subring of τk = id⊗F k is T ⊗Fq Fqm , and Φ restricts to an
isomorphism of the fixed subrings. We thus have T ⊗Fq Fqm isomorphic to

Fqm [t±1
1 , . . . , t±1

d ], contradicting the minimality of `. �

Appendix B. Finding a Kq-basis

Suppose we are given a finite presentation of an Fq-algebra R and K =
Frac(R). In this appendix we explain how to find a basis for K over Kq.

We have a set of generators x1, . . . , xm for R as an Fq-algebra. Using
Gröbner basis, after reordering our variables if necessary, we can find some
t ≤ m such that x1, . . . , xt are algebraically independent over Fq and such
that xj is algebraic over L := Fq(x1, . . . , xt) for t+ 1 ≤ j ≤ m. We impose a
degree lexicographic ordering on the variables xt+1, . . . , xm and use Gröbner
bases to find a collection of monomials a1, . . . , ar in xt+1, . . . , xm such that
the following hold:
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• for each j = t+ 1, . . . ,m, some power of xj is in {a1, . . . , ar};
• the (finite) collection M of monomials in xt+1, . . . , xm that are not

a multiple of some element of a1, . . . , ar form a basis for K over L;
• each element in M is degree lexicographically less than some ai;
• for each j = 1, . . . , r we have an explicit expression

(18) aj =
∑
b∈M

λj,bb,

with λj,b ∈ L.

Applying the q-Frobenius isomorphism to M we see that

A := {uq : u ∈M}
is a basis for Kq over Lq. Moroever, as a basis for L over Lq is given by
xi11 · · ·x

it
t with 0 ≤ i1, . . . , it < q, we have that

U := {xi11 · · ·x
it
t u : 0 ≤ i1, . . . , it < q, u ∈M}

is a basis for K over Lq.
Note that as Kq contains Lq, the set U spans K as a Kq-vector space.

We wish to refine this into a basis B. Let u1, . . . , ur be an enumeration of U .
We begin at step 0 with B = ∅. At step i, to determine whether ui is in our

basis, we check whether ui is in the Lq-span of the set Bi :=
⋃
j<i

ujA. Notice

that for each a ∈ A and each j < i, using the relations given by (18), we can
explicitly express uja as an Lq-linear combinations of elements of U . It then
becomes a simple matter of linear algebra to determine whether ui is in the
Lq-span of Bi. If it is not, we add ui to B; otherwise, we leave B unchanged.
We claim that the set B is a basis for K over Kq. First, to see that it spans
K, suppose toward a contradiction that some ui is not in the Kq-span of B,
and assume that i is least such. Then ui 6∈ B and so by construction ui is in
the Lq-span of the elements

⋃
j<i ujA. But since LqA ⊆ Kq, we see that ui

is in the Kq-span of u1, . . . , ui−1, which by minimality of i is contained in the
Kq-span of B, our desired contradiction. Now, to see linear independence,
notice that if B is dependent then there is some i for which ui ∈ B and for

which we have a relation ui =
∑
j<i

λqjuj with the λj ∈ K. But now we can

write each λqj as an Lq-linear combination of elements of A, and this means

that ui is in the Lq-span of the elements
⋃
j<i ujA, contradicting the fact

that ui ∈ B.
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priétés algébriques et arithmétiques. Enseign. Math. (2), 33(1-2):67–108,
1987.

[Der07] Harm Derksen. A Skolem-Mahler-Lech theorem in positive characteristic
and finite automata. Invent. Math., 168(1):175–224, 2007.

[DM12] H. Derksen and D. Masser. Linear equations over multiplicative groups,
recurrences, and mixing I. Proc. Lond. Math. Soc. (3), 104(5):1045–1083,
2012.

[DM15] H. Derksen and D. Masser. Linear equations over multiplicative groups,
recurrences, and mixing II. Indag. Math. (N.S.), 26(1):113–136, 2015.

[DM18] H. Derksen and D. Masser. Linear equations over multiplicative groups,
recurrences, and mixing III. Ergodic Theory Dynam. Systems, 38(7):2625–
2643, 2018.
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[OW12] Joël Ouaknine and James Worrell. Decision problems for linear recurrence
sequences. In Reachability problems, volume 7550 of Lecture Notes in Com-
put. Sci., pages 21–28. Springer, Heidelberg, 2012.

[Ros73] Michael Rosen. S-units and S-class group in algebraic function fields. J.
Algebra, 26:98–108, 1973.

[Sil86] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Grad-
uate Texts in Mathematics. Springer-Verlag, New York, 1986.

Jason Bell, University of Waterloo, Department of Pure Mathematics, 200
University Avenue West, Waterloo, Ontario N2L 3G1, Canada

Email address: jpbell@uwaterloo.ca

Dragos Ghioca, University of British Columbia, Mathematics Department,
1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada

Email address: dghioca@math.ubc.ca

Rahim Moosa, University of Waterloo, Department of Pure Mathematics,
200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada

Email address: rmoosa@uwaterloo.ca


	1. Introduction
	2. Mordell-Lang for finitely generated subgroups of isotrivial commutative algebraic groups
	3. F-automaticity
	4. Explicit weak spanning sets
	5. A finiteness result on Frobenius pullbacks
	6. An automaton recognising X
	7. Deciding rational points on subvarieties of isotrivial abelian varieties
	8. A gap theorem for rational points of bounded height on subvarieties of isotrivial abelian varieties
	9. Mordell-Lang for finitely generated Z[F]-submodules of isotrivial commutative algebraic groups
	Appendix A. Trivialising multiplicative tori
	Appendix B. Finding a Kq-basis
	References

