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Abstract. We provide a family of counterexamples to a first formula-
tion of the dynamical Manin-Mumford conjecture. We propose a revi-
sion of this conjecture and prove it for arbitrary subvarieties of abelian
varieties under the action of endomorphisms of abelian varieties and for
lines under the action of diagonal endomorphisms of P1 × P1.

Introduction

The Manin-Mumford conjecture, proved by Raynaud [Ray83a, Ray83b],
states that if V is a subvariety of an abelian variety A, defined over C, then V
contains a dense set of torsion points if and only if V is a torsion translate
of an abelian subvariety of A. Over number fields, a stronger theorem,
conjectured by Bogomolov and proved by Ullmo [Ull98] and Zhang [Zha98],
states that V contains a dense set of points with Néron-Tate height tending
to zero if and only if V is a torsion translate of an abelian subvariety of A.

The proofs of [Ull98] and [Zha98] make important use of an equidistribu-
tion theorem for points of small canonical height on abelian varieties (see
[SUZ97]). Recently, dynamical analogues of this equidistribution theorem
have been proved by various authors [BR06, CL06, FRL06, Yua08]. Thus, it
seems quite natural to attempt to find dynamical versions of the Bogomolov
and Manin-Mumford conjectures.

Here, we will present a family of counterexamples to a first formulation
of the dynamical Manin-Mumford and Bogomolov conjectures (see [Zha95,
Conjecture 2.5] and [Zha06, Conjecture 1.2.1, Conjecture 4.1.7]). The family
is fairly simple. It involves the diagonal subgroup of E×E under the action
of ([ω1], [ω2]) for [ω1], [ω2] ∈ End(E) elements of equal degree, where E is an
elliptic curve with complex multiplication. This is explained in Theorem 1.2.
We then propose a revision of this conjecture, which we show that it holds
in the cases of group endomorphisms of abelian varieties and of lines under
the action of arbitrary endomorphisms of (P1)N .
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1. Counterexamples and revision

Our examples are on algebraic varieties, whereas [Zha06, Conjecture 1.2.1]
is a conjecture about more general Kähler varieties; on the other hand,
[Zha06, Conjecture 4.1.7] is a statement about general points of small canon-
ical height, while our counterexample is for the more specific case of preperi-
odic points (which all have canonical height equal to 0). Thus, for simplicity,
we will state an “algebraic dynamical Manin-Mumford” conjecture, which is
implied by both (but is weaker than either of) [Zha06, Conjecture 1.2.1] and
[Zha06, Conjecture 4.1.7]. We will then provide a family of counterexamples
in Theorem 1.2.

Before stating the conjecture, we define a few terms:

• An endomorphism φ : X −→ X of a projective variety is said to
have a polarization if there exists an ample line bundle L on X such
that φ∗L = L⊗d for some d > 1.

• A subvariety Y of a projective variety X with endomorphism φ is
said to be preperiodic (under the action of φ) if there exist positive
integers m and k such that φm+k(Y ) = φm(Y ).

• Prepφ = Prepφ(X) is defined to be the set of all preperiodic points
of X (under the action of φ).

Conjecture 1.1. (Algebraic Dynamical Manin-Mumford) Let φ : X −→ X
be an endomorphism of a projective variety defined over the complex numbers
with a polarization, and let Y be a subvariety of X. Then Y is preperiodic
if and only if Y ∩ Prepφ(X) is Zariski dense in Y .

The following theorem shows that Conjecture 1.1 is often false for E ×E
when E has complex multiplication.

Theorem 1.2. Let E be an elliptic curve with complex multiplication defined
over the complex numbers. Let R be an order in an imaginary quadratic
extension of Q such that there is an isomorphism ι : R −→ End(E) written
as ι(ω) = [ω]. Suppose that ω1, ω2 ∈ R such that |ω1| = |ω2| > 1. Then
the diagonal of E×E is preperiodic under the action of of ([ω1], [ω2]) if and
only if ω1/ω2 is a root of unity.

Remark 1.3. In Theorem 1.2, note that all torsion points of E are prepe-
riodic under both [ω1] and [ω2] (see also Claim 2.2); therefore the diagonal
subvariety of E ×E has a Zariski dense set of preperiodic points under the
map ([ω1], [ω2]). Hence Theorem 1.2 gives rise to many counterexamples.
For example, take any ω1 such that |ω1| > 1 is the square-root of an odd
integer and ω1/ω1 is not a root of unity, and let ω2 = ω1. There are also
examples in which ω1 is an integer; take for example ω1 = 5 and ω2 = 3+4i
in Z[i]. Note that for each ω ∈ R, we have |ω|2 = #ker([ω]) = deg([ω]).
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The lowest degree counterexamples come from multiplication by 1+
√
−7

2 on

the curve y2 = x3 − 35x + 98 (see [Sil94, II.2], where this is worked out
in detail). Pazuki [Paz] has worked out a number of higher-dimensional
counterexamples.

We propose the following reformulation of Conjecture 1.1.

Conjecture 1.4. Let X be a projective variety, let φ : X −→ X be an
endomorphism defined over C with a polarization, and let Y be a subva-
riety of X which has no component included into the singular part of X.
Then Y is preperiodic under φ if and only if there exists a Zariski dense
subset of smooth points x ∈ Y ∩ Prepφ(X) such that the tangent subspace
of Y at x is preperiodic under the induced action of φ on the Grassmanian
Grdim(Y ) (TX,x). (Here we denote by TX,x the tangent space of X at the point
x.)

One direction is clear: if Y is preperiodic then it will lift to a preperiodic
subvariety of the Grassmanian, which will contain a dense set of preperiodic
points, by work of Fakhruddin [Fak03]. The other direction seems more
difficult. In the following we show that Conjecture 1.4 is true in the cases of
group endomorphisms of abelian varieties and of arbitrary endomorphisms
of X = P1 × P1 when Y is a line.

2. Abelian varieties

Theorem 2.1. Conjecture 1.4 holds for group endomorphisms φ of abelian
varieties X.

Proof. Clearly, it suffices to prove our result assuming Y is irreducible. We
start with a standard result regarding preperiodic points for polarizable
algebraic group endomorphisms; we include its proof for completeness.

Claim 2.2. For a polarizable algebraic group endomorphism φ of an abelian
variety X, we have Prepφ(X) = Xtor.

Proof of Claim 2.2. Clearly, each torsion point of X is preperiodic under φ
since φ is an algebraic group endomorphism, and so, for each m ∈ N, we
have φ(X[m]) ⊂ X[m]. Since X[m] is a finite set, we conclude that each
torsion point in X[m] is preperiodic under φ.

Conversely, if α ∈ Prepφ(X), then there are k > 0 and m ≥ 0 such that

φm(α) = φm+k(α) or (φk+m − φm)(α) = 0, or α is in the kernel of φk+m −
φm. Since φ is polarized, then φ acts on Lie(X) with eigenvalues whose

absolute values are | degφ|1/2 dimX . Thus (φk+m − φm) has all eigenvalues
nonvanishing on Lie(X). It follows that φk+m − φm is finite over X and
then has finite kernel. Thus α is torsion. �

Now, assume Y ⊂ X contains a Zariski dense set of points from Prepφ(X).
By Claim 2.2, it follows that Y contains a Zariski dense set of torsion points
of X. Hence, the classical Manin-Mumford conjecture (proved by Raynaud
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[Ray83b]) implies that Y is a torsion translate of an algebraic subgroup of
X, i.e. Y = γ + H, where γ ∈ Xtor and H is an abelian subvariety of X.
Since γ ∈ Prepφ(X) (also according to Claim 2.2), we are left to show that
H is preperiodic under φ.

Now, using the exponential uniformization map on X, we see that the
preperiodicity of H under the endomorphism φ is equivalent with the prepe-
riodicity of the tangent subspace of H at any point x ∈ H under the induced
action of φ on Grdim(Y ) (TX,x). This concludes our proof. �
Proof of Theorem 1.2. The action of [ω1, ω2] on

Lie(E × E) = Lie(E)⊕ Lie(E)

is given as multiplication by (ω1, ω2). The diagonal in Lie(E) ⊕ Lie(E) is
preperiodic under (ω1, ω2) if and only if ω1/ω2 is a root of unity. �

3. Lines in P1 × P1

Theorem 3.1. Let f, g : P1 −→ P1 be nonconstant rational maps over C
such that deg f = deg g > 1, let

(f, g) : P1 × P1 −→ P1 × P1

be the map given by (f, g)(a, b) = (f(a), g(b)), and let L ⊂ P1 × P1 be a
line. If there exists an infinite subset of points x ∈ Prep(f,g) ∩L such that
the tangent subspace of L at x is preperiodic under the induced action of φ
on Gr1

(
TP1×P1,x

)
, then L is preperiodic under (f, g).

The proof is somewhat similar to the proof of the main result from [GT10]
which dealt with the case of polynomial maps.

Step 1: reduction to the case L is the diagonal subvariety. If L does not project
dominantly to both copies of P1, then (without loss of generality) we may
assume L = {a} × P1. Since L contains infinitely many preperiodic points
for the action of (f, g) on P1 × P1, we conclude that a is preperiodic for
f . Therefore, L is indeed preperiodic under the action of (f, g) (no extra
hypothesis is necessary in this case).

So, from now on, we assume L projects dominantly on P1 × P1. Thus,
there exists a linear map σ such that the equation of L is y = σ(x), where
(x, y) is a generic pair of projective coordinates for P1×P1. Then, replacing
g by σ−1 ◦ g ◦ σ yields that the diagonal line ∆ contains infinitely many
preperiodic points for (f, σ−1gσ). Therefore, from now on, we assume L = ∆
is the diagonal subvariety of P1 × P1. �
Step 2: using theorems of equidistribution in dynamics. First we note that
(x, x) ∈ ∆ is in Prep(f,g) if and only if x ∈ Prepf ∩Prepg. Thus, Prep(f,g) ∩∆
is infinite if and only if Prepf ∩Prepg is infinite. Denote the equilibrium
measure and the Julia set of a map h of degree greater than 1 as µh and
Jh. By recent work of Baker–DeMarco [BD] and Yuan–Zhang [YZ], we have
Prepf = Prepg, µf = µg and Jf = Jg. �
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Step 3: applying a theorem of Levin. Thus, f and g satisfy the conditions
(i)-(ii) of Theorem 3.2 proved in [Lev90] (see also [DH93]).

Theorem 3.2. (Levin) Let f, g ∈ C(t) be rational maps of degree greater
than 1 satisfying the following two conditions:

(i) Jf = Jg and µf = µg.
(ii) there exists a repelling periodic point for g which is also preperiodic

for f .

Then one of the following conclusions hold:

(1) there exist k, ℓ ∈ N such that f ℓ ◦ gk = f2ℓ.
(2) modulo conjugation, f and g are either

(a) tm for some m ∈ Z; or
(b) Tm for some m ∈ N (where Tm denotes the m-th Chebychev

polynomial); or
(c) a Lattès map.

Assume first that (1) holds. Using the fact that deg(f) = deg(g) ≥ 2, we
conclude that k = ℓ in conclusion (1) of Theorem 3.2. Hence f ℓ ◦ gℓ = f2ℓ.
We claim that this relation yields that the diagonal ∆ ∈ P1 × P1 is (f, g)-
preperiodic.

Indeed, because gℓ : P1 −→ P1 is surjective, for each x ∈ P1(C), there
exists y ∈ P1(C) such that x = gℓ(y). Furthermore, using that f ℓ ◦ gℓ = f2ℓ,
we obtain that f2ℓ(y) = f ℓ(gℓ(y)), and so, (f2ℓ(y), g2ℓ(y)) = (f ℓ(x), gℓ(x)).
Therefore (f ℓ, gℓ)(∆) ⊂ (f2ℓ, g2ℓ)(∆). Moreover, since ∆ is irreducible, we
conclude that (f2ℓ, g2ℓ)(∆) = (f ℓ, gℓ)(∆), and thus ∆ is (f, g)-preperiodic,
as conjectured. Note that so far we did not need the extra assumption about
the preperiodicity of the tangent subspaces. �

Step 4: the case when f and g satisfy conclusion (2) in Theorem 3.2. Now,
in the case where one of the maps is conjugate to a powering map or a Cheby-
chev polynomial (cases (a) and (b) above), the other cannot be Lattès map
since the two maps must have the same Julia set; the Julia set of a Lattès
map is the entire Riemann sphere, which can never be the case for a polyno-
mial or for a rational map tm for m ∈ Z. Similarly, if one map is conjugate
to tm, then the other one cannot be conjugate to Tm (and vice-versa) since
the Julia set of tm is the unit circle, while the Julia set for Tm is the closed
interval [−2, 2]. Now, if both f and g are conjugate to tm (which is an endo-
morphism of Gm), then our problem reduces to the classical Manin-Mumford
question for G2

m which was first proved by Lang [Lan65] (see also the results
of Raynaud [Ray83a, Ray83b] for the general case of abelian varieties). A
similar argument yields the desired result if both f and g are conjugate to
Tm.

Therefore we reduced the proof of Theorem 3.1 to the case when both f
and g are Lattès maps. In this case, there exist two elliptic curves E1 and
E2, there exist two projection maps πi : Ei −→ P1 for i = 1, 2, and there
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exist two isogenies ωi : Ei −→ Ei witnessing the fact that f and g are Lattès
maps, i.e.,

π1 ◦ ω1 = f ◦ π1 and π2 ◦ ω2 = g ◦ π2.
For each unramified point x ∈ E1 × E2 for the morphism (π1, π2), the

induced map on the tangent space is an isomorphism. Now, the ramified
locus for (π1, π2) is a finite union of divisors of E1×E2 of the form {a}×E2 or
E1 × {b}. On the other hand, each irreducible component of (π1, π2)

−1(∆)
has dominant projection onto each Ei for i = 1, 2. Therefore, for each
irreducible component V of (π1, π2)

−1(∆), there exist at most finitely many
ramified points for the map (π1, π2). Also, for each (x, x) ∈ Prep(f,g)(P1×P1)

each point in (π1, π2)
−1(x, x)∩V is preperiodic for the action of Φ := (ω1, ω2)

on E1×E2. Since there are only finitely many ramified points of (π1, π2) lying
on V , and because (π1, π2)(V ) = ∆, we obtain that there are infinitely many
preperiodic points x under Φ lying on V such that the tangent subspace of
V is preperiodic under the induced action of Φ on Gr1 (TE1×E2,x). Because
Conjecture 1.4 holds for algebraic group endomorphisms of abelian varieties,
we conclude that V is preperiodic under Φ; therefore ∆ is preperiodic under
(f, g) as desired. �

Remark 3.3. It is worth noting that if not both f and g are Lattès maps,
then we actually get that any line L ⊂ P1×P1 is preperiodic once it contains
infinitely many preperiodic points; we do not need in this case the assump-
tion about the preperiodicity of the tangent subspaces. We only need this
last assumption when both f and g are Lattès maps.

Remark 3.4. We can extend Theorem 3.1 in a number of ways:

(a) Over number fields, Theorem 3.1 also holds under the weaker “Bo-
gomolov type” condition that there is an infinite nonrepeating se-
quence of points (αi) ∈ P1(Q̄) such that

lim
i→∞

hf (αi) = lim
i→∞

hg(αi) = 0.

This follows immediately from the fact that the equidistribution
results of [BR06, CL06, FRL06, Yua08] apply to such families of
points.

(b) Levin [Lev90] proved that if f and g do not satisfy conclusion (1)
of Theorem 3.2, then actually f and g share a common parabolic
orbifold (see [Lev90] for its definition). Using the work of Douady–
Hubbard–Thurston [DH93] one obtains then the precise formulation
from condition (2) of Theorem 3.2. This fact is proved in [DH93] in
a general topological setting, for branched coverings of the Riemann
sphere. It can be proved much more simply for rational functions,
using Galois theory (see [GZ]). For example, consider the parabolic
orbifold that arises when f is a degree four map which maps six
points with ramification index two onto three points in its image.
Taking a genus 1 cover of P1 that ramifies at exactly these three
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points plus one more point then gives rise to the multiplication-by-2
map on an elliptic curve that descends to f under the hyperelliptic
involution (this can be checked easily using Abhyankar’s lemma for
ramification indices under composita).

(c) Theorem 3.1 extends easily to the case of any line in (P1)N under
the action of (f1, . . . , fN ) for arbitrary rational maps fi; the proof
in this case is reduced to the case N = 2 by projecting on any set
of two coordinates of (P1)N .

The proof of Theorem 3.1 can be generalized to give a complete answer to
Questions 29 (1) and (2) of [KS07] in the case of rational functions defined
over the complex numbers.

Question 3.5. (Kawaguchi–Silverman) Let f, g ∈ C(x) be rational maps of
degree at least equal to 2.

(1) If Prepf = Prepg, then how are f and g related?
(2) If there is an infinite set Z ⊂ Prepf with the property that g(Z) ⊂

Prepf , then how are f and g related?

We note that the second question above is harder than the first one, since
always Prepf is infinite, and thus if Prepf = Prepg then g(Prepf ) = Prepf .
Therefore, as a consequence of our proof of Theorem 3.1, we will answer
Question 3.5 (2) (and thus we also answer to part (1) of Question 3.5).

Corollary 3.6. If f and g are two rational functions such that there exists
an infinite set Z ⊂ Prepf with the property that g(Z) ⊂ Prepf , then either

fkgℓ = f2k for some positive integers ℓ and k, or f and g are both Chebychev,
powering, or Lattès maps, modulo conjugation by linear maps.

Proof. We are going to prove first that the invariant metrics ∥ · ∥f and ∥ · ∥g
on O(1) defined by f and g respectively are proportional. This will allow us
to use Theorem 3.2.

Let K be the subfield of C generated by the coefficients of f and g and
K̄ the algebraic closure of K in C, then f and g are the base changes
of endomorphisms fK , gK of P1

K , and Z is the base change of a subset
ZK in Prepf (K̄). With ZK replaced by the union of its conjugates un-

der Gal(K̄/K), we may assume that ZK is a union of closed points in P1
K .

Now we further extend fK , gK to endomorphisms

fU , gU : P1
U −→ P1

U

over a variety U over Q of finite type and with function field K. For each
valuation v of K, the bundle O(1) has invariant measures ∥·∥v,fU and ∥·∥v,gU
defined for fU and gU on the Berkovich space Xan

v . Let ZU be the union of
Zariski closure of closed points in ZK . For each geometric point t ∈ U(Q̄),
the objects (fU , gU , ZU ) have reductions (ft, gt, Zt) such that Zt ∈ Prepft
with gt(Zt) ⊂ Prepft . By [YZ2], Theorem 4.7, Zt is still infinite.

Applying the main result of [Mim97] we get that for all x ∈ Prepft , we
have gt(x) ∈ Prepft . Therefore gt(Prepft) ⊂ Prepft . By [YZ], this implies
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that the invariant adelic metrics ∥ · ∥ft and ∥ · ∥gt on O(1) defined by ft and
gt respectively are proportional. In particular, this is true for all t ∈ U(Q̄)
and the archimedean place corresponding to

Q̄ ⊂ K̄ ⊂ C.
By continuity of ∥·∥fU and ∥·∥gU , this is true for all points in U(C) including
the point corresponding to original embedding K ⊂ C. Thus we have shown
that the invariant metrics ∥ · ∥f and ∥ · ∥g are proportional. In particular,
this yields that Prepf = Prepg, µf = µg and Jf = Jg; an application of
Theorem 3.2 finishes our proof. �

4. Other questions

In this section we explore other questions related to the Dynamical Manin-
Mumford problem. Each time we show that our question is valid for both
polarizable group endomorphisms of abelian varieties, and for lines under
the action of polarizable endomorphisms of (P1)m for any m ∈ N.

Our first question refers to a classical principle in arithmetic geometry:
for a given ambient variety X, one defines the notion of being special both
for points and for irreducible subvarieties of X. Generically, one expects
that if an irreducible subvariety Y of X contains a Zariski dense set of
special points, then Y is a special subvariety. This principle lies at the
heart of the classical Manin-Mumford conjecture - in that case, the ambient
variety is an abelian variety G, the special points are the torsion points of
G, while the special irreducible subvarieties are torsion translates of abelian
subvarieties of G. For the Algebraic Dynamical Manin-Mumford Conjecture
(see Conjecture 1.1), the ambient variety is any projective variety endowed
with a polarizable endomorphism Φ, the special points are the preperiodic
points for Φ, and the special irreducible subvarieties of X are the preperiodic
irreducible subvarieties ofX. Our counterexample from Section 1 shows that
an irreducible subvariety may contain a Zariski dense set of special points
(in the algebraic dynamics context) without being itself a special subvariety.
However, it is natural to raise the following question regarding subvarieties
containing a Zariski dense set of preperiodic points.

Question 4.1. Let X be a projective variety and let Φ : X −→ X be a
polarizable endomorphism defined over the complex numbers. Assume X1

and X2 are any two subvarieties of X containing a Zariski dense set of
preperiodic points under Φ. Then X1 ∩X2 must contain a Zariski dense set
of preperiodic points under Φ?

In particular, our Question 4.1 asks whether two (distinct) irreducible
curves containing infinitely many preperiodic points must intersect in finitely
many preperiodic points.

Question 4.1 has a positive answer when X is an abelian variety and Φ
is a polarizable algebraic group endomorphism. Indeed, in that case the
preperiodic points for Φ are the torsion points of X (see Claim 2.2), and
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we know (by the classical Manin-Mumford conjecture proved by Raynaud
[Ray83a, Ray83b]) that any irreducible subvariety of X which contains a
Zariski dense set of torsion points must be a torsion translate of an abelian
subvariety of X (note also that the torsion points are dense in each abelian
subvariety).

We also have a positive answer for Question 4.1 when X = (P1)m (for
some m ∈ N) and X1, X2 are lines. Indeed, first we may reduce to the case
m = 2 as observed in Remark 3.4 (c). Secondly, our proof of Theorem 3.1
shows that if Y ⊂ P1×P1 is a line which contains infinitely many preperiodic
points for Φ, then either Y is preperiodic under Φ, or Φ = (f, g) for two
Lattès maps f and g (see Remark 3.3). So, if Φ is not given by the action
of two Lattès maps, we conclude that both lines X1 and X2 satisfying the
hypothesis of Question 4.1 are preperiodic under Φ, and thus their point
of intersection is also preperiodic under Φ. Now, if Φ = (f, g) and f, g are
Lattès maps, then exactly as in the proof of Theorem 3.1 we may reduce the
question from P1×P1 to a question on a split abelian surface. The reasoning
from the above paragraph regarding abelian varieties finishes the proof for
Question 4.1 for lines in P1 × P1.

A positive answer to Question 4.1 would have the following interesting
consequence. Using the automatic uniformity theorem proved by Scanlon in
[Sca04] we deduce that the set of preperiodic points of Φ satisfies automatic
uniformity (since the hypothesis of Theorem 2.4 from [Sca04] is implied by
a positive answer to Question 4.1). Therefore, for each positive integer d,
there exists an integer B(d) (depending on d, X and Φ only) such that
for any subvariety Y contained in X of degree at most d (computed with
respect to a fixed embedding of X into the projective space as given by the
polarization), if Y ∩PrepΦ(X) is not Zariski dense in Y , the Zariski closure
of Y ∩PrepΦ(X) has at most B(d) irreducible components. In particular, if
Y ∩ PrepΦ(X) is a finite set, then |Y ∩ PrepΦ(X)| ≤ B(d).

Remark 4.2. It is worth noting that the hypothesis in Theorem 2.4 of [Sca04]
is that if X1 and X2 contain a Zariski dense set of special points, then each
irreducible component of X1 ∩X2 which contains at least one special point
must contain a Zariski dense set of special points. Hence, one may consider
a weakening of our Question 4.1 by asking that if X1 and X2 contain a
Zariski dense set of preperiodic points for the endomorphism Φ, then each
irreducible component of X1 ∩ X2 which contains at least one preperiodic
point for Φ must contain a Zariski dense set of preperiodic points for Φ.

Remark 4.3. Phrased in terms of canonical heights of varieties, Question 4.1
asks whether X1 ∩ X2 must have canonical height zero if X1 and X2 each
have canonical height zero, via results of [Zha95]. By the Bost-Gillet-Soulé
arithmetical Bézout theorem ([BGS94]), one has the bound

(4.3.1) h(X1 ·X2) ≤ (degX1)h(X2) + (degX2)h(X1) + c(degX1)(degX2)
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for some nonnegative number c, where h is the height on Pn coming from the
Fubini-Study metric and X1, X2 are two subvarieties that intersect properly.
One might hope to show that the extra “error term” c(degX1)(degX2) is
zero when the height h is the canonical height for a polarizable dynamical
system, which would thus provide a positive answer to our Question 4.1.
Indeed, Bost-Gillet-Soulé state that they believe this “error term” is zero for
the Fubini-Study metric and that this can be proved for linear subvarieties
(see [BGS94, page 905]). However, Pascal Autissier has shown us that there
is indeed such an error term for the canonical height associated to a polarized
dynamical system even for lines with respect to the canonical height coming
from the squaring map on P2, so a different approach to Question 4.1 is
needed. More precisely, let n be any integer larger than 1, let L1 be the line
given by the equation nx− (n− 1)y = 0, and let L2 be the line given by the
equation nx+ (n− 1)y− z = 0. Since for points in P2, the canonical height
associated to the squaring map is the usual (naive) Weil height, and since
L1 ·L2 = [n−1 : n : 2n(n−1)], we conclude that h(L1 ·L2) = log(2n(n−1)).
Using the Mahler measure one obtains h(L1) = h(L2) = log(n), and so,
h(L1 · L2) = h(L1) + h(L2) + log(2 · (1− 1/n)). Hence there exists an error
term in (4.3.1) for the canonical height associated to the squaring map. The
best error term for the naive height on P2 should be log(2), i.e. the above
examples are most likely asymptotically sharp.

We may also ask the following natural question which connects the dy-
namical Manin-Mumford and the Dynamical Bogomolov Conjectures in the
context of algebraic dynamics (note that this connection is already known
in the case of the classical Bogomolov and Manin-Mumford Conjecture for
abelian varieties).

Question 4.4. Let X be a projective variety over a number field, and let

Φ be a polarizable endomorphism of X defined over Q̄. We denote by ĥ the
canonical height associated to Φ, and for each ϵ > 0 we define

Xϵ := {x ∈ X(Q̄) : ĥ(x) < ϵ}.

Then a subvariety Y of X must contain a Zariski dense set of preperiodic
points for Φ if and only if for each ϵ > 0 the subset Xϵ ∩ Y is Zariski dense
in Y ?

Since the preperiodic points for Φ are precisely the points of canonical
height 0, we immediately note that once a subvariety Y contains a Zariski
dense set of preperiodic points, then Y ∩Xϵ is Zariski dense in Y .

Our proof of Theorem 3.1 yields a positive answer to Question 4.4 for
lines embedded in (P1)m for any m ∈ N. Indeed, as explained in Remark 3.4
(c), one reduces the question to lines Y inside P1 × P1 under the action of
Φ = (f, g), and then we have two cases. If not both f and g are Lattès
maps, then Y is preperiodic as long as it contains infinitely many points of
small height (see Remark 3.4 (a)). If both f and g are Lattès maps, then
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arguing as in the proof of Theorem 3.1 our problem reduces to Question 4.4
for abelian varieties, which we already know holds.
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and geometry, vol. I, Progr. Math., vol. 35, Birkhäuser, Boston, MA, 1983,
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