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ABSTRACT. Let d and n be positive integers, and E/F be a separable field
extension of degree m = (nzd) We show that if |F'| > 2, then there exists a
point P € P*(E) which does not lie on any degree d hypersurface defined over
F. In other words, the m Galois conjugates of P impose independent condi-
tions on the m-dimensional F-vector space of degree d forms in xg,z1,...,Tn.
As an application, we determine the maximal dimension of an F-linear system
L of hypersurfaces such that every F-member of L is irreducible over F'.

1. INTRODUCTION

Consider the vector space V of all degree d homogeneous forms in n + 1 vari-
ables with coefficients in a field F'. An elementary counting argument shows that
m = dim(V) = (”Zd). Each point of P(V) can be identified with a projective
hypersurface in P™ defined over F. It is well known that if F' is an infinite field,
[ points of P*(F') in general position impose linearly independent conditions on
hypersurfaces of degree d, provided that | < m; cf. Lemma 3. In particular, for
points Py,..., P, of P™ in general position, there is no hypersurface of degree d
which passes through all of them.

Now suppose F' is an arbitrary field (possibly finite) and E/F is a separable field
extension of degree m. Can we choose P € P"*(FE) so that the m Galois conjugates of
P impose independent conditions on degree d hypersurfaces in P*? In other words,
is there always a P € P"(E) which does not lie on any degree d hypersurface defined
over F'?7 Our main result gives an affirmative answer to this question under a mild
restriction on F'.

Theorem 1. Let d,n € N, and E/F be a separable field extension of degree m :=
(":d) where |F'| > 2. Then there ezists a point P € P*(E) such that P does not lie
on any hypersurface of degree d defined over F'.

Theorem 1 can be restated as follows: there exist ag, a1, ..., a, € F such that the
m elements aé‘j alf ---alr of E are linearly independent over F. Here ig, i1, ..., i
range over non-negative integers such that ig + 41 + ... + i, = d. Note that in the
case, where n = 1, this assertion specializes to the Primitive Element Theorem for
the separable field extension E/F.

As an application of Theorem 1, we prove a sharp result regarding the linear
systems of hypersurfaces whose F,-members are all irreducible. Recall that a linear
system L = (Fy, F1, ..., F.) consists of hypersurfaces defined by coFy+... +¢oF. =0

where c; are scalars. By definition, F,-members of L are those hypersurfaces where
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the coefficients ¢; all live in F,. A linear system £ of hypersurfaces will be called

IF-irreducible if every IF-member of L is irreducible over IF,. The following theorem

determines the maximum size of an Fg-irreducible linear system.

Theorem 2. Let ¢ >2,d,n €N, and r := (":d) — ("+g_1) —1= ("Zi;l) - 1.
(1) Fort > r, no t-dimensional Fy-irreducible linear system of degree d exists.
(2) There ezists an r-dimensional F-irreducible linear system of degree d.

Computer experiments with specific values of n and d suggest that the assertion
of Theorem 1 may be true when |F| = 2, even though our proof does not go through
in this case. If the assumption that |F| > 2 can be dropped in Theorem 1, then
the assumption that ¢ > 2 can be dropped in Theorem 2.

The remainder of this paper is structured as follows. In Section 2 we use a general
position argument to prove Theorem 1 under the assumption that F' is infinite. In
the case where F' is finite, the concept of general position no longer applies. Here
we employ a point-counting argument. The strategy behind this counting argument
is outlined in Section 3, and is carried out in Sections 4 and 5. In Section 6 we
deduce Theorem 2 from Theorem 1 and present two examples.

Acknowledgements. The second and third authors are supported by NSERC
Discovery grants RGPIN-2018-03690 for D. Ghioca and RGPIN-2023-03353 for Z.
Reichstein.

2. PROOF OF THEOREM 1 IN THE CASE, WHERE [’ IS INFINITE

The following lemma is well known; we include a short proof for the sake of
completeness.

Lemma 3. Let F be a field, d and n be positive integers, and m = (":d). Then
there exist Py,..., P, € P*(F) such that no degree d hypersurface in P™ passes
through Py, ..., Pp,.

Proof. Let Vo = H(P", O(d)) be the m-dimensional vector space space of all degree
d forms in zq,...,x, and V; C V be the subspace of forms vanishing at Py, ..., P;.
Clearly V; C V;_; for any choice of Py,..., P;. Requiring forms to vanish on each
P; imposes one linear condition; hence, dim(V;) > m — 4, again for any choice of
Py, ..., P;. We claim that for a suitable choice of P, ..., P,, we have

(2.1) Vi G Via
for every i = 1,2,...,m or equivalently, dim(V;) = m — i. In particular, for this
choice of Py, ..., Py, we will have dim(V},,) = 0, and the lemma will follow.

We will choose Pi,...,P; so that (2.1) holds, by induction on ¢ € {1,...,m}.
Indeed, assume P4, ..., P,_; have been chosen. Since dim(V;—_;) > m —i+1> 0,

there exists a non-zero element f; € V;_1. We will now choose P; € P*(F) so that
fi(P;) # 0. The existence of P; with this property is obvious if F' is an infinite
field. If F' is finite, say F = F, and E = F;m for some prime power ¢, then the
existence of P; such that f;(P;) # 0 follows from the fact that the minimal degree of
a hypersurface defined over F, and passing through every F m-point in P" is ¢ +1
(see [MR98]), and ¢"™ + 1 > m > d. For this choice of P;, f € V;_1 \ Vi, and (2.1)
follows. This completes the proof of the claim and thus of Lemma 3. (]
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Proposition 4. Let d and n be positive integers and E/F be a commutative al-
gebra of degree m = (”::d) over F. View E as an m-dimensional vector space
over F'. Then there is a homogeneous polynomial function H on the affine space
Ap(E™Y) ~ Agﬂ'l)m defined over F with the following property: For any field
extension F'/F, E' = E®p F', a point a = (ag : ... : a,) € P"(E') lies on a
hypersurface of degree d defined over F' if and only if H(ag,ay,...,a,) = 0.

Proof. Let My, ..., M,, be distinct monomials of degree d in zg,...,z,. Clearly
a=(ag:ay:...:a,) € P*"(E) lies on a hypersurface of degree d in P" defined over
F if and only if M (a),..., M,,(a) are linearly dependent over F'.

Suppose {b1,...,b,} is an F-basis of E. Write

n
(2.2) bibj = Y c}ibn,
h=1
where the structure constants c?j lie in F. Using the basis by, ..., b, we can identify
E with F™ as an F-vector space (not necessarily as an algebra). Set
(2.3) a; = yi1b1 + ...+ Yimbm,
where each y; ; € F. Using formulas (2.2), for every s = 1,...,m, we can express

M(a) in the form M(a) = ps,1b1 + ...+ Ps mbm, where each p, ; is a homogeneous
polynomial of degree d in y; ; with coefficients in F'. By abuse of notation, we will
denote these polynomials by ps+(y; ;).

Now, view y; ; as independent (n + 1)m variables, as ¢ ranges from 0 to n and j
ranges from 1 to m. Set

pra(Wig)  preWis) o Pam(vig)
p21(Wi;)  p22Wij) - P2m(vij)
H(yi,j) = det . . . .

Pm1 (i) Pm2Wij) o Pmm(Yi)
For any field extension F'/F, an F'-point (o] ;) € Agfﬂ)m represents a point
a = (ap:...:a,,) € P"(E'), where a} = a;101 + ... + @ mbm € E’ for each
i=0,1,...,n. By our construction, H(c; ;) = 0 if and only if M;(a’),..., M, (a")
are linearly dependent over F’, and the proposition follows. ([

Conclusion of the proof of Theorem 1, assuming F' is an infinite field. Let H(y; ;)

be the homogeneous polynomial function on Ap(E™) ~ Agﬁl)m defined over F
whose existence is asserted by Proposition 4. We claim that H is not identically 0.

Once this claim is established, Theorem 1 readily follows from Proposition 4;
since F' is an infinite field, we can specialize each x;; to some ¢;; € F' so that
H(Cij) 7£ 0.

To prove the claim, it suffices to show that H(c;;) # 0, for some choice of ¢;; in
a larger field F’ containing F'. Let us choose F” so that F’ splits E/F, i.e., EQp F’
isomorphic to E' := F' x ... x F’ (m times). In particular, we can take F’ to be
an algebraic closure of F'.

Using Proposition 4, we can rephrase the above observation as follows: in order
to prove the existence of a point @ = (ag : a1 : ... : a,) € P*(F) with the property
that it does not lie of any hypersurface of degree d defined over F, it suffices to
prove the existence of a point a’ = (a} : ... : a,) € P*(E") which does not lie on
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any hypersurface of degree d defined over F’. To finish the proof, observe that the
existence of a’ with this property is equivalent to Lemma 3 with F' = F”. (]

3. PROOF OF THEOREM 1 IN THE CASE, WHERE F' IS FINITE: THE OVERALL
STRATEGY

From now on, we will assume that F' = F, and E = [Fym are finite fields. The
purpose of this section is to outline a strategy for a proof of Theorem 1 in this case.
We begin by proving Theorem 1 under an additional assumption, ¢ > d, which
greatly simplifies our counting argument.

Proposition 5. Let g be a prime power, d,n € N and m := (":d). Assume q > d.

Then there exists a point P € P™(Fym) such that P does not lie on any hypersurface
of degree d defined over F.

Note that here ¢ = 2 is allowed, unlike in Theorem 1, but only in the (trivial)
case, where d = 1. For the remainder of the paper,

H C P will denote the union of all hypersurfaces of degree d defined over F,.

Proof of Proposition 5. Observe that deg(H) = d(¢™ ! + ... + ¢+ 1). Since ¢ > d,
we have

deg(H) < (¢ —1)(@" '+ +q+1)=¢"~1
On the other hand, the degree of a space-filling hypersurface in P"(Fym) defined
over F, is at least ¢" +1; see, e.g., [MR98]. We conclude that H is not space-filling
in P"(F,m), and the proposition follows. |

When d > ¢, we will need a more delicate argument to show that H does not
contain every F,m-point of P". We will estimate the number of F,m-points on H,
with the goal of showing that this number is strictly smaller than the number of
Fym-points in P". To estimate the number of Fym-points on H, we will subdivide
the hypersurfaces X C P of degree d defined over I, into two classes:

a) X is geometrically irreducible (that is, irreducible over F,), or
b) X is geometrically reducible.

When X C P" is geometrically irreducible, we will use the inequality
(3.1) |X(qu)| < (qm(n—l) 4. -+qm+1)—|—(d—1)(d—2)qm(n_3/2) +5d13/3qm(n—2)’

due to Cafure and Matera [CM06]. When X is geometrically reducible, we will use
Serre’s estimate [Ser91],

(32) X(FQ)| < dg™ D + gm0 4o g1,

Note that both of these are polynomial bounds in g of degree m(n—1). However, the
one in Case b) is asymptotically weaker, because the leading term ¢™("~1 comes
with coefficient 1 in (3.1) and with coefficient d in (3.2). To get a strong upper
bound on the number of F,m-points on #, we need to make sure that Case b) does
not occur too often. In other words, if we let ¢ denote the fraction of hypersurfaces
in P™ over F, of fixed degree d which are not geometrically irreducible, then our
first task is to bound ¢ from above. Note that ¢ depends on ¢, d and n.

Poonen showed that ¢ — 0, as d — oo and ¢ and n remain fixed; see [Poo04,
Proposition 2.7]. This is not enough for our purposes. We will refine the inequalities
from the proof of [Poo04, Proposition 2.7] to establish the following upper bound
on t.
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Proposition 6. Let t denote the fraction of hypersurfaces in P™ of degree d over
F, that are geometrically reducible. Assume that one of the following conditions
holds:

en=2d>6andq>3; or
en>3d>3andq>3.

Then (d — 1)tq < 2.

We will prove this proposition in the next section, then use it to complete the
proof of Theorem 1 in Section 5.

4. PROOF OF PROPOSITION 6
Following Poonen [Poo04, Proof of Proposition 2.7], we will write
(4.1) t=ty 41ty
and estimate t; and to separately. Here

e ¢, is the proportion of hypersurfaces of degree d in P" defined over [y,
which are reducible over F,, and

e {5 is the proportion of hypersurfaces of degree d in P" defined over F,,
which are irreducible over Iy, but reducible over F,. for some integer e > 1,
dividing d.

29 2—d

Lemma 7. ¢, < 53¢ when n = 2, > 3 and d > 6, while t; < 1.5 -

2, q
_nladd=1) g
q 2 foralln >3, q>3, and d > 3.
Proof. Following the proof of [Poo04, Proposition 2.7], we obtain:

Ld/2]
(4.2) th < Z g,
=1

N — <n+d> B <n+z) B <n+di)
d n n
Claim: For each 1 <4< |d/2] -1

(a) Ni+1 _NZ = d—2i— 1, and
(b) Njj1 — Ny >d — 3.

where

To prove part (a), we use Pascal’s identity to rewrite N;41 — N; as

Ny — N = <n+di1)(n+i)
n—1 n—1

Ly S _ii n—2+j
n—2 n—2

Jj=0

Il Il
Mz L
7 N

3
S |
| Do
o+

o
N———

Each term in the above sum is > 1 (note also that d —4 > i+ 2 since ¢ < |d/2] —1);
thus N;y1 — N; > d — 2i — 1, as claimed in part (a).
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To prove part (b), write Ni-i—l —N1 = (N'H-l —NZ)—F(N@ _Ni—1)+~ . —|—(N2 —Nl).
Part (a) tells us that each term in this sum is non-negative, and the last term,
Ny — Ny, is > d — 3. Thus

(43) Ni+1 —N1 = (N1+1—NZ)+(NZ—NZ,1)+ . .+(N2—N1) > NQ—Nl > d—3.
The completes the proof of the Claim.

Next we estimate N; from below:

(T (-

_ (n+d-—1)(n+d—2)---(n+1)n

d —(n+1)
2@_(714_1).

Substituting (4.3) and (4.4) into the inequality (4.2), we deduce that

d (n+d—1)n d
h<qg ™ (1 i <2 _ 1) q3d> _ qf%ﬂnﬂ) (1 4 <2 _ 1) qu)

An elementary computation shows that for integers d > 6 and ¢ > 3 (which corre-
sponds to the case n = 2), the expression (1+ (£ — 1) q3 ) is at most 22 (which is
achieved when ¢ = 3 and d = 6). Similarly, when n > 3, we need to find the max-
imum of the expression (1 + (% — 1) qg’d) when ¢ > 3 and d > 3; the maximum
equals 1.5 and is attained when ¢ = 3 and d = 3.

Thus,
29 2-d .
t1 < —=-q when n = 2, while
27
t1 <1.5- q‘mw{l)n"'("“) when n > 3,
as desired. O

Next, we prove a lower bound on the proportion ¢y of hypersurfaces which are
irreducible but not geometrically irreducible.

Lemma 8. Let n > >3,d >3, we have ty < (d—1)q~ P(5)dHd-1,

Proof. Tt is shown in the proof of [Poo04, Proposition 2.7] that

(4.5) ta< > g M

e|ld,e>1

where M, = <d + n> —e (d/e + n) Our first task is to provide a lower bound on
n n
M.
Claim 1. Assume n > >3,d >3 and e|d, where e > 1. Then

(O
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Proof of Claim 1. Let S =T U F, where T and F are disjoint sets of cardinality d
and n, respectively. The binomial coefficient (d:") counts the number of n-subsets
of S.

Partition T as T = Ty UTy U --- U T,, where |T;| = d/e for each 4, and set
S; = T; U F. Note that |S;| = (d/e) + n; hence, the binomial coefficient (d/i:r”)
counts the number of n-subsets of S;. It is also clear that the number of common
n-subsets of S; and S§; for ¢ # j is exactly 1, namely the n-set F. Thus, the total
number of n-subsets arising from 57,55, -, S, is exactly:

e () )= (V) — e

Next, we construct additional n-subsets of S that are not contained in any Si. Fix
integers 1 < i < j < e. Choose elements a € T; and b € T; and consider an n-subset
of S containing both a and b. Any such subset is of the form

{a,b} UE

for some (n — 2)-subset E of F. By our contruction {a, b} U E is not contained in
Sk for any 1 < k < e. The number of subsets of the form {a, b} U E is equal to
(d/e)-(d/e)- (,",) once i and j are fixed, because there are d/e ways to choose a

in T}, d/e ways to choose b in T}, and (,",) = (%) ways to choose an (n — 2)-subset
E of F. Varying (i, j) among the (;) choices, we get a total contribution of

L))

many distinct n-subsets of S that do not arise as n-subsets of Sy for any 1 < k < e.
Consequently,

()= () =)= ()6 ()

leading to the lower bound

(1) () (O @)

as claimed. O

4
To deduce this bound from Claim 1, note that

O () ot (ma) (om0

since d > e > 2.

To complete the proof of Lemma 8, we note that the number of divisors e of d
with e > 1 is at most d — 1. Thus the right hand side of (4.5) has at most d — 1
terms. By Claim 2, each term ¢~ is at most ¢~ T(E)d*+d-1 pig yields the
inequality

1
Claim 2: M, > <Z)d2 —d+1

t < (d—1)gH ()i
of Lemma 8. O
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We are now ready to finish the proof of Proposition 6. Writing ¢ = ¢; + 2, as
in (4.1) and using Lemma 7 and Lemma 8, we obtain

(ntd—1)n

(4.6) t <15 g D) (g — 1) i (3) 4 Hd1
when n > 3, ¢ > 3 and d > 3, while

2
(47) t< 73 .q2—d + (d 1)q_zd2+d 1’

when n =2, ¢ > 3 and d > 6. We will consider the cases, where n =2 and n > 3
separately.

Claim 1: For n =2, ¢ > 3 and d > 6, we have (d — 1)tq < 2.
Indeed, when n = 2, the inequality (4.6) specializes to

29 9 4
271

[\)

t < +(d—1)g— 3% +d-1,

Consequently,

(d—1)tg < O(q,d) := (d — 1) (;3 3=d 4 (d — 1)qid2+d) .

For d > 6, both exponents in ¢3~% and ¢~ 1% +7 are negative. This yields ©(q, d) <
©(3,d) for ¢ > 3. On the domain d > 6, the one-variable function ©(3,d) achieves
its maximum when d = 6. Thus, (d — 1)tg < ©(3,6) ~ 1.125. In particular,

(d — 1)tq < 2. This proves Claim 1.
Claim 2. Forn > 3, ¢ > 3 and d > 3, we have (d — 1)tq < 2.
We argue as in the proof of Claim 1. For n > 3, the inequality (4.6) implies

t < 154 4 (g — 1)gm i

where we have substituted n = 3 in (4.6). Consequently,
(4~ 1)tg < W(g,d) = (d 1) (15¢° 342 4 (4 - 1)g~ 3 +7)

We have ¥(q,d) < ¥(3,d) for ¢ > 3. On the domain d > 3, the one-variable function
U(3,d) achieves its maximum when d = 3. Thus, (d — 1)tqg < ¥(3,3) ~ 0.257.
In particular, (d — 1)t¢ < 2. This completes the proof of Claim 2 and thus of
Proposition 6. O

5. CONCLUSION OF THE PROOF OF THEOREM 1

The case when F' is infinite is handled in Section 2. Thus we will assume that
F =TF, and E = Fym are finite fields. Furthermore, Proposition 5 delivers the
desired result when ¢ > d; hence, from now on, we assume that ¢ < d.

We follow the strategy outlined in Section 3. Recall the notation we used there:

e 1 denotes the union of all degree d hypersurfaces in P" defined over Fy,
and

e ¢ denotes the fraction of these hypersurfaces which are not geometrically
irreducible.
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Our goal is to show that there exists an Fym-point in P which does not lie on H.
As the total number of hypersurfaces of degree d defined over F is ¢ '+...4+¢+1 =

q"—1 q"—1
, there are exactly ¢
q—1 q—1

reducible. Using the upper bounds (3.1) and (3.2) on the number of points of a
hypersurface of degree d, we obtain the following inequality:

) hypersurfaces of degree d which are geometrically

qm -1 m(n— m m(n—
#F) < (D) (= 0@ g 1)+ (@ D)= 2)gmn
+ 5d13/3qm(n72)) + t(dqm(nfl) + qm(n72) N qm + 1)),
where m := ("Zd). After some cancellations, we can bound the term in the paren-

thesis after

q;":11 from above by

(5.1) (1+(d—1t)gm™=D 4 ¢gm=2 4 4 g™+ 1
1 (d — 1)(d — 2)g™(n=3/2) 4 5q13/3gm(n=2).

By Proposition 6, we have

2
(5.2) (d-ne<,

foralln >3, d>3and g >3, orn =2 ¢g2>3andd > 6. Since we already
know that Theorem 1 holds when g > d (see Proposition 5), we may assume that
the inequality (5.2) holds unless (n,q,d) equals (2,3,3), (2,3,4), (2,3,5), (2,4,4),
(2,4,5) and (2,5,5). These exceptional cases will be handled using a computer at
the end of the proof; we ignore them for now. Next, we bound the lower-order
terms in the expression (5.1).

Claim. If n > 2, ¢ > 3 and d > 3, then we have
(d o 1)(d _ 2)qm(n—3/2) + (qm(n—2) NI qm + 1) + 5d13/3qm(n—2) < qm(n—l)—l
In order to verify this inequality, we first note that
qm(n—l) -1 _ qm(n—l) _ qm(n—l)
qm—1 qm—1 1000q ’

since ¢ > 3 and m > (d+ 2)(d + 1)/2 > 10 because d > 3. Employing (5.3), the
left-hand side of the desired inequality is less than

(5.3) " g 1 =

m(n—1)—1
5.4 d—1)(d—2)gn=32 4
G4y @-na-2em  C

m(n—1)—1

+ 5d13/3qm(n—2) )

Dividing the expression from (5.4) by ¢ , we can easily check

1 .
d—1(d—-2 1-m/2 d13/3 1-m 1
Y S

keeping in mind that ¢ > 3 and m > (d + 2)(d 4+ 1)/2, while d > 3; this completes
the proof of the claim.

Combining the Claim with the inequality (5.2), we see that the quantity in (5.1)
is less than

(1 + Z) q7n(n—1) _|_qm(n—1)—1 < qm(n—l) _~_3qm(n—1)—1.
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Thus, we obtain the following upper bound on #H (Fym).

m

-1
#H(qu) < (qq — > <qm(n71) +3qm(n71)71)

In order to show that H does not pass through every Fym-point in P”, it is enough

to show that

m_1

(q ) (qm(n—l) +3qm(n—1)—1> < qmn’
qg—1

because #P*(Fym) = ¢™ + -+ + ¢™ + 1. By replacing ¢ — 1 with ¢"™ on the

left-hand-side, we claim that the stronger inequality holds:

qm(qm(n—l) +3qm(n—1)—1) < qmvn+1 _ qmn.

After cancelling out ¢™™~! from both sides, it remains the show,
q+3<¢®—q

This last inequality ¢ — 2¢ — 3 > 0 is valid for all ¢ > 3. Therefore, we have
established Theorem 1 with F = F, and E = Fym, for all triples (n,q,d) with
n>=2qg=3d>1,and (nqd) # (2,3,3), (2,3,4), (2,3,5), (2,4,4), (2,4,5),
(2,5,5).

We now complete the proof of Theorem 1 by a computer-assisted computation
in these six exceptional cases. For each of the exceptional triples (n, ¢, d), it suffices
to find a single point P € P?(F,m) where m = ("zd) such that P does not lie on
any degree d hypersurface defined over IFy.

When (n,q,d) = (2,3,3) we write Fzi0 as Fs[a]/(a'® + a* + a + 1), and check
that P = (a : a®: 1) does not lie on any cubic plane curve defined over Fs.

When (n,q,d) = (2,3,4), we write Fzis as Fz[a]/(a'® + a? — 1) and check that
P =(a:a’:1) does not lie on any quartic plane curve defined over Fj.

When (n,q,d) = (2,3,5), we write Fs21 as Fs[a]/(a?' + a'® — 1) and check that
P = (a:a'®:1) does not lie on any quintic plane curve defined over Fs.

When (n,q,d) = (2,4,4), we write Fqs as Fy[a]/(a'® + a + 1) and check that
P = (a®: a® : 1) does not lie on any quartic plane curve defined over F,.

When (n,q,d) = (2,4,5), we write Fy21 as Fq[a]/(a?! + a? + 1) and check that
P = (a%: @' : 1) does not lie on any quintic plane curve defined over F,.

When (n,q,d) = (2,5,5), we write Fs21 as Fs[a]/(a®! + a'® +a'* + 1) and check
that P = (a : a® : 1) does not lie on any quintic plane curve defined over Fs. (]

6. PROOF OF THEOREM 2

Suppose P is a property of an algebraic hypersurface. For instance, P could
stand for “is smooth”, or “is irreducible over IF,”, or “is geometrically irreducible.”
Given a finite field Iy, it is natural to ask the following.

Question 9. What is the largest value of r such that there exists a dimension-r
linear system L of degree d hypersurfaces in P such that every F;-member of £
satisfies P?

More explicitly, Question 9 asks for the largest value of r, as a function of ¢, n, d,
such that there exists a linear system £ = (Fy, Fi,- - , F,) of (projective) dimension
r with the following property: each nontrivial linear combination coFy+- - -+c¢,.F;. =
0 with ¢; € F, defines a hypersurface in P" that satisfies the property P.
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When P represents the property of being smooth, we answered Question 9
in [AGR23] under a mild restriction on the characteristic of our field. More precisely,
we proved that the maximum value of r is n whenever char(F,) { ged(d,n + 1).

When P represents the property of being irreducible over F,, Theorem 2 pin-

points the exact answer: the largest value of r is ("+d) - ("+(d_1)) 1= (”+d_1) —1.

n n n—1

Proof of Theorem 2. (1) Let L = (Fp,...,F}) be a linear system of (projective)
dimension ¢t > r. Let V denote the vector space of all degree-d forms and consider
the following subspace:

W ={F €V | F is divisible by z¢}.
Evidently, dim(V') = (”::d) and dim(W) = (”t‘f*l). Thus,

d—1 d
dimg, (W) + dimg, (£) = <”+n ) Ft41> ("Z )

due to ¢ > r and our choice of r. It follows that W and £ meet in a nontrivial IF-
subspace inside V. In other words, £ contains a hypersurface defined over IF, whose
equation is divisible by z¢. Therefore, £ is not an Fy-irreducible linear system.

(2) We apply Theorem 1 for degree d — 1 hypersurfaces in P". We obtain a
point P € P*(Fgm) with m = ("+g_1) that is not contained in any hypersurface of
degree d — 1 defined over F,. Clearly, P is also not contained in any hypersurface
of degree at most d — 1. Let P, :== P, and set S = {Py,---, P, } to be the orbit of
P under Gal(F,m /F,). Consider the vector space Vg of degree d forms defined over
F,, which vanish at the point P (and therefore at each point of ). Since vanishing
at each additional point imposes at most one new linear condition, we obtain

dim Vg > s —m = n+d - il =r+1.
d d n

Pick linearly independent forms Fy, Fi, ..., F,. € Vg. Consider the linear system
L = (Fy, Fi, ..., F,) of degree d hypersurfaces. We claim that each F,-member F'
of £ is irreducible over F,;. Otherwise, F' = G - H where deg(G) < d — 1 and
deg(H) < d — 1. Since F(P) = 0, we have G(P) = 0 or H(P) = 0. Either case
leads to a contradiction because P does not lie on a hypersurface of degree at most
d — 1 defined over [Fy. Therefore, £ is F4-irreducible. ([

Example 10. Consider the case d = 4 and n = 2, along with ¢ > 2.

e By [AGR23], there exist n + 1 = 3 linearly independent plane quartics
C; ={F; =0} for i = 0,1, 2 such that the quartic {aoFo+a1F1 +asFy = 0}
is smooth for all (ag, a1, a2) € (F4)>\{(0,0,0)}. The number 3 is maximum
possible here.

e By Theorem 2, there exist r +1 = (dJQFQ) — (d;rl) = d+ 1 = 5 linearly
independent plane quartics C; = {F; = 0} for ¢ = 0,1,2,3,4 such that the
quartic {Z?:o a;F; = 0} is irreducible over Fy for all (ag,a1,a2,as,a4) €
(F,)5\ {(0,0,0,0,0)}. The number 5 is maximum possible here.

Example 11. Consider the case d = 3 and n = 3, along with ¢ > 2.

e By [AGR23], there exist n+ 1 = 4 linearly independent cubic surfaces C; =
{F; =0} fori = 0,1, 2,3 such that the cubic {agFo+a1 Fi1+asFa+azF3 = 0}
is smooth for all (ag,a1,as,a3) € (Fy)*\ {(0,0,0,0)}. The number 4 is
maximum possible here.
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e By Theorem 2, there exist r + 1 = (“3%) — (*1?) = 1(¢®> + 3d +2) = 10

linearly independent cubic surfaces C; = {F; = 0} for i = 0,1,2,--- ,9 such
that the cubic {Z?:o a;F; = 0} is irreducible over Fy for all (ao,...,a9) €
(F)'\ {(0,---,0)}. The number 10 is maximum possible here.
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