
THE MORDELL-LANG THEOREM FOR DRINFELD MODULES

DRAGOS GHIOCA

Abstract. We study the ring of quasi-endomorphisms for certain infinitely definable sub-
groups in separably closed fields. Based on the results we obtain, we are able to prove
a Mordell-Lang theorem for Drinfeld modules of finite characteristic. Using specialization
arguments we prove also a Mordell-Lang theorem for Drinfeld modules of generic character-
istic.

1. Introduction

Faltings proved the Mordell-Lang Conjecture in the following form (see [6]).

Theorem 1.1 (Faltings). Let G be an abelian variety defined over the field of complex
numbers C. Let X ⊂ G be a closed subvariety and Γ ⊂ G(C) a finitely generated subgroup
of the group of C-points on G. Then X(C) ∩ Γ is a finite union of cosets of subgroups of Γ.

If we try to formulate the Mordell-Lang Conjecture in the context of algebraic subvarieties
contained in a power of the additive group scheme Ga, the conclusion is either false (in the
characteristic 0 case, as shown by the curve y = x2 which has an infinite intersection with
the finitely generated subgroup Z×Z, without being itself an additive algebraic group) or it
is trivially true (in the characteristic p > 0 case, because every finitely generated subgroup
of a power of Ga is finite). In the fourth section we will present a nontrivial formulation
of the Mordell-Lang conjecture for a power of the additive group in characteristic p in the
context of Drinfeld modules. We will replace the finitely generated subgroup from the usual
Mordell-Lang statement with a finitely generated φ-submodule, where φ is a Drinfeld module.
We also strengthen the conclusion of the Mordell-Lang statement in our setting by asking
that the subgroups whose cosets are contained in the intersection of the algebraic variety
with the finitely generated φ-submodule be actually φ-submodules.

In order to obtain the results of the present paper we need first to analyze the ring of
quasi-endomorphisms for certain infinitely definable subgroups in the theory of separably
closed fields. In the next section we introduce the basic notation and results, while in the
third section we prove the main result (Theorem 3.8) needed for the proof of Theorem 4.6
(the Mordell-Lang Theorem for Drinfeld modules of finite characteristic). Using special-
ization arguments we also prove a Mordell-Lang statement for Drinfeld modules of generic
characteristic (Theorem 4.14).

Acknowledgements. It is my pleasure to thank Thomas Scanlon for introducing me to the
questions related to the Mordell-Lang Conjecture. I thank him for many useful conversations
regarding this paper. I also thank Bjorn Poonen and the anonymous referees for their
comments.
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2. Infinitely definable groups in the theory of separably closed fields

Everywhere in this paper, for two sets A and B, the notation A ⊂ B means that A is a
subset, not necessarily proper, of B.

Let K be a finitely generated field of characteristic p > 0. Let τ0 be the usual Frobenius,
i.e. τ0(x) = xp, for every x. We let K{τ0} be the non-commutative ring of all polynomials
in τ0 with coefficients from K, where the addition is the usual one while the multiplication
is the composition of functions. If f, g ∈ K{τ0}, fg will represent the composition of f and
g.

Fix an algebraic closure Kalg of K. Let Ksep be the separable closure of K inside Kalg.
Let Falg

p be the algebraic closure of Fp inside Ksep.

There exists a non-negative integer ν such that [K : Kp] = [Ksep : Ksepp
] = pν . The

number ν is called the Ersov invariant of K. When K is a finitely generated field, ν =
trdegFp

K.

Notation 2.1. Let k be a positive integer. We denote by p(k) the set of functions

f : {1, . . . , k} → {0, . . . , p− 1}.

Definition 2.2. A subset B = {b1, . . . , bν} ⊂ K is called a p-basis of K, or equivalently, of
Ksep, if the following set of monomials,{

mi =
ν∏

j=1

b
i(j)
j | i ∈ p(ν)

}
forms a basis for K/Kp, or equivalently for Ksep/Ksepp

.

For the rest of this paper we fix a p-basis B for K. There exists a unique collection of
functions λi : Ksep → Ksep for i ∈ p(ν), such that for every x ∈ Ksep,

x =
∑

i∈p(ν)

λi(x)
pmi.

We call these functions λi the λ-functions of level 1. For every k ≥ 2 and for every choice of
i1, . . . , ik ∈ p(ν),

λi1,i2,...,ik = λi1 ◦ λi2 ◦ · · · ◦ λik

is called a λ-function of level k.

Definition 2.3. We let SCFp,ν be the theory of separably closed fields of characteristic p
and Ersov invariant ν in the language

Lp,ν = {0, 1,+,−, ·} ∪ {b1, . . . , bν} ∪ {λi | i ∈ p(ν)}.

From now on we consider a finitely generated field K of Ersov invariant ν and so, Ksep

is a model of SCFp,ν . We let L be an ℵ1-saturated elementary extension of Ksep. Because
L is an elementary extension of Ksep, L ∩Kalg = Ksep. We are interested in studying infin-
itely definable subgroups G of (L,+), i.e. G is possibly an infinite intersection of definable
subgroups of (L,+). If k ≥ 1 and G is an infinitely definable subgroup of (L,+), then the
relatively definable subsets of Gk (the cartesian product of G with itself k times) are the
intersections of Gk with definable subsets of (L,+)k. If there is no risk of ambiguity, we
will say a definable subset of Gk, instead of relatively definable subset of Gk. The structure

2



induced by L on G over a set S of parameters, is the set G together with all the relatively
S-definable subsets of the cartesian powers of G. We will consider only the case when the
set S of parameters equals Ksep. Thus, when we say a definable subset, we will mean a
Ksep-definable subset. Also, we call the subgroups of (L,+) additive. Finally, we observe
that because the theory of separably closed fields is a stable theory (see Messmer’s article
from [11]), a definable subgroup of an infinitely definable group G ⊂ L is the intersection of
G with a definable subgroup of L.

Remark 2.4. In all of our arguments we will work with infinitely definable subgroups G of
(L,+). To interpret such a group G from a purely model theoretic point of view, we could do
the following. We associate to G the (partial) type P with the property that the realizations
of P in the model L of separably closed fields is G, i.e. G = P (L). Thus in our results we will
loosely interchange the notion of G as a subgroup of (L,+) and G as the set of realizations
of a (partial) type in the language of separably closed fields.

Definition 2.5. For every infinitely definable subgroup G, the connected component of G,
denoted G0, is the intersection of all definable subgroups of finite index in G.

Definition 2.6. The group G is connected if G = G0.

The following result will be used in the proof of Theorem 4.6.

Lemma 2.7. The cartesian product of a finite number of connected groups is connected.

Proof. Using induction, it is enough to prove the product of two connected groups is con-
nected. Therefore, we assume G1 and G2 are connected and H ⊂ G1 × G2 is a definable
subgroup of finite index. Let π1 be the projection of G1 × G2 on the first component. Be-
cause [G1 ×G2 : H] is finite, [G1 : π1(H)] is also finite. Because G1 is connected and π1(H)
is definable, we conclude π1(H) = G1. Let π2 be the second projection of G1 × G2. Then
H2 := π2(Ker(π1|H)) is a definable subgroup of G2. Because [G1×G2 : H] is finite, [G2 : H2]
is also finite. Because G2 is connected, we conclude H2 = G2. Hence H = G1 × G2, which
concludes the proof of Lemma 2.7. �

Definition 2.8. Let G be an infinitely definable additive subgroup of L. We denote by
EndKsep(G) the set of Ksep-definable endomorphisms f of G.

The endomorphisms f ∈ EndKsep(G) that are both injective and surjective, form the group
of Ksep-automorphisms of G, denoted AutKsep(G).

Remark 2.9. If G is a connected group, then the graph of f is a connected subgroup of G×G.

From now on, “endomorphism of G” means “element of EndKsep(G)” and “automorphism
of G” means “element of AutKsep(G)”.

Definition 2.10. Let G and H be infinitely definable connected groups. We call the sub-
group ψ ⊂ G×H a Ksep-quasi-morphism from G to H if the following three properties are
satisfied

1) ψ is a connected, Ksep-definable subgroup of G×H.
2) the first projection π1(ψ) equals G.
3) the set {x ∈ H | (0, x) ∈ ψ} is finite.
The set of all Ksep-quasi-morphisms from G to H is denoted by QsMKsep(G,H).
When G = H, we call ψ a Ksep-quasi-endomorphism of G. The set of all Ksep-quasi-

endomorphisms of G is denoted by QsEKsep(G).
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For every infinitely definable connected subgroup G, a “quasi-endomorphism of G” will
be an element of QsEKsep(G).

Let f be an endomorphism of the connected group G. We interpret f as a quasi-
endomorphism of G by

f = {(x, f(x)) | x ∈ G} ∈ QsEKsep(G).

Definition 2.11. Let G be an infinitely definable connected group. We define the following
two operations that will induce a ring structure on QsEKsep(G).

1) Addition. For every ψ1, ψ2 ∈ QsEKsep(G), we let ψ1 + ψ2 be the connected component
of the group

{(x, y) ∈ G×G | ∃y1, y2 ∈ G such that (x, y1) ∈ ψ1 , (x, y2) ∈ ψ2 and y1 + y2 = y}.
2) Composition. For every ψ1, ψ2 ∈ QsEKsep(G), we let ψ1ψ2 be the connected component

of the group

{(x, y) ∈ G×G | there exists z ∈ G such that (x, z) ∈ ψ2 and (z, y) ∈ ψ1}.

See [2] for the proof that the above defined operations endow QsEKsep(G) with a ring
structure.

Definition 2.12. Let G be an infinitely definable additive subgroup. Then G is c-minimal
if it is infinite and every definable subgroup of G is either finite or has finite index.

Lemma 2.13. If G is a c-minimal connected group, then for all f ∈ EndKsep(G) \ {0},
f(G) = G.

Proof. Because f ∈ EndKsep(G) and G is connected, f(G) is a definable, connected subgroup
of G. Thus, since f 6= 0, f(G) cannot be finite. Then, because G is c-minimal, f(G) has
finite index in G. Because G is connected, we conclude that f is surjective. �

The next result is proved in a larger generality in Chapter 4.4 of [16]. Because for the case
we are interested in we can give a simpler proof, we present our argument below.

Proposition 2.14. If G is a c-minimal, connected group, then QsEKsep(G) is a division ring.

Proof. Let ψ ∈ QsEKsep(G) \ {0}. Let π2(ψ) be the projection of ψ ⊂ G×G on the second
component. Then π2(ψ) is a definable subgroup of G. Because ψ is connected and ψ 6= 0,
π2(ψ) is not finite. Then, because G is a c-minimal, connected group, π2(ψ) = G.

Because π2(ψ) = G and G is c-minimal and ψ 6= G×G, the set

(1) {x ∈ G | (x, 0) ∈ ψ}
is finite. We define φ = {(y, x) ∈ G × G | (x, y) ∈ ψ}. Because ψ is a connected, Ksep-
definable subgroup of G×G, then also φ is a connected, Ksep-definable subgroup of G×G.
By construction, π1(φ) = π2(ψ) = G. By construction of φ,

{x ∈ G | (0, x) ∈ φ} = {x ∈ G | (x, 0) ∈ ψ}.
Using (1), we conclude that {x ∈ G | (0, x) ∈ φ} is finite. Thus condition 3) of Definition 2.10
holds and so, φ ∈ QsEKsep(G). By definition of φ, ψφ (as defined in Definition 2.11) is the
identity function on G. Thus QsEKsep(G) is a division ring (1 6= 0 because G is infinite). �

Definition 2.15. Let f ∈ K{τ0}τ0 \ {0}. We define f ] = f ](L) =
⋂

n≥1 f
n(L).
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In [2] (Lemma 4.23) and [14] the following result is proved.

Theorem 2.16. If f ∈ K{τ0}τ0 \ {0}, then f ] is c-minimal. In particular, f ] is infinite.

The theory of separably closed fields is stable, as shown in [11]. Because [12] proves that
every stable field is connected as an additive group, the following result holds.

Theorem 2.17. The groups (Ksep,+) and (L,+) are connected.

Because the image of a connected group through a definable map is also connected, we
get the following result.

Corollary 2.18. For every f ∈ K{τ0}, f(Ksep) is connected.

Lemma 2.19. Let (Hn)n≥1 be a countable descending chain of connected definable subgroups
of (L,+). Then the infinitely definable subgroup H =

⋂
n≥1Hn is connected.

Proof. It suffices to show that for every definable additive subgroup G of L, if G intersects H
in a subgroup of finite index, then G contains H. So, let G be a definable additive subgroup
of L such that [H : G ∩H] is finite.

Assume that there exists n ≥ 1 such that [Hn : G ∩Hn] is finite. For such n, because Hn

is connected (see Corollary 2.18), we conclude that Hn = G ∩ Hn. So, Hn ⊂ G. Then, by
the definition of H, we get that H ⊂ G.

Suppose that for all n ≥ 1, [Hn : G ∩Hn] is infinite. By compactness and the fact that the
groups Hn form a descending sequence and the fact that L is ℵ1-saturated, we conclude that
also [H : G ∩H] is infinite, which contradicts our assumption. For the reader’s convenience,
we provide the compactness argument.

Let the descending sequence of groups Hi be represented by formulas φi. Also, let the
group G be represented by the formula ψ.

For each positive integer m and for each finite subset of indices n1 < · · · < nk let
Fm,n1,...,nk

(x1, . . . , xm) be the formula which says:
φni

(xj) for every 1 ≤ i ≤ k and for every 1 ≤ j ≤ m (i.e. each xj realizes each formula
φni

) and for distinct j and j′ between 1 and m, ¬ψ(xj − xj′) (i.e. for distinct j and j′,
xj − xj′ /∈ G). So, the xj are in all the groups Hni

but they live in different cosets modulo
G.

We know that each individual formula Fm,n1,...,nk
(x1, . . . , xm) has a realization in the model

L (to see this, we recall the φni
are descending and so, Fm,n1,...,nk

says that [Hnk
: Hnk

∩G]
is at least m, because nk is the largest index among n1, . . . , nk).

Then for every finite subset of formulas Fm,n1,...,nk
, let M be the largest among the numbers

m appearing as an index for the formulas F . We prove there exist x1, . . . , xM realizing si-
multaneously all of the formulas Fm,n1,...,nk

. Indeed, just replace all of the formulas Fm,n1,...,nk

with just one formula FM,l1,...,ls where the indices l1, . . . , ls form a set containing all the in-
dices n1, . . . , nk from all the formulas F of the chosen finite subset of formulas. We know
that FM,l1,...,ls is realizable and so, all of the finitely many formulas F from above are also
realizable. Then we can use compactness and ℵ1-saturation to conclude G ∩

⋂
n≥1Hn has

infinite index in
⋂

n≥1Hn. �

The following result is an immediate corollary to Lemma 2.19.

Lemma 2.20. If f ∈ K{τ0}τ0 \ {0}, then f ] is connected.
5



Proof. Because of Corollary 2.18 we can apply Lemma 2.19 to the collection of connected
groups fn(L). �

Corollary 2.21. Let f, g ∈ K{τ0}τ0 \ {0}. If g] ⊂ f ], then f ] = g].

Proof. By Theorem 2.16 and our hypothesis, g] is an infinite subgroup of f ]. Thus for every
n ≥ 1, gn(L) ∩ f ] is a definable infinite subgroup of f ]. By Theorem 2.16 and Lemma 2.20,
f ] ⊂ gn(L). Because this last inclusion holds for all n ≥ 1, we conclude that f ] ⊂ g]. Thus
f ] = g]. �

In [2] (see Proposition 3.1 and the Remark after the proof of Lemma 3.8) the following
result is proved.

Proposition 2.22. The following statements hold:

(i) The Frobenius τ0, the λ-functions of level 1 and the elements of Ksep seen as scalar
multiplication functions generate EndKsep(L,+) as a ring (i.e., with respect to the
addition and the composition of functions). Each such element of EndKsep(L,+)
will be called an (additive) λ-polynomial. (Because we will only deal with additive
λ-polynomials, we will call them simply λ-polynomials.)

(ii) For every ψ ∈ EndKsep(L,+), there exists n ≥ 1 such that for all g ∈ Ksep{τ0}τn
0 ,

ψg ∈ Ksep{τ0}.
(iii) Let G be an infinitely definable subgroup of (L,+). Then each endomorphism f ∈

EndKsep(G) extends to an element of EndKsep(L,+).

3. Quasi-endomorphisms of minimal groups associated to Drinfeld modules

Let q be a power of p and let τ be the power of the Frobenius for which τ(x) = xq, for
every x. Let K be a finitely generated field extension of Fq of positive transcendence degree.
We let K{τ} be the ring of all polynomials in τ with coefficients from K. Let

f =
r∑

i=0

aiτ
i ∈ K{τ},

with ar 6= 0. The order ordτ f is defined as the smallest i such that ai 6= 0. Thus, f is
inseparable if and only if ordτ f > 0.

Let C be a non-singular projective curve defined over Fq. Let A be the Fq-algebra of
functions on C regular away from a fixed closed point of C. Then A is a Dedekind domain.
Let i : A → K be a morphism. We call the morphism φ : A → K{τ} a Drinfeld module
if for every a ∈ A, the coefficient of τ 0 in φa is i(a), and if there exists a ∈ A such that
φa 6= i(a)τ 0. Following the definition from [8], we call φ a Drinfeld module of generic
characteristic if ker(i) = {0}. If ker(i) = p 6= {0}, we call φ a Drinfeld module of finite
characteristic p. If φ is a Drinfeld module of generic characteristic, we let i : A→ K extend
to an embedding of Frac(A) ⊂ K.

For any field extension K ′ of K, φ(K ′) represents the field K ′ with the A-module structure
induced by the action of the Drinfeld module φ.

As in Section 1, let L be an ℵ1-saturated elementary extension of Ksep.

Definition 3.1. Let φ : A→ K{τ} be a Drinfeld module of finite characteristic. We define

φ] = φ](L) =
⋂

a∈A\{0}

φa(L).
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Lemma 3.2. Let φ : A → K{τ} be a Drinfeld module of finite characteristic p. Let t ∈
p \ {0}. Then

φ] =
⋂
n≥1

φtn(L) = (φt)
].

Proof. If a /∈ p, then φa is a separable polynomial and φa(L) = L. Thus

(2) φ] =
⋂

a∈p\{0}

φa(L).

Let a ∈ p \ {0}. Because t ∈ p \ {0}, there exist n,m ≥ 1 and there exist u, v ∈ A \ p such
that tnv = amu. Then φu and φv are separable and so,

(3) φam(L) = φam(φu(L)) = φamu(L) = φtnv(L) = φtn(φv(L)) = φtn(L).

So, φtn(L) ⊂ φa(L). Thus, using (2), we conclude that the result of Lemma 3.2 holds. �

The following result is an immediate consequence of Lemmas 3.2 and 2.20 and Theorem
2.16.

Corollary 3.3. The group φ] is a c-minimal, connected additive group.

Lemma 3.4. Let φ be a Drinfeld module of finite characteristic. Let EndKsep(φ) be the
ring of endomorphisms of φ (defined as in [8]). Then each endomorphism of φ induces
an endomorphism of φ], and this association defines injective ring homomorphisms, i.e.
EndKsep(φ) ⊂ EndKsep(φ]) ⊂ QsEKsep(φ]).

Proof. Let t be a uniformizer of the prime ideal of A which is the characteristic of φ. The
inclusion EndKsep(φ]) ⊂ QsEKsep(φ]) is clear. Let now f ∈ EndKsep(φ) and x ∈ φ]. We need
to show that f(x) ∈ φ]. Because x ∈ φ], for all n ≥ 1, there exists xn ∈ L such that
x = φtn(xn). Because f ∈ EndKsep(φ), f(x) = f(φtn(xn)) = φtn(f(xn)) ∈ φtn(L), for all
n ≥ 1. Thus indeed, f(x) ∈ φ] (see Lemma 3.2). Finally, the above defined association is
injective because φ] is an infinite set and so, there is no nonzero endomorphism of φ which
restricted to φ] is identically equal to 0. �

Corollary 3.5. If φ is a finite characteristic Drinfeld module, then

φ] =
⋂

f∈EndKsep (φ])\{0}

f(L).

Proof. For every nonzero a ∈ A, φa ∈ EndKsep(φ) ⊂ EndKsep(φ]). Thus⋂
f∈EndKsep (φ])\{0}

f(L) ⊂
⋂

a∈A\{0}

φa(L) = φ].

But by Lemma 2.13 and Corollary 3.3, all the endomorphisms of φ] are surjective on φ]. So,
then indeed

φ] =
⋂

f∈EndKsep (φ])\{0}

f(L).

�

Using Corollary 3.3 and Proposition 2.22, we get the following result.
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Corollary 3.6. Let f ∈ EndKsep(φ]). Then f is a λ-polynomial. In particular, there exists
m ≥ 1 such that for all h ∈ Ksep{τ}τm, fh ∈ Ksep{τ}.

We define φtor as the set of all x ∈ Kalg for which there exists some nonzero a ∈ A such
that φa(x) = 0. For every a ∈ A \ {0}, we let φ[a] = {x ∈ Kalg | φa(x) = 0}. Then for
a ∈ A\{0}, we let φ[a∞] = ∪n≥1φ[an]. If p is any nontrivial prime ideal in A, then we define

φ[p′] = {x ∈ Kalg | there exists a /∈ p such that φa(x) = 0}.
We define φ](Ksep) = φ](L)∩Ksep. We claim that this definition for φ](Ksep) is equivalent

to φ](Ksep) =
⋂

a∈A\{0} φa(K
sep). Indeed, if x ∈ φ](L) ∩ Ksep, then for every a ∈ A \ {0},

there exists xa ∈ L such that x = φa(xa). Because φa ∈ Ksep{τ} and x ∈ Ksep, xa ∈ Kalg.
Because L∩Kalg = Ksep, xa ∈ Ksep. Moreover, a similar proof as in Lemma 3.2, shows that
φ](Ksep) =

⋂
n≥1 φtn(Ksep), if φt is inseparable.

We will continue to denote by φ] the group φ](L) and by φ](Ksep), its subgroup contained
in Ksep.

Lemma 3.7. Let φ : A → K{τ} be a Drinfeld module of finite characteristic p. Then
φ[p′] ⊂ φ](Ksep).

Proof. Let x ∈ φ[p′] and let a /∈ p such that φa(x) = 0. Because φa is separable, x ∈ Ksep.
Let t be an element of p, coprime with a, i.e. t and a generate the unit ideal in A.

Let n ≥ 1. Because t and a are coprime, so are tn and a. Thus there exist r, s ∈ A such
that tnr + as = 1. Applying this last equality to x gives φtn(φr(x)) = x, which shows that
x ∈ φtn(Ksep). Because n was arbitrary, we conclude x ∈ φ](Ksep). �

Theorem 3.8. Let φ : A → K{τ} be a Drinfeld module of finite characteristic p. Assume
there exists a non-constant t ∈ A such that φ[t∞] ∩ Ksep is finite. Then φ](Ksep) = φ[p′].
Moreover, with the above hypothesis on φt, we have that for every ψ ∈ QsEKsep(φ]), there
exists n ≥ 1 such that ψφtn = φtnψ in QsEKsep(φ]).

Proof. Clearly, t ∈ p \ {0}, because for all a ∈ A \ p, φa is separable and so, φ[a∞] ⊂ Ksep.
By Lemma 3.2, we know that

(4) φ] =
⋂
n≥1

φtn(L)

and φ](Ksep) =
⋂

n≥1 φtn(Ksep).
Because φ[t∞] ∩Ksep is finite, let N0 ≥ 1 satisfy

(5) φ[t∞] ∩Ksep ⊂ φ[tN0 ].

Thus

(6) φ[t∞] ∩ φ] = {0}.
We will prove Theorem 3.8 through a series of lemmas.

Lemma 3.9. Under the hypothesis of Theorem 3.8, φt ∈ AutKsep(φ]).

Proof of Lemma 3.9. By Lemma 3.4, we know that φt ∈ EndKsep(φ]). By the definition of φ],
we know that φt is a surjective endomorphism of φ]. By (6), we know that φt is an injective
endomorphism of φ]. �
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Lemma 3.10. Assume x ∈ φ](Ksep). We can find a sequence (xn)n≥0 ⊂ φ](Ksep) such that
x0 = x and for all n ≥ 0, φt(xn+1) = xn.

Proof of Lemma 3.10. Let x ∈ φ](Ksep). Let N be a positive integer. Because x ∈ φ](Ksep),
there exists xN ∈ Ksep such that x = φtN (xN). For each 1 ≤ n ≤ N we let xN−n =
φtn(xN). Thus we constructed the sequence (xn)0≤n≤N ⊂ Ksep such that x = x0 and for
every 0 ≤ n ≤ N − 1, xn = φt(xn+1). We repeat this construction for each positive integer
N . By compactness, because L is ℵ1-saturated, there exists an infinite coherent sequence
(xn)n≥0 ⊂ L such that x = x0 and for every n ≥ 0, xn = φt(xn+1). Because x ∈ Ksep and
φt ∈ K{τ}, (xn)n≥0 ⊂ Kalg ∩ L = Ksep (the intersection of the two fields being taken inside
a fixed algebraic closure of L which contains Kalg). �

An immediate corollary of the above proof is the following result.

Corollary 3.11. For an arbitrary Drinfeld module ψ : A→ K{τ} of positive characteristic
and for t ∈ A such that ψt is inseparable, the set ψ[t∞](Ksep) is finite if and only if ψt ∈
AutKsep(ψ]).

Proof of Corollary 3.11. If ψ[t∞](Ksep) is finite, then clearly there is no t-power-torsion of ψ
in ψ] and so, ψt is injective on ψ]. Because all the endomorphisms of ψ] are surjective (ψ]

is a c-minimal, connected group), then indeed, ψt ∈ AutKsep(ψ]).
If ψt ∈ AutKsep(ψ]), we claim there is only finite t-power-torsion of ψ in Ksep. Assume

this is not the case. Then there are arbitrarily long sequences (xn)0≤n≤m ∈ ψ[t∞](Ksep) such
that

xn = ψt(xn+1) , for all n ∈ {0, . . . ,m− 1} and x0 6= 0.

Arguing as in the proof of Lemma 3.10, we conclude there exists an infinite coherent sequence
(xn)n≥0 ∈ ψ[t∞](Ksep) such that

xn = ψt(xn+1) , for all n ≥ 0 and x0 6= 0.

Hence x0 ∈ ψ] ∩ψ[t∞], which provides a contradiction with our assumption. This concludes
the proof of Corollary 3.11. �

The result of Lemma 3.10 is instrumental in proving that φ](Ksep) ⊂ φtor. Indeed, take
x ∈ φ](Ksep) and construct the associated sequence (xn)n≥0 as in (3.10).

Let K ′ = K(x). We claim that xn ∈ K ′, for all n ≥ 1.
Fix n ≥ 1 and pick any σ ∈ Gal(Ksep/K ′). Because φt ∈ K{τ} ⊂ K ′{τ}, for every

m ≥ 1, σ(xm) = σ(φt(xm+1)) = φt(σ(xm+1)). So, for every m ≥ 1, xn− σ(xn) = φtm(xn+m−
σ(xn+m)). Thus,

(7) xn − σ(xn) ∈ φ].

But φtn(xn − σ(xn)) = φtn(xn)− φtn(σ(xn)) = φtn(xn)− σ(φtn(xn)) = x− σ(x) = 0, because
x ∈ K ′. Thus

(8) xn − σ(xn) ∈ φ[tn].

As shown by (6), there is no t-power torsion of φ in φ]. Equations (8) and (7) yield

(9) xn − σ(xn) = 0.
9



So, xn = σ(xn), for all n ≥ 1 and for all σ ∈ Gal(Ksep/K ′). Thus, xn ∈ K ′, for all n ≥ 1 as
it was claimed. If x /∈ φtor, then xn /∈ φtor for all n ≥ 1. This will give a contradiction to the
structure theorem for φ(K ′).

In [13] (for fields of transcendence degree 1 over Fp) and in [17] (for fields of arbitrary
positive transcendence degree) it is established that a finitely generated field (such as K ′ in
our setting) has the following φ-module structure: a direct sum of a finite torsion submodule
and a free module of rank ℵ0. In particular this means that there cannot be an infinitely
t-divisible non-torsion element x ∈ L. So, x ∈ φtor and we conclude that φ](Ksep) ⊂ φtor.

By Lemma 3.7, we know that φ[p′] ⊂ φ]. We will prove next that under the hypothesis
from Theorem 3.8 (see (5)), φ](Ksep) = φ[p′].

Suppose that there exists x ∈ φ](Ksep)\φ[p′]. Because we already proved that φ](Ksep) ⊂
φtor, x ∈ φtor. Then there exists a ∈ p \ {0} such that φa(x) = 0. Because t ∈ p \ {0}, there
exist n,m ≥ 1 and u, v ∈ A \ p such that tnv = amu. Then

φtnv(x) = φamu(x) = φam−1u(φa(x)) = 0.

So, x ∈ φ[tnv]. By our assumption, x /∈ φ[p′] and so, y := φv(x) 6= 0. Thus

(10) y ∈ φ[tn] \ {0}.
By Lemma 3.4, because x ∈ φ](Ksep) and φv ∈ EndKsep(φ),

(11) y = φv(x) ∈ φ](Ksep).

Equations (10) and (11) provide a contradiction to (6). So, indeed φ](Ksep) = φ[p′].
In order to prove the second part of our Theorem 3.8 regarding the quasi-endomorphisms

of φ], we split the proof in two cases.
Case 1. The polynomial φt is purely inseparable.
Then φt = ατ r for some α ∈ K and some r ≥ 1. Let γ ∈ Ksep such that γqr−1α = 1.
Let φ(γ) be the Drinfeld module defined by φ(γ) = γ−1φγ. We call φ(γ) the conjugate of

φ by γ. Then φ
(γ)
t = τ r. Moreover, because for all a ∈ A, φ(γ) = γ−1φaγ and γ ∈ Ksep, we

conclude that

(12) φ(γ)]

= γ−1φ]

and

(13) QsEKsep(φ]) = γQsEKsep

(
φ(γ)]

)
γ−1.

Because φ
(γ)
t = τ r, φ(γ)]

=
⋂

n≥1 L
pn

=: Lp∞ .

By [2] (Proposition 4.10), the ring QsEKsep

(
Lp∞

)
is the division ring of fractions of the

Ore ring Falg
p {τ0, τ−1

0 }, where τ0 is the usual Frobenius (see [8] for constructing the division

ring of fractions for an Ore ring). Then clearly, for all ψ ∈ QsEKsep

(
φ(γ)]

)
, there exists

n ≥ 1 such that
φ

(γ)
tn = τ rn

commutes with ψ in QsEKsep(φ(γ)]
). By (13), we conclude that also for every ψ ∈ QsEKsep(φ]),

there exists n ≥ 1 such that ψφtn = φtnψ.
Case 2. The polynomial φt is not purely inseparable, i.e. φ[t] 6= {0}.

Lemma 3.12. For every ψ ∈ QsEKsep(φ]) there exists a ∈ A \ {0} and n ≥ 1 such that
φaψφtn ∈ EndKsep(φ]) ∩Ksep{τ} (the intersection is taken inside QsEKsep(L)).
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Proof. Let ψ ∈ QsEKsep(φ]) and let S = {x ∈ φ]|(0, x) ∈ ψ}. Thus, S is a finite, Ksep-
definable subgroup of φ]. Because L is an elementary extension of Ksep, S ⊂ Ksep. Thus
S ⊂ φ](Ksep) ⊂ φtor. Hence there exists a ∈ A \ {0} such that S ⊂ φ[a]. By Lemma 3.4,
φaψ ∈ QsEKsep(φ]) and the subgroup

{x ∈ φ] | (0, x) ∈ φaψ}
is trivial by our choice for a. Thus, φaψ is actually an endomorphism of φ]. Also, according
to Proposition 2.22, the endomorphisms of φ] are λ-polynomials. Thus, by Corollary 3.6,
because φt is inseparable, there exists n ≥ 1 such that φaψφtn ∈ EndKsep(φ]) ∩Ksep{τ}. �

Proposition 3.13. Let R be a domain, i.e. a unital (not necessarily commutative) ring with
no nontrivial zero-divisors.

a) Let y ∈ R be nonzero and suppose that g ∈ R commutes with y and xy for some x ∈ R.
Then g also commutes with x.

b) Let y ∈ R be nonzero and suppose that g ∈ R commutes with y and yx for some x ∈ R.
Then g also commutes with x.

Proof of Proposition 3.13. It suffices to prove a), because the proof of b) follows from a)
applied to Rop.

Thus, for the proof of a), we know that

(14) (gx)y = g(xy) = (xy)g = x(yg) = x(gy) = (xg)y.

Because y ∈ R\{0} and R is a domain, equation (14) concludes the proof of Proposition 3.13
a). �

We use Proposition 3.13 with R = QsEKsep(φ]) because from Proposition 2.14, we know
that QsEKsep(φ]) is a division ring. Then by Lemma 3.12 and Proposition 3.13, it suffices to
prove Theorem 3.8 for ψ =: f ∈ EndKsep(φ]) ∩Ksep{τ}.

Let f ∈ EndKsep(φ]) ∩ Ksep{τ}. By Lemma 3.9, φ−1
t ∈ EndKsep(φ]) and so, φ−1

t f ∈
EndKsep(φ]). Hence, φ−1

t f is a λ-polynomial. By Proposition 3.6, there exists m ≥ 1 such
that for every polynomial h ∈ K{τ}τm,

(15) φ−1
t h ∈ Ksep{τ}.

Because φt has inseparable degree at least 1 and f ∈ Ksep{τ}, equation (15) yields that
g1 := φ−1

t fφtm ∈ Ksep{τ}. Moreover, by Lemma 3.9, g1 ∈ EndKsep(φ]). This means that the
equation

(16) fφtm = φtg1,

which initially was true only on φ] is an identity in Ksep{τ}. Indeed, φ] is infinite (see
Lemma 3.7) and so, (16) holds for infinitely many points of L. Thus, because fφtm and φtg1

are polynomials, (16) holds identically in L.
Because in equation (16) all the functions are polynomials in τ , we can equate the order

of τ in g1. We obtain

(17) ordτ g1 = ordτ f + (m− 1) ordτ φt ≥ (m− 1) ordτ φt ≥ m− 1.

Thus ordτ (g1φt) ≥ m and using (15), we get that φ−1
t g1φt ∈ EndKsep(φ]) ∩ Ksep{τ}. So,

denote by g2 = φ−1
t g1φt. This means that the identity

(18) φtg2 = g1φt,
11



which initially was true only on φ] is actually true everywhere. It is the same argument as
above when we explained that equation (16) is an identity of polynomials from Ksep{τ}.

We equate the order of τ of the polynomials from (18) and conclude that

(19) ordτ g2 = ordτ g1 ≥ m− 1.

So, then again ordτ (g2φt) ≥ m and we can apply (15) and find a polynomial

g3 ∈ Ksep{τ} ∩ EndKsep(φ]) such that φtg3 = g2φt.

Once again ordτ g3 = ordτ g2 and so the above process can continue and we construct an
infinite sequence (gn)n≥1 ∈ Ksep{τ} ∩ EndKsep(φ]) such that for every n ≥ 1,

(20) φtgn+1 = gnφt.

Let g0 = fφtm−1 . Then, using (16), we conclude that equation (20) holds also for n = 0.
An easy induction will show that for every k ≥ 1 and for all n ≥ 0,

(21) φtkgn+k = gnφtk .

Indeed, case k = 1 is equation (20). So, we suppose that (21) holds for some k ≥ 1 and for
all n ≥ 0 and we will prove it holds for k + 1 and all n ≥ 0. By equations (20) and (21) we
have that

φtk+1gn+k+1 = φt(φtkgn+1+k) = φtgn+1φtk = gnφtφtk = gnφtk+1 ,

which proves the inductive step of our assertion.
Equation (21) shows that for every k ≥ 1, gn+k maps φ[tk] into itself, for every n ≥ 0.

Equation (20) shows that all the polynomials gn have the same degree, call it d. Because φt

is not purely inseparable, we may choose k0 ≥ 1 such that

(22) |φ[tk0 ]| > d.

Because φ[tk0 ] is a finite set and our sequence of polynomials (gn)n≥0 is infinite, it means
that there exist n2 > n1 ≥ 0 such that

(23) gn1+k0 |φ[tk0 ] = gn2+k0|φ[tk0 ].

By another application of the fact that all gn are polynomials, equations (22) and (23) yield
that

(24) gn1+k0 = gn2+k0 .

But then, using (21) (with k = n2 − n1 and n = n1 + k0) we conclude that

(25) φtn2−n1gn2+k0 = gn1+k0φtn2−n1 .

If we denote by g the polynomial represented by both gn2+k0 and gn1+k0 (according to (24)),
equation (25) shows that g commutes with φtn2−n1 . We let n0 = n2 − n1 ≥ 1 and so,

(26) gφtn0 = φtn0g.

The definition of g = gn1+k0 and equation (21) (with k = n1 + k0 and n = 0) give

(27) φtn1+k0g = g0φtn1+k0 .

Equation (26) shows that φtn0 commutes with φtn1+k0g. Thus, by equation (27), φtn0 com-
mutes also with g0φtn1+k0 . We apply now Proposition 3.13 a) to conclude that φtn0 commutes
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with g0. Because g0 = fφtm−1 , another application of the above mentioned proposition gives
us

φtn0f = fφtn0

and ends the proof of Theorem 3.8. �

Theorem 3.14. Let φ be a Drinfeld module of finite characteristic p. Assume that there
exists f ∈ AutKsep(φ]) ∩Ksep{τ}τ . Then φ](Ksep) ⊂ φtor and for all ψ ∈ QsEKsep(φ]), there
exists n ≥ 1 such that ψfn = fnψ (the identity being seen in QsEKsep(φ])).

Proof. Construct another Drinfeld module Φ : Fq[t] → Ksep{τ} by Φt = f . By Lemma 3.2,
Φ] = f ]. Using Corollary 3.5 and f ∈ EndKsep(φ]), we get that

(28) φ] ⊂ Φ].

Because both φ] and Φ] are connected, c-minimal groups (see Corollary 3.3), applying Corol-
lary 2.21, we conclude that they are equal.

Because Φt ∈ AutKsep(φ]) = AutKsep(Φ]), Φ[t∞]∩Ksep is finite (or otherwise we would have
t-power-torsion of Φ in Φ], as shown by Corollary 3.11). Hence, we are in the hypothesis of
Theorem 3.8 with Φ and t. Thus, we conclude that

(29) Φ](Ksep) = Φ[(t)′],

where by Φ[(t)′] we denoted the prime-to-t-torsion of Φ.
Because for all a ∈ A, φa ∈ EndKsep(φ) ⊂ EndKsep(φ]) = EndKsep(Φ]), there exists na ≥ 1

such that φaf
na = fnaφa, by Theorem 3.8. Because A is finitely generated as an Fp-algebra,

we can find n0 ≥ 1 such that for all a ∈ A, φaf
n0 = fn0φa, i.e. fn0 ∈ EndKsep(φ).

Claim 3.15. Let c(t) ∈ Fq[t] \ {0} and let m ≥ 1. Then there exists d(t) ∈ Fq[t
m] \ {0} such

that c(t) divides d(t).

Proof of Claim 3.15. Because Fq[t]/(c(t)) is finite and because Fq[t
m] is infinite, there exist

d1(t) 6= d2(t), both polynomials in Fq[t
m], such that c(t) divides d(t) = d1(t)− d2(t). �

Let x ∈ Φtor and let c(t) ∈ Fq[t] \ {0} such that Φc(t)(x) = 0. By Claim 3.15, we may
assume that c(t) ∈ Fq[t

n0 ]. Because Φtn0 = fn0 ∈ EndKsep(φ), Φc(t) ∈ EndKsep(φ).
Let a be a non-constant element of A. Then for all y ∈ Φ[c(t)],

Φc(t)(φa(y)) = φa(Φc(t)(y)) = 0.

Thus φa(y) ∈ Φ[c(t)] for all y ∈ Φ[c(t)]. Similarly, φam maps Φ[c(t)] into itself for every
m ≥ 1. Because Φ[c(t)] is a finite set and x ∈ Φ[c(t)], there exist m2 > m1 ≥ 1 such that
φam2 (x) = φam1 (x). Thus x ∈ φ[am2 − am1 ] and am2 − am1 6= 0 (a is not constant). This
shows that x ∈ φtor and because x was an arbitrary torsion point of Φ, then Φtor ⊂ φtor.
Actually, because the above argument can be used reversely by starting with an arbitrary
torsion point x of φ and concluding that x ∈ Φtor, we have φtor = Φtor. In any case, the
inclusion Φtor ⊂ φtor is sufficient to conclude that

φ](Ksep) = Φ](Ksep) ⊂ Φtor ⊂ φtor.

Also, Theorem 3.8 applied to Φ and f = Φt shows that for all

ψ ∈ QsEKsep(Φ]) = QsEKsep(φ]),

there exists n ≥ 1 such that ψfn = fnψ (in QsEKsep(φ])). �
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The following example shows that one possible way of strengthening Theorem 3.8 does
not hold and also shows how Theorem 3.14 applies when we do not have the hypothesis of
(3.8).

Example 3.16. Assume p > 2. Let t be an indeterminate and K = Fq(t). Let f = tτ + τ 3.
Then, for all λ ∈ Fq2 ,

(30) fλ = λqf

where λ is seen as the operator λτ 0.
Define φ : Fq[t] → Fq(t){τ} by φt = f(τ 0 + f). We claim that

(31) φ[t∞] ∩Ksep is infinite.

Because for all n ≥ 1, φtn = fn(τ 0 + f)n, Ker((τ 0 + f)n) ⊂ Kerφtn . Because τ 0 + f is
a separable polynomial, all the roots of (τ 0 + f)n are distinct and separable over K. So,
indeed, (31) holds.

statement (31) shows that the hypothesis of Theorem 3.8 fails for φ and t. We will prove
the conclusion of Theorem 3.8 regarding the quasi-endomorphisms of φ] fails, i.e. there exists
a quasi-endomorphism of φ] that does not commute with any power of φt.

Let λ ∈ Fq2 \ Fq. Applying Lemma 3.2, we get that φ] = (φt)
]. Applying Corollary 2.21

to φt and f 2 we conclude that φ] = (f 2)] (because f 2 is an endomorphism of φ and so, by
Corollary 3.5, (φt)

] = φ] ⊂ (f 2)]). But

(32) f 2λ = λf 2 (apply equation (30) twice).

Thus, with the help of Lemma 3.4 applied to the Drinfeld module ψ : Fq[t] → K{τ} given
by ψt = f 2, we get that

λ ∈ EndKsep(ψ]) = EndKsep

(
(f 2)]

)
= EndKsep(φ]).

Suppose that there exists n ≥ 1 such that φtnλ = λφtn on φ]. Because φ] is infinite,
φtnλ = λφtn , as polynomials. Then also φt2nλ = λφt2n . But φt2n = f 2n(τ 0 + f)2n and using
(32) and Proposition 3.13 applied to the domain K{τ}, we get

(33) (τ 0 + f)2nλ = λ(τ 0 + f)2n.

We will prove that (33) is impossible. Because of the skew commutation of f and λ as shown
in equation (30), the only way for equation (33) to hold is if in the expansion of (τ 0 + f)2n,
all the nonzero terms are even powers of f . Let pl be the largest power of p that is less than
or equal to 2n. Then

(
2n
pl

)
6= 0 (in Fp) and its corresponding power of f is odd. This shows

that indeed, (33) cannot hold when p > 2.
On the other hand, f ∈ EndKsep(φ) and the hypothesis of Theorem 3.14 is verified for φ

and f . Indeed, f ∈ EndKsep(φ]) and Ker(f) ∩ Ksep = {0}; thus f ∈ AutKsep(φ]). As we
can see from equation (32), also the conclusion of (3.14) regarding the commutation of the
quasi-endomorphism λ of φ (i.e. the scalar multiplication function associated to λ) with a
power of f holds with the power being f 2.

For the case p = 2 we can construct a similar example by taking f = tτ + τ 4 and defining
the Drinfeld module φ : Fq[t] → Fq(t){τ} by φt = f(τ 0 + f). In this case, λ ∈ Fq3 \ Fq will
play the role of the endomorphism of φ] that commutes with a power of an endomorphism
of φ, i.e. it commutes with f 3, but it does not commute with any power of φt.
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4. Mordell-Lang conjecture for Drinfeld modules

We first note that in all of our arguments that will follow, “subvariety” means “closed
subvariety”.

Let K be a finitely generated field of positive transcendence degree over Fp.
In [4], Laurent Denis formulated an analogue of the Mordell-Lang Conjecture in the context

of Drinfeld modules. Even though the formulation from [4] is for Drinfeld modules of generic
characteristic, we can ask the same question for Drinfeld modules of finite characteristic.
Thus, our Statement 4.2 will cover both cases. Before stating (4.2) we need a definition.

Definition 4.1. Let φ : A → K{τ} be a Drinfeld module. For g ≥ 0 we consider φ acting
diagonally on Gg

a. An algebraic φ-submodule of Gg
a is a connected algebraic subgroup of Gg

a

which is stable under the action of φ.

Statement 4.2 (Mordell-Lang statement for φ). Let φ be a Drinfeld module. If Γ is a finitely
generated φ-submodule of Gg

a(K
alg) for some g ≥ 0 and if X is an algebraic subvariety of Gg

a,
then there are finitely many algebraic φ-submodules B1, . . . , Bs and there are finitely many
elements γ1, . . . , γs of Gg

a(K
alg) such that X(Kalg) ∩ Γ = ∪1≤i≤s(γi +Bi(K

alg) ∩ Γ).

The first result towards Statement 4.2 was obtained by Thomas Scanlon in [14]. Before
stating the theorem from [14], we need to introduce two definitions.

Definition 4.3. For a Drinfeld module φ : A→ K{τ}, its field of definition is the smallest
subfield of K containing all the coefficients of φa, for every a ∈ A.

Definition 4.4. Let φ : A → K{τ} be a Drinfeld module. The modular transcendence
degree of φ is the minimum transcendence degree over Fp of the field of definition for φ(γ)

(we recall φ
(γ)
a = γ−1φaγ for every a ∈ A), where the minimum is taken over all γ ∈ Kalg\{0}.

In [7] (see Lemmas 7.0.42 and 7.0.43) we proved that if there exists a non-constant
t ∈ A such that φt =

∑r
i=0 aiτ

i is monic, then the modular transcendence degree of φ is
trdegFp

Fp(a0, . . . , ar−1).

Theorem 4.5 (Thomas Scanlon). Let φ : A→ K{τ} be a Drinfeld module of finite charac-
teristic and modular transcendence degree at least 1. Let Γ be a finitely generated φ-submodule
of Gg

a(K
alg) and X be a Kalg-subvariety of Gg

a. Then X(Kalg)∩ Γ is a finite union of trans-
lates of subgroups of Γ.

Using Theorem 3.8, we are able to strengthen the conclusion of (4.5) by showing that one
could replace subgroups by φ-submodules.

Theorem 4.6. If X is a Kalg-subvariety of Gg
a and φ : A → K{τ} is a Drinfeld module

of positive modular transcendence degree for which there exists a non-constant t ∈ A such
that φ[t∞](Ksep) is finite, then for every finitely generated φ-submodule Γ of Gg

a(K
alg), there

exists n ≥ 1 such that X(Kalg) ∩ Γ is a finite union of translates of Fq[t
n]-submodules of Γ.

Before proving Theorem 4.6, we need to prove a technical lemma regarding groups of
U -rank 1. For a definition and basic properties of the U -rank (also called, the Lascar rank)
we refer the reader to Delon’s article in [1]. We also mention that Lemma 4.8 is true in a
larger generality; for example it is true if the U -rank is replaced by the Morley rank (for the
definition of the Morley rank, see Ziegler’s article in [1]) and so, it holds in the context of

15



classical algebraic geometry. We denote by rk the U -rank. For the reader’s convenience we
recall here the properties of the U -rank that we will use in Lemma 4.8.

Proposition 4.7. Let G be an infinitely definable group for which the U-rank is defined.
1) The U-rank of G is 0 if and only if G is finite.
2) If H is a definable subgroup of G, then H has U-rank. Moreover, rk(H) ≤ rk(G), with

equality if and only if [G : H] is finite.
3) If H is another group for which the U-rank is defined and f : G → H is a definable

map, then both im(f) and Ker(f) have U-rank and rk(G) = rk(im(f)) + rk(Ker(f)).
4) For each n ≥ 0, the cartesian product Gn is a group for which the U-rank is defined.

(By convention, the zeroth cartesian power of G is the trivial group.)

Lemma 4.8. Let G be a connected, infinitely definable subgroup of L of U-rank 1 over Ksep.
Let n be a non-negative integer and let H be a definable subgroup of Gn of U-rank d. There
exists a projection π of Gn to some d coordinates of Gn such that π(H) = π(Gn) = Gd and
the fibers of π|H are finite.

Proof. Our proof is by induction on n. If n = 0, then the conclusion of our lemma holds
trivially (the projection being the zero map).

Assume Lemma 4.8 holds for n−1, for some n ≥ 1 and we prove it holds also for n. Let π1

be the projection of Gn on the first (n− 1) coordinates. By property 3) of Proposition 4.7,
Ker(π1|H) is a subgroup of G of U -rank equal either 0 or 1.

If the former case holds, i.e. rk(Ker(π1|H)) = 0, then Ker(π1|H) is finite, by property 1) of
Proposition 4.7. Also, rk(π1(H)) = d, by property 3) of Proposition 4.7. We can apply the
induction hypothesis to π1(H) ⊂ Gn−1 and conclude there exists a suitable projection map
π2 such that π2(π1(H)) = Gd and Ker(π2|π1(H)) is finite. Hence the projection map π2 ◦ π1

satisfies the conclusion of Lemma 4.8 with respect to H ⊂ Gn.
If the latter case holds, i.e. rk(Ker(π1|H)) = 1, then Ker(π1|H) = G, because of property

2) of Proposition 4.7 and the fact that G is connected. Thus H = π1(H)×G. We apply the
induction hypothesis to π1(H) ⊂ Gn−1 and conclude there exists a suitable projection map
π2 : Gn−1 → Gd−1 such that π2|π1(H) is surjective and Ker(π2|π1(H)) is finite. Considering the
projection map π3 : Gn → Gd−1 × G defined as (π2 ◦ π1, πn) (where πn is the projection of
Gn on the last coordinate) and using the fact that H = π1(H)×G, we obtain the conclusion
of Lemma 4.8. �

Proof of Theorem 4.6. First we prove the following

Claim 4.9. Let K1 be a finite extension of K. Then φ[t∞](Ksep
1 ) is finite.

Proof of Claim 4.9. Let pk be the inseparable degree of the finite extension K1/K. Then

Ksep
1 ⊂ Ksep1/pk

.
If we assume the set φ[t∞](Ksep

1 ) is infinite then, as shown in the proof of Corollary 3.11,
there exists an infinite coherent sequence (xn)n≥0 ∈ φ[t∞](Ksep

1 ) such that

xn = φt(xn+1) , for all n ≥ 0 and x0 6= 0.

Thus we know that for every n ≥ 0, xn = φtk(xn+k). Because φtk ∈ K{τ}τ k and xn+k ∈
Ksep

1 ⊂ Ksep1/pk

, we conclude that xn ∈ Ksep, for every n ≥ 0. This contradicts our hypoth-
esis that φ[t∞](Ksep) is finite and concludes the proof of Claim 4.9. �
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Using Claim 4.9, it suffices to prove Theorem 4.6 under the hypothesis that both X is
defined over K and Γ ⊂ Gg

a(K). Then X(Kalg) ∩ Γ = X(K) ∩ Γ.
As in Theorem 4.5, let H be an irreducible algebraic subgroup of Gg

a such that for some
γ ∈ Gg

a(K
alg),

(34) γ +
(
H(Kalg) ∩ Γ

)
⊂ X(Kalg) ∩ Γ.

If H is finite, then because H is irreducible, we conclude H = {0} (H is a group). In this
case, clearly H is invariant under the action of φ. Thus, from now on, we may assume H is
an infinite irreducible algebraic group.

At the expense of replacing K by a finite extension, we may assume H is defined over K
(note that replacingK by a finite extension does not changeX(Kalg)∩Γ because Γ ⊂ Gg

a(K)).
We may assume that H(K) ∩ Γ is dense in H (otherwise we replace H by an irreducible

component of the Zariski closure of H(K) ∩ Γ and again replace K by a finite extension so
that H is defined over K). Hence, H is an irreducible algebraic group, whose translate by γ
is contained in X (we use (34) and the fact that H(K) ∩ Γ is dense in H).

From this point on in this proof, the setting is that H is an infinite, irreducible algebraic
subgroup defined over K, which appears in the conclusion of Theorem 4.5. Also, X is defined
over K and Γ ⊂ Gg

a(K). In order to prove Theorem 4.6, we will prove H is invariant under
a power of φt.

Let L be an ℵ1-saturated elementary extension of Ksep. We apply Lemma 4.8 to the
definable subgroup H(L)∩φ](L)g of the infinitely definable group φ](L)g (φ](L) is connected
by Corollary 3.3 and φ](L) has U -rank 1 as proved in [14]). We conclude there exists a
projection map π satisfying the conclusions of the above mentioned lemma. We identify
π(φ](L)g) with φ](L)d, where d is the U -rank of H(L) ∩ φ](L)g. Thus for every point

(x1, . . . , xd) ∈ φ](L)d

there is one and at most finitely many points

(xd+1, . . . , xg) ∈ φ](L)g−d

such that

(x1, . . . , xg) ∈ H(L) ∩ φ](L)g.

Hence, we may identify π with the corresponding quasi-morphism from φ](L)d to φ](L)g−d

(the above defined correspondence is additive because H is a group and φ](L)d and φ](L)g−d

are connected, according to Lemma 2.7). More exactly, the connected component C of
H(L) ∩ φ](L)g is the graph of this quasi-morphism between φ](L)d and φ](L)g−d. The
following result is crucial for our argument.

Claim 4.10. C is Zariski dense in H.

Proof of Claim 4.10. We will first prove that H(L) ∩ φ](L)g is Zariski dense in H.
We know that H(L) ∩ Γ is Zariski dense in H. Let n ≥ 1. Because Γ is a finitely

generated φ-submodule, the quotient Γ/φtn(Γ) is finite. Thus there exists γ ∈ Γ such that
H(L) ∩ (γ + φtn(Γ)) is Zariski dense in H. In particular, H(L) ∩ (γ + φtn(L)g) is Zariski
dense in H.

Let y ∈ H(L) ∩ (γ + φtn(L)g). Because

H(L) ∩ (γ + φtn(L)g) = y +H(L) ∩ φtn(L)g,
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we conclude

(35) H(L) ∩ φtn(L)g is Zariski dense in H.

Because (35) holds for every n ≥ 1, using compactness and ℵ1-saturation of L we conclude
H(L) ∩ φ](L)g is Zariski dense in H.

Because the theory of separably closed fields is stable (see Delon’s article in [1]), the
connected component of an infinitely definable group, such as H(L)∩φ](L)g, has finite index
in the group (see chapter 5 of [12]). Hence C has finite index in H(L) ∩ φ](L)g. Moreover,
the Zariski closure of C has finite index in H (because C has finite index in H(L) ∩ φ](L)g,
which is dense in H). Because H is connected, we conclude C is Zariski dense in H, as
desired. �

By Lemme 3.5.3 of [3], QsMKsep

(
φ](L)d, φ](L)g−d

)
is naturally isomorphic to the ring of

matrices Mg−d,d

(
QsEKsep(φ](L))

)
, where by Mg−d,d

(
QsEKsep(φ](L))

)
we denote the ring of

(g−d)×dmatrices over the ring QsEKsep(φ](L)). The image of π in QsMKsep

(
φ](L)d, φ](L)g−d

)
commutes with a power of φt (by Theorem 3.8). Let φtn be this power for some n ≥ 1.

For each x = (x1, . . . , xd) ∈ φ](L)d, let

Cx = {(y1, . . . , yg−d) ∈ φ](L)g−d | (x1, . . . , xd, y1, . . . , yg−d) ∈ C}.

Because π commutes with φtn , for each x ∈ φ](L)d, φtnCx ⊂ Cφtn (x). Thus

(36) φtn(C) ⊂ C.

Using (36) and the fact that C is Zariski dense in H (as proved by Claim 4.10), we conclude
H is invariant under φtn , as desired. �

Remark 4.11. The result of Theorem 4.6 is sharp in the sense that its conclusion can fail for
n = 1. For example, let the Drinfeld module φ : Fq[t] → Fq(t){τ} be defined by φt = τ + tτ 3

and λ ∈ Fq2 \ Fq. Let X ⊂ G2
a be the curve y = λx and let Γ be the cyclic φ-submodule

of G2
a(Fq2(t)) generated by (1, λ). As shown in Example 3.16, φt2λ = λφt2 . Thus for every

n ≥ 1, (φt2n(1), φt2n(λ)) ∈ X(Fq2(t)). So, X(Fq(t)
alg)∩Γ is Zariski dense in X. But X is not

invariant under φt; X is invariant under φt2 . Hence in this example (i.e. for this particular
X and φ), Theorem 4.6 holds with n = 2.

Remark 4.12. If we drop the hypothesis on φt from Theorem 4.6 (i.e. allow φ[t∞](Ksep) be
infinite) we may lose the conclusion, as is shown by the following example.

Let p > 2 and let φ, λ, X and Γ be as in Remark 4.11. Let u = t + t2. As shown in
Example 3.16, φ[u∞]∩Fp(t)

sep is infinite and X is not invariant under any power of φu. But,
as shown in Remark 4.11, X(Fp(t)

alg) ∩ Γ is infinite.

The above two remarks 4.11 and 4.12 show that the result of Theorem 4.6 is the most we
can hope towards Statement 4.2 for Drinfeld modules of finite characteristic.

In order to prove the last result of this paper we need one more definition.

Definition 4.13. Let φ : A → K{τ} be a Drinfeld module. Let K0 be any subfield of K.
Then the relative modular transcendence degree of φ over K0 is the minimum transcendence
degree over K0 of the compositum field of K0 and the field of definition of φ(γ), minimum
being taken over all γ ∈ Kalg \ {0}.
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Theorem 4.14. Let K be a field of characteristic p. Let φ : A → K{τ} be a Drinfeld
module of generic characteristic and of relative modular transcendence degree at least 1 over
F = Frac(A). Let g ≥ 0 and X be a Kalg-subvariety of Gg

a. Assume that X does not contain a
translate of a nontrivial connected algebraic subgroup of Gg

a. Then for every finitely generated
φ-submodule Γ of Gg

a(K
alg), we have that X(Kalg) ∩ Γ is finite.

Proof. First we replace K by a finitely generated field L, which satisfies the following con-
ditions:

1) φ is defined over L;
2) Γ ⊂ Gg

a(L);
3) X is defined over L.
If we prove Theorem 4.14 for L, then the result follows automatically for K. Hence, from

now on, K has the properties 1)− 3).
We let F alg be the algebraic closure of F inside Kalg. For any two subextensions of Kalg,

their compositum is taken inside Kalg. We may replace K by any finite extension of it and
prove the result for the larger field and then the result will also hold for K. Also, during
this proof we will replace F by a finite extension of it contained in K.

In the beginning we will prove several reduction steps.
Step 1. It suffices to prove Theorem 4.14 for Γ of the form Γg

0 where Γ0 is a finitely generated
φ-submodule of Ga(K

alg). Indeed, if we let Γ0 be the finitely generated φ-submodule of Kalg

generated by all the g coordinate projections of Γ, then clearly, Γ ⊂ Γg
0. So, we suppose that

Γ has the form Γg
0. To simplify the notation we work with a finitely generated φ-submodule

Γ of Ga(K
alg) and prove that X(Kalg) ∩ Γg is finite.

Step 2. Let t be a non-constant element of A. Let γ ∈ Kalg such that for the Drinfeld

module φ(γ) = γ−1φγ, φ
(γ)
t is monic. We let γ−1X be the variety whose vanishing ideal is

composed of functions of the form f ◦ γ, where f is in the vanishing ideal of X and γ is
interpreted as the multiplication-by-γ-map on each component of Gg

a. The conclusion of
Theorem 4.14 is equivalent to showing that

(γ−1X)(Kalg) ∩ (γ−1Γ)g is finite.

The variety γ−1X has the same property as X: it does not contain a translate of a non-trivial
connected algebraic subgroup of Gg

a. The group γ−1Γ is a finitely generated φ(γ)-submodule.
So, it suffices to prove Theorem 4.14 under the extra hypothesis that φt is monic. From now
on, let

φt = τ r + ar−1τ
r−1 + · · ·+ a0τ

0.

Step 3. Let W be a variety defined over F whose function field is K. At the expense
of replacing K by a finite extension and replacing F by a finite extension contained in K,
we may assume that W is a projective, smooth, geometrically irreducible F -variety (see
Remark 4.2 from [10]). We let C be a smooth projective curve defined over a finite field,
whose function field is F . We spread out W over an open, dense subset C0 ⊂ C and obtain
a projective, smooth variety V0 ⊂ Pn

C0
(for some n) (we can always do this because there are

finitely many polynomials defining the variety W and so, there are finitely many places of
C that lie below poles of the coefficients of these polynomials). We let V be the projective
closure of V0 in Pn

C . We let π : V → C be the natural morphism. The generic fiber of π is
smooth and geometrically irreducible, because this is how we chose W . Finally, we replace
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V by its normalization. By doing this last step, the generic fiber of π remains smooth and
geometrically irreducible because V0 is isomorphic with its preimage in the normalization.

The irreducible divisors P of V are of two types:
(i) vertical, which means that π(P) = p is a closed point of C.
(ii) horizontal, which means that π|P : P → C is surjective.
We call horizontal a divisor of V that has at least one irreducible component that is

horizontal.
Let S be the finite set of horizontal divisors of V that are irreducible components of the

poles of the coefficients ai of φt. According to Lemma 5.2.2 of [7], the set S is the set of
horizontal irreducible divisors of V that are places of bad reduction for φ.

At the expense of replacing F by a finite extension F ′ and replacing K by F ′K and
replacing V and W by their respective normalizations in F ′K, we may assume that for each
γ ∈ S, the generic fiber of γ → C is geometrically irreducible (we can do this because
for each γ ∈ S, there exists a finite extension of F such that after the base extension, γ
splits into finitely many divisors whose generic fibers are geometrically irreducible). Also,
the properties of being smooth and geometrically irreducible (for the generic fiber of π) are
unaffected by a base extension. So, from now on we work under the following assumptions
for the projective, normal varieties V and C:

(37) the generic fiber of the morphism π : V → C is smooth and geometrically irreducible

(38) for each γ ∈ S, the generic fiber of γ is geometrically irreducible.

Step 4. We define the division hull of Γ, by

Γ = {γ ∈ Kalg | there exists a ∈ A \ {0} such that φa(γ) ∈ Γ}.
In [7] we proved the following result (Theorem 7.0.44).

Theorem 4.15. Let F be a countable field of characteristic p and let K be a finitely gen-
erated field over F . Let φ : A → K{τ} be a Drinfeld module of positive relative modular
transcendence degree over F . Then for every finite extension L of K, φ(L) is a direct sum
of a finite torsion submodule and a free submodule of rank ℵ0.

Using the result of Theorem 4.15 for F alg, which is countable, and for F algK, which is
finitely generated over F alg, and for φ, which has positive relative modular transcendence
degree over F alg, we conclude that φ(F algK) is the direct sum of a finite torsion submodule
and a free module of rank ℵ0. Thus, because Γ has finite rank, Γ∩F algK is finitely generated.
At the expense of replacing K by a finite extension of the form F ′K, where F ′ is a finite
extension of F and replacing W and V by their normalizations in F ′K, we may assume that
Γ ∩ F algK ⊂ K.

Step 5. We may replace Γ by Γ ∩K, which is also a finitely generated φ-submodule that
contains Γ.

From now on, we assume all of the above reductions made.
For each irreducible divisor P of V , we let KP be the residue field of K at P. For any

element x in the valuation ring RP of P, we let xP be the reduction of x at P. Also, we
denote by rP the reduction map at P. If all the elements of Γ are integral at P, we let

ΓP = {xP | x ∈ Γ}.
If φ has good reduction at P, then we denote by φP the corresponding reduction.
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The following two results are standard (see Theorem 2.10 (i) of [5], which proves that for
an algebraic variety the property of being geometrically irreducible is a first order definable
property).

Lemma 4.16. Because the generic fiber of π : V → C is geometrically irreducible, for all
but finitely many closed points p ∈ C, π−1(p) is geometrically irreducible.

Lemma 4.17. Let γ ∈ S. Because the generic fiber of γ → C is geometrically irreducible,
for all but finitely many closed points p ∈ C, γ ∩ π−1(p) is geometrically irreducible.

Lemma 4.18. Let T be the set of vertical irreducible divisors P of V which satisfy the
following properties:

a) φ has good reduction at P.
b) φP is a finite characteristic Drinfeld module of positive modular transcendence degree.
c) the projective variety P is smooth and π−1(π(P)) is geometrically irreducible.
d) for each γ ∈ S, γP := γ ∩ β is geometrically irreducible.
e) for all x ∈ Γ, x is integral at P.
Then the set T is cofinite in the set of all vertical irreducible divisors of V .

Proof of Lemma 4.18. We will show that each of the conditions a)-e) is verified by all but
finitely many vertical irreducible divisors of V .
a) There are only finitely many irreducible divisors of V that are places of bad reduction

for φ. So, in particular, there are only finitely many irreducible vertical divisors of V that
do not satisfy a).
b) By the definition of reduction at P (which is a place sitting above a prime divisor of

A), φP is a finite characteristic Drinfeld module.
Because φ has positive relative modular transcendence degree over F , there exists a ∈ A

and a coefficient c of φa such that c /∈ F alg. We view c as a dominant rational map from
the generic fiber W of V to P1

F . We spread out c to a rational map c̃ : V → P1
C , whose

generic fiber is c. Because c is dominant, c̃ is dominant. For all but finitely many closed
points p ∈ C, the fiber c̃p is not constant. According to the result of Lemma 4.16, for all but
finitely many p, π−1(p) = P is geometrically irreducible. For such P, we identify c̃p with the
reduction of c at the place P, denoted cP. Thus for all but finitely many irreducible vertical
divisors P, cP /∈ Falg

p . So, for these divisors P, φP has positive modular transcendence degree

(remember that φP
t is still monic because φt is monic).

c) Since V is projective, all the irreducible divisors of V are projective varieties.
Because the generic fiber of π is smooth and geometrically irreducible, for all but finitely

many p ∈ C, π−1(p) is also smooth and geometrically irreducible.
d) This is proved by Lemma 4.17.
e) Because Γ is finitely generated as a φ-module and φ has good reduction at all but finitely

many irreducible divisors, the elements of Γ are integral at all but finitely many irreducible
divisors of V . �

Lemma 4.19. The set S is nonempty.

Proof of Lemma 4.19. Assume all poles of all coefficients of φt are vertical. Because there
are infinitely many P ∈ T , we can find P ∈ T such that P is disjoint from all the poles
of the coefficients of φt (we can achieve this because they are finitely many and they are
all vertical). Then the reduction of φ at P is a Drinfeld module of modular transcendence
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degree at least 1 (by condition b) of Lemma 4.18. But on the other hand, because all the

poles of the coefficients of φt are vertical and disjoint from P, the coefficients of φP
t are

integral on P. Because P is a projective variety, then the coefficients of φP
t are constant.

This is a contradiction with the modular transcendence degree of φP. �

For each P ∈ T , we let SP be the set of all the irreducible divisors of P which are poles

of the coefficients of φP
t . As explained in Lemma 5.2.2 of [7], the places from SP are all the

places of bad reduction for φP.

Lemma 4.20. For each P ∈ T , 1 ≤ |SP| ≤ |S|.

Proof of Lemma 4.20. Fix P ∈ T . Let c be a coefficient of φt. We view c as a rational map
from V to P1

F . The divisor of the pole of c is the pullback of ∞ ∈ P1
F . Thus the poles of cP

are the intersections of this divisor of poles with the vertical divisor P (also remember that
P is a place of good reduction for φ and so, P is not part of the pole of c). Using Lemma 4.18
d), the divisors of P which are irreducible components of the divisor of poles of cP are of
the form γP for γ ∈ S. Thus, because S is nonempty (see Lemma 4.19), 1 ≤ |SP| ≤ |S|
(the second inequality might be strict because it is possible for two horizontal divisors from
S have the same intersection with the vertical divisor P). �

Lemma 4.21. For all but finitely many P ∈ T , the reduction map rP is injective on Γtor.

Proof of Lemma 4.21. Because Γtor is finite (Γ is finitely generated), only finitely many P
from T appear as irreducible components of the divisor of zeros for some torsion element of
Γ. �

Lemma 4.22. There exists a non-constant a ∈ A such that for all P ∈ T , ΓP∩φP[a] = {0}.

Proof of Lemma 4.22. Let P ∈ T . We note that P is regular in codimension 1 (according to
condition c) of Lemma 4.18) and so, the valuations associated to its irreducible divisors form
a good set of valuations on the finitely generated field KP (see Remark 4.2.2 of [7]). Hence,

using Lemma 4.20 and using Corollary 6.0.38 of [7] we conclude that for all x ∈ φP
tor(KP),

there exists a polynomial b(t) ∈ Fq[t] of degree at most (r2 + r)|S| such that φP
b(t)(x) = 0.

Because ΓP ⊂ KP, Lemma 4.22 holds with a ∈ Fq[t] being any irreducible polynomial of
degree greater than (r2 + r)|S|. �

Lemma 4.23. Let a be a non-constant element of A. For almost all P ∈ T , rP : Γ/φa(Γ) →
ΓP/φ

P
a (ΓP) is injective.

Proof of Lemma 4.23. We know that all the divisors P ∈ T have the property that if
p = π(P), then π−1(p) is geometrically irreducible (this was part of condition c) from
Lemma 4.18). Thus, specifying p determines uniquely P and so, just to simplify the nota-
tion in this lemma, we will use the convention that if P is the only irreducible divisor lying
above a closed point p ∈ C, then Kp is the residue field of K at P and “reducing x ∈ K at
p” is “reducing x ∈ K at P”. Also, we will identify T with the set of closed points p ∈ C
lying below the vertical divisors P ∈ T .

Suppose there are infinitely many irreducible divisors P for which the map in (4.23) is not
injective. Because Γ/φa(Γ) is finite, there exists x ∈ Γ \ φa(Γ) and there exists an infinite
subset U of T ⊂ C such that for every p in this infinite subset, xp ∈ φp

a(Γp). For each such
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p, let z(p) ∈ Γp ⊂ Kp be such that

(39) xp = φp
a(z(p)).

Let L be the finite extension of K generated by all the roots z1, . . . , zs ∈ Kalg of the
equation (in z) φa(z) = x. For each p ∈ U choose a place p1 of L lying above p.

Fix now p ∈ U . Because p ∈ T (and so, p1) is a place of good reduction for φ, z1, . . . , zs

are integral at p1 and their reductions at p1, called z1,p1 , . . . , zs,p1 are all the roots of the
equation (in z) φp

a(z) = xp. Using (39), we conclude there exists i ∈ {1, . . . , s} such that

(40) zi,p1 = z(p).

We apply the above argument for each p ∈ U (and for the corresponding p1) and so, conclude
that for each p ∈ U , there exists some i ∈ {1, . . . , s} such that (40) holds. Because U is
infinite, there exists an infinite subset U1 ⊂ U and there exists z ∈ {z1, . . . , zs} such that for
each p ∈ U1,

(41) zp1 = z(p) ∈ Kp,

because z(p) ∈ Kp. Let K ′ = K(z). Because z ∈ Γ\Γ (because x /∈ φa(Γ)) and Γ∩F algK =
Γ, K ′ is not contained in F algK. So, if we let F ′ be the algebraic closure of F in K ′, then

(42) l := [K ′ : F ′K] > 1.

Let C ′ be the normalization of C in F ′. Let V ′ be the normalization of V in F ′K and let
V ′

1 be the normalization of V in K ′. Let π′ : V ′ → C ′ and π′1 : V ′
1 → C ′ be the induced

morphisms. Thus the generic fibers W ′ and W ′
1 of π′ and π′1, respectively, are geometrically

irreducible. Let f : V ′
1 → V ′ be the induced finite morphism.

Because φ is a generic characteristic Drinfeld module, φa is a separable polynomial and
so, K ′/K is a separable extension. Thus f is ramified for finitely many irreducible divisors
of V ′. Also, let P be the minimal polynomial for z over F ′K.

Let U ′
1 be the set of closed points of C ′ satisfying the following properties:

1) each p′ ∈ U ′
1 lies above some p ∈ U1,

2) for each p′ ∈ U ′
1, the vertical divisor P′

1 := π′−1
1 (p′) of V ′

1 is geometrically irreducible,
3) for each p′ ∈ U ′

1, f is not ramified at the divisor P′ := π′−1(p′) of V ′ (note that P′ is
geometrically irreducible, once 2) holds),

4) for each p′ ∈ U ′
1, all the coefficients of P are integral at the corresponding P′ (and

implicitly, at P′
1). Moreover, p′ is not an irreducible component of the divisor of zeros of

P ′(z).
In all that will follow next in our argument, “condition i)” for i ∈ {1, . . . , 4} is one of the

above 4 conditions.
Because U1 is infinite, condition 1) is satisfied by infinitely many p′ ∈ C ′. Condition 2)

is satisfied by all but finitely many p′ ∈ C ′ because the generic fiber of π′1 is geometrically
irreducible. Condition 3) is satisfied because f ramifies at finitely many irreducible divisors
of V ′. The first part of condition 4) is satisfied because there are finitely many divisors of
V ′ (or V ′

1) which are irreducible components for the divisors of poles of the coefficients of P .
The second part of condition 4) is satisfied because P ′(z) 6= 0 (P is a separable polynomial
because it divides φa, which is a separable polynomial). So, we conclude U ′

1 is infinite.
Let p′ ∈ U ′

1 and let P′ and P′
1 be the corresponding vertical divisors of V ′ and V ′

1 ,
respectively. Because P′

1 is the only place of K ′ lying above the place p′ of C ′ (see condition
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2)), (41) yields zP′1
∈ (F ′K)P′ . Also by condition 2), P′

1 is the only place of K ′ lying above
the place P′ of F ′K.

Let R be the valuation ring of F ′K at P′ and let R′ be the integral closure of R in K ′.
BecauseK ′ is not ramified above P′, the different of R′/R is the unit ideal in R′ (see Theorem
1, page 53, [15]). By condition 4), P ′(z) is also a unit in R′. By Corollary 2 (page 56) of [15],
R′ = R[z]. Because P is defined over R (see condition 4)), Lemma 4 (page 18) of [15] yields
the relative residue degree f(P′

1|P′) between the place P′
1 of K ′ and the place P′ of F ′K is

1. Using condition 3), we conclude that also the ramification index e(P′
1|P′) of P′

1 over P′ is
1. As explained in Remark 4.2.2 of [7], the valuations associated to irreducible divisors of a
projective variety defined over a field are defectless and so, because e(P′

1|P′) = f(P′
1|P′) = 1

and P′
1 is the only place of K ′ lying above the place P′ of F ′K, we conclude [K ′ : F ′K] = 1.

This contradicts (42). This contradiction comes from our assumption that there are infinitely
many primes P for which Lemma 4.23 is false. So, for all but finitely many P ∈ T , the
conclusion of Lemma 4.23 holds, as desired. �

Using Lemmas 4.21, 4.22 and 4.23 we prove the following key result.

Lemma 4.24. For all but finitely many P ∈ T , the reduction Γ → ΓP is injective.

Proof of Lemma 4.24. Shrink T so that all of the three lemmas 4.21, 4.22 and 4.23 hold for
P ∈ T . Also, let a be as in Lemma 4.22.

If x ∈ Γ ∩Ker(rP), then by Lemma 4.23, x ∈ φa(Γ). This means that there exists x1 ∈ Γ
such that φa(x1) = x. Reducing at P, we get φP

a (x1P
) = 0 which by Lemma 4.22 implies

that x1P
= 0. But then applying again 4.23, this time to x1, we conclude x1 ∈ φa(Γ); i.e.

there exists x2 ∈ Γ such that x1 = φa(x2).
So, repeating the above process, an easy induction shows that

x ∈
⋂
n≥1

φan(Γ) = Γtor,

because Γ is finitely generated. But, by Lemma 4.21, Γtor injects through the reduction at
P. Thus x = 0 and so the proof of Lemma 4.24 ends. �

Now, the property P : “X does not contain any translate of a nontrivial connected algebraic
subgroup of Gg

a” is a definable property as shown in Lemma 11 (page 203) of [1] (there it
is proved that the set of connected algebraic subgroups of an algebraic group G that are
maximal under the property that one of their translates lies inside a given algebraic variety
X ⊂ G is definable). This means that property P is inherited by all but finitely many of the
reductions of X. Coupling this result with Lemma 4.24, we see that for all but finitely many
irreducible vertical divisors P of V , the reduction of X, called XP, is also a variety that
satisfies the same hypothesis as X and moreover, Γ injects through such reduction. This
means that

(43) |X(K) ∩ Γg| ≤ |XP(KP) ∩ Γg
P|.

According to condition b) of Lemma 4.18, for all P ∈ T , φP satisfies the hypotheses of
Theorem 4.5. Thus, applying Theorem 4.5, XP ∩ Γg

P is a finite union of translates of cosets
of subgroups of Γg

P. Suppose that one of these subgroups of Γg
P is infinite. Then XP contains

the Zariski closure of the corresponding coset, which is a translate of a positive dimensional
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algebraic subgroup of Gg
a. This would contradict the property inherited by XP from X.

Thus XP(KP) ∩ Γg
P is finite. Using (43), we conclude that X(K) ∩ Γg is finite. �

Remark 4.25. Theorem 4.14 is a special case of Statement 4.2 because if we assume (4.2)
and we work with the hypothesis on X from Theorem 4.14, then, with the notations from
(4.2), the intersection of X with any translate of Bi is finite. Otherwise, the Zariski closure
of X ∩ (γi + Bi) would be a translate of a positive dimensional algebraic subgroup of Gg

a,
and it would be contained in X.
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