
THE ISOTRIVIAL CASE IN THE MORDELL-LANG CONJECTURE FOR
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CHARACTERISTIC
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Abstract. Let G be a semiabelian variety defined over a finite subfield of an algebraically
closed field K of prime characteristic. We describe the intersection of a subvariety X of G
with a finitely generated subgroup of G(K).

1. Introduction

The classical Mordell-Lang conjecture for semiabelian varieties G defined over an alge-
braically closed field K of characteristic 0 (now a theorem due to Laurent [Lau84] for alge-
braic tori, to Faltings [Fal91] for abelian varieties, and to Vojta [Voj96] for the general case
of semiabelian varieties) says that the intersection of a subvariety X of G with a finitely
generated subgroup Γ of G(K) is a finite union of cosets of subgroups of Γ. The statement in
positive characteristic (i.e., when K is an algebraically closed field of characteristic p) fails;
see Hrushovski [Hru96]. When G is defined over a finite subfield Fq of K, Moosa and Scanlon
[MS04] described the aforementioned intersection X(K)∩Γ under the additional assumption
that Γ is mapped into itself by a power of the Frobenius endomorphism F of G corresponding
to Fq, i.e., Γ is a finitely generated Z[F `]-submodule of G(K) (for a suitable positive integer
`). The precise description of the intersection X(K)∩Γ is a finite union of F -sets (see Defini-
tion 1.2), as given in Theorem 1.3. In [GY24], it was shown that if Γ is not a Z[F `]-submodule
(for any ` ∈ N), then the structure of the intersection X(K)∩Γ can be quite wild (see [GY24,
Section 2]); in particular, [GY24, Examples 2.1, 2.2, 2.3] (see also our Example 1.10) show
that the intersection X(K) ∩ Γ is no longer a finite union of F -sets (as opposed to what the
author claimed erroneously in an earlier paper [Ghi08]). Furthermore, a geometric description
of the intersection X(K) ∩ Γ was proven in [GY24], even without assuming that G is defined
over a finite subfield of K, but with the disadvantage that this description is not intrinsic to
the subgroup Γ and instead it relies on the geometry of G. In the present paper, we obtain
an explicit description (see Theorem 1.9) of the intersection X(K) ∩ Γ, in the spirit of the
original description of Moosa-Scanlon [MS04].

1.1. The intersection of a subvariety of a semiabelian variety defined over a finite
field with a finitely generated subgroup invariant under a power of the Frobenius
endomorphism.
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Notation 1.1. From this point on, we fix a semiabelian variety G defined over a finite sub-
field Fq of an algebraically closed field K. We let F be the Frobenius endomorphism of G
corresponding to Fq.

In order to state the result of Moosa-Scanlon [MS04], we introduce the notion of F -sets.

Definition 1.2. A groupless F -set is any subset of G(K) of the form:

(1.1.1)

{
α0 +

r∑
i=1

F kini(αi) : ni ∈ N

}
,

for given integers r ≥ 0 and ki ≥ 1, and given points α0, α1, . . . , αr ∈ G(K). For any finitely
generated subgroup Γ ⊂ G(K), we define a groupless F -set in Γ (based in G(K)) as a groupless
F -set contained in Γ. Also, an F -set in Γ (based in G(K)) is any set of the form S + B,
where S is a groupless F -set in Γ and B is a subgroup of Γ (as always, for any two subsets A
and B of a given group, we have that A+B is the set of all elements a+ b where a ∈ A and
b ∈ B).

Next, we state the main result of Moosa-Scanlon [MS04].

Theorem 1.3 (Moosa-Scanlon [MS04]). Let G, K, Fq and F be as in Notation 1.1. Let
X ⊆ G be a subvariety defined over K and let Γ ⊂ G(K) be a finitely generated subgroup with
the property that there exists ` ∈ N such that F `(Γ) ⊆ Γ. Then X(K) ∩ Γ is a finite union of
F -sets in Γ.

1.2. The intersection of a subvariety of a semiabelian variety with an arbitrary
finitely generated subgroup. In order to state our main result regarding the intersection
of a subvariety of G with an arbitrary finitely generated subgroup of G, we introduce a general
arithmetic structure associated to any abelian group (see Definition 1.6). But first we define
a general class of linear recurrence sequences (see Definition 1.5). We recall that for a linear
recurrence equation {an}n≥1 given by the recurrence relation:

an+m =
m−1∑
i=0

cian+i,

the characteristic equation is xm − cm−1xm−1 − · · · − c0 = 0; for more details, see [CGSZ21,
Section 2.3].

Definition 1.4. A subset S ⊆ C∗ is called powers-closed if for any r ∈ S and any non-
negative integer n, we have that rn ∈ S. (In particular, 1 ∈ S.)

Definition 1.5. Let S ⊆ C∗ be a powers-closed set. A linear recurrence sequence {an}n≥1
of integers is called an S-arithmetic sequence if the characteristic equation for the linear
recurrence sequence {an}n≥1 has distinct roots, all contained in S.

So, with the notation as in Definition 1.5, for an S-arithmetic sequence {an}n≥1, there exist
distinct numbers r1, . . . , rm ∈ S and there exist complex numbers d1, . . . , dm such that

(1.2.1) an =

m∑
i=1

dir
n
i for each n ≥ 1.

Next, we generalize the notion of S-arithmetic sequences inside an arbitrary abelian group.
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Definition 1.6. Let (Γ0,+) be an abelian group, and let S ⊆ C∗ be a powers-closed set. Given
an integer r ≥ 1, elements P1, . . . , Pr ∈ Γ0 along with finitely many S-arithmetic sequences{

a(1)n

}
n≥1

,
{
a(2)n

}
n≥1

, · · · ,
{
a(r)n

}
n≥1

,

we define an S-arithmetic groupless set U as a set of the following form:

(1.2.2) U :=

{
r∑

i=1

a(i)ni
· Pi : n1, · · · , nr ≥ 1

}
.

Given some finitely generated subgroup Γ ⊆ Γ0, we say that U is an S-arithmetic groupless set
in Γ (based in Γ0) if U ⊆ Γ. Furthermore, an S-arithmetic set in Γ (based in Γ0) is defined as
a set of the form U +B, where U is an S-arithmetic groupless set in Γ, while B is a subgroup
of Γ.

The notion of S-arithmetic sets is inspired by the definition of F -sets, as shown by the
following notation.

Notation 1.7. With G, K, Fq and F as in Notation 1.1, then inside the endomorphism
ring End(G), we have that F is integral over Z, i.e., there exists m ≥ 1 along with integers
c0, . . . , cm−1 (where c0 6= 0) such that

(1.2.3) Fm =
m−1∑
i=0

ciF
i in End(G).

The integrality of the Frobenius endomorphism of G follows from the fact that there exists a
short exact sequence of algebraic groups 1 −→ T −→ G −→ A −→ 1 over Fq (where T is
an algebraic torus, while A is an abelian variety) and the corresponding Frobenius is integral
over both the torus T and the abelian variety A. Furthermore, the equation

(1.2.4) xm − cm−1xm−1 − · · · − c1x− c0 = 0

has distinct complex roots (for more details, see [CGSZ21, Section 2.1]). We let SF be the
subset of C∗ consisting of all complex numbers of the form rm for integers m ≥ 0, where r
varies among the roots of the equation (1.2.4).

Remark 1.8. Let SF be as in Notation 1.7. Then using equation (1.2.3) (see also [CGSZ21,
Section 3]), we obtain that for any finitely generated subgroup Γ ⊂ G(K), a groupless F -set
in Γ (based in G(K)) is also an SF -arithmetic groupless set in Γ (based in G(K)). Indeed,

there exist m linear recurrence sequences in Z: {a(1)n }n∈N, · · · , {a
(m)
n }n∈N, each one of them

satisfying the recurrence relation

a
(i)
n+m =

m−1∑
k=0

ck · a
(i)
n+k for n ≥ 1,

such that for any point P ∈ G(K), we have

Fn(P ) =
m−1∑
i=0

a(i+1)
n · F i(P ).

Therefore, an F -set in Γ is an SF -arithmetic set in Γ. On the other hand, there are many
more SF -arithmetic (groupless) sets in Γ, which are not (groupless) F -sets in Γ. Furthermore,
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our Example 1.10 shows that arbitrary SF -arithmetic sets may appear in the intersection of
a subvariety X ⊂ G with some finitely generated subgroup Γ ⊂ G(K); in Theorem 1.9, we
prove that X ∩ Γ must always be an SF -arithmetic set in Γ.

We prove the following main result.

Theorem 1.9. Let G, K, Fq and F be as in Notation 1.1, and let SF be as in Notation 1.7.
Let X ⊆ G be a subvariety defined over K and let Γ ⊂ G(K) be a finitely generated subgroup.
Then the intersection X(K)∩Γ is a union of finitely many SF -arithmetic sets in Γ (based in
G(K)).

The following example shows that indeed one may obtain intersections X(K)∩ Γ in Theo-
rem 1.9 which are not F -sets, but they are SF -arithmetic sets.

Example 1.10. We let A and B be semiabelian varieties defined over a finite subfield Fq of an
algebraically closed field K (which we assume to have positive transcendence degree over Fq),
let G = A×B, and let F be the corresponding Frobenius endomorphism associated to Fq. We
let h be the minimal (monic) polynomial with integer coefficients for which h(F ) = 0 on B.
Depending on the abelian part of the semiabelian variety B, the degree m of the polynomial
h may be arbitrarily large.

We let C ⊂ B be a curve defined over Fq with trivial stabilizer in B and let P ∈ C(K) be
a non-torsion point; one can even choose C and P so that C(K) intersects the cyclic Z[F ]-
module Γ1 spanned by P precisely in the orbit of P under the Frobenius endomorphism F .
We also let Q1, . . . , Qm ∈ A(K) be linearly independent points (note that A(K) ⊗Z Q is an
infinite dimensional Q-vector space). Then we consider X := A × C and also, consider the
group Γ ⊂ G(K) spanned by the points:

R1 := (Q1, P ); R2 := (Q2, F (P )); R3 :=
(
Q3, F

2(P )
)

; · · · ; Rm :=
(
Qm, F

m−1(P )
)
.

Then letting π2 : G −→ B be the projection of G = A×B on the second coordinate, we have
that π2(Γ) = Γ1 because Γ1 is spanned by the points

P , F (P ), F 2(P ), · · · , Fm−1(P ) ∈ B(K)

since Γ1 is the cyclic Z[F ]-module spanned by P and h(F )(P ) = 0. So, we can find m

sequences
{
a
(i)
n

}
n≥0

of integers (for i = 0, . . . ,m− 1) such that for any n ≥ 0, we have that

(1.2.5) Fn(P ) =
m−1∑
i=0

a(i)n · F i(P ).

Equation (1.2.5) yields that X(K) ∩ Γ is the set:

(1.2.6)

{
m∑
i=1

a(i−1)n ·Ri : n ≥ 0

}
.

So, equation (1.2.6) shows that X(K) ∩ Γ is not an F -set, but instead it is an SF -arithmetic
set.
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1.3. Plan for our paper. We prove Theorem 1.9 as a consequence of a general statement
regarding S-arithmetic sets in an abelian group.

Theorem 1.11. Let (Γ0,+) be an abelian group, let Γ̃ and Γ be finitely generated subgroups
of Γ0, and let S ⊆ C∗ be a powers-closed set. Then the intersection of an S-arithmetic set in
Γ̃ (based in Γ0) with Γ is a finite union of S-arithmetic sets in Γ (based in Γ0).

In Remark 2.5, we show an example that if one were to consider an extension of S-arithmetic
sets (see Definition 1.6) in an abelian group which allows for linear recurrence sequences
in equation (1.2.2) with characteristic roots of higher multiplicity, then the corresponding
problem from Theorem 1.11 leads to some deep unknown questions from classical number
theory (such as determining the positive integers whose squares have a given number of
nonzero digits when written in base-2).

We prove Theorem 1.11 in Section 2; then Theorem 1.9 follows as an easy corollary of
Theorem 1.11 (see Section 3).

Acknowledgments. We thank the anonymous referee for their very useful suggestions
and comments.

2. Proof of Theorem 1.11

We prove Theorem 1.11 over the next several subsections of Section 2; so, throughout the
entire Section 2, we work under the hypotheses and notation from Theorem 1.11.

We start with a very simple lemma, which is used repeatedly in our proofs.

Lemma 2.1. Let S ⊆ C be a powers-closed set and let {an}n∈N be an S-arithmetic sequence.

(i) Then for each u ∈ N∪{0} and v ∈ N, the sequence {aun+v}n∈N is also an S-arithmetic
sequence.

(ii) Then for each u, v ∈ Z, the sequence {u ·an +v}n∈N is also an S-arithmetic sequence.

Proof. The result follows immediately using the general form (1.2.1) of an element in a linear
recurrence sequence whose characteristic roots are non-repeated elements of S. Indeed, let
r1, . . . , rm be the characteristic roots of {an}n∈N.

For part (i), note that the characteristic roots of the linear recurrence sequence {aun+v}
are rui ; since S is powers-closed, then each rui is also in S.

For part (ii), note that adding a nonzero constant to a linear recurrence sequence leads to
another linear recurrence sequence whose characteristic roots are distinct; they form the set
{r1, . . . , rm} ∪ {1} (also, note that 1 ∈ S because S is a powers-closed set). �

We proceed to proving Theorem 1.11; first, we will sketch the plan for our proof in Sec-
tion 2.1.
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2.1. Plan for our proof of Theorem 1.11. The first step in our proof is to make a couple
useful reductions:

• in Section 2.2, we show that it suffices to prove Theorem 1.11 when Γ0 = Γ̃ is a
finitely generated group.
• in Section 2.3, we show that it suffices to assume Γ0 is torsion-free.

So, having reduced the proof of Theorem 1.11 to the case the ambient group Γ0 is a torsion-
free, finitely generated group, the next step (established in Section 2.4) is to reformulate
our problem as a linear algebra question. Using the analysis from Sections 2.5 and 2.6, we
conclude our proof of Theorem 1.11 in Section 2.7.

2.2. It suffices to prove Theorem 1.11 assuming Γ0 = Γ̃ is finitely generated. Indeed,
we have an S-arithmetic groupless set U (contained in Γ̃) consisting of all elements of Γ0 of
the form

(2.2.1)
m∑
i=1

a(i)ni
· Pi, as we vary ni ∈ N,

for some m ∈ N, for some given elements Pi ∈ Γ0, and for some given S-arithmetic sequences

{a(1)n }n≥1, · · · , {a(m)
n }n≥1. Then given a subgroup H ⊆ Γ̃, our goal is to show that the S-

arithmetic set

(2.2.2) F := U +H

intersects Γ in a finite union of S-arithmetic sets (in Γ). At the expense of replacing Γ̃ with

a larger subgroup of Γ0 (but still finitely generated), we may assume both that Γ ⊆ Γ̃ and

that each Pi ∈ Γ̃ for i = 1, . . . ,m. Finally, without loss of generality, we may assume Γ0 = Γ̃
is finitely generated.

2.3. It suffices to prove Theorem 1.11 assuming Γ0 is torsion-free. We already re-
duced proving Theorem 1.11 to the special case Γ0 = Γ̃ is finitely generated. Therefore, since
(Γ0,+) is an abelian group, then Γ0 is the direct product of a (finitely generated) free sub-
group Γ0,free with a finite torsion subgroup Γ0,tor. Hence both H and Γ (being subgroups of
Γ0) are finite unions of cosets of subgroups of Γ0,free, i.e.,

(2.3.1) H =

k⋃
i=1

(hi +Hfree) and Γ =
⋃̀
j=1

(γj + Γfree) ,

for some k, ` ∈ N, some elements hi and γj in Γ0 and some subgroups Hfree and Γfree of Γ0,free.
So, it suffices to prove that for any given i0 ∈ {1, . . . , k} and j0 ∈ {1, . . . , `}, the intersection

(2.3.2) (U + (hi0 +Hfree)) ∩ (γj0 + Γfree)

is a finite union of S-arithmetic sets in Γ. The following observation will be used repeatedly
in our proof.

Remark 2.2. Since a constant sequence (in Z) is itself a linear recurrence sequence whose
characteristic root is 1 (this is covered by the case u = 0 in Lemma 2.1, either parts (i) or (ii)),
we note that for any S-arithmetic groupless set G and for any δ ∈ Γ0, we have that also δ+G
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is an S-arithmetic groupless set (note also that S contains 1). Furthermore, if G is an S-
arithmetic set, then also δ + G is an S-arithmetic set.

We re-write the intersection from (2.3.2) as

(2.3.3) γj0 + (((−γj0 + hi0) + U +Hfree) ∩ Γfree) .

In light of Remark 2.2, it suffices to prove that

(2.3.4) ((−γj0 + hi0) + U +Hfree) ∩ Γfree is an S-arithmetic set in Γ.

Now, for i ∈ {1, . . . ,m}, we write each Pi (see (2.2.1)) as Pi,tor + Pi,free with Pi,tor ∈ Γ0,tor

and Pi,free ∈ Γ0,free. Also, we write −γj0 + hi0 = ηtor + ηfree for some ηtor ∈ Γ0,tor and
ηfree ∈ Γ0,free.

We let M := |Γ0,tor|. Because each linear recurrence sequence of integers is preperiodic
modulo any given integer (and thus, in particular, preperiodic modulo M), we obtain that
the set of tuples (n1, . . . , nm) of positive integers satisfying

(2.3.5) ηtor +

m∑
i=1

a(i)ni
· Pi,tor = 0 in Γ0

is a finite union of sets of the form

{(k1n1 + `1, k2n2 + `2, . . . , kmnm + `m) : for arbitrary n1, . . . , nm ≥ 1}

for some given 2m-tuples of integers:

(2.3.6) (k1, `1, k2, `2, · · · , km, `m) with ki ≥ 0 and `i ≥ 1.

Thus, at the expense of replacing each linear recurrence sequence
{
a
(i)
n

}
n≥1

with
{
a
(i)
kin+`i

}
n≥1

(which is still an S-arithmetic sequence, as shown in Lemma 2.1 (i)), we reduce our problem
to proving that the intersection with Γfree of the S-arithmetic set

(2.3.7) F1 := S1 +Hfree,

where S1 is the S-arithmetic groupless set given by

(2.3.8) S1 :=

{
ηfree +

m∑
i=1

a(i)ni
· Pi,free : n1, . . . , nm ≥ 1

}
is a finite union of S-arithmetic sets in Γ.

Therefore, from now on, we work under the assumption that Γ0 is torsion-free (see also
equations (2.3.7) and (2.3.8)).

2.4. Reduction to a linear algebra question. So, we work under the assumption that Γ0 is
a finitely generated, free abelian group; hence it is isomorphic to Zr and we let Q1, . . . , Qr ∈ Γ0

be some fixed generators for Γ0.

We have a subgroup Γ ⊆ Γ0 and also, we have an S-arithmetic set F ⊆ Γ0. Furthermore,
F = U + H for an S-arithmetic groupless set U and for a subgroup H ⊆ Γ0. Since H is a
subgroup of Γ0, then it is also a finitely generated, free abelian group; thus, we let {R1, . . . , Rs}
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be a given Z-basis for H (where s ≤ r). For each i ∈ {1, . . . , s}, we write Ri in terms of the
basis {Q1, . . . , Qr} of Γ0 as

(2.4.1) Ri :=
r∑

j=1

bi,jQj for some bi,j ∈ Z.

The S-arithmetic groupless set U consists of all elements of the form

(2.4.2)

m∑
i=1

a(i)ni
· Pi, as we vary ni ∈ N,

for some given elements P1, . . . , Pm ∈ Γ0, where {a(i)n }n∈N are S-arithmetic sequences (for
1 ≤ i ≤ m). Then for each i ∈ {1, . . . ,m}, we write Pi as

(2.4.3) Pi :=

r∑
j=1

ci,jQj for some ci,j ∈ Z.

Therefore, a point in F = S +H is of the form

(2.4.4)
s∑

k=1

yk ·Rk +
m∑
i=1

a(i)ni
· Pi,

for some arbitrary integers yk and arbitrary positive integers ni. Hence, using (2.4.1) and (2.4.3),
we write any point in F as:

(2.4.5)
r∑

j=1

(
s∑

k=1

bk,jyk +
m∑
i=1

ci,ja
(i)
ni

)
·Qj ,

for some arbitrary yk ∈ Z and some arbitrary ni ∈ N.

Now, following [Ghi08, Definition 3.5], we define C-subsets, L-subsets and CL-sets of Zr;
their notation comes from congruence equation (for C-subset), respctively linear equation
(for L-subset).

Definition 2.3. A C-subset of Zm is a set C(d1, . . . , dr, D), where d1, . . . , dr, D ∈ Z (with
D 6= 0), which is the set of all solutions (x1, . . . , xr) ∈ Zr of the congruence equation∑r

i=1 dixi ≡ 0 (mod D).

An L-subset of Zr is a set L(d1, . . . , dr), where d1, . . . , dr ∈ Z, which is the set of all
solutions (x1, . . . , xr) ∈ Zr of the linear equation

∑r
i=1 dixi = 0.

A CL-subset of Zr is either a C-subset or an L-subset of Zr.

Remark 2.4. We note that our C-subsets, L-subsets and CL-subsets are slightly simpler than
the ones defined in [Ghi08] because we can absorb any coset of a subgroup in our definition
of S-arithmetic groupless subsets of Γ0 since the constant sequence is a linear recurrence
sequence with unique characteristic root equal to 1 (see also Lemma 2.1 and Remark 2.2).

As proven in [Ghi08, Subclaim 3.6], given a subgroup Γ of Γ0, then there exist finitely
many C-subsets Ci of Zr (with the index i varying in some finite set I) and there exist finitely
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many L-subsets Lj of Zr (with the index j varying in some finite set J) such that for any
(x1, . . . , xr) ∈ Zr, we have

(2.4.6)
r∑

i=1

xiQi ∈ Γ

if and only if

(2.4.7) (x1, . . . , xr) ∈

(⋂
i∈I

Ci

)⋂⋂
j∈J

Lj

 .

Combining equations (2.4.5), (2.4.6) and (2.4.7), our problem reduces to analyzing for which
integers y1, . . . , ys and for which positive integers n1, . . . , nm, we have that

(2.4.8)

(
s∑

k=1

bk,jyk +
m∑
i=1

ci,ja
(i)
ni

)
1≤j≤r

∈

(⋂
i∈I

Ci

)⋂⋂
j∈J

Lj

 .

We analyze the conditions imposed on the tuples (y1, . . . , ys, n1, . . . , nm) so that the left-hand
side from equation (2.4.8) belongs to some Ci, respectively some Lj . We split our analysis
for these two cases over the next two Sections 2.5 and 2.6; there are significant differences
between these two cases, one of them being that the case of C-subsets is easier than the case
of L-subsets and it can be treated one congruence equation at a time.

2.5. The case of C-subsets of Zr. In this Section 2.5, we analyze the condition that the
left-hand side of equation (2.4.8) belongs to some given C-subset C ⊆ Zr. Hence, for given
integers d1, . . . , dr and nonzero integer D, we analyze the equation

(2.5.1)

r∑
j=1

dj ·

(
s∑

k=1

bk,jyk +

m∑
i=1

ci,ja
(i)
ni

)
≡ 0 (mod D).

We note that in equation (2.5.1), the unknowns are the yk’s and the ni’s, while D, the dj ’s,
the bk,j ’s and the ci,j ’s are given integers. Since any linear recurrence sequence of integers

(such as each {a(i)n }n≥1) is preperiodic modulo any given integer (such as D), we obtain that
there exist finitely many tuples of non-negative integers

(u1, v1, u2, v2, · · · , us+m, vs+m)

such that the set of tuples (y1, . . . , ys, n1, . . . , nm) satisfying equation (2.5.1) is a finite union
of sets of the form
(2.5.2)
{(u1y1 + v1, · · · , usys + vs, us+1n1 + vs+1, · · · , us+mnm + vs+m) : for yi ∈ Z and ni ∈ N} .

As shown in Lemma 2.1 (i), replacing each recurrence sequence {a(i)n }n∈N by {a(i)us+in+vs+i
}n∈N

(for i = 1, . . . ,m) leads to another m linear recurrence sequences with simple characteristic
roots that all live in the set S. Furthermore, replacing each yk by ukyk +vk leads to replacing
the subgroup H with a coset δ1 + H1 of a subgroup H1 ⊆ H. Then, once again using
Remark 2.2, we conclude that replacing each yk by ukyk + vk (for 1 ≤ k ≤ s) and replacing
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each ni by us+ini+vs+i (for 1 ≤ i ≤ m) leads to replacing the S-arithmetic subset F = S+H
by another S-arithmetic set S1 +H1, where S1 is the S-arithmetic groupless set

S1 :=

{
s∑

k=1

vkRk +
m∑
i=1

a
(i)
us+ini+vs+i

· Pi : ni ∈ N

}
,

while H1 is the subgroup of H spanned by u1R1, · · · , ukRk. Therefore, from now on, we may
assume that in the right-hand side of the equation (2.4.8) we only have L-subsets Lj .

2.6. The case of L-subsets of Zr. So, with the notation as in equation (2.4.8), letting
|J | = u, we need to find (y1, . . . , ys, n1, . . . , nm) ∈ Zs × Nm such that

(2.6.1)

(
s∑

k=1

bk,jyk +

m∑
i=1

ci,ja
(i)
ni

)
1≤j≤r

∈
⋂

1≤h≤u
Lh,

where for each h ∈ {1, . . . , u}, the subset Lh ⊆ Zr is cut out by the linear equation

(2.6.2)

r∑
j=1

dh,jxj = 0,

for some given integers dh,j . Combining equation (2.6.1) with the linear equations (2.6.2) (for
1 ≤ j ≤ u), we obtain a system of u linear equations:

(2.6.3)
s∑

k=1

 r∑
j=1

bk,jdh,j

 · yk = −
m∑
i=1

 r∑
j=1

dh,jci,j

 · a(i)ni
for 1 ≤ h ≤ u.

For each h = 1, . . . , u and for each k = 1, . . . , s, we let

eh,k :=

r∑
j=1

bk,jdh,j ;

also, for each h = 1, . . . , u and for each i = 1, . . . ,m, we let

fh,i := −
r∑

j=1

dh,jci,j .

Clearly, eh,k ∈ Z (for each 1 ≤ h ≤ u and 1 ≤ k ≤ s) and fh,i ∈ Z (for each 1 ≤ h ≤ u and

1 ≤ i ≤ m); also, we recall that each a
(i)
ni ∈ Z for 1 ≤ i ≤ m and each ni ∈ N. So, we have a

linear system of u equations with unknowns y1, . . . , ys:

(2.6.4)
s∑

k=1

eh,kyk =
m∑
i=1

fh,ia
(i)
ni

for 1 ≤ h ≤ u.

In order for the system (2.6.4) be solvable for some y1, . . . , ys ∈ Q, there are finitely many
linear relations to be satisfied by the right-hand side terms from (2.6.4); since each eh,k is an
integer, these linear relations will have integer coefficients as well. Hence, there are finitely
many equations, say w equations (for some w ≥ 0), and there are some given integers g`,h
with 1 ≤ ` ≤ w and 1 ≤ h ≤ u such that:

(2.6.5)
u∑

h=1

g`,h ·
m∑
i=1

fh,ia
(i)
ni

= 0,
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which need to be satisfied (for 1 ≤ ` ≤ w) by the positive integers ni in order to find a solution
(y1, . . . , ys) (even over the rationals) for the system (2.6.4). Letting

z`,i :=

u∑
h=1

g`,h · fh,i for each ` ∈ {1, . . . , w} and for each i ∈ {1, . . . ,m},

then equations (2.6.5) translate to equations:

(2.6.6)
m∑
i=1

z`,i · a(i)ni
= 0 for ` = 1, . . . , w.

Since each sequence {a(i)n }n∈N is a linear recurrence sequence with simple characteristic roots
r̃i,1, . . . , r̃i,mi ∈ S (for some mi ∈ N), then the equations (2.6.6) translate into equations:

(2.6.7)
m∑
i=1

mi∑
j=1

z̃`,i,j · r̃ni
i,j = 0 for ` = 1, . . . , w,

for some constants z̃`,i,j ∈ C. The famous theorem of Laurent [Lau84] (which solves the
classical Mordell-Lang conjecture for algebraic tori) yields that the set of tuples (n1, . . . , nm) ∈
Nm satisfying the equations (2.6.7) is a union of finitely many sets S̃k of the following form.

Each set S̃k consists of all tuples (n1, . . . , nm) ∈ Nm satisfying finitely many equations of the
form:

(2.6.8) nj = ñ0,j for some given ñ0,j ∈ N,

or

(2.6.9) nj ≡ ñ0,j (mod Ñ0,j) for some given ñ0,j , Ñ0,j ∈ N,

or

(2.6.10) ñ0,j · nj = ñ0,j1 · nj1 + b for some given b ∈ Z and j 6= j1 and ñ0,j , ñ0,j1 ∈ N.

Remark 2.5. This is the only part of our proof which requires that in the definition of S-
arithmetic sets the corresponding linear recurrence sequences have distinct characteristic
roots. Indeed, otherwise, the problem becomes very difficult. For example, consider the
case when Γ0 = Z2, Γ = Z× {0} and F = S is the set of all elements of Z2 of the form:

(2.6.11) n20 · (1, 1) +
m∑
i=1

2ni · (1,−1) for arbitrary n0, n1, . . . , nm ∈ N.

The set (2.6.11) corresponds to the linear recurrence sequences {n20}n0≥1 along with {2ni}ni≥1
(for 1 ≤ i ≤ m); their characteristic roots live in the powers-closed set {2s : s ≥ 0}, but
the first of these linear recurrence sequences has 1 as a repeated characteristic root. Then
analyzing the counterpart of Theorem 1.11 for this example leads to finding all solutions
(n0, n1, . . . , nm) ∈ Nm+1 for the polynomial-exponential equation:

(2.6.12) n20 =
m∑
i=1

2ni .

The equation (2.6.12) is a very deep Diophantine question, well-beyond the reach of the current
known methods; for more details, see [CGSZ21].
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Thus, it suffices to prove that for each such set S̃ := S̃k ⊆ Nm (satisfying finitely many
equations of the form (2.6.8), (2.6.9) and (2.6.10)), the corresponding set of points (2.4.5)
lying in F ∩ Γ is an S-arithmetic subset in Γ.

On the other hand, due to the simple form of the equations (2.6.8), (2.6.9) and (2.6.10),
the set

(2.6.13)

{
m∑
i=1

a(i)ni
· Pi : (n1, . . . , nm) ∈ S̃

}
is still an S-arithmetic groupless set (see Lemma 2.1 (i)). Therefore, at the expense of replacing
the original S-arithmetic groupless set U by the set from (2.6.13), we may assume that the
linear system of equations (2.6.4) is solvable (in Q) for each (n1, . . . , nm) ∈ Nm.

So, at the expense of re-shuffling our variables (y1, . . . , ys) (which amounts to re-labelling the
points R1, . . . , Rs), we may assume that y1, . . . , yt (with t ≤ s) are free variables for the linear
system (2.6.4) and the general solution in Q to the system (2.6.4) consists of tuples (y1, . . . , ys)
with the property that y1, . . . , yt are arbitrary rational numbers, while for j = 1, . . . , s− t, we
have

(2.6.14) yt+j =
t∑

k=1

ãj,k · yk +
∑

1≤i≤m
1≤h≤u

b̃j,h · fh,i · a(i)ni
,

for some given constants ãj,k, b̃j,h ∈ Q, while the ni’s from (2.6.14) are arbitrary positive
integers. For each j = 1, . . . , s− t and each i = 1, . . . ,m, we let

c̃j,i :=

u∑
h=1

b̃j,hfh,i;

so, we can re-write equation (2.6.14) as follows:

(2.6.15) yt+j =
t∑

k=1

ãj,k · yk +
m∑
i=1

c̃j,i · a(i)ni
.

2.7. Conclusion for our proof of Theorem 1.11. Knowing that the constants ãj,k and c̃j,i
from equation (2.6.15) are rational numbers, coupled with the fact that each linear recurrence
sequence of integeres is preperiodic with respect to any given moduli, then yt+j ∈ Z for
each j = 1, . . . , s − t in equation (2.6.15) yields that the corresponding set of all tuples
(y1, . . . , yt, n1, . . . , nm) ∈ Zt × Nm consists of finitely many sets of the form
(2.7.1)
{(u1y1 + v1, · · · , utyt + vt, ut+1n1 + vt+1, · · · , ut+mnm + vt+m) : with yi ∈ Z and nj ∈ N}

for some given integers uj , vj for 1 ≤ j ≤ t+m (note that the ui and vj ’s are fixed in (2.7.1),
while the yi and nj vary in Z, respectively in N). So, we consider now a given choice of integers
uj and vj as in equation (2.7.1) so that for each (y1, . . . , yt, n1, . . . , nm) ∈ Zt × Nm, we have
that yt+1, . . . , ys given as in (2.6.15) provide a solution over the integers to the system (2.6.4).

Next, we show that the set of points in F corresponding to a subset Ẽ ⊆ Zt × Nm of the
form (2.7.1) is an S-arithmetic set. Indeed, we note first that replacing each ni (for 1 ≤ i ≤ m)
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by ut+i · ni + vt+i yields that the corresponding points in U :
m∑
i=1

a
(i)
ut+ini+vt+i

· Pi (as we vary (n1, . . . , nm) ∈ Nm)

still form an S-arithmetic groupless set (once again, see Lemma 2.1 (i)). Second, we claim
that the set of all points in H of the form:

(2.7.2)

t∑
k=1

(ukyk + vk) ·Rk +

s−t∑
j=1

yt+j ·Rt+j ,

with yt+1, . . . , ys given as in equation (2.6.15) (where each yi is replaced by uiyi + vi for
i = 1, . . . , t) is actually an S-arithmetic set. Indeed, the set from (2.7.2) can be re-written as
the sum of an S-arithmetic groupless subset (see also Lemma 2.1 and Remark 2.2):

(2.7.3)
t∑

k=1

vk ·Rk +
s−t∑
j=1

(
t∑

k=1

ãj,kvk +
m∑
i=1

c̃j,ia
(i)
ut+ini+vt+i

)
·Rt+j

(as we vary n1, . . . , nm freely in N) with the subgroup of H consisting of all points:

(2.7.4)
t∑

k=1

ukyk ·Rk +
s−t∑
j=1

(
t∑

k=1

ãj,kukyk

)
·Rt+j ,

as we vary y1, . . . , yt freely in Z.

This concludes our proof of Theorem 1.11.

2.8. Further remarks. As suggested by the anonymous referee, we state here a special case
of the result we proved in Subsection 2.6 since its statement may be of independent interest.
As noted by the referee, Ginsburg and Spanier [GS66] proved that a subset of Zd is definable
in (Z,+, 0, 1, <) if and only if it is a finite union of cosets of subgroups of Zd (they actually
showed this result for subsets of Nd, but the proof carries to the slightly more general setting
of subsets of Zd). So, then it may be of interest both to model theorists and to number
theorists the following result.

Proposition 2.6. Let d ∈ N, let m ≥ 1, let P1, . . . , Pm ∈ Zd and let {ai,n}n∈Z be simple
linear recurrence sequences of integers, for each i ∈ {1, . . . ,m}. Then for any finite union V
of cosets of subgroups of Zd, the set

(2.8.1)

{
(n1, . . . , nm) ∈ Zm :

m∑
i=1

ai,ni · Pi ∈ V

}
is a finite union of sets, each one of them satisfying finitely many equations of the form

(2.8.2) nj = ñ0,j for some given ñ0,j ∈ Z,
(for some j = 1, . . . ,m), or

(2.8.3) nj ≡ ñ0,j (mod Ñ0,j) for some given ñ0,j , Ñ0,j ∈ Z,
(for some j = 1, . . . ,m), or

(2.8.4) ñ0,j · nj = ñ0,j1 · nj1 + b for some given b ∈ Z and ñ0,j , ñ0,j1 ∈ Z,
for some j 6= j1 in {1, . . . ,m}.
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Actually, Proposition 2.6 was first obtained in [Ghi08] (as part of proving that the in-
tersection between a groupless F -set with a coset of subgroup is a finite union of groupless
F -sets), but it was not formally stated there. In our proof of Theorem 1.11 (specifically
in Subsection 2.6), we derived an even stronger result than Proposition 2.6 since we dealt
with intersecting subgroups of Γ with an S-arithmetic set, whose components (inside Zd) are
more general than a sum of simple linear recurrence sequences; note that an S-arithmetic
set inside Zd consists of a sum between a subgroup of Zd with a set as the one appearing in
equation (2.8.1).

3. Proof of Theorem 1.9

Theorem 1.9 follows now as an easy corollary of Theorem 1.11.

So, we let G, K, X, Γ, Fq, F and SF be as in Theorem 1.9 (see also Notations 1.1 and 1.7).

We let Γ̃ be the finitely generated Z[F ]-submodule of G(K) spanned by Γ; in particular, Γ̃ is

also a finitely generated subgroup of G(K). Using Theorem 1.3, the intersection X(K) ∩ Γ̃

is a finite union of F -sets in Γ̃ (based in G(K)). Furthermore, according to Remark 1.8, we

have that each F -set in Γ̃ is also an SF -arithmetic set in Γ̃ (based in G(K)). Finally, using
Theorem 1.11 (with Γ0 := G(K)) coupled with the fact that

X(K) ∩ Γ =
(
X(K) ∩ Γ̃

)
∩ Γ,

we conclude that X(K) ∩ Γ is a finite union of SF -arithmetic sets in Γ (based in G(K)), as
desired.

Remark 3.1. As remarked by the referee (whom we thank once again for their useful com-
ments), Hieronymi-Schulz [HS22] have shown that the first-order theory of (N, 0, 1,+, kN, `N)
is undecidable whenever k and ` are multiplicatively independent. That means there are first-
order formulas involving powers of 2 and 3 (for example) for which we cannot decide whether
the given formula is true or false in the standard model of N. In particular, this hints that the
related question of whether one can decide if X(K) ∩ Γ is non-empty in Theorem 1.9 is very
difficult when the Frobenius has at least two multiplicatively independent eigenvalues; note
that our Theorem 1.11 in fact shows this is related to Skolem’s problem [Sko34] for simple
linear recurrence sequences.
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