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Abstract. The first author proved in [Ghi] that given a field K of characteristic p > 0, given
an integer d ≥ 2, and also given α, β ∈ K, then for the family of polynomials fλ(x) := xd +λ

(parameterized by λ ∈ K), there exist infinitely many λ ∈ K such that both α and β are
preperiodic under the action of fλ, if and only if at least one of the following three conditions
holds: (i) αd = βd; (ii) α, β ∈ Fp; and (iii) d = p` for some ` ∈ N and α − β ∈ Fp. In
the present paper, we generalize the results from [Ghi] by proving that for any polynomial

f ∈ Fp[x] of degree d ≥ 2 satisfying a mild condition (which is already satisfied when p - d),

and for any starting points α, β ∈ K, there exist infinitely many λ ∈ K such that both α
and β are preperiodic for the polynomials fλ(x) := f(x) + λ if and only if at least one of the

following two conditions hold: (i) f(α) = f(β) and (ii) α, β ∈ Fp.

1. Introduction

In this paper, we continue the investigation and extend the results proved in [Ghi] on
the unlikely intersection problem for families of dynamical systems in positive characteristic.
Working over fields of characteristic 0, Baker and DeMarco [BD11] proved that for any integer
d ≥ 2 and given complex numbers a and b, if there exist infinitely many λ ∈ C such that
both a and b are preperiodic under the action of fλ(x) = xd + λ, then ad = bd. The result
of [BD11] was itself inspired by the groundbreaking work of Masser-Zannier [MZ10, MZ12]
regarding simultaneous torsion sections for families of elliptic curves. Further extensions
of the main result of [BD11] have been achieved for arbitrary families of polynomials (see
[GHT13, BD13, GY18, FG18]). Similar results have also been established for certain families
of rational maps (see [DWY15, DM20, GHT15]), including the case of maps parameterized
by points in a higher dimensional space (see [GHT15, GHT16, GHN18]).

Each time, the proofs of these results involve two distinct components:

(I) First, one proves that a certain equidistribution theorem for points of small height
holds for the given dynamical system. This leads to the conclusion that the canonical
heights (suitably normalized) of the two starting points, computed with respect to the
family of maps, are equal.

(II) Then using the equality of the above canonical heights, one derives the precise relation
between the two starting points.

Part (I) above is obtained as a consequence from any of the equidistribution theorems es-
tablished by Baker-Rumely [BR06], Chambert-Loir [CL06], Favre-Rivera-Letelier [FRL06] or
Yuan [Yua08]. Verifying the hypotheses of the aforementioned equidistribution theorems is
often the most challenging aspect, as it requires a detailed analysis of the arithmetical prop-
erties of the given dynamical system. Typically, completing step (II) is more straightforward
and relies on a complex analytic argument.

1



2 DRAGOS GHIOCA AND LIANG-CHUNG HSIA

The primary challenge in extending these results to fields of positive characteristic lies in
the absence of an analogue to the complex analytic argument used in part (II). This presents
a significant obstacle to obtaining similar results in the new setting of positive characteristic
fields.

1.1. Our results. The family fλ(x) = xd + λ of polynomials, as considered in [BD11], is the
primary family studied in [Ghi] in the case of positive characteristic. In this paper, we extend
the scope by considering more general families of polynomials and prove the following result.

Theorem 1.1. Let d ≥ 3 be an integer, let L be a field of characteristic p, and let α, β ∈ L.
We let L be a fixed algebraic closure of L, we let Fp be the algebraic closure of Fp inside L,

and we let f ∈ Fp[x] be a polynomial of degree d. We assume f(x) has the following form:

(1.1.1) f(x) =

r∑
i=1

cix
di ,

where each ci ∈ Fp
∗
, while

1 ≤ d1 < d2 < · · · < dr = d

and for each i = 1, . . . , r, we write di = p`i · si with `i ≥ 0, while p - si such that the following
inequality holds:

(1.1.2) p`r(sr − 1) > max
{

1, p`1(s1 − 1), p`2(s2 − 1), · · · , p`r−1(sr−1 − 1)
}
.

We consider the family of polynomials

fλ(x) := f(x) + λ parameterized by λ ∈ L.

Then there exist infinitely many λ ∈ L such that both α and β are preperiodic under the action
of fλ if and only if at least one of the following statements holds:

(1) f(α) = f(β).
(2) α, β ∈ Fp.

Moreover, if either one of the conditions (1)-(2) holds, then for each λ ∈ L, we have that α
is preperiodic under the action of fλ if and only if β is preperiodic under the action of fλ.

As a special case to Theorem 1.1, we consider the situation where the degree of f(x) is
coprime to the characteristic of the field in question.

Theorem 1.2. Let d ≥ 2 be an integer not divisible by a prime p, let L be a field of character-
istic p, and let α, β ∈ L. We let L be a fixed algebraic closure of L, we let Fp be the algebraic

closure of Fp inside L, and we let f ∈ Fp[x] be a polynomial of degree d. We consider the
family of polynomials

fλ(x) := f(x) + λ parameterized by λ ∈ L.

Then there exist infinitely many λ ∈ L such that both α and β are preperiodic under the action
of fλ if and only if at least one of the following statements holds:

(1) f(α) = f(β).
(2) α, β ∈ Fp.

Moreover, if either one of the conditions (1)-(2) holds, then for each λ ∈ L, we have that α
is preperiodic under the action of fλ if and only if β is preperiodic under the action of fλ.
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Remark 1.3. We observe that given any polynomial f(x), when considering the family of
polynomials f(x) +λ, automatically we could have assumed that f(0) = 0 since any constant
term in f(x) can then be absorbed together with the parameter λ. Furthermore, we note
that if p - d (as in Theorem 1.2), then the polynomial f(x) has the form (1.1.1) satisfying
the inequality (1.1.2) from Theorem 1.1, as long as d ≥ 3. On the other hand, the case when
d = 2 and p > 2 is already covered by [Ghi, Theorem 1.1] because then our family of quadratic
polynomials fλ(x) can be conjugated (using a suitable linear polynomial x 7→ ax + b) to the
family of polynomials x 7→ x2 + λ. So, indeed, Theorem 1.2 is a special case of Theorem 1.1.

Remark 1.4. It is tempting to think that our arguments might extend to more general classes
of dynamical systems. For instance, using the notation as in Theorem 1.1, if each si = 1 for
i = 1, . . . , r, meaning the polynomials f(x) is additive, we can apply the same reasoning as in
[Ghi, Section 6]. In this case, we obtain that there exist infinitely many λ ∈ L such that both
α and β are preperiodic under the action of f(x) + λ if and only if α − β ∈ Fp. Actually, as

shown in [Ghi, Section 6], the existence of a single parameter λ ∈ L such that both α and β
are preperiodic under the action of f(x) + λ yields the fact that α− β ∈ Fp.

However, if we consider sr = 1, but not all si = 1 for i = 1, . . . , r − 1 in Theorem 1.1 (i.e.,
when the degree of f(x) is a power of the characteristic of the field in question but f(x) is
not additive), then the situation becomes very challenging. A specific example illustrating
this difficulty arises when the characteristic of the field is 3, and we consider the family of
polynomials fλ(x) = x3 +x2 +λ. This situation introduces many technical difficulties, similar
to those encountered by the authors in [GH13] when dealing with the unlikely intersection
principle in families of Drinfeld modules.

Remark 1.5. If one were to pose the same question as in Theorem 1.2 for polynomials f(x)
whose coefficients are no longer in Fp, then the problem becomes significantly more complex.

The technical challenges encountered are similar to those arising in the study of the unlikely
intersection problem in the context of Drinfeld modules, as discussed in [GH13]. In that case,
the maps were additive, making it somewhat easier to manage their compositional behavior;
yet, the full generality of the problem in [GH13] remains unsolved. The core difficulty lies
in selecting sufficiently well-chosen parameters λ (and places v), as outlined in Section 3, to
derive a statement similar to Proposition 3.3 for more general dynamical systems.

Additionally, any attempt to extend Theorem 1.2 to dynamical systems involving starting
points α and β that are no longer constant, but instead vary polynomially with the parameter
λ leads to deeper questions. To derive a precise relationship between such general starting
points α(λ) and β(λ), an analogue of the powerful result from [MS14] for fields of positive
characteristic would be required. Indeed, the result of [MS14] was a key ingredient in the
final step for the result of [BD13] when studying general dynamical systems (fλ, α(λ)) and
(fλ, β(λ)) over C.

Despite these challenges, we still believe the following general result holds (see Conjec-
ture 1.7). Before stating our conjecture, we first introduce the notion of normalized polyno-
mials (or alternatively, polynomials in normal form).

Definition 1.6. Let K be an arbitrary algebraically closed field and let f ∈ K[x] be a
polynomial of degree d ≥ 2. We say that f is is normalized form if it has the following shape:

(1.1.3) f(x) = xd + cd−2x
d−2 + cd−3x

d−3 + · · ·+ c1x,
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for some c1, . . . , cd−2 ∈ K. In particular, if d = 2, then the only quadratic polynomial in
normalized form is x2.

Conjecture 1.7. Let K be an algebraicaly closed field of characteristic p, let α(z), β(z) ∈ K[z]
and let let fλ(x) ∈ K[x] be a family (parameterized by λ ∈ K) of polynomials of degree d ≥ 2
in normalized form, i.e.

(1.1.4) fλ(x) = xd +
d−2∑
i=0

ci(λ) · xi,

for some polynomials ci(z) ∈ K[z] (for i = 0, . . . , d − 2). Then there exist infinitely many
λ ∈ K such that both α(λ) and β(λ) are preperiodic under the action of fλ if and only if at
least one of the following conditions holds:

(1) there exists a family of polynomials gλ(x) (similar to (1.1.4)) and there exist integers
k > 0 and m,n ≥ 0 such that

(1.1.5) fkλ ◦ gλ = gλ ◦ fkλ and fmλ (α(λ)) = gλ (fnλ (β(λ))) (or fmλ (β(λ)) = gλ (fnλ (α(λ)))),

for all λ ∈ K.
(2) ci(z) ∈ Fp[z] for i = 0, . . . , d− 2 and also, α(z), β(z) ∈ Fp[z];
(3) for each λ ∈ K, the polynomial f̃λ(x) := fλ(x) − c0(λ) is additive (i.e., f̃λ(x + y) =

f̃λ(x) + f̃λ(y) for all x, y) and γ(λ) := α(λ)− β(λ) is preperiodic under the action of

f̃λ(x).
(4) there exists n > m ≥ 0 such that either fnλ (α(λ)) = fmλ (α(λ)) for all λ, or fnλ (β(λ)) =

fmλ (β(λ)) for all λ.

Remark 1.8. One could formulate Conjecture 1.7 for an arbitrary (unnormalized) family
of polynomials fλ ∈ K[λ][x] (of degree d ≥ 2), but then the condition (2) would become
more complicated; on the other hand, when p - d it suffices to deal with dynamical systems
corresponding to polynomials in normalized form since modulo a linear conjugation, one can
achieve the normalized form for our dynamical system.

Condition (4) does not appear for the dynamical systems from [Ghi] or from our Theo-
rems 1.1 and 1.2, but clearly, for general dynamical systems, one needs to take into account
the possibility that either α(λ) or β(λ) are persistent preperiodic.

Condition (3) asks that the only monomials xi in fλ(x) (for i > 0) appearing with a nonzero
coefficient correspond to i = pj for some j ≥ 0. The following Example shows some of the
subtleties coming from condition (3).

Example 1.9. Let K be an algebraically closed field of characteristic p. For some given
integers ` ≥ 1 and 0 ≤ r1 < r2 < · · · < r`, and for some given C1, · · · , C` ∈ Fp

∗
, we consider

the family of polynomials:

fλ(x) :=
∑̀
i=1

Cix
pri + λ parameterized by λ ∈ K.

Also, we consider α, β ∈ K. Then arguing as in [Ghi, Section 6], we get that α − β ∈ Fp if
and only if there exist infinitely many λ ∈ K such that both α and β are preperiodic under
the action of fλ(x).
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On the other hand, considering K = Fp(t) and the family of polynomials

fλ(x) := xp
2

+ txp + λ parameterized by λ ∈ K

and any distinct starting points α, β ∈ K, it is expected that there are only finitely many
λ ∈ K such that both α and β are preperiodic under the action of fλ(x). However, based on
the difficulties we encountered when dealing with similar families of maps in [GH13], we also
expect this to be difficult to prove.

Traditionally, the function field arithmetic in characteristic p presented additional subtleties
when studying unlikely intersection questions (see [Bre05, Bos02, BM17, BM22, Sca02]). To
our knowledge, there are only a handful of results concerning the unlikely intersection principle
for dynamical systems over fields of characteristic p (see [GH13, Ghi24, Ghi]). Generally, the
arithmetic properties for algebraic dynamical systems are more subtle over fields of positive
characteristic (see [CHT23]).

In the next subsection, we outline the strategy for proving our main result, while also
highlighting the challenging technical aspects that limit further extensions of Theorem 1.2.

1.2. Proof strategy and further remarks. Our overall strategy is similar to the one
employed in [GH13, Ghi]. As mentioned earlier, the main ideas of the proof are divided
into two parts. The first part involves establishing the equality of the canonical heights of
two given points. As is typical in much of the work on the unlikely intersection problem in
arithmetic dynamics, we follow the approach outlined in the proof of [BD11]. Specifically, for a

product formula field L, let ĥfλ(γ) denote the canonical height associated with the specialized

polynomial fλ at λ ∈ L for a point γ ∈ L. Assuming there exist infinitely many parameters λn,
called preperiodic parameters, such that both the given points α and β are preperiodic under
the action of fλn , one can show that the sequence {λn}n≥1 gives rise to a sequence of small

points with respect to certain height functions induced by ĥfλ(α) (respectively, ĥfλ(β)) on

the space L of parameters. We then apply the main equidistribution theorem from [BR10] to

deduce that ĥfλ(α) = ĥfλ(β) for each parameter λ ∈ L. To state the equidistribution theorem
employed in our proof, we need a technical setup involving both the theory of Berkovich
spaces and arithmetic dynamics. The hypothesis of having an infinite sequence of preperiodic
parameters λn can be replaced by a weaker condition:

(1.2.1) lim
n→∞

ĥfλn (α) = lim
n→∞

ĥfλn (β) = 0;

which still establishes the equality of the canonical heights of α and β. As noted in Remark 2.5,
once α (or β) is preperiodic under the action of fλ, its global canonical height (with respect
to fλ) is 0; thus, the condition (1.2.1) is indeed weaker than the hypothesis of Theorem 1.1
and 1.2. Moreover, as a consequence of the equidistribution theorem, we establish the crucial
Theorem 2.11 in subsection 2.4, which shows that the existence of an infinite sequence of
parameters λn satisfying equation (1.2.1) implies that for each parameter λ and for each
place v of L, we have

(1.2.2) ĥv,λ(α) = ĥv,λ(β);

for the precise definition of the local canonical heights ĥv,λ, we refer the reader to Section 2.

As mentioned above, the main ingredient for proving Theorem 2.11 is the powerful equidis-
tribution theorem which relies on potential theory on the Berkovich line and results from the
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theory of dynamical systems, as detailed in [BR10]. Since the setup and the proof are identical
to that of [Ghi, Theorem 4.1], we will provide only a sketch of the proof in Subsection 2.4 and
refer the reader to [Ghi] for the full details.

We proceed with the second part of the proof for Theorem 1.1 in Section 3 and complete
the argument in Section 4. We first establish the result for the case when the field L is
of transcendence degree 1 over Fp; this is done in Proposition 3.3. The aforementioned
proposition states that assuming equation (1.2.2) holds, the desired conclusion in Theorem 1.1
must follow. Its proof involves a careful analysis of the valuations of f(α) − f(β), utilizing
equation (1.2.2) for suitably chosen parameters λ.

In Section 4 we extend the result to the general case where L has arbitrary transcendence
degree of Fp. The key observation here is that if α and β share a common preperiodic parameter

λ ∈ L then trdegFpFp(α, β) ≤ 1. This is formalized in Proposition 4.2, which allows us to
reduce the general case to the case of transcendence degree one, thereby completing the proof.

2. Dynamics and heights associated to our family of polynomials

Similar to the analysis from [Ghi, Sections 2-4], we let L0 be the perfect closure of the
rational function field Fp(t), i.e.,

(2.0.1) L0 := Fp
(
t, t1/p, t1/p

2
, · · · , t1/pn , · · ·

)
and then we let L be a given finite extension of L0. Then each finite extension of L is separable,
i.e., Lsep = L; we also fix an algebraic closure L of L. Note that each place of Fp(t) (which,

geometrically, corresponds to a point of P1(Fp)) extends uniquely to a place w of L0, thus
making L0 a product formula field. Above each given place w of L0 there exist finitely many
places v of L; we denote by Ω := ΩL the set of places of L. Then, the following conditions
hold:

(i) for each nonzero x ∈ L, we have |x|v = 1 for all but finitely many v ∈ ΩL; and
(ii) for each nonzero x ∈ L, we have

(2.0.2)
∏
v∈ΩL

|x|v = 1

where we denote by | · |v the absolute value at the place v ∈ Ω such that the product for-
mula (2.0.2) holds. Finally, we have the following fact: only the elements in Fp are those
x ∈ L which are integral at each place in Ω, i.e.,

(2.0.3) if |x|v ≤ 1 for each v ∈ Ω, then x ∈ Fp.

2.1. Preperiodic parameters for a given starting point. We let f ∈ Fp[x] be a monic
polynomial of degree d ≥ 2 satisfying f(0) = 0. As we will show in Proposition 4.1, both
Theorems 1.1 and 1.2 reduce easily to the case the respective polynomial f(x) is monic and
it has no constant term (see also Remark 1.3). Furthermore, these two assumptions on f(x),
besides not affecting the generality of our main results, they also reduce a bit the technical
details in some of our arguments.

As before, we let fλ(x) = f(x)+λ be the corresponding family of polynomials parameterized
by λ ∈ L. Given γ ∈ L, we define

(2.1.1) Pn,γ(λ) := fnλ (γ) for each n ∈ N;
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then Pn,γ(λ) is a polynomial in λ. A simple induction on n yields the following result.

Lemma 2.1. With the above hypothesis, for each n ∈ N, the polynomial Pn,γ(λ) is monic
and has degree dn−1 in λ.

In fact, an easy induction yields that each coefficient of λi in Pn,γ(λ) for i = 1, . . . , dn−1−1
is itself a polynomial in γ, i.e.,

(2.1.2) Pn,γ(λ) = λd
n−1

+
dn−1−1∑
i=1

cn,i(γ) · λi + γd
n

+
dn−1∑
j=1

bn,j · γj

with each cn,i ∈ Fp[x] being a polynomial of degree less than dn, and also, each bn,j ∈ Fp for
j = 1, . . . , dn − 1.

Remark 2.2. We immediately obtain as a corollary of Lemma 2.1 the fact that if γ ∈ L is
preperiodic for fλ, then λ ∈ L.

Next, we establish the fact that for any starting point γ, one can find infinitely many
parameters λ such that γ is preperiodic under the action of fλ; our result is valid for an
arbitrary field L.

Proposition 2.3. Let L be an arbitrary field of characteristic p, let f ∈ L[x] be a monic
polynomial of degree d ≥ 2 for which f(0) = 0, and let γ ∈ L. Then there exist infinitely
many λ ∈ L such that γ is preperiodic under the action of fλ.

Proof of Proposition 2.3. If γ ∈ Fp, then the statement is obvious because then γ is preperi-

odic under fλ for each λ ∈ Fp. So, from now on, we assume γ ∈ L\Fp. The desired conclusion
in Proposition 2.3 follows from the next Lemma, which provides a more refined conclusion.

Lemma 2.4. Assume γ /∈ Fp. Then there exist infinitely many λ ∈ L with the property that
there exists some prime number q such that f qλ(γ) = γ.

Proof of Lemma 2.4. The argument is similar to the proof of [Ghi, Proposition 6.3].

We argue by contradiction and so, assume the set

P :=
{
λ ∈ L : there exists a prime q such that f qλ(γ) = γ

}
is finite. In particular, this means that there exists a positive integer M ≥ d with the property
that for each prime q > M and for each λ ∈ L such that

(2.1.3) f qλ(γ) = γ,

there exists a prime q0 < M (with q0 depending on λ, of course) such that

(2.1.4) f q0λ (γ) = γ.

However, since q and q0 are distinct primes, then equations (2.1.3) and (2.1.4) yield that
fλ(γ) = γ, i.e., λ = γ − f(γ). Hence, letting Pq,γ(λ) := f qλ(γ) as before (see equation (2.1.1)),

the only solution λ ∈ L to the equation Pq,γ(λ) = γ is λ0 := γ − f(γ). Now, using the shape
of the polynomial Pq,γ(λ) (see equation (2.1.2)), we conclude that

(2.1.5) Pq,γ(λ) = (λ− γ + f(γ))d
q−1

.
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In particular, this means that the constant term in the polynomial Pq,γ must be (f(γ)−γ)d
q−1

.
On the other hand, we know that the constant term in the polynomial Pq,γ is f q(γ); this leads
to the equation:

(2.1.6) (f(γ)− γ)d
q−1

= f q(γ).

Now, if we do not have an identity:

(2.1.7) (f(x)− x)d
q−1

= f q(x),

then the only solutions γ to equation (2.1.6) must live in Fp (since all coefficients of f(x) are

from Fp). However, this would contradict the hypotheses of Lemma 2.4. Thus, it means that
the equation (2.1.7) must be an identity.

Now, equation (2.1.7) combined with the fact that f(0) = 0 yields that the order of van-
ishing of f q(x) at x = 0 must be at least dq−1. Thus, the order of vanishing ` of f(x) at x = 0
must be strictly larger than 1. Then the order of vanishing at 0 in f q(x) must be `q; on the
other hand, the function from the left hand side of equation (2.1.7) would have the order of
vanishing at 0 equal to dq−1. So, we must have `q = dq−1, which is impossible (note that q is
a prime larger than d).

Hence, this contradiction yields that the conclusion in Lemma 2.4 must hold, as desired. �

Lemma 2.4 shows that also when γ /∈ Fp, there exist infinitely many λ ∈ L such that γ is
preperiodic under the action of fλ. This concludes our proof for Proposition 2.3. �

2.2. Canonical heights. As usual, for each x ∈ L, its Weil height is defined as

(2.2.1) h(x) :=
1

[L(x) : L]
·
∑
v∈Ω

∑
y∈Gal(Lsep/L)·x

log+ |y|v,

where log+(z) = log max{z, 1} for each real number z. Then, for each λ ∈ L, the global
canonical height of x ∈ L with respect to the polynomial fλ is given by

(2.2.2) ĥfλ(x) = lim
n→∞

h (fnλ (x))

dn
.

Remark 2.5. If γ is preperiodic under the action of fλ, then it is immediate to see (based

on equation (2.2.2)) that ĥfλ(γ) = 0 (since there are finitely many distinct points fnλ (γ)).

However, using [Ben05, Theorem B], one can also establish the converse statement as well,

i.e., once ĥfλ(γ) = 0, then γ must be preperiodic under the action of fλ. Indeed, as long

as λ /∈ Fp, then fλ is not isotrivial and therefore, [Ben05, Theorem B] shows that a point is

preperiodic if and only if its canonical height equals 0. Finally, if λ ∈ Fp, then it is immediate

to see that γ is preperiodic if and only if also γ ∈ Fp. Similarly, if ĥfλ(γ) = 0 (and λ ∈ Fp),
then we must have that |γ|v ≤ 1 for each place v ∈ Ω (see also Lemma 2.6 (ii)) and therefore,
we must also have that γ ∈ Fp (see (2.0.3)).

Now, for each v ∈ Ω, we let Cv be an algebraically closed field containing L, which is also
complete with respect to a fixed extension of | · |v to Cv; more precisely, Cv is the completion
of an algebraic closure of the completion of L at the place v. Then Cv is both complete and
algebraically closed; furthermore, we let

Ov := {z ∈ Cv : |z|v ≤ 1} and Mv := {z ∈ Cv : |z|v < 1} .
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By our construction of Cv, we have that for any given z ∈ Ov, there exists a unique ξ ∈ Fp
such that z − ξ ∈Mv; then we write

z ≡ ξ (mod Mv).

Let λ ∈ Cv and define the local canonical height ĥv,λ(x) of x ∈ Cv with respect to the
polynomial fλ; more precisely, we have the formula

(2.2.3) ĥv,λ(x) := lim
n→∞

log+ |fnλ (x)|v
dn

.

Then ĥv,λ(x) is a continuous function of both λ and x on Cv; furthermore, the following holds:

(2.2.4) ĥv,λ(x) =
ĥv,λ(fmλ (x))

dm
for each m ∈ N and for each x ∈ Cv.

The following easy Lemma 2.6 is employed multiple times in our proof.

Lemma 2.6. Let γ, λ ∈ Cv.

(i) If max{|λ|v, |γ|v} ≤ 1, then

ĥv,λ(γ) = 0.

(ii) If |γ|dv > max{1, |λ|v}, then

(2.2.5) ĥv,λ(γ) = log |γ|v > 0.

(iii) If |λ|v > max
{

1, |γ|dv
}

, then

ĥv,λ(γ) =
log |λ|v
d

> 0.

Proof of Lemma 2.6. We first note that for any γ ∈ Cv, we have the following:

(2.2.6) max {1, |f(γ)|v} = max
{

1, |γ|dv
}
,

since f ∈ Fp[x] has degree d (and therefore, each nonzero coefficient of f is a v-adic unit).
Then conclusion (i) is immediate since knowing that both λ and γ are integral at the place v

yields that each fnλ (γ) is integral at v, thus showing that ĥv,λ(γ) = 0.

Next, we work under the hypotheses from part (ii). The fact that |γ|dv > max{1, |λ|v} yields
(see also equation (2.2.6)) that

|fλ(γ)|v = |f(γ) + λ|v = |γ|dv > |γ|v.
An easy induction on n shows that for each n ≥ 1, we have that

|fnλ (γ)|v = |γ|dnv ;

then the desired conclusion in part (ii) follows.

Finally, part (iii) is a consequence of part (ii) because the inequality |λ| > max
{

1, |γ|dv
}

yields

(2.2.7) |fλ(γ)|v = |f(γ) + λ|v = |λ|v > |λ|
1
d
v .

Equation (2.2.7) allows us to apply the conclusion from part (ii) to the point fλ(γ) and the
parameter λ and thus, we get

ĥfλ(fλ(γ)) = |fλ(γ)|v = |λ|v.
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Then equation (2.2.4) yields the desired conclusion in Lemma 2.6, part (iii). �

As a corollary to Lemma 2.6, we have the following.

Corollary 2.7. If λ ∈ Fp then for v ∈ Ω, the local canonical height ĥv,λ(γ) = log+ |γ|v for
each γ ∈ Cv.

2.3. The filled Julia set for polynomial dynamics. For each v ∈ Ω and λ ∈ L, recall
that the v-adic filled Julia set for fλ is defined to be the set

Kv,λ := {z ∈ Cv | ĥv,λ(z) = 0} = {z ∈ Cv | |fnλ (z)|v 6→ ∞ as n→∞}.

It follows from Lemma 2.6 that Kv,λ is contained in the closed disk Dv,λ (centered at 0) of

radius Rv,λ = max{1, |λ|1/dv }. It follows from Lemma 2.6 (ii) that for z ∈ Cv with |z|v > Rv,λ
we have ĥv,λ(x) = |z|v.

In the following, we set E1,λ = Dv,λ and En,λ = f−1
λ (En−1,λ) for n > 1.

Remark 2.8. Clearly, the sets En,λ refer to a fixed place v, but we prefer (for the sake of
simplifying our notation) that we do not add v in the subscript for these sets. The same
observation applies next to the level sets Ln,λ.

Note that in the case where |λ|v ≤ 1, our polynomial fλ induces a surjective self-map on
Dv,λ = Dv(0, 1) the closed unit disk in Cv. It is not hard to see that En,λ = Dv(0, 1) for all
n and Kλ = Dv(0, 1).

We will be mainly concerned with the case where |λ|v > 1. In this case, we see that Dv,λ

is mapped by fλ into a disk (again centered at 0) of larger radius which is equal to |λ|v. We
denote by E0,λ := fλ(Dv,λ) ⊆ Dv(0, |λ|v). It is also easy to check that

En+1,λ ( En,λ for all n ≥ 0 and moreover, Kv,λ =
⋂
n≥0

En,λ.

For any integer n ≥ 0, we set Ln,λ := En,λ \ En+1,λ, called the level set for ĥv,λ of level n.

In particular, each point z ∈ L0,λ = E0,λ \ E1,λ has the property that |λ|1/dv < |z|v ≤ |λ|v.
Furthermore, if z ∈ Ln,λ then we have that

(2.3.1) fnλ (z) ∈ L0,λ and ĥv,λ(z) =
ĥv,λ(fnλ (z))

dn
=

log |fnλ (z)|v
dn

> 0,

according to Lemma 2.6, part (ii).

Remark 2.9. If |λ|v > 1, the filled Julia set Kv,λ is the v-adic Julia set for fλ.

The introduction of the level sets Ln,λ is a novelty compared to [Ghi] (in which the analysis
was more ad-hoc); we believe that the key to settling Conjecture 1.7 lies in a thorough analysis
of these level sets.

2.4. Equality of the respective local canonical heights. In this subsection, we outline
the proof of Theorem 2.11 below. The structure and arguments are the same as those used
in the proof of [Ghi], although the polynomial f(x) considered here is more general than that
in [Ghi]. To avoid repetition, we will provide only a sketch and refer the reader to [Ghi,
Section 2 and Section 3] for the full details.
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Let v ∈ Ω be a given place of L and let A1
Berk,Cv denote the Berkovich affine line over Cv (see

[BR10] or [BD11, Section 2] for more details). Let γ ∈ L. Then, the generalized Mandelbrot
set Mγ,v ⊂ A1

Berk,Cv associated to γ at v is defined to be the closure in A1
Berk,Cv of the subset

of Cv consisting of all parameters λ ∈ Cv such that the orbit of γ is v-adically bounded under
the action of fλ. Note that for such a parameter λ, since the orbit of γ is bounded under fλ
we have that ĥv,λ(γ) = 0. As Cv is a dense subspace of A1

Berk,Cv , continuity in λ implies that

the canonical local height function ĥv,λ(γ) has a natural extension on A1
Berk,Cv . It follows that

λ ∈Mγ,v if and only if ĥv,λ(γ) = 0. Thus, Mγ,v is a closed subset of A1
Berk,Cv and in fact, one

can show that Mγ,v is a compact subset of A1
Berk,Cv .

Associated with γ, we define

(2.4.1) Gγ,v(λ) := lim
n→∞

log+ |fnλ (γ)|v
dn−1

= d · ĥv,λ(γ).

Note that Gγ,v(λ) ≥ 0 for all λ ∈ A1
Berk,Cv ; also, λ ∈Mγ,v if and only if Gγ,v(λ) = 0. It turns

out that Gγ,v is the Green’s function for Mγ,v relative to ∞. We define the generalized adèlic

Mandelbrot set Mγ =
∏
v∈ΩMγ,v associated with γ and for each λ ∈ L, we set

(2.4.2) hMγ (λ) := hMγ (S) =
∑
v∈ΩL

(
1

|S|
∑
z∈S

Gγ,v(z)

)
where S is the Gal(Lsep/L)-orbit of λ.

It turns out that Mγ is a compact Berkovich adèlic set with the logarithmic capacity
c(Mγ) = 1 and hMγ (λ) represents the height of λ relative to Mγ . Consequently, the equidis-
tribution result [BR10, Theorem 7.52] applies. The following is a special case we need for our
application:

Theorem 2.10. With the above notation, let E =
∏
v∈ΩEv be a compact Berkovich adèlic

set with c(E) = 1. Suppose that Sn is a sequence of Gal(Lsep/L)-invariant finite subsets of
Lsep with |Sn| → ∞ and hE(Sn) → 0 as n → ∞. For each v ∈ ΩL and for each n let δn be
the discrete probability measure supported equally on the elements of Sn. Then the sequence
of measures {δn} converges weakly to µv the equilibrium measure on Ev.

Now, we can now apply Theorem 2.10 to prove the following result.

Theorem 2.11. Let L, fλ, ĥfλ, ĥv,λ be defined as in Section 2; also, let α, β ∈ L. Assume

there exists an infinite sequence {λn} in L with the property that

(2.4.3) lim
n→∞

ĥfλn (α) = lim
n→∞

ĥfλn (β) = 0.

Then for each each v ∈ Ω and for each λ ∈ Cv, we have that ĥv,λ(α) = ĥv,λ(β).

Proof. Since the proof is identical with the one of [Ghi, Theorem 4.1], we omit it here. �

3. Proof of the precise relation between the starting points

We begin to establish the proof for our main result, which is Theorem 1.1 (as explained
in Remark 1.3, Theorem 1.2 is an immediate consequence of Theorem 1.1). We will actually
prove a more general result in Theorem 3.2 below.
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Recall from Section 2 that the perfect closure of Fp(t) is denoted by

L0 := Fp
(
t, t1/p, t1/p

2
, · · · , t1/pn , · · ·

)
.

Let L be a finite extension of L0 and let f ∈ Fp[x] be a monic polynomial which has the
following form (for some r ≥ 1):

(3.0.1) f(x) =
r∑
i=1

cix
di with each ci ∈ Fp

∗
(and cr = 1),

where 1 ≤ d1 < d2 < · · · < dr = d; furthermore, writing (for each i = 1, . . . , r) di = p`i · si
where `i ≥ 0 and p - si, then we assume the following inequality holds:

(3.0.2) p`r(sr − 1) > max
{

1, p`1(s1 − 1), p`2(s2 − 1), · · · , p`r−1(sr−1 − 1)
}
.

Remark 3.1. We observe that automatically inequality (3.0.2) yields that d ≥ 3.

The following key result will be proven in Section 4.

Theorem 3.2. Let f ∈ Fp[x] be a polynomial of degree d ≥ 3 of the form (3.0.1) satisfying
inequality (3.0.2). We consider the family of polynomials fλ(x) := f(x) + λ parameterized by
λ ∈ L and let α, β ∈ L. Then there exists an infinite sequence {λn}n≥1 in L with the property
that

(3.0.3) lim
n→∞

ĥfλn (α) = lim
n→∞

ĥfλn (β) = 0,

if and only if at least one of the following statements holds:

(1) f(α) = f(β); or
(2) α, β ∈ Fp.

Moreover, if either one of the conditions (1)-(2) holds, then for each λ ∈ L, we have that α
is preperiodic under the action of fλ if and only if β is preperiodic under the action of fλ.

It follows from Theorem 2.11 that Equation (3.0.3) leads to the equalities between the local

canonical heights ĥv,λ(α) and ĥv,λ(β) for each place v ∈ Ω and for each λ ∈ Cv. We can then
derive the precise relationship between α and β from the equalities of the local canonical
heights as in the following result.

Proposition 3.3. Let f ∈ Fp[x] and let fλ(x) := f(x) + λ be as given in Theorem 3.2. Let

α, β ∈ L, not both of them contained in Fp. If for each v ∈ Ω and for each λ ∈ Cv, we have
that

(3.0.4) ĥv,λ(α) = ĥv,λ(β),

then we must have that f(α) = f(β).

Therefore, Proposition 3.3 is the heart of the argument for all our results and we devote
the remaining part of Section 3 for its proof.
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3.1. General strategy for proving Proposition 3.3. From now on in this Section, we
work under the hypotheses from Proposition 3.3. Our strategy follows the proof of [Ghi,
Proposition 5.1]; however, there are some technical difficulties in our more general setting.

So, we let S be the (finite) set of places v ∈ Ω with the property that

(3.1.1) max{|α|v, |β|v} > 1.

Note that our hypothesis from Proposition 3.3 that not both α and β live in Fp yields that S
is a nonempty set. We also let

(3.1.2) ε := f(α)− f(β).

Our strategy will be to prove that

(3.1.3) |ε|v < 1 for each v ∈ S.
Now, since S consists of all the places v where α or β is not v-adic integral (see inequal-
ity (3.1.1)), then the only places of Ω for which ε may not be a v-adic integer are exactly the
ones from the set S (see also equation (2.2.6)). So, inequality (3.1.3) would prove that ε is
integral at each place v ∈ Ω and furthermore, there is at least one place v0 in Ω such that
|ε|v0 < 1. Due to the product formula (2.0.2) on L (see also (2.0.3)), this delivers the desired
conclusion that ε = 0 (i.e., f(α) = f(β)).

3.2. |ε|v is strictly less than |α|v. In Subsection 3.2, we fix some place v ∈ S.

We first observe that the canonical local height ĥv,λ is just the Weil local height hv(·) =

log+ | · | for any λ ∈ Fp, by Corollary 2.7. Thus, we have the following.

Lemma 3.4. We have |α|v = |β|v > 1.

Proof. The conclusion follows by choosing any parameter λ ∈ Fp. Then, we have that

ĥv,λ(α) = log+ |α|v and ĥv,λ(β) = log+ |β|v for each v ∈ Ω by Corollary 2.7. In particu-
lar, for v ∈ S, we have log+ |α|v = log |α|v or log+ |β|v = log |β|v. The equality between

ĥv,λ(α) and ĥv,λ(β) implies that |α|v = |β|v > 1 for v ∈ S, as desired. �

The next step is to choose appropriate parameters λ such that both α and β are in the
same level sets Ln,λ for some n. To do this, we take parameters λ satisfying |λ|v = |α|dv for
v ∈ S. Then, we have that E1,λ = Dv,λ is a disk of radius |α|v. Note that the disk Dv,λ is
partitioned into a disjoint union of smaller disks. Each disk contains a unique element γ · α
for some γ ∈ Fp as its center. That is,

Dv,λ = tγ∈FpD(γ · α, |α|v)−

where D(γ · α, |α|v)− denotes the open disk centered at γ · α of radius |α|v. Also, note that
for each w ∈ Dv,λ, there exists a unique uw ∈ Ov such that w = uw · α.

Proposition 3.5. If λ = −καd for some κ ∈ O∗v with the property that κ ≡ 1 (mod Mv),
then the set

E2,λ = f−1
λ (E1,λ) ⊂ tζ∈µd D(ζ · α, |α|v)−,

where µd denotes the set of all the d-th roots of unity. In particular, we have that

L2,λ ⊂ E2,λ ⊂ tζ∈µd D(ζ · α, |α|v)−

Moreover, the set E2,λ ∩D(ζ · α, |α|v)− is nonempty for every ζ ∈ µd.
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Proof. Suppose that w = uwα ∈ E2,λ for some uw ∈ Ov, then

fλ(uwα) = (uwα)d +
r−1∑
i=1

ci(uwα)di − καd

= αd

[
(udw − κ) +

r−1∑
i=1

ciu
di
wα

di−d

]
∈ E1,λ(= Dv,λ).

Since fλ(w) ∈ E1,λ, we must have |fλ(uwα)|v ≤ |α|v < |α|dv. It follows that |udw−κ|v < 1 (note

that |α|−1
v < 1, by Lemma 3.4 and the fact that v ∈ S) and thus udw ≡ κ ≡ 1 (mod Mv).

Equivalently, uw ≡ ζ (mod Mv) for some d-th root of unity ζ. Hence, w ∈ D(ζ · α, |α|v)− as
desired.

Now, let ζ be a d-th root of unity. In order to show that the intersection E2,λ ∩ D(ζ ·
α, |α|v)− is nonempty, it suffices to show that there exists a z ∈ Ov with |z|v < 1 such that
fλ ((ζ + z) · α) = ξ · α for some ξ ∈ Ov. This is equivalent with asking that

(ζ + z)d · αd +
r−1∑
i=1

ci(ζ + z)di · αdi − καd = ξα,

which leads to the following equation:

(3.2.1) (z + ζ)d +
r−1∑
i=1

ci(z + ζ)diαdi−d − κ− ξ · α1−d = 0.

We note that ζd = 1 ≡ κ (mod Mv) (according to the hypotheses of Proposition 3.5) and also
that |α|di−dv < 1 for each i = 1, . . . , r−1 (since di < d and also, because v ∈ S and so, |α|v > 1).
Hence, the equation (3.2.1) has a solution z ∈ Cv with |z|v < 1, as claimed. Therefore, the
set E2,λ ∩D(ζ · α, |α|v)− is nonempty as desired in the conclusion of Proposition 3.5. �

Remark 3.6. It is not necessary to choose κ ≡ 1 (mod Mv) in Proposition 3.5. The argu-

ments also apply if κ ≡ ρ (mod Mv) for any ρ ∈ Fp
∗
. We still get that the subset E2,λ (and

hence Kv,λ) is contained in finitely many open disks inside Dv,λ.

For any γ ∈ Ov, we consider the parameter λγ such that fλγ (α) = γ · α; more precisely,

λγ := γ · α− f(α). Note that if γd 6≡ 1 (mod Mv) then γα ∈ L1,λγ , since

(3.2.2)
∣∣fλγ (γα)

∣∣
v

= |f(λγα) + γα− f(α)|v =
∣∣∣(λdγ − 1) · αd

∣∣∣
v

= |α|dv > |α|v.

Moreover, fλγ (β) = f(β) + γ · α− f(α) = ε+ γ · α.

Lemma 3.7. We have that |ε|v < |α|v.

Proof. Choose a γ ∈ Ov such that γd 6≡ 1 (mod Mv) and a parameter λγ such that fλγ (α) =
γ · α ∈ L1,λ; i.e., λγ = γα − f(α) (see also equation (3.2.2)). The fact that fλγ (α) ∈ L1,λγ

gives us that f2
λγ

(α) ∈ E0,λγ \ E1,λγ and so,
∣∣∣f2
λγ

(α)
∣∣∣
v
> |λγ |1/dv = |α|v. This yields that (see

also equation (2.3.1))

(3.2.3) ĥv,λγ (α) =
ĥv,λγ

(
f2
λγ

(α)
)

d2
=

log
∣∣∣f2
λγ

(α)
∣∣∣
v

d2
>

log |α|v
d2

.
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On the other hand, since f2
λγ

(α) ∈ E0,λγ , we have that
∣∣∣f2
λγ

(α)
∣∣∣
v
≤ |λγ |v = |α|dv. So, we also

get that

(3.2.4) ĥv,λγ (α) =
ĥv,λγ

(
f2
λγ

(α)
)

d2
=

log
∣∣∣f2
λγ

(α)
∣∣∣
v

d2
≤ log |α|v

d
.

Now, since ĥv,λγ (β) = ĥv,λγ (α), we must have that β ∈ E1,λγ because otherwise, Lemma 2.6 (ii)

yields that ĥv,λγ (β) = log |β|v = log |α|v > ĥv,λγ (α) (see also inequality (3.2.4)). So, because
fλγ (β) = λγα+ ε and β ∈ E1,λγ = Dv(0, |α|v), we must have that |ε|v ≤ |α|v.

Now, suppose that |ε|v = |α|v. Then, we may write ε = uα for some u ∈ O∗v and thus
fλγ (β) = (u+ γ) · α. We prove the following useful claim.

Claim 3.8. There exists a γ ∈ Ov such that γd 6≡ 1 (mod Mv) and fλγ (β) ∈ E2,λγ .

Proof of Claim 3.8. Let ξ be the unique element in Fp
∗

such that u ≡ ξ (mod Mv). By [Ghi,

Claim 5.7], there exists a ν ∈ Fp satisfying νd 6= 1 and (ξ + ν)d = 1. We let ζ := ξ + ν ∈ µd
and write γ = ν + z for some suitable z ∈Mv which will be determined next.

By Proposition 3.5, the set E2,λ∩D(ζ ·α, |α|v)− is nonempty. Hence, there exists an element
in E2,λγ of the form κ ·α for some κ ∈ Ov such that κ ≡ ζ (mod Mv). We let z := κ−(u+ν);

clearly, |z|v < 1. Then the point γ = ν+ z ∈ Ov satisfies the property that γd 6≡ 1 (mod Mv)
along with the fact that fλγ (β) = κ ·α ∈ E2,λγ , as desired in the conclusion of Claim 3.8. �

Now, with γ satisfying the desired conditions from Claim 3.8, we have that fλγ (β) ∈ E2,λγ

and therefore, β ∈ E3,λγ . Thus,
∣∣∣f3
λγ

(β)
∣∣∣
v
≤ |λγ |v = |α|dv and so, we get

(3.2.5) ĥv,λγ (β) =
ĥv,λγ

(
f3
λγ

(β)
)

d3
≤ log |α|dv

d3
=

log |α|v
d2

.

Inequalities (3.2.5) and (3.2.3) contradict the fact that ĥv,λγ (β) = ĥv,λγ (α). Hence, |ε|v < |α|v
as desired in the conclusion of Lemma 3.7. �

3.3. Final step in the proof of Proposition 3.3. We continue our analysis for |ε|v =
|f(β)− f(α)|v (for a given v ∈ S) with the goal of proving the inequality from (3.1.3).

Lemma 3.9. For each v ∈ S, we must have that |ε|v < 1.

Proof of Lemma 3.9. First, we recall that from Lemma 3.7, we already know

(3.3.1) |ε|v < |α|v for each v ∈ S.

We let λ1 := α − f(α). Then clearly, fλ1(α) = α, which means that for any place v (not
just the ones from the set S), we have that

(3.3.2) ĥv,λ1(α) = 0.

Thus, by hypothesis (3.0.4) of Proposition 3.3, we must also have that ĥv,λ1(β) = 0 for each
v ∈ S. We compute

fλ1(β) = f(β) + α− f(α) = ε+ α

(note that ε = f(β)− f(α)) and

(3.3.3) f2
λ1(β) = f(ε+ α)− f(α) + α.
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We assume that |ε|v ≥ 1 for some v ∈ S and we will derive a contradiction. More precisely,
using also inequality (3.3.1), we assume that for some v ∈ S, we have the inequalities:

(3.3.4) 1 ≤ |ε|v < |α|v.
Observe that for any integers ` ≥ 0 and s > 1 with p - s, we have
(3.3.5)

(x+ y)p
`s =

(
xp

`
+ yp

`
)s

= xp
`s + yp

`s + sxp
`(s−1)yp

`
+

(
s

2

)
xp

`(s−2)y2p` + · · ·+ sxp
`
yp

`(s−1).

From inequalities (3.3.4), we have that

(3.3.6)
∣∣∣(ε+ α)p

`s − εp`s − αp`s
∣∣∣
v

= |ε|p`v · |α|p
`(s−1)
v .

Indeed, since 1 ≤ |ε|v < |α|v, it follows that
∣∣∣(sj)εp`(s−j)αp`j∣∣∣v < ∣∣∣sεp`αp`(s−1)

∣∣∣
v

for 1 ≤ j < s−1

and hence equality (3.3.6) holds. Furthermore, we claim that inequalities (3.0.2) and (3.3.4)
yield the following inequalities:
(3.3.7)∣∣∣(ε+ α)di − εdi − αdi

∣∣∣
v
≤ |ε|p`iv · |α|p

`i (si−1)
v < |ε|p`rv · |α|p

`r (sr−1)
v =

∣∣∣(ε+ α)dr − εdr − αdr
∣∣∣
v
.

for all 1 ≤ i < r. In order to justify the first inequality in (3.3.7), note that if di = p`i (i.e.,
si = 1), then simply (ε+ α)di = εdi + αdi ; on the other hand, if si > 1, the first inequality in
(3.3.7) follows from (3.3.6) (in which case, it is an equality).

Now, in order to prove the second inequality from (3.3.7), suppose to the contrary that

(3.3.8) |ε|p`iv |α|p
`i (si−1)
v ≥ |ε|p`rv |α|p

`r (sr−1)
v for some i < r.

Then, ∣∣∣ ε
α

∣∣∣p`i
v
|α|p`isiv ≥

∣∣∣ ε
α

∣∣∣p`r
v
|α|p`rsrv

and thus ∣∣∣ ε
α

∣∣∣p`i−p`r
v

≥ |α|d−div ≥ |α|v > 1.

Since |ε|v < |α|v, we must have p`i − p`r < 0. On the other hand, |ε|v ≥ 1 by our as-

sumption (3.3.4), we obtain that |ε|p
`i

v ≤ |ε|p
`r

v . Inequality (3.0.2) gives that |α|p
`i (si−1)
v <

|α|p
`r (sr−1)
v . Therefore,

|ε|p`iv |α|p
`i (si−1)
v < |ε|p`rv |α|p

`r (sr−1)
v

which contradicts (3.3.8) and hence the inequality (3.3.7) must hold for all i with 1 ≤ i < r.

Clearly,

(3.3.9) f(ε+ α) = f(ε) + f(α) +
r∑
i=1

ci

[
(ε+ α)di − εdi − αdi

]
.

We write g(ε, α) = f(ε+ α)− f(ε)− f(α) so that

(3.3.10) f2
λ1(β) = fλ1(α+ ε) = g(ε, α) + α+ f(ε).

We have from (3.3.7) that

(3.3.11) |g(ε, α)|v = |ε|p`rv |α|p
`r (sr−1)
v .
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Furthermore, another application of the left inequality from (3.3.4) along with inequality (3.0.2)
yields that

(3.3.12) |ε|p`rv · |α|p
`r (sr−1)
v ≥ |α|p`r (sr−1)

v > |α|v.

Also, the right inequality from (3.3.4) yields (see also equation (2.2.6))

(3.3.13) |ε|p`rv · |α|d−p
`r

v > |ε|dv ≥ |f(ε)|v.

Equations (3.3.10), (3.3.11), (3.3.12) and (3.3.13) deliver the fact that

(3.3.14)
∣∣f2
λ1(β)

∣∣
v

= |g(ε, α)|v =
∣∣∣εp`r · αd−p`r ∣∣∣

v
≥ |α|d−p`rv > |α|v

where in the last two inequalities we also used equations (3.3.4) and the inequality p`r(sr−1) >
1 from (3.0.2).

It follows that f2
λ1

(β) 6∈ E1,λ1 = Dv,λ1 since Dv,λ1 is the closed disk of radius |α|v. Thus,
the v-local canonical height is computed as follows:

(3.3.15) ĥv,λ1
(
f2
λ1(β)

)
= log

∣∣f2
λ1(β)

∣∣
v

= log
∣∣∣ε`r · αd−p`r ∣∣∣

v
> 0.

Finally, using equations (3.3.15) and (2.2.4), we conclude that ĥv,λ1(β) > 0. Coupled with

equation (3.3.2), this contradicts the main hypothesis (3.0.4) of Proposition 3.3 that ĥv,λ1(β) =

ĥv,λ1(α). This concludes our proof of Lemma 3.9. �

Now we can finish our proof of Proposition 3.3.

Proof of Proposition 3.3. As before, we recall the notation ε = f(β)− f(α). By definition of
the set S (see (3.1.1)), we have that |ε|v ≤ 1 for every v 6∈ S. On the other hand, Lemma 3.9
yields that |ε|v < 1 if v ∈ S. Hence, ε is integral at all places and furthermore for the places
v ∈ S (note that S is nonempty due to our assumption that not both α and β are in Fp),
we have that |ε|v < 1; this contradicts the product formula (2.0.2), unless ε = 0, which is
precisely the desired conclusion from Proposition 3.3. �

4. Proof of our main results

In this section, we prove our main results, Theorem 1.1, Theorem 1.2 and Theorem 3.2.
We show in Subsection 4.1 that Theorem 1.1 follows from Theorem 3.2 and that Theorem 1.2
follows from Theorem 1.1. Then we finish the proof of Theorem 3.2 in Subsection 4.2.

4.1. Proof of Theorems 1.1 and 1.2 assuming Theorem 3.2 holds. First, we obtain a
simple reduction in both Theorems 1.1 and 1.2.

Proposition 4.1. We may assume in both Theorems 1.1 and 1.2 that the corresponding
polynomial f(x) is monic and that f(0) = 0.

Proof. First of all, as already observed in Remark 1.3, we may assume that f(0) = 0 (in
Theorem 1.2) by absorbing the constant term of f(x) with the parameter λ in the definition
of the polynomial family fλ(x).
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Second, for any polynomial f ∈ Fp[x] for which we also assume that f(0) = 0, there exists

some c ∈ Fp
∗

with the property that the polynomial g := µ̃c ◦ f ◦ µ̃−1
c is monic (and again

g(0) = 0), where µ̃c(x) := cx. We consider then two families of polynomials:

fλ(x) := f(x) + λ and gλ(x) := g(x) + λ,

both parameterized by λ. By construction, we have that

(4.1.1) gcλ = µ̃c ◦ fλ ◦ µ̃−1
c .

Equation (4.1.1) shows that for any given starting point γ, we have that γ is preperiodic
under the action of fλ(x) if and only if cγ is preperiodic under the action of gcλ(x). This
reduces the proof of both Theorems 1.1 and 1.2 for the corresponding triples (fλ, α, β) to the
proof of the aforementioned theorems for the triples (gλ, cα, cβ), as claimed in the conclusion
of Proposition 4.1. �

Next, we note that in Theorem 1.1 we do not assume the field L in question is a function field
of transcendence degree one over Fp. However, as in [GH13, Ghi], we show in Proposition 4.2
below that we may assume trdegFpL ≤ 1, essentially making the reduction of Theorem 1.1 to
Theorem 3.2.

Proposition 4.2. Let f ∈ Fp[x] be a monic polynomial of degree d ≥ 2 satisfying f(0) = 0,

let L be a field of characteristic p > 0, and let α, β ∈ L. If there exists λ1 ∈ L such that both
α and β are preperiodic for the polynomial fλ1(x) = f(x) + λ1, then trdegFpFp(α, β) ≤ 1.

Proof. We recall the notation from Subsection 2.1 (see Lemma 2.1) that for each γ ∈ L, we
have

(4.1.2) Pn,γ(λ) := fnλ (γ),

which is a monic polynomial of degree dn−1 (in λ). Furthermore, the constant term is Pn,γ(0) =
fn(γ), which is a monic polynomial of degree dn in γ (note that f is a monic polynomial of
degree d). Moreover, since f(0) = 0, then Pn,γ(0) has no constant term (as a polynomial in
γ). Also, from (2.1.2) we know that

Pn,γ(λ) = λd
n−1

+
dn−1−1∑
i=1

cn,i(γ) · λi + γd
n

+
dn−1∑
j=1

bn,j · γj

with each cn,i ∈ Fp[x] being a polynomial of degree less than dn, and also, each bn,j ∈ Fp for
j = 1, . . . , dn − 1. Therefore, imposing the condition that α is a preperiodic point under the
action of some fλ1 yields an equation of the form:

Pn,α(λ1) = Pm,α(λ1) for some 0 ≤ m < n.

Using equation (2.1.2) (along with the information about the degrees of each corresponding

polynomials cm,i and cn,j), we obtain that α ∈ Fp(λ1). A similar reasoning, using this time

that β is preperiodic under the action of fλ1 , yields that also β ∈ Fp(λ1). Hence, we conclude
that

trdegFpFp(α, β) ≤ trdegFpFp(λ1) ≤ 1,

as desired for the conclusion of Proposition 4.2. �

Proof of Theorem 1.1. Using Propositions 4.1, 4.2 and 2.3 and arguing identically as in [Ghi,
Section 6.1] proves that the conclusion in Theorem 1.1 is a consequence of Theorem 3.2. �
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Next, we show that Theorem 1.2 follows from Theorem 1.1.

Proof of Theorem 1.2. First, we note that according to Proposition 4.1, we may assume from
now on that f(x) is monic and f(0) = 0.

Next, we consider the case where d ≥ 3. Since p - d, we obtain that the polynomial f(x)
has the shape (1.1.1) satisfying the inequality (1.1.2), which means that the hypothesis of
Theorem 1.1 are met. Hence, we see that Theorem 1.2 is a consequence of Theorem 1.1 in
this case.

The remaining case is when d = 2 and p is odd. As noted in Remark 1.3, our family
fλ can be then conjugated to the family of (normalized) polynomials x 7→ x2 + λ, in which
case, the desired conclusion follows from [Ghi, Theorem 1.1]. This concludes our proof of
Theorem 1.2. �

4.2. Proof of Theorem 3.2. We work with the notation and the assumptions from Theo-
rem 3.2. We first prove the direct implication in Theorem 3.2.

Proposition 4.3. With the notation as in Theorem 3.2 for L, α, β, f(x) and fλ(x), assume
there exists an infinite sequence {λn}n in L such that the condition (3.0.3) holds, i.e., we have

lim
n→∞

ĥfλn (α) = lim
n→∞

ĥfλn (β) = 0.

Then at least one of the following two conditions must hold:

(1) f(α) = f(β);
(2) α, β ∈ Fp.

Proof. Theorem 2.11 shows that condition (3.0.3) yields that for each place v ∈ Ω = ΩL and
for each λ ∈ Cv, we have that

(4.2.1) ĥv,λ(α) = ĥv,λ(β),

i.e., hypothesis (3.0.4) from Proposition 3.3 is met. Then Proposition 3.3 yields that

(1) either f(α) = f(β);
(2) or both α and β live in Fp.

This concludes our proof of Proposition 4.3. �

Next we prove that the converse and also, the “moreover” statement in Theorem 3.2 hold
as well.

Proposition 4.4. With the notation from Theorem 3.2 for L, α, β, f(x) and fλ(x), assume
in addition that at least one of the following two conditions are met:

(1) f(α) = f(β);
(2) α, β ∈ Fp.

Then there must exist an infinite sequence {λn}n in L such that the condition (3.0.3) holds,
i.e., we have

lim
n→∞

ĥfλn (α) = lim
n→∞

ĥfλn (β) = 0.

Moreover, for each λ ∈ L, we have that α is preperiodic udner the action of fλ(x) if and only
if β is preperiodic under the action of fλ(x).
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Proof. We show first that if either one of conditions (1)-(2) holds, then for each λ ∈ L, we
have that α is preperiodic under the action of fλ if and only if β is preperiodic under the
action of fλ.

We argue case by case, as follows.

(1) If f(α) = f(β), then for each λ ∈ L, we have that fλ(α) = fλ(β) and therefore, α is
preperiodic under the action of fλ if and only if β is preperiodic under the action of
fλ.

(2) For any γ ∈ Fp, using equations (4.1.2) and (2.1.2), we get that for each λ ∈ L, we

have that γ is preperiodic under the action of fλ if and only if λ ∈ Fp. Therefore,

if both α and β live in Fp, we have that for each λ ∈ L, α is preperiodic under the
action of fλ if and only if β is preperiodic under the action of fλ.

Next, we note that according to Proposition 2.3, we know there exist infinitely many λ ∈ L
such that α (and therefore, also β) is preperiodic under the action of fλ. Therefore, either
one of the conditions (1)-(2) yields the existence of infinitely many λn ∈ L such that both α
and β are preperiodic under the action of fλn . Finally (see also Remark 2.5), for each such
preperiodic parameter λn ∈ L, we have

ĥfλn (α) = ĥfλn (β) = 0.

This concludes our proof of Proposition 4.4. �

Combining Propositions 4.3 and 4.4 finishes our proof of Theorem 3.2.
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