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Abstract

The arithmetic of Drinfeld modules

by

Dragos Florin Ghioca

Doctor of Philosophy in Mathematics

University of California at Berkeley

Professor Bjorn Poonen, Chair

Over the past century, the following three important questions for an abelian

variety A defined over a global field K were intensively studied: finding a (good)

lower bound for the canonical height of a non-torsion point, proving a structure

theorem for the group of rational points and describing the intersection of a generic

subvariety of A with a finitely generated subgroup of A. The first problem is known

in literature as the Lehmer inequality for the abelian variety A and is still open for

the general case of abelian varieties. The second problem is known as the Mordell-

Weil theorem for abelian varieties. Different versions of this theorem were proved

by Mordell, Weil, Taniyama, Lang and Néron. In connection with this theorem

there is also the interesting question of finding an upper bound for the number of
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torsion points of A(K). The third problem is known as the Mordell-Lang theorem

for abelian varieties and it was the subject of seminal papers by Faltings and

Hrushovski.

All three questions mentioned above can be asked when A is a power of the

additive group scheme, only that the answers are either trivial or not of the same

type as the ones for a general abelian variety. But if we allow the action of a Drin-

feld module on the additive group scheme, all three problems become extremely

interesting and they constitute the subject of the present thesis.

Professor Bjorn Poonen
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Generalities

One of our interests in number theory is concerned with the theory of heights, which

provides a framework for discussing the complexity of a number. For example,

let x be a rational number. We write x as a fraction p
q

of two relatively prime

integers with q 6= 0. Then the exponential height of x is defined as max(|p|, |q|).

We can define heights for all elements x in finite extensions of Q and also, we

can define heights for rational functions. We may also define canonical heights on

abelian varieties and Drinfeld modules. These height functions satisfy the triangle

inequality among other properties and they are instrumental in understanding

arithmetic properties of abelian varieties and Drinfeld modules.
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A natural question is the following. Let K be a finitely generated field of char-

acteristic p > 0. Let P ∈ K[x] be an additive polynomial, i.e. a polynomial such

that P (x + y) = P (x) + P (y), for every x and y in Kalg. Then P (x) is a sum of

monomials of the form anx
pn

, for n ≥ 0. Let z ∈ Kalg. We consider the sequence

z, P (z), P (P (z)), P (P (P (z))) . . . . (1.1)

There are two possibilities:

Case 1. The sequence is eventually periodic.

In this case, we can characterize the elements z for which this happens. For

each finite extension L of K, there are finitely many elements z ∈ L, such that the

sequence (1.1) is eventually periodic. An interesting question is to give for each

integer d > 0, an upper bound only in terms of the degree of P , for the number

of elements z such that [K(z) : K] ≤ d and the corresponding sequence (1.1) is

eventually periodic.

Case 2. All the elements of the sequence are distinct.

In this case, the interesting question is to give a notion of how fast does the

complexity (i.e. height) of P (P (. . . P (z)) . . . ) grow.

To study the questions raised above we need to work in the context of Drinfeld

modules and the heights associated to Drinfeld modules. My thesis addresses,

among other problems, also the two questions presented above.
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1.2 The Lehmer Conjecture

The classical Lehmer conjecture (see [17], page 476) asserts that there is an absolute

constant C > 0 so that any algebraic number α that is not a root of unity satisfies

the following inequality for its logarithmic height

h(α) ≥
C

[Q(α) : Q]
.

A partial result towards this conjecture is obtained in [9]. The analog of Lehmer

conjecture for elliptic curves and abelian varieties has also been much studied (see

[5], [15], [20], [29], [1]). The paper [8] formulated a conjecture whose general form is

Conjecture 1.2.2, which we refer to as the Lehmer inequality for Drinfeld modules.

Our notation for Drinfeld modules follows the one from [13]: p is a prime number

and q is a power of p. We denote by Fq the finite field with q elements. We let C

be a nonsingular projective curve defined over Fq and we fix a closed point ∞ on

C . Then we define A as the ring of functions on C that are regular everywhere

except possibly at ∞.

We let K be a field extension of Fq. We fix a morphism i : A → K. We define

the operator τ as the power of the usual Frobenius with the property that for

every x ∈ Kalg, τ (x) = xq. Then we let K{τ} be the ring of polynomials in τ with

coefficients from K (the addition is the usual one, while the multiplication is the

composition of functions).
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We fix an algebraic closure of K, denoted Kalg. We denote by Ksep and Kper

the separable and perfect closure, respectively, of K in Kalg. We denote by Falg
p the

algebraic closure of Fp inside Kalg.

A Drinfeld module over K is a ring morphism φ : A → K{τ} for which the

coefficient of τ 0 in φa is i(a) for every a ∈ A, and there exists a ∈ A such that

φa 6= i(a)τ 0. Following the definition from [13] we call φ a Drinfeld module of

generic characteristic if ker(i) = {0} and we call φ a Drinfeld module of finite

characteristic if ker(i) 6= {0}. In the latter case, we say that the characteristic of φ

is ker(i) (which is a prime ideal of A). In the generic characteristic case we assume

i extends to an embedding of Frac(A) into K.

If γ ∈ Kalg \ {0}, we denote by φ(γ) the Drinfeld module over Kalg mapping

a ∈ A to γ−1φaγ. The Drinfeld module φ(γ) is isomorphic to φ over K(γ) (see [13]).

For each field L containing K, φ(L) denotes the A-module L with the A-action

given by φ.

We will need later the following definition.

Definition 1.2.1. Let φ : A → K{τ} be a Drinfeld module. Let L be a field

extension of K and let v be a discrete valuation on L. We say that φ has good

reduction at v if for all a ∈ A \ {0}, the coefficients of φa are integral at v and the

leading coefficient of φa is a unit.

If v is not a place of good reduction, then v is a place of bad reduction.
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Let ĥ be the global height associated to the Drinfeld module φ as in [32] (see

also Chapter 4).

Conjecture 1.2.2. Let K be a finitely generated field. For any Drinfeld module

φ : A → K{τ} there exists a constant C > 0 such that any non-torsion point

x ∈ Kalg satisfies ĥ(x) ≥ C
[K(x):K]

.

Before our work, the only known partial result towards Conjecture 1.2.2 was

obtained in [7], which proved the conjecture restricted to the case in which φ is

the Carlitz module and x is a non-torsion point in Ksep.

In this thesis we develop a theory of local heights ĥv for Drinfeld modules over

arbitrary fields of characteristic p (see Chapter 4). In all of the theorems that are

stated in Chapter 1, for a valuation v, the positive real number d(v) represents the

degree of the valuation v (as defined in Chapter 4).

LetMK be the set of all discrete valuations on the fieldK. In Chapter 5 we prove

the following result (see also Chapter 4 for the definition of coherent valuations)..

Theorem 1.2.3. Let K be a field of characteristic p and let φ : A → K{τ} be

a Drinfeld module of finite characteristic. Let v0 ∈ MK be a coherent valuation

(on Kalg) and d(v0) be be the degree of v0. There exists C > 0 and k ≥ 1, both

depending only on φ, such that if x ∈ Kalg and v ∈ MK(x), v|v0 and ĥv(x) > 0,
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then

ĥv(x) ≥
Cd(v)

e(v|v0)k−1

where d(v) = d(v0)f(v|v0)
[K(x):K]

where e(v|v0) is the ramification index and f(v|v0) is the

relative degree between the residue field of v and the residue field of v0.

The proof gives explicit values of C and k (from Theorem 1.2.3) in terms of φ.

Also, in the case that the place v from Theorem 1.2.3 is not wildly ramified above

K, we prove a finer result and we show that this result is the best possible.

We prove in Chapter 5 a similar result as in Theorem 1.2.3 for Drinfeld modules

of generic characteristic.

Theorem 1.2.4. Let K be a field of characteristic p. Let v0 ∈ MK be a coherent

valuation (as defined in Chapter 4) and let d(v0) be the degree of v0.

Let φ be a Drinfeld module of generic characteristic. There exist two positive

constants C and k depending only on φ such that for every x ∈ Kalg and every

place v of K(x), if ĥv(x) > 0 and v does not lie over the place ∞ from Frac(A),

then

ĥv(x) ≥
Cd(v)

e(v|v0)k−1
,

where v0 ∈MK lies below v.

We show that the hypothesis from Theorem 1.2.4 that v does not lie over the

place ∞ of Frac(A) canot be removed. If v lies over ∞, then ĥv(x) can be positive
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but arbitrarily small. Also, in case v satisfies the additional hypothesis that is

not wildly ramified above K, we prove a finer inequality and show that it is best

possible.

In Chapter 6 we prove the first global result towards Conjecture 1.2.2. Before

stating our result we need to define a special set of valuations on finitely generated

fields.

Let K be a finitely generated field of positive transcendence degree. Let F be

the algebraic closure of Fp in K. Fix a transcendence basis {x1, . . . , xn} for K/F .

We first define the set MF (x1,...,xn)/F of valuations on F (x1, . . . , xn). Let PnF be

the n-dimensional projective space, whose function field is F (x1, . . . , xn). For each

irreducible divisor of PnF we construct the corresponding discrete valuation on the

function field of PnF . The degree of such a valuation is the projective degree of the

corresponding subvariety of codimension 1 of PnF . The set of all these valuations is

MF (x1,...,xn)/F . Then for every nonzero x ∈ F (x1, . . . , xn),

∑

v∈MF (x1,...,xn)/F

d(v) · v(x) = 0.

We let MK/F be the set of all discrete valuations v onK (normalized so that the

range of v is Z) with the property that v lies over a valuation v0 ∈MF (x1,...,xn)/F .

In general, for every finite extension L of K, if E is the algebraic closure of F

in L, we let ML/E be the set of all discrete valuations of L that lie over valuations

from MK/F . For w ∈ ML/E , if v ∈ MK/F lies below w, then we define the degree
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d(w) of w as d(v)f(w|v)
[L:K]

.

For each Drinfeld module φ : A→ K{τ} and for every finite extension L of K

as above, we construct the local and global heights associated to φ with respect to

ML/E (see Chapter 4).

If K is a finite extension of Fp (i.e. n = 0 with the above notation), there are

no nontrivial valuations defined on K. Then, the above set of valuations MK/F is

the empty set.

Theorem 1.2.5. Let K be a finitely generated field of characteristic p. Let φ : A→

K{τ} be a Drinfeld module and assume that there exists a non-constant t ∈ A such

that φt is monic. Let F be the algebraic closure of Fp in K. We let MK/F be the

coherent good set of valuations on K, constructed as in Chapter 4. Let ĥ and ĥv be

the global and local heights associated to φ, constructed with respect to the coherent

good set of valuations MK/F . Let x ∈ Kalg and let Fx be the algebraic closure of

Fp in K(x). We construct the good set of valuations MK(x)/Fx which lie above the

valuations from MK/F . Let Sx be the set of places v ∈ MK(x)/Fx such that φ has

bad reduction at v.

If x is not a torsion point for φ, then there exists v ∈MK(x)/Fx such that

ĥv(x) > q−r(2+(r2+r)|Sx|)d(v)

where d(v) is as always the degree of the valuation v.
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Because every Drinfeld module is isomorphic over Kalg to a Drinfeld module

that satisfies the hypothesis of Theorem 1.2.5, we are able to derive an uniform

bound for the torsion submodule of a Drinfeld module φ, depending only on A and

on the rank of φ.

Theorem 1.2.6. Let K be a finitely generated field and let φ : A → K{τ} be a

Drinfeld module. Let t be a non-constant element of A and assume φt is monic.

Let L be a finite extension of K and let E be the algebraic closure of Fp in L.

a) If φt ∈ E{τ}, then φtor(L) = E.

b) If φt /∈ E{τ}, let S be the nonempty set of places of bad reduction for φ

from ML/E. Let b(t) ∈ Fq [t] be the least common multiple of all the polynomials of

degree at most (r2 + r)|S|. Then for all x ∈ φtor(L), φb(t)(x) = 0.

The bound on the torsion submodule given in Theorem 1.2.6, b) is sharp in the

case of the Carlitz module, as will be shown after the proof of Theorem 1.2.6.

1.3 The Mordell-Weil Theorem

We use Theorems 1.2.5 and 1.2.6 in Chapter 7 to prove certain Mordell-Weil struc-

ture theorems for Drinfeld modules over infinitely generated fields.

Definition 1.3.1. The field of definition of a Drinfeld module φ : A → K{τ} is

defined to be the smallest subfield of K containing all the coefficients of φa, for
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every a ∈ A.

Definition 1.3.2. Let φ : A → K{τ} be a Drinfeld module. The modular tran-

scendence degree of φ is the minimum transcendence degree over Fp of the field of

definition for φ(γ), where the minimum is taken over all γ ∈ Kalg \ {0}.

If there exists a non-constant t ∈ A such that φt =
∑r

i=0 aiτ
i is monic, then the

modular transcendence of φ equals trdeg
Fp

Fp(a0, . . . , ar−1). This result is proved

in Chapter 4, where we also introduce the following definition.

Definition 1.3.3. Let K0 be any subfield of K. Then the relative modular tran-

scendence degree of φ over K0 is the minimum transcendence degree over K0 of

the compositum field of K0 and the field of definition of φ(γ), the minimum being

taken over all γ ∈ Kalg \ {0}.

Also, if φt =
∑r

i=0 aiτ
i is monic, for some non-constant t ∈ A, the concept of

relative modular transcendence degree can be defined as

trdegK0
K0(ar0, . . . , ar−1)

(see Lemma 7.0.43).

With the above definition, in Chapter 7 we prove the following two theorems.

Theorem 1.3.4. Let F be a countable field of characteristic p and let K be a

finitely generated field over F . Let φ : A→ K{τ} be a Drinfeld module of positive
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relative modular transcendence degree over F . Then φ(K) is a direct sum of a finite

torsion submodule and a free submodule of rank ℵ0.

Theorem 1.3.5. Let F be a countable, algebraically closed field of characteristic

p and let K be a finitely generated field of positive transcendence degree over F . If

φ : A→ F{τ} is a Drinfeld module, then φ(K) is a direct sum of φ(F ) and a free

submodule of rank ℵ0.

1.4 The Mordell-Lang Conjecture

Faltings proved the Mordell-Lang Conjecture in the following form (see [11]).

Theorem 1.4.1 (Faltings). Let G be a abelian variety defined over the field of

complex numbers C. Let X ⊂ G be a closed subvariety and Γ ⊂ G(C) a finitely

generated subgroup of the group of C-points on G. Then X(C)∩Γ is a finite union

of cosets of subgroups of Γ.

If we try to formulate the Mordell-Lang Conjecture in the context of algebraic

subvarieties contained in a power of the additive group scheme Ga, the conclusion

is either false (in the characteristic 0 case, as shown by the curve y = x2 which has

an infinite intersection with the finitely generated subgroup Z × Z, without being

itself an additive algebraic group) or trivially true (in the characteristic p > 0 case,

because every finitely generated subgroup of a power of Ga is finite). The paper
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[6] formulated a version of the Mordell-Lang Conjecture in the context of Drinfeld

modules. Even though the formulation from [6] is for Drinfeld modules of generic

characteristic, we can extend the question to Drinfeld modules of finite character-

istic. Thus, our Statement 1.4.3 will cover both cases. Before stating (1.4.3) we

need a definition.

Definition 1.4.2. Let φ : A → K{τ} be a Drinfeld module. For g ≥ 0 we consider

φ acting diagonally on Gg
a. An algebraic φ-submodule of Gg

a is a connected algebraic

subgroup of Gg
a which is stable under the action of φ.

Let K be a finitely generated field of characteristic p. For the next statement

fix a Drinfeld module φ : A → K{τ}.

Statement 1.4.3 (Mordell-Lang statement for φ). Let g ≥ 0. Let Γ be a

finitely generated φ-submodule of Gg
a(K

alg). If X is an algebraic subvariety of

Gg
a, then there are finitely many algebraic φ-submodules B1, . . . , Bs and there are

finitely many elements γ1, . . . , γs of Gg
a(K

alg) such that X(Kalg)∩Γ =
⋃

1≤i≤s(γi +

Bi(K
alg) ∩ Γ).

Before our work, the only result towards Statement 1.4.3 was the following (see

[23]).

Theorem 1.4.4 (Scanlon). Let K be a finitely generated field of characteristic p.

Let φ : A → K{τ} be a Drinfeld module of finite characteristic and modular tran-
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scendence degree at least 1. Let Γ be a finitely generated φ-submodule of Gg
a(K

alg)

and X be an algebraic Kalg-subvariety of Gg
a. Then X(Kalg) ∩ Γ is a finite union

of translates of subgroups of Γ.

Definition 1.4.5. Let K be a field of characteristic p. Let φ : A → K{τ} be a

Drinfeld module of finite characteristic. We define φ♯(Ksep) =
⋂
a∈A\{0}φa(K

sep).

For more details about the concepts used in this section, we refer the reader to

Chapter 8. From now on in this section, K is a finitely generated field.

We fix an ℵ1-saturated elementary extension L of Ksep in the theory of sepa-

rably closed fields of finite Ersov invariant. We define

φ♯ = φ♯(L) =
⋂

a∈A\{0}

φa(L).

The group φ♯ was studied by logicians in the context of the model theory of

separably closed fields (see [23]). In Chapter 8 we prove the following result about

the ring of quasi-endomorphisms of φ♯, denoted QsEKsep(φ♯).

Theorem 1.4.6. Let φ be a Drinfeld module of finite characteristic. Assume there

exists an inseparable polynomial f ∈ AutKsep(φ♯), i.e. f ∈ AutKsep(φ♯) ∩Ksep{τ}τ .

Then φ♯ ⊂ φtor and for all ψ ∈ QsEKsep(φ♯), there exists n ≥ 1 such that ψfn = fnψ

(the identity being seen in QsEKsep(φ♯)).

Using Theorem 1.4.6 we are able to extend the result of Theorem 1.4.4 to-

wards a proof of Statement 1.4.3 for an infinite class of Drinfeld modules of finite
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characteristic.

Theorem 1.4.7. If X is an algebraic Kalg-subvariety of Gg
a and φ : A → K{τ} is

a Drinfeld module of positive modular transcendence degree for which there exists

a non-constant t ∈ A such that φ[t∞](Ksep) is finite, then there exists n ≥ 1 such

that for every finitely generated φ-submodule Γ of Gg
a(K

alg), X(Kalg)∩Γ is a finite

union of translates of Fq[t
n]-submodules of Γ.

For each n ≥ 2 let φn : Fq [t] → Fq(t){τ} be the Drinfeld module given by

(φn)t = tτ + τn. Clearly, φn[t
∞](Fq(t)

sep) = {0}. So, for each n ≥ 2, φn satisfies the

conditions of Theorem 1.4.7. There are many similar infinite families of Drinfeld

modules which satisfy the condition of Theorem 1.4.7. An interesting question that

we hope to answer in a future paper is to give a characterisation in terms of only

the coefficients of φt for all the Drinfeld modules φ that satisfy the hypothesis of

Theorem 1.4.7.

We will also construct a family of Drinfeld modules φ : Fq [t] → K{τ} of

finite characteristic (t) (i.e. φt is inseparable) such that for each φ in this family,

φ[t∞](Ksep) is infinite and for each such φ we have an example of a variety X and

a φ-submodule Γ such that for any n ≥ 1, X(Kalg) ∩ Γ is not a finite union of

translates of Fq [t
n]-submodules of Γ.

Using specialization arguments we are able to prove in Chapter 9 the follow-

ing theorem, which can be considered as the generic case of the Mordell-Lang
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Conjecture for Drinfeld modules.

Theorem 1.4.8. Let φ : A → K{τ} be a generic characteristic Drinfeld module

of relative modular transcendence degree at least 1 over Frac(A). Let g ≥ 0 and X

be an algebraic subvariety of Gg
a. Assume that X does not contain a translate of

a nontrivial connected algebraic subgroup of Gg
a. Then for every finitely generated

φ-submodule Γ of Gg
a(K

alg), X(Kalg) ∩ Γ is finite.

1.5 Elliptic curves over the perfect closure of a

function field

Before studying the Lehmer inequality for Drinfeld modules, we study the Lehmer

inequality for elliptic curves. As a consequence of our work, we obtain in Chapter

3 the following result.

Theorem 1.5.1. Let K be a function field of transcendence degree 1 over Fp.

Let E be a non-isotrivial elliptic curve defined over K. Then E(Kper) is finitely

generated.

Using the result of Theorem 1.5.1, Thomas Scanlon proved the full positive

characteristic Mordell-Lang Conjecture for abelian varieties that are isogenous to

a product of elliptic curves (see [24]).
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Chapter 2

Tame modules

Definition 2.0.2. Let R be an integral domain and letK be its field of fractions. If

M is an R-module, then by the rank of M , denoted rk(M), we mean the dimension

of the K-vector space M ⊗R K. We call M a tame module if every finite rank

submodule of M is finitely generated.

Lemma 2.0.3. Let R be a Dedekind domain and let M be an R-module. Assume

there exists a function h : M → R≥0 satisfying the following properties

(i) (triangle inequality) h(x± y) ≤ h(x) + h(y), for every x, y ∈M .

(ii) if x ∈Mtor, then h(x) = 0.

(iii) there exists c > 0 such that for each x /∈Mtor, h(x) > c.

(iv) there exists a ∈ R \ {0} such that R/aR is finite and for all x ∈ M ,

h(ax) ≥ 4h(x).
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If Mtor is finite, then M is a tame R-module.

Proof. By the definition of a tame module, it suffices to assume that M is a finite

rank R-module and conclude that it is finitely generated.

Let a ∈ R as in (iv) of Lemma 2.0.3. By Lemma 3 of [22], M/aM is finite (here

we use the assumption that Mtor is finite). The following result is the key to the

proof of Lemma 2.0.3.

Sublemma 2.0.4. For every D > 0, there exists finitely many x ∈ M such that

h(x) ≤ D.

Proof of Sublemma 2.0.4. If we suppose SubLemma 2.0.4 is not true, then we can

define

C = inf{D | there exists infinitely many x ∈M such that h(x) ≤ D}.

Properties (ii) and (iii) and the finiteness of Mtor yieldC ≥ c > 0. By the definition

of C , it must be that there exists an infinite sequence of elements zn of M such

that for every n,

h(zn) <
3C

2
.

Because M/aM is finite, there exists a coset of aM in M containing infinitely

many zn from the above sequence.

But if k1 6= k2 and zk1 and zk2 are in the same coset of aM in M , then let
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y ∈M be such that ay = zk1 − zk2 . Using properties (iv) and (i), we get

h(y) ≤
h(zk1 − zk2)

4
≤
h(zk1) + h(zk2)

4
<

3C

4
.

We can do this for any two elements of the sequence that lie in the same coset of

aM in M . Because there are infinitely many of them lying in the same coset, we

can construct infinitely many elements z ∈ M such that h(z) < 3C
4

, contradicting

the minimality of C .

From this point on, our proof of Lemma 2.0.3 follows the classical descent

argument in the Mordell-Weil theorem (see [25]).

Take coset representatives y1, . . . , yk for aM in M . Define then

B = max
i∈{1,...,k}

h(yi).

Consider the set Z = {x ∈ M | h(x) ≤ B}, which is finite according to Sub-

Lemma 2.0.4. Let N be the finitely generated R-submodule of M which is spanned

by Z.

We claim that M = N . If we suppose this is not the case, then by Sub-

Lemma 2.0.4 we can pick y ∈ M −N which minimizes h(y). Because N contains

all the coset representatives of aM in M , we can find i ∈ {1, . . . , k} such that

y− yi ∈ aM . Let x ∈M be such that y− yi = ax. Then x /∈ N because otherwise

it would follow that y ∈ N ( we already know yi ∈ N). By our choice of y and by
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properties (iv) and (i), we have

h(y) ≤ h(x) ≤
h(y − yi)

4
≤
h(y) + h(yi)

4
≤
h(y) +B

4
.

This means that h(y) ≤ B
3
< B. This contradicts the fact that y /∈ N because

N contains all the elements z ∈ M such that h(z) ≤ B. This contradiction shows

that indeed M = N and so, M is finitely generated.

Corollary 2.0.5. Let R be a Dedekind domain and let M be a tame R-module.

(a) If rk(M) = ℵ0, then M is a direct sum of a finite torsion submodule and a

free submodule of rank ℵ0.

(b) If rk(M) is finite and R is a principal ideal domain, then M is a direct sum

of a finite torsion submodule and a free submodule of finite rank.

Proof. Part (a) of Corollary 2.0.5 is proved in Proposition 10 of [22].

If rk(M) is finite and because M is tame, we conclude that M is finitely gener-

ated. Because R is a principal ideal domain we get the result of part (b) of Corollary

2.0.5.

The following lemma will be used in the proof of Theorem 7.0.44.

Lemma 2.0.6. Let R be a Dedekind domain. Let M1 ⊂ M2 ⊂ M3 be R-modules.

If M1 and M3 have rank ℵ0 and M3 is tame then M2 is the direct sum of a finite

torsion submodule and a free submodule of rank ℵ0.
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Proof of Lemma 2.0.6. The rank of M2 is at least the rank of M1 and at most the

rank of M3. Thus, M2 has rank ℵ0.

Let N be a finite rank submodule of M2. Then N is also a finite rank submodule

of M3. Because M3 is tame, N is finitely generated. Thus, because N was an

arbitrarily finite rank submodule of M2, we conclude that M2 is tame. Corollary

2.0.5 finishes the proof.
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Chapter 3

Elliptic curves over the perfect

closure of a function field

The setting for this Chapter is the following: K is a finitely generated field of

transcendence degree 1 over Fp where p is a prime as always. We fix an algebraic

closure Kalg of K. We denote by Falg
p the algebraic closure of Fp inside Kalg.

Let E be a non-isotrivial elliptic curve (i.e. j(E) /∈ Falg
p ) defined over K. Let

Kper be the perfect closure of K inside Kalg. We will prove in Theorem 3.0.8 that

E(Kper) is finitely generated.

For every finite extension L of K we denote by ML the set of discrete valuations

v on L, normalized so that the value group of v is Z. For each v ∈ ML we denote

by fv the degree of the residue field of v over Fp. If P ∈ E(L) and m ∈ Z, mP
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represents the point on the elliptic curve obtained using the group law on E. We

define a notion of height for the point P ∈ E(L) with respect to the field K (see

Chapter V III of [27] and Chapter III of [28])

hK(P ) =
−1

[L : K]

∑

v∈ML

fv min{0, v(x(P ))}. (3.1)

Then we define the canonical height of P with respect to K as

ĥE/K(P ) =
1

2
lim
n→∞

hK(2nP )

4n
. (3.2)

We also denote by ∆E/K the divisor which is the minimal discriminant of E

with respect to the field K (see Chapter V III of [27]). By deg(∆E/K) we denote

the degree of the divisor ∆E/K (computed with respect to Fp). We denote by gK

the genus of the function field K.

Theorem 3.0.7 (Goldfeld-Szpiro). Let E be an elliptic curve over a function

field K of one variable over a field in any characteristic. Let ĥE/K denote the

canonical height on E and let ∆E/K be the minimal discriminant of E, both com-

puted with respect to K. Then for every point P ∈ E(K) which is not a torsion

point:

ĥE/K(P ) ≥ 10−13 deg(∆E/K) if deg(∆E/K) ≥ 24(gK − 1) ,

and

ĥE/K(P ) ≥ 10−13−23g deg(∆E/K) if deg(∆E/K) < 24(gK − 1).
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Theorem 3.0.8. If E is a non-isotrivial elliptic curve defined over the function

field K (trdeg
Fp
K = 1), then E(Kper) is finitely generated.

Proof. We first observe that replacing K by a finite extension does not affect the

conclusion of the theorem. Thus, at the expense of replacingK by a finite extension,

we may assume E is semi-stable over K (the existence of such a finite extension is

guaranteed by Proposition 5.4 (a) of [27]).

As before, we let ĥE/K and ∆E/K be the canonical height on E and the minimal

discriminant of E, respectively, computed with respect to K.

For every n ≥ 1, we denote by E(pn) the elliptic curve F n(E), where F is the

usual Frobenius (seen as morphism of varieties). Thus

F n : E(K1/pn

) → E(pn)(K) (3.3)

is a bijection. Moreover, for every P ∈ E
(
K1/p

)
,

pP = (V F ) (P ) ∈ V
(
E(p) (K)

)
⊂ E (K) (3.4)

where V is the Verschiebung. Similarly, we get that

pnE
(
K1/pn)

⊂ E (K) for every n ≥ 1. (3.5)

Thus E(Kper) lies in the p-division hull of the Z-module E(K). Because E(K) is

finitely generated (by the Mordell-Weil theorem), we conclude that E(Kper), as a

Z-module, has finite rank.
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We will show next that the height function ĥE/K and p ∈ Z satisfy the properties

(i)-(iv) of Lemma 2.0.3. Properties (i) and (ii) are well-known for ĥE/K and we

also have the formula (see Chapter V III of [27])

ĥE/K(pP ) = p2 ĥE/K(P ) ≥ 4 ĥ(P ) for every P ∈ E(Kalg),

which proves that property (iv) of Lemma 2.0.3 holds.

Let P be a non-torsion point of E(Kper). Then P ∈ E(K1/pn
) for some n ≥

0. Because K1/pn
is isomorphic to K, they have the same genus, which we call

it g. We denote by ĥE/K1/pn and ∆E/K1/pn the canonical height on E and the

minimal discriminant of E, respectively, computed with respect to K1/pn
. Using

Theorem 3.0.7, we conclude

ĥE/K1/pn (P ) ≥ 10−13−23g deg(∆E/K1/pn ). (3.6)

We have ĥE/K1/pn (P ) = [K1/pn
: K] ĥE/K(P ) = pn ĥE/K(P ). Similarly, using

the proof of Proposition 5.4 (b) of [27],

deg(∆E/K1/pn ) = pn deg(∆E/K).

We conclude that for every P ∈ E(Kper),

ĥE/K(P ) ≥ 10−13−23g deg(∆E/K). (3.7)

Because E is non-isotrivial, ∆E/K 6= 0 and so, deg(∆E/K) ≥ 1. We conclude

ĥE/K(P ) ≥ 10−13−23g. (3.8)



25

Inequality (3.8) shows that property (iii) of Lemma 2.0.3 holds for ĥE/K . Thus

properties (i)-(iv) of Lemma 2.0.3 hold for ĥE/K and p ∈ Z.

We show that Etor(K
per) is finite. Equation (3.5) shows that the prime-to-p-

torsion of E(Kper) equals the prime-to-p-torsion of E(K); thus the prime-to-p-

torsion of E(Kper) is finite. If there exists infinite p-power torsion in E (Kper),

equation (3.3) yields that we have arbitrarily large p-power torsion in the family

of elliptic curves E(pn) over K. But this contradicts standard results on uniform

boundedness for the torsion of elliptic curves over function fields, as established in

[18] (actually, [18] proves a uniform boundedness of the entire torsion of elliptic

curves over a fixed function field; thus including the prime-to-p-torsion). Hence

Etor(K
per) is finite.

Because all the hypothesis of Lemma 2.0.3 hold, we conclude that E(Kper)

is tame. Because rk (E(Kper)) is finite we conclude by Corollary 2.0.5 (b) that

E(Kper) is a direct sum of a finite torsion submodule and a free submodule of

finite rank.

Remark 3.0.9. It is absolutely crucial in Theorem 3.0.8 that E is non-isotrivial.

Theorem 3.0.8 fails in the isotrivial case, i.e. there exists no n ≥ 0 such that

E(Kper) = E(K1/pn
). Indeed, if E is defined by y2 = x3 + x (p > 2), K =

Fp

(
t, (t3 + t)

1
2

)
and P =

(
t, (t3 + t)

1
2

)
, then F−nP ∈ E(K1/pn

) \ E(K1/pn−1
), for

every n ≥ 1. So, E(Kper) is not finitely generated in this case (and we can get a



26

similar example also for the case p = 2).
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Chapter 4

Valuations and Heights

4.1 Heights associated to Drinfeld modules with

respect to good sets of valuations

We continue with the notation from Chapter 1. So, K is a field extension of Fq

and φ : A → K{τ} is a Drinfeld module. We define MK as the set of all discrete

valuations of K. We normalize all the discrete valuations v ∈MK so that the range

of v is Z. In general, every discrete valuation we work with will have range Z.

Definition 4.1.1. We call a subset U ⊂MK equipped with a function d : U → R>0

a good set of valuations if the following properties are satisfied

(i) for every nonzero x ∈ K, there are finitely many v ∈ U such that v(x) 6= 0.
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(ii) for every nonzero x ∈ K,

∑

v∈U

d(v) · v(x) = 0.

The positive real number d(v) will be called the degree of the valuation v. When

we say that the positive real number d(v) is associated to the valuation v, we

understand that the degree of v is d(v).

When U is a good set of valuations, we will refer to property (ii) as the sum

formula for U .

Definition 4.1.2. Let U be a good set of valuations on K. The set {0}∪{x ∈ K |

v(x) = 0 for all v ∈ U} is the set of constants for U . We denote this set by C(U).

Lemma 4.1.3. Let U be a good set of valuations on K. If x ∈ K is integral at all

places v ∈ U , then x ∈ C(U).

Proof. Let x ∈ K \ {0}. By the sum formula for U , if v(x) ≥ 0 for all v ∈ U , then

actually v(x) = 0 for all v ∈ U (a sum of non-negative numbers is 0 if and only if

all the numbers are 0).

Lemma 4.1.4. Let U be a good set of valuations on a field K. The set C(U) is a

subfield of K.

Proof. By its definition, C(U) is closed under multiplication and division. Because

of Lemma 4.1.3, C(U) is closed also under addition.
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Definition 4.1.5. Let v ∈ MK of degree d(v). We say that the valuation v is

coherent (on Kalg) if for every finite extension L of K,

∑

w∈ML
w|v

e(w|v)f(w|v) = [L : K], (4.1)

where e(w|v) is the ramification index and f(w|v) is the relative degree between

the residue field of w and the residue field of v.

Condition (4.1) says that v is defectless in L. In this case, we also let the degree

of any w ∈ML, w|v be

d(w) =
f(w|v)d(v)

[L : K]
. (4.2)

It is immediate to see that condition (4.2) of Definition 4.1.5 is equivalent to

the stronger condition that for every two finite extensions of K, L1 ⊂ L2 and for

every v2 ∈ML2 that lies over v1 ∈ML1 , which in turn lies over v,

d(v2) =
f(v2|v1)d(v1)

[L2 : L1]
. (4.3)

We will use several times the following result from [10] (see (18.1), page 136).

Lemma 4.1.6. Let L1 ⊂ L2 ⊂ L3 be a tower of finite extensions. Let v ∈ ML1

and denote by w1, . . . , ws all the places of L2 that lie over v. Then the following

two statements are equivalent:

1) v is defectless in L3.

2) v is defectless in L2 and w1, . . . , ws are defectless in L3.
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Lemma 4.1.6 shows that condition (4.1) of Definition 4.1.5 is equivalent to the

following statement: for every two finite extensions of K, L1 ⊂ L2 and for every

v1 ∈ML1 , v1|v

∑

w∈ML2
w|v1

e(w|v1)f(w|v1) = [L2 : L1]. (4.4)

We say that condition (4.1) of Definition 4.1.5 holds relative to the valuation v for

the extension L2/L1, if we prove (4.4) for all v1 ∈ ML1, v1|v. The following result

is an immediate consequence of Definition 4.1.5 and Lemma 4.1.6.

Lemma 4.1.7. If v ∈MK is a coherent valuation (on Kalg), then for every finite

extension L of K and for every w ∈ ML and w|v, w is a coherent valuation (on

Kalg = Lalg).

Definition 4.1.8. We let UK be a good set of valuations on K. We call UK

a coherent good set of valuations (on Kalg) if the following two conditions are

satisfied

(i) for every finite extension L of K, if UL ∈ ML is the set of all valuations

lying over valuations from UK , then UL is a good set of valuations.

(ii) for every v ∈ UK , the valuation v is coherent (on Kalg).

Remark 4.1.9. Using the argument from page 9 of [25], we conclude that condition

(i) from Definition 4.1.8 is automatially satisfied if UK is a good set of valuations

and if condition (ii) of Definition 4.1.8 is satisfied.



31

An immediate corollary to Lemma 4.1.7 is the following result.

Corollary 4.1.10. If UK ⊂ MK is a good set of valuations that is coherent (on

Kalg), then for every finite extension L of K, if UL is the set of all valuations on

L which lie over valuations from UK, then UL is a coherent good set of valuations.

Fix now a field K of characteristic p and let φ : A → K{τ} be a Drinfeld

module. Let v ∈ MK be a coherent valuation (on Kalg). Let d(v) be the degree of

v as in Definition 4.1.5. For such v, we construct the local height ĥv with respect

to the Drinfeld module φ. Our construction follows [22]. For x ∈ K and v ∈ U , we

set ṽ(x) = min{0, v(x)}. For a non-constant element a ∈ A, we define

Vv(x) = lim
n→∞

ṽ(φan(x))

deg(φan)
. (4.5)

This function is well-defined and satisfies the same properties as in Propositions

1-3 from [22]. Mainly, we will use the following facts:

1) if x and all the coefficients of φa are integral at v, then Vv(x) = 0.

2) for all b ∈ A \ {0}, Vv(φb(x)) = deg(φb) · Vv(x). Moreover, we can use any

non-constant a ∈ A for the definition of Vv(x) and we will always get the same

function Vv.

3) Vv(x± y) ≥ min{Vv(x), Vv(y)}.

4) if x ∈ φtor, then Vv(x) = 0.
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We define then

ĥv(x) = −d(v)Vv(x). (4.6)

If L is a finite extension of K and w ∈ML lies over v then we define similarly

the function Vw on L and just as above, we let ĥw(x) = −d(w)Vw(x) for every

x ∈ L.

If U = UK ⊂MK is a coherent good set of valuations, then for each v ∈ U , we

denote by ĥU,v the local height associated to φ with respect to v (the construction

of ĥU,v is identical with the one from above). Then we define the global height

associated to φ as

ĥU (x) =
∑

v∈U

ĥU,v(x). (4.7)

For each x, the above sum is finite due to fact 1) stated above (see also Proposition

6 of [22]).

For each finite extension L of K, we let UL be the set of all valuations of L that

lie over places from UK . As stated in Corollary 4.1.10, UL is also a coherent good

set of valuations and so, we can define the local heights with respect to w ∈ UL,

associated to φ for all elements x ∈ L. Then we define the global height of x as

ĥUL
(x) =

∑

w∈UL

ĥw(x).

Claim 4.1.11. Let L1 ⊂ L2 be finite extensions of K. Let v ∈ UL1 and x ∈ L1.
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Then

∑

w∈UL2
w|v

ĥUL2
,w(x) = ĥUL1

,v(x).

Proof. We have

∑

w∈UL2
w|v

ĥUL2
,w(x) = −

∑

w∈UL2
w|v

d(w)Vw(x).

Because d(w) = d(v)f(w|v)
[L2:L1]

(see (4.3)) and Vw(x) = e(w|v)Vv(x) we get

∑

w∈UL2
w|v

ĥUL2
,w(x) =

−d(v)Vv(x)

[L2 : L1]

∑

w∈UL2
w|v

e(w|v)f(w|v).

Because v is defectless and ĥUL1
,v(x) = −d(v)Vv(x), we are done.

Claim 4.1.11 shows that our definition of the global height is independent of

the field L containing x and so, we can drop the index referring to the field L

containing x when we work with the global height associated to a coherent good

set of valuations.

The above construction for local and global heights depends on the selected

good set of valuations UK on K. We will always specify first which is the good

set of valuations that we consider when we will work with heights associated to a

Drinfeld module.
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4.2 Examples of good sets of valuations

Let F be a field of characteristic p and let K = F (x1, . . . , xn) be the rational

function field of transcendence degree n ≥ 1 over F . We let F alg be the algebraic

closure of F inside Kalg. We will construct a coherent good set of valuations on

Kalg.

First we construct a good set of valuations on K and then we will show that

this set is also coherent. According to Remark 4.1.9, we only need to show that

each of the valuations on K we construct is coherent.

Let R = F [x1, . . . , xn]. For each irreducible polynomial P ∈ R we let vP be the

valuation on K given by

vP (
Q1

Q2

) = ordP (Q1) − ordP (Q2) for every nonzero Q1, Q2 ∈ R,

where by ordP (Q) we denote the order of the polynomial Q ∈ R at P .

Also, we construct the valuation v∞ on K given by

v∞(
Q1

Q2
) = deg(Q2) − deg(Q1) for every nonzero Q1, Q2 ∈ R,

where by deg(Q) we denote the total degree of the polynomial Q ∈ R.

We let MK/F be the set of all valuations vP for irreducible polynomials P ∈ R

plus the valuation v∞. We let the degree of vP be d(vP ) = deg(P ) for every

irreducible polynomial P ∈ R and we also let d(v∞) = 1. Then, for every nonzero
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x ∈ K, we have the sum formula

∑

v∈MK/F

d(v) · v(x) = 0.

So, MK/F is a good set of valuations on K according to Definition 4.1.1. The field

F is the field of constants with respect to MK/F .

Remark 4.2.1. As mentioned in the Introduction, the valuations constructed above

are exactly the valuations associated with the irreducible divisors of the projective

space PnF . The degrees of the valuations are the projective degrees of the corre-

sponding irreducible divisors.

Let K ′ be a finite extension of K and let F ′ be the algebraic closure of F in

K ′. We let MK′/F ′ be the set of all valuations on K ′ that extend the valuations

from MK/F . We normalize each valuation w from MK′/F ′ so that the range of w is

Z. Also, we define

d(w) =
f(w|v)d(v)

[K ′ : K]
(4.8)

for every w ∈MK′/F ′ and v ∈MK/F such that w|v. Note that strictly speaking, w

is an extension of v as a place and not as a valuation function. However, we still

call w an extension of v.

Remark 4.2.2. Continuing the observations made in Remark 4.2.1, the valuations

defined on K ′ are the ones associated with irreducible divisors of the normalization

of PnF in K ′. In general, the discrete valuations associated with the irreducible
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divisors of a variety which is regular in codimension 1 form a coherent good set of

valuations.

In order to show that MK/F is a coherent good set of valuations (on Kalg), we

need to check that condition (4.1) of Definition 4.1.5 is satisfied. This is proved in

Chapter 1, Section 4 of [26] (Hypothesis (F) holds for algebras of finite type over

fields and so, it holds for localizations of such algebras). For each v ∈ MK/F we

apply Propositions 10 and 11 of [26] to the local ring of v to show v is coherent.

Now, in general, let F be a field of characteristic p and let K be any finitely

generated extension over F , of positive transcendence degree over F . If F is alge-

braically closed in K, we construct a coherent good set of valuations MK/F ⊂MK ,

as follows. We pick a transcendence basis {x1, . . . , xn} for K/F and first construct

as before the set of valuations on F (x1, . . . , xn):

{v∞} ∪ {vP | P irreducible polynomial in F [x1, . . . , xn]}.

Then, by Corollary 4.1.10, we have a unique way of extending coherently this set

of valuations to a good set of valuations on K. The set MK/F depends on our

initial choice of the transcendence basis for K/F . Thus, in our notation MK/F ,

we suppose that K/F comes equipped with a choice of a transcendence basis for

K/F .



37

We also note that for every v ∈ MK/F , if v0 ∈MF (x1,...,xn)/F lies below v, then

d(v) =
f(v|v0)d(v0)

[K : F (x1, . . . , xn)]
≥

1

[K : F (x1, . . . , xn)]
. (4.9)

In general, if K ′ is a finite extension of K and v′ ∈MK′ lies above v ∈MK , then

d(v′) =
f(v′|v)d(v)

[K ′ : K]
≥

d(v)

[K ′ : K]
. (4.10)

For each such good set of valuations MK/F and for any Drinfeld module φ :

A → K{τ}, we construct as before the set of local heights and the global height

associated to φ. We denote the local heights by ĥMK/F ,v and the global height by

ĥMK/F
. If F is a finite field, our construction coincides with the one from [32]. Thus,

if F is a finite field, we will drop the subscript MK/F from the notation of the local

heights and of the global height. Also, when F is a finite field and trdegF K = 1,

our construction also coincides with the one from [22].
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Chapter 5

A local analysis of heights on

Drinfeld modules

The setting for this Chapter is the following: K is a field of characteristic p,

v0 ∈ MK is a coherent valuation (on Kalg), d(v0) > 0 is the degree of v0 and

φ : A→ K{τ} is a Drinfeld module.

5.1 A local formulation of the Lehmer inequality

for Drinfeld modules

The following statement would imply (1.2.2) and we refer to it as the local case of

the Lehmer inequality for Drinfeld modules.
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Statement 5.1.1. Let v0 ∈ MK be a coherent valuation (on Kalg) and d(v0) be

the degree of v0. For the Drinfeld module φ : A → K{τ} there exists a constant

C > 0, depending only on φ, such that for any x ∈ Kalg and any place v|v0 of

K(x), if ĥv(x) > 0, then ĥv(x) ≥
Cd(v0)

[K(x):K]
.

In this Chapter we will prove that (5.1.1) is false but in the case of Drinfeld

modules of finite characteristic there is the following result.

Theorem 5.1.2. Let K be a field of characteristic p and let φ : A → K{τ} be a

Drinfeld module of finite characteristic. Let v0 ∈ MK be a coherent valuation (on

Kalg) and d(v0) be the degree of v0. There exist two positive constants C and k

depending only on φ such that if x ∈ Kalg and v|v0 is a place of K(x) for which

ĥv(x) > 0, then ĥv(x) ≥
Cd(v0)
dk (where d = [K(x) : K]).

Before going further on, we want to point out that the fieldK is part of the data

associated to the Drinfeld module φ and so, any constant C as in Theorem 5.1.2

might also depend on the field K. Also, at the beginning of the proof of Theo-

rem 5.1.2 we will (possibly) replace K by a finite extension and we will explain

how the constant C will be affected by this change. Finally, just to make things

clearer, we will point out during key steps while proving Theorem 5.1.2 what is

the dependence of C in terms of φ.

Theorem 5.1.2 will follow from Theorem 1.2.3, which we restate here.
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Theorem 5.1.3. Let K be a field of characteristic p and let φ : A → K{τ} be

a Drinfeld module of finite characteristic. Let v0 ∈ MK be a coherent valuation

(on Kalg) and d(v0) be the degree of v0. There exist C > 0 and k ≥ 1, both

depending only on φ, such that if x ∈ Kalg and v ∈ MK(x), v|v0 and ĥv(x) > 0,

then ĥv(x) ≥
Cd(v)

e(v|v0)k−1 .

An immediate corollary to Theorem 5.1.3 is the following.

Corollary 5.1.4. With the notation from Theorem 5.1.3, if L is a finite extension

of K(x) and w ∈ML lies above v, then ĥw(x) ≥ Cd(w)
e(w|v0)k−1 .

Proof. The proof is immediate once we note that ĥw(x) = d(w)e(w|v)
d(v)

ĥv(x) and

e(w|v0) = e(w|v)e(v|v0) and e(w|v) ≥ 1.

Moreover if p does not divide e(v|v0), then we can give a very easy expression

for the exponent k in (5.1.3). If p does not divide e(v|v0), our value for k is optimal,

as shown by Example 5.2.22 (see Theorem 5.2.24).

Proof of Theorem 5.1.2. By Theorem 5.1.3, there exists a constant C > 0 depend-

ing only on φ such that

ĥv(x) ≥
Cd(v)

e(v|v0)k−1
.

Because d(v) = d(v0)f(v|v0)
[K(x):K]

and f(v|v0) ≥ 1 and e(v|v0) ≤ [K(x) : K], we obtain

the result of Theorem 5.1.2.
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As Example 5.2.25 will show, there are infinitely many Drinfeld modules φ :

A → K{τ} of generic characteristic and there exists v0 ∈ MK such that for every

C > 0 and every k, there exists x ∈ Kalg and there exists v|v0, v ∈ MK(x) such

that 0 < ĥv(x) <
C

[K(x):K]k
. In Theorem 5.2.26 (Chapter 5), we will give the best

result towards Statement 5.1.1 for Drinfeld modules of generic characteristic.

5.2 General valuation theory on Drinfeld mod-

ules

We fix a coherent valuation v0 ∈ MK of degree d(v0). As before, for each finite

extension L of K and for each v ∈ML such that v|v0, we let d(v) = f(v|v0)d(v0)
[L:K]

. Also,

let φ : A → K{τ}. Most of our results are true for both finite characteristic and

generic characteristic Drinfeld modules. We will specify when we restrict ourselves

to the case of Drinfeld modules of finite characteristic.

In proving (5.1.3), replacing K by a finite extension K ′ may induce only a

constant factor [K ′ : K] in the denominator of the lower bound for the local height

(see Corollary 5.1.4 and inequality (4.10)).

Fix a nonconstant t ∈ A and let φt =
∑r

i=r0
aiτ

i, where both ar0 and ar

are nonzero and 0 ≤ r0 ≤ r, while r ≥ 1. Theorem 5.1.3 is not affected if we

replace φ by a Drinfeld module that is isomorphic to φ. Thus we can conjugate
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φ by an element γ ∈ Kalg \ {0} such that φ(γ), the conjugated Drinfeld module,

has the property that φ
(γ)
t is monic as a polynomial in τ . Then φ and φ(γ) are

isomorphic over K(γ), which is a finite extension of K (because γ satisfies the

equation γq
r−1ar = 1).

So, we will prove Theorem 5.1.3 for φ(γ) and because ĥφ,v(x) = ĥφ(γ),v(γ
−1x) for

every place v|v0 of K(γ, x) (as proved in [22], Proposition 2) the result will follow

for φ.

From now on, in this chapter, φt is monic as a polynomial in τ .

Let L be a finite extension of K and let v ∈ML be a place lying over v0. Denote

by S = SL the subset of ML where the coefficients ai, for i ∈ {r0, . . . , r − 1}, have

poles. Also, denote by S0 = SK the set of places from MK where the coefficients

ai have poles. Thus, v ∈ S if and only if v0 ∈ S0. We recall here the definition of

places of good reduction.

Definition 5.2.1. Let φ : A → K{τ} be a Drinfeld module. Let L be a finite

extension of K. We call v ∈ML a place of good reduction for φ if for all a ∈ A\{0},

the coefficients of φa are integral at v and the leading coefficient of φa is a unit in

the valuation ring at v. If v ∈ ML is not a place of good reduction, we call it a

place of bad reduction.

Lemma 5.2.2. The set SL is the set of all places from ML at which φ has bad

reduction.
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Proof. By the construction of the set SL, the places from SL are of bad reduction

for φ. We will prove that these are all the bad places for φ.

Let a ∈ A. The equation φaφt = φtφa will show that all the places where

not all of the coefficients of φa are integral, are from SL. Suppose this is not the

case and take a place v /∈ SL at which some coefficient of φa is not integral. Let

φa =
∑r′

i=0 a
′
iτ
i and assume that i is the largest index for a coefficient a′i that is

not integral at v.

We equate the coefficient of τ i+r in φaφt and φtφa, respectively. The former is

a′i +
∑

j>i

a′ja
qj

r+i−j (5.1)

while the latter is

a′q
r

i +
∑

j>i

ar+i−ja
′qr+i−j

j . (5.2)

Thus the valuation at v of (5.1) is v(a′i), because all the a′j (for j > i) and ar+i−j

are integral at v, while v(a′i) < 0. Similarly, the valuation of (5.2) is v(a′q
r

i ) =

qrv(a′i) < v(a′i) (r ≥ 1 because t is non-constant). This fact gives a contradiction

to φaφt = φtφa. So, the coefficients of φa for all a ∈ A, are integral at all places of

ML \ SL.

Now, using the same equation φaφt = φtφa and equating the leading coefficients

in both polynomials we obtain

a′r′ = a′q
r

r′ .
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So, a′r′ ∈ Falg
p . Thus, all the leading coefficients for polynomials φa are constants.

So, if v ∈ML \ SL, then all the coefficients of φa are integral at v and the leading

coefficient of φa is a unit in the valuation ring at v for every a ∈ A \ {0}. Thus,

v /∈ SL is a place of good reduction for φ.

For each v ∈ ML denote by

Mv = min
i∈{r0,...,r−1}

v(ai)

qr − qi
(5.3)

where by convention: v(0) = +∞. If r0 = r, definition (5.3) is void and in that

case we define Mv = +∞.

Note that Mv < 0 if and only if v ∈ S.

For each v ∈ S we fix a uniformizer πv ∈ L of the place v. We define next the

concept of angular component for every y ∈ L \ {0}.

Definition 5.2.3. Assume v ∈ S. For every nonzero y ∈ L we define the angular

component of y at v, denoted by acπv(y), to be the residue at v of yπ
−v(y)
v . (Note

that the angular component is never 0.)

We can define in a similar manner as above the notion of angular component

at each v ∈ ML but we will work with angular components at the places from S

only.

The main property of the angular component is that for every y, z ∈ L \ {0},

v(y − z) > v(y) = v(z) if and only if (v(y), acπv(y)) = (v(z), acπv(z)).
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Our strategy for proving (5.1.3) will be to prove that if ĥv(x) > 0 then either

ĥv(x) ≥
Cd(v)

e(v|v0)
r
r0

−1

where C > 0 is a constant depending only on φ, or

v ∈ S and (v(x), acπv(x)) belongs to a set of cardinality we can control.

If v ∈ S we define Pv as the set containing {0} and all the negatives of the

non-negative slopes of the Newton polygon of φt, i.e. numbers of the form

α = −
v(ai) − v(aj)

qi − qj
=
v(ai) − v(aj)

qj − qi
≤ 0, (5.4)

for some i 6= j in {r0, . . . , r} such that

v(ai) + qiα = v(aj) + qjα = min
r0≤l≤r

(
v(al) + qlα

)
.

Clearly, |Pv| ≤ r−r0 +1, because there are at most (r−r0) sides of the Newton

polygon of φt.

For each α ∈ Pv we let l ≥ 1 and let i0 < i1 < · · · < il be all the indices i for

which ai 6= 0 and

v(ai) + qiα = min
r0≤j≤r

(
v(aj) + qjα

)
.

Moreover, if l ≥ 1 then for j, k ∈ {0, . . . , l} with j 6= k, we have

v(aij) − v(aik)

qik − qij
= α. (5.5)



46

We define Rv(α) as the set containing {1} and all the nonzero solutions of the

equation
l∑

j=0

acπv(aij)X
q

ij
= 0, (5.6)

where the indices ij are the ones associated to α as in (5.5). Clearly, for every

α ∈ Pv, |Rv(α)| ≤ qr, because there are at most (qr−1) nonzero solutions to (5.6).

Note that if α = 0, there might be no indices ij and ik as in (5.5). In that case,

the construction of Rv(0) from (5.6) is void and so, Rv(0) = {1}. The motivation

for the special case 0 ∈ Pv and 1 ∈ Rv(0) is explained in the proof of Lemma 5.2.9.

We remind the reader that our setting for this Chapter will always be that

v0 ∈ MK is a coherent valuation and for a finite extension L of K, the place

v ∈ML lies over v0.

Lemma 5.2.4. Assume v ∈ S and let x ∈ L. If v(φt(x)) > mini∈{r0,...,r} v(aix
qi
)

then (v(x), acπv(x)) ∈ Pv ×Rv(v(x)).

Proof. If v(φt(x)) > mini∈{r0,...,r} v(aix
qi
) it means that there exists l ≥ 1 and

i0 < · · · < il

such that

v(ai0x
qi0

) = · · · = v(ailx
qil

) = min
i∈{r0,...,r}

v(aix
qi

) (5.7)

and also
l∑

j=0

acπv(aij) acπv(x)
qij

= 0. (5.8)
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Equations (5.7) and (5.8) yield v(x) ∈ Pv and acπv(x) ∈ Rv(v(x)) respectively,

according to (5.4) and (5.6).

Lemma 5.2.5. Let v ∈ ML and let x ∈ L. If v(x) < min{0,Mv}, then ĥv(x) =

−d(v) · v(x).

Proof. For every i ∈ {r0, . . . , r − 1}, v(aix
qi
) = v(ai) + qiv(x) > qrv(x) because

v(x) < Mv = mini∈{r0,...,r−1}
v(ai)
qr−qi . This shows that v(φt(x)) = qrv(x) < v(x) <

min{0,Mv}. By induction, v(φtn(x)) = qrnv(x) for all n ≥ 1. So, Vv(x) = v(x) and

ĥv(x) = −d(v) · v(x).

An immediate corollary to (5.2.5) is the following result.

Lemma 5.2.6. Assume v /∈ S and let x ∈ L. If v(x) < 0 then ĥv(x) = −d(v)·v(x),

while if v(x) ≥ 0 then ĥv(x) = 0.

Proof. First, it is clear that if v(x) ≥ 0 then for all n ≥ 1, v(φtn(x)) ≥ 0 because

all the coefficients of φt and thus of φtn have non-negative valuation at v. Thus

Vv(x) = 0 and so,

ĥv(x) = 0.

Now, if v(x) < 0, then v(x) < Mv because Mv ≥ 0 (v /∈ S). So, applying the result

of (5.2.5) we conclude the proof of this lemma.
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We will get a better insight into the local heights behaviour with the following

lemma.

Lemma 5.2.7. Let x ∈ L. Assume v ∈ S and v(x) ≤ 0. If (v(x), acπv(x)) /∈

Pv × Rv(v(x)) then v(φt(x)) < Mv, unless q = 2, r = 1 and v(x) = 0.

Proof. Lemma 5.2.4 implies that there exists i0 ∈ {r0, . . . , r} such that for all

i ∈ {r0, . . . , r} we have v(aix
qi
) ≥ v(ai0x

qi0 ) = v(φt(x)).

Suppose (5.2.7) is not true and so, there exists j0 < r such that

v(aj0)

qr − qj0
≤ v(φt(x)) = v(ai0) + qi0v(x).

This means that

v(aj0) ≤ (qr − qj0)v(ai0) + (qr+i0 − qi0+j0)v(x). (5.9)

On the other hand, by our assumption about i0, we know that v(aj0x
qj0 ) ≥

v(ai0x
qi0 ) which means that

v(aj0) ≥ v(ai0) + (qi0 − qj0)v(x). (5.10)

Putting together inequalities (5.9) and (5.10), we get

v(ai0) + (qi0 − qj0)v(x) ≤ (qr − qj0)v(ai0) + (qr+i0 − qi0+j0)v(x).

Thus

v(x)(qr+i0 − qi0+j0 − qi0 + qj0) ≥ −v(ai0)(q
r − qj0 − 1). (5.11)
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But qr+i0 − qi0+j0 − qi0 + qj0 = qr+i0(1− qj0−r − q−r + qj0−r−i0) and because j0 < r

and qj0−r−i0 > 0, we obtain

1 − qj0−r − q−r + qj0−r−i0 > 1 − q−1 − q−r ≥ 1 − 2q−1 ≥ 0. (5.12)

Also, qr − qj0 − 1 ≥ qr − qr−1 − 1 = qr−1(q − 1) − 1 ≥ 0 with equality if and only

if q = 2, r = 1 and j0 = 0. We will analyze this case separately. So, as long as we

are not in this special case, we do have

qr − qj0 − 1 > 0. (5.13)

Now we have two possibilities (remember that v(x) ≤ 0):

(i) v(x) < 0

In this case, (5.11), (5.12) and (5.13) tell us that −v(ai0) < 0. Thus, v(ai0) >

0. But we know from our hypothesis on i0 that v(ai0x
qi0 ) ≤ v(xq

r
) which is in

contradiction with the combination of the following facts: v(x) < 0, i0 ≤ r and

v(ai0) > 0.

(ii) v(x) = 0

Then another use of (5.11), (5.12) and (5.13) gives us −v(ai0) ≤ 0; thus v(ai0) ≥

0. This would mean that v(ai0x
qi0 ) ≥ 0 and this contradicts our choice for i0

because we know from the fact that v ∈ S, that there exists i ∈ {r0, . . . , r} such

that v(ai) < 0. So, then we would have

v(aix
qi

) = v(ai) < 0 ≤ v(ai0x
qi0

).
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Thus, in either case (i) or (ii) we get a contradiction that proves the lemma except

in the special case that we excluded above: q = 2, r = 1 and j0 = 0. If we have

q = 2 and r = 1 then

φt(x) = a0x+ x2.

By the definition of S and because v ∈ S, v(a0) < 0. Also, Mv = v(a0).

If v(x) < 0, then either v(x) < Mv = v(a0), in which case again v(φt(x)) < Mv

(as shown in the proof of lemma (5.2.5)), or v(x) ≥ Mv. In the latter case,

v(φt(x)) = v(a0x) = v(a0) + v(x) < v(a0) = Mv.

So, we see that indeed, only v(x) = 0, q = 2 and r = 1 can make v(φt(x)) ≥ Mv

in the hypothesis of (5.2.7).

Lemma 5.2.8. Assume v ∈ S and let x ∈ L. Excluding the case q = 2, r = 1 and

v(x) = 0, we have that if v(x) ≤ 0 then either ĥv(x) >
−d(v)Mv

qr or (v(x), acπv(x)) ∈

Pv × Rv(v(x)).

Proof. If v(x) ≤ 0 then

either : (i) v(φt(x)) < Mv ,

in which case by (5.2.5) we have that ĥv(φt(x)) = −d(v) · v(φt(x)). So, case (i)

yields

ĥv(x) = −d(v) ·
v(φt(x))

degφt
> −d(v) ·

Mv

qr
(5.14)
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or : (ii) v(φt(x)) ≥ Mv ,

in which case, lemma (5.2.7) yields

v(φt(x)) > v(ai0x
qi0

) = min
i∈{r0...,r}

v(aix
qi

). (5.15)

Using (5.15) and lemma (5.2.4) we conclude that case (ii) yields (v(x), acπv(x)) ∈

Pv × Rv(v(x)).

Now we analyze the excluded case from lemma (5.2.8).

Lemma 5.2.9. Assume v ∈ S and let x ∈ L. If v(x) ≤ 0, then either

(v(x), acπv(x)) ∈ Pv × Rv(v(x))

or ĥv(x) ≥
−d(v)Mv

qr .

Proof. Using the result of (5.2.8) we have left to analyze the case: q = 2, r = 1

and v(x) = 0.

As shown in the proof of (5.2.7), in this case φt(x) = a0x+ x2 and

v(φt(x)) = v(a0) = Mv < 0.

Then, either v(φt2(x)) = v(φt(x)
2) = 2Mv < Mv or v(φt2(x)) > v(a0φt(x)) =

v(φt(x)
2). If the former case holds, then by (5.2.5),

ĥv(φt2(x)) = −d(v) · 2Mv
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and so,

ĥv(x) =
−d(v) · 2Mv

4
.

If the latter case holds, i.e. v(φt(φt(x))) > v(a0φt(x)) = v(φt(x)
2), then acπv(φt(x))

satisfies the equation

acπv(a0)X + X2 = 0.

Because the angular component is never 0, it must be that acπv(φt(x)) = acπv(a0)

(remember that we are working now in characteristic 2). But, because v(a0x) <

v(x2) we can relate the angular component of x and the angular component of

φt(x) and so,

acπv(a0) = acπv(φt(x)) = acπv(a0x) = acπv(a0) acπv(x).

This means acπv(x) = 1 and so, the excluded case amounts to a dichotomy similar

to the one from (5.2.8): either (v(x), acπv(x)) = (0, 1) or ĥv(x) = −d(v)Mv

2
. The

definitions of Pv and Rv(α) from (5.4) and (5.6) respectively, yield that (0, 1) ∈

Pv × Rv(0).

Finally, we note that in (5.2.9) we have

−
d(v)Mv

qr
= −

d(v)e(v|v0)Mv0

qr
.

We have obtained the following dichotomy.
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Lemma 5.2.10. Assume v ∈ S and let x ∈ L. If v(x) ≤ 0 then either

ĥv(x) ≥
−d(v)e(v|v0)Mv0

qr

or

(v(x), acπv(x)) ∈ Pv × Rv(v(x))

with |Pv| ≤ r − r0 + 1 and for each α ∈ Pv, |Rv(α)| ≤ qr.

The following lemma shows that if (v(x), acπv(x)) /∈ Pv×Rv(v(x)), then v(φt(x))

is determined completely only in terms of v(x).

Lemma 5.2.11. There are no x and x′ in L verifying the following properties

(a) v(x) 6= v(x′);

(b) (v(x), acπv(x)) /∈ Pv × Rv(v(x)) and (v(x′), acπv(x
′)) /∈ Pv × Rv(v(x

′));

(c) v(φt(x)) = v(φt(x
′)).

Proof. Condition (b) yields

v(φt(x)) = min
r0≤i≤r

v(aix
qi

)

and

v(φt(x
′)) = min r0 ≤ i ≤ rv(aix

′qi

).

Then the conclusion of our lemma is immediate because the function

F (y) = min
r0≤i≤r

v(aiy
qi

)

is a strictly increasing piecewise linear function.
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Lemma 5.2.12. Assume v ∈ S. Given (α1, γ1), there are at most qr possible values

of acπv(x) when x ranges over nonzero elements of L such that (v(x), acπv(x)) /∈

Pv × Rv(v(x)) and (α1, γ1) = (v(φt(x)), acπv(φt(x))).

Proof. Indeed, we saw in lemma (5.2.11) that v(x) is uniquely determined given

α1 = v(φt(x)) under the hypothesis of (5.2.12). We also have

acπv(φt(x)) =
∑

j

acπv(aij) acπv(x)
q

ij
(5.16)

where ij runs through a prescribed subset of {r0, . . . , r} corresponding to those i

such that v(ai) + qiv(x) = v(φt(x)) = mini∈{r0,...,r} v(aix
qi
). This subset of indices

ij, depends only on α1 = v(x). So, there are at most qr possible values for acπv(x)

to solve (5.16) given γ1 = acπv(φt(x)).

From now on in this Chapter, unless otherwise stated, we will suppose that

r0 ≥ 1, i.e. φ has finite characteristic and φt is inseparable.

Because for every Drinfeld module of finite characteristic we can find a non-

constant t ∈ A such that φt is inseparable, the above boxed condition will always

be achieved for some t ∈ A, in the case of Drinfeld modules of finite characteristic.

Lemma 5.2.13. If v ∈ S define Nv = max
{

−v(ai)
qi−1

| r0 ≤ i ≤ r
}

(remember our

convention v(0) = +∞). If v (x) ≥ Nv, then ĥv(x) = 0.

Proof. Indeed, if v(x) ≥ Nv then v (φt (x)) ≥ min1≤i≤r{q
iv (x) + v (ai)} ≥ v (x) ≥

Nv. By induction, we get that v(φtn(x)) ≥ Nv for all n ≥ 1, which yields that
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Vv(x) = 0 and so,

ĥv (x) = 0.

Thus, if v ∈ S and ĥv(x) > 0 it must be that v (x) < Nv.

Lemma 5.2.14. Assume v ∈ S and let x ∈ L. If v(x) < Nv and if (v(x), acπv(x)) /∈

Pv × Rv(v(x)) then v(φt(x)) < v(x).

Proof. Indeed, by the hypothesis and by Lemma 5.2.4, there exists i0 ∈ {r0, . . . , r}

such that for all i ∈ {r0, . . . , r},

v(ai0) + qi0v(x) = v(φt(x)) ≤ v(ai) + qiv(x). (5.17)

If v(φt(x)) ≥ v(x) then, using (5.17), we get that

v(x) ≤ v(ai) + qiv(x)

which implies that v(x) ≥ − v(ai)
qi−1

for every i. Thus

v(x) ≥ Nv,

contradicting the hypothesis of our lemma. So, we must have v(φt(x)) < v(x). In

particular, we also get that v(ai0) + qi0v(x) < v(x), i.e.

v(x) <
−v(ai0)

qi0 − 1
. (5.18)
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Our goal is to establish a dichotomy similar to the one from Lemma 5.2.10

under the following hypothesis:

v ∈ S, x ∈ L, ĥv(x) > 0 and 0 < v(x) < Nv.

In Lemma 5.2.14 we saw that if v(x) < Nv then either (v(x), acπv(x)) ∈ Pv ×

Rv(v(x)) or v(φt(x)) < v(x). In the latter case, if v(φt(x)) > 0 we apply then

the same reasoning to φt(x) and derive that either (v(φt(x)), acπv(φt(x))) ∈ Pv ×

Rv(v(φt(x))) or v(φt2) < v(φt(x)). We repeat this analysis and after a finite number

of steps, say n, we must have that either

v(φtn(x)) ≤ 0

or

(v(φtn(x)), acπv(φtn(x))) ∈ Pv × Rv(v(φtn(x))).

But we analyzed in (5.2.10) what happens to the cases in which, for an element y

of positive local height at v, v(y) ≤ 0. We obtained that either

ĥv(y) ≥
−d(v)Mv0e(v|v0)

qr
(5.19)

or

(v(y), acπv(y)) ∈ Pv × Rv(v(y)) (5.20)

and |Pv| ≤ r − r0 + 1 ≤ r because r0 ≥ 1.

We will use repeatedly equations (5.19) and (5.20) for y = φtn(x). So, if (5.19)
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holds for y = φtn(x) then

ĥv(x) ≥
−d(v)Mv0e(v|v0)

qrnqr
. (5.21)

We will see next what happens if (5.20) holds. We can go back through the steps

that we made in order to get to (5.20) and see that actually v(x) and acπv(x)

belong to prescribed sets of cardinality independent of n.

Lemma 5.2.15. Assume v ∈ S and suppose that v(x) < Nv. If

(v(φtk(x)), acπv(φtk(x))) /∈ Pv × Rv(v(φtk(x)))

for 0 ≤ k ≤ n− 1, then for each value

(αn, γn) = (v(φtn(x)), acπv(φtn(x))),

the valuation of x is uniquely determined and acπv(x) belongs to a set of cardinality

at most qr
2−r.

Proof. The fact that v(x) is uniquely determined follows after n successive appli-

cations of Lemma 5.2.11 to φtn−1(x), . . . , φt(x), x.

Because (v(φtk(x)), acπv(φtk(x))) /∈ Pv × Rv(v(φtk(x))) for k < n, then we are

solving an equation of the form

∑

j

acπv(aij) acπv(φtk(x))
qij

= acπv(φtk+1(x)) (5.22)
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in order to express acπv(φtk(x)) in terms of acπv(φtk+1(x)) for each k < n. The equa-

tions (5.22) are uniquely determined by the sets of indices ij ∈ {r0, . . . , r} which in

turn are uniquely determined by v(φtk(x)), i.e. for each k and each corresponding

index ij

v(aijφtk(x)
qij

) = min
i∈{r0,...,r}

v(aiφtk(x)
qi

). (5.23)

Using the result of (5.2.14) and the hypothesis of our lemma, we see that

v(x) > v(φt(x)) > v(φt2(x)) > · · · > v(φtn(x)) (5.24)

and so the equations from (5.22) appear in a prescribed order. Now, in most of

the cases, these equations will consist of only one term on their left-hand side; i.e.

they will look like

acπv(ai0) acπv(φtk(x))
qi0

= acπv(φtk+1(x)). (5.25)

Equation (5.25) has a unique solution. The other equations of type (5.22) but

not of type (5.25) are associated to some of the values of v(φtk(x)) ∈ Pv. Indeed,

according to the definition of Pv from (5.4), only for those values (of the slopes of

the Newton polygon of φt) we can have for i 6= i′

v(ai) + qiv(x) = v(ai′) + qi
′

v(x) (5.26)

and so, both indices i and i′ can appear in (5.22).

Thus the number of equations of type (5.22) but not of type (5.25) is at most

r − 1, because there are at most r − r0 different segments (with different slopes)
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in the Newton polygon of φt (and also, remember that we are working under

the assumption that φt is inseparable, i.e. r0 ≥ 1). Moreover these equations will

appear in a prescribed order, each not more than once, because of (5.24). These

observations determine the construction of the finite set that will contain all the

possible values for acπv(x), given γn = acπv(φtn(x))). An equation of type (5.22)

can have at most qr solutions; thus acπv(x) lives in a set of cardinality at most

qr
2−r.

Because of the result of (5.2.15), we know that we can construct in an unique

way v(x) given v(φtn(x)) and the fact that for every j < n, φtj(x) does not satisfy

(5.20). So, for each n there are at most |Pv| values for v(x) such that

(v(φtn(x)), acπv(φtn(x))) ∈ Pv × Rv(v(φtn(x))) (5.27)

and (5.27) does not hold for n′ < n. We denote by Pv(n) this set of values for v(x).

Clearly Pv(0) = Pv.

Lemma 5.2.15 yields that for each fixed (αn, γn) ∈ Pv × Rv(αn), there are at

most qr
2−r possible values for acπv(x) such that

(v(φtn(x)), acπv(φtn(x))) = (αn, γn)

and φtj(x) does not satisfy (5.20) for j < n. For α = v(x) ∈ Pv(n) we define

by Rv(α) the set of all possible values for acπv(x) such that (5.27) holds. Let
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v(φtn(x)) = αn ∈ Pv and using the definition of Rv(αn) for αn ∈ Pv from (5.6), we

get

|Rv((v(φtn(x)))| ≤ qr. (5.28)

Inequality (5.28) and the result of Lemma 5.2.15 gives the estimate:

|Rv(α)| ≤ |Rv(v(φtn(x)))| · qr
2−r ≤ qr · qr

2−r = qr
2

(5.29)

for every α ∈ Pv(n) and for every n ≥ 0.

Now, we estimate the magnitude of n, i.e. the number of steps that we need

to make starting with 0 < v(x) < Nv such that in the end φtn(x) satisfies either

(5.19) or (5.20).

Lemma 5.2.16. Assume v ∈ S and ĥv(x) > 0. Then there exists a set P of

cardinality bounded in terms of r and e(v|v0) such that either (v(x), acπv(x)) ∈

P × Rv(v(x)) or ĥv(x) >
c1d(v)

e(v|v0)
r
r0

−1 with c1 > 0 depending only on φ.

Proof. If (5.20) does not hold for x then we know that there exists i0 ≥ r0 such

that v(φt(x)) = qi0v(x) + v(ai0).

Now, if φt(x) also does not satisfy (5.20) then for some i1

v(φt2(x)) = qi1v(x) + v(ai1) ≤ qiv(φt(x)) + v(ai)

for all i ∈ {r0, . . . , r}. So, in particular

v(φt2(x)) ≤ qi0v(φt(x)) + v(ai0) (5.30)
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and in general

v(φtk+1(x)) ≤ qi0v(φtk(x)) + v(ai0) (5.31)

if (v(φtk(x)), acπv(φtk(x))) /∈ Pv ×Rv(v(φtk(x))). Let us define the sequence (yj)j≥0

by

y0 = v(x) and for all j ≥ 1: yj = qi0yj−1 + v(ai0).

If φti(x) does not satisfy (5.20) for i ∈ {0, . . . , n− 1} then by (5.31),

yn ≥ v(φtn(x)). (5.32)

The sequence (yj)j≥0 can be easily computed and we see that

yj = qi0j
(
v(x) +

v(ai0)

qi0 − 1

)
−

v(ai0)

qi0 − 1
. (5.33)

But v(x) < −
v(ai0)

qi0−1
, as a consequence of v(x) < Nv and the proof of Lemma 5.2.14

(see equation (5.18)). Thus,

v(x) +
v(ai0)

qi0 − 1
≤ −

1

qi0 − 1
(5.34)

because v(x), v(ai0) ∈ Z. Using inequality (5.34) in the formula (5.33) we get

yj ≤
1

qi0 − 1
(−qi0j − v(ai0)). (5.35)

We define

cv0 = max {−v0(ai)|r0 ≤ i ≤ r} . (5.36)
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So, cv0 ≥ 1 because we know that at least one of the ai has a pole at v, thus at v0

(we are working under the assumption that v ∈ S). Clearly, cv0 depends only on φ

(the dependence on K is part of the Drinfeld module data for φ). For simplicity,

we denote cv0 by c. Because of the definition of c, we have

−v(ai0) ≤ e(v|v0)c (5.37)

where e(v|v0) is as always the ramification index of v over v0. Now, if we pick m

minimal such that

qr0m ≥ ce(v|v0) (5.38)

then we see that m depends only on φ and e(v|v0). Using that i0 ≥ r0 we get that

qi0m ≥ ce(v|v0). (5.39)

So, using inequalities (5.35), (5.37) and (5.39) we obtain ym ≤ 0. Because of (5.32)

we derive that

v(φtm(x)) ≤ 0

which according to the dichotomy from Lemma 5.2.10 yields that φtm(x) satisfies

either (5.19) or (5.20). Thus, we need at most m steps to get from x to some φtn(x)

for which one of the two equations (5.19) or (5.20) is valid. This means that either

ĥv(x) ≥
−d(v)Mv0e(v|v0)

qrmqr
(which holds if (5.19) is valid after n ≤ m steps),

(5.40)
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or

φtn(x) satisfies (5.20) forn ≤ m. (5.41)

This last equation implies that (v(x), acπv(x)) ∈ Pv(n)×Rv(v(x)) for some n ≤ m.

We analyze now the inequality from equation (5.40). By the minimality of m

satisfying (5.38), we have

qrm = (qr0(m−1))
r
r0 qr < (ce(v|v0))

r
r0 qr. (5.42)

So, if (5.40) holds, we have the following inequality

ĥv(x) >
−d(v)Mv0e(v|v0)

c
r

r0 q2re(v|v0)
r
r0

. (5.43)

We denote by P =
⋃m
i=0 Pv(i). We proved that for i ≥ 1, |Pv(i)| ≤ |Pv(0)| (and

Pv = Pv(0) has cardinality depending only on r; this was mainly the content of

(5.2.15)). To simplify the notation in the future we introduce new constants ci,

that will always depend only on φ. For example, Mv0 is a negative number which

is at most − 1
qr−1

and so, (5.43) says that

ĥv(x) >
c1d(v)

e(v|v0)
r
r0

−1
or (v(x), acπv(x)) ∈ P × Rv(v(x)) (5.44)

and |Rv(v(x))| ≤ qr
2
, while |P | ≤ r(m+ 1) with m satisfying (5.42).

For the convenience of the reader we restate the exact findings of Lemma 5.2.16

in a separate corollary.
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Corollary 5.2.17. Assume v ∈ S and ĥv(x) > 0. Let c = maxi−v0(ai). Let

m be the first integer such that qr0m ≥ ce(v|v0). There exists a positive constant

c1 depending only on φ and there exists a set P of cardinality bounded above by

r(m+ 1) such that either

(v(x, acπv(x)) ∈ P × Rv(v(x))

or ĥv(x) >
c1d(v)

e(v|v0)
r
r0

−1 . Moreover, if the former case holds, then |Rv(v(x))| ≤ qr
2
.

Lemma 5.2.18. Let L be a field extension of Fq and let v be a discrete valuation

on L. Let I be a finite set of integers. Let N be an integer greater or equal than

all the elements of I. For each α ∈ I, let R(α) be a nonempty finite set of nonzero

elements of the residue field at v. Let W be an Fq-vector subspace of L with the

property that for all w ∈W , (v(w), acπv(w)) ∈ I × R(v(w)) whenever v(w) ≤ N .

Let f be the smallest positive integer greater or equal than maxα∈I logq |R(α)|.

Then the Fq-codimension of {w ∈W | v(w) > N} is bounded by |I |f .

Proof. Let i = |I |. Let α0 < · · · < αi−1 be the elements of I , and let αi = N + 1.

For 0 ≤ j ≤ i, define Wj = {w ∈ W |v(w) ≥ αj}. For 0 ≤ j < i, the hypothesis

gives an injection

Wj/Wj+1 → R(αj) ∪ {0}

taking w to the residue of w/π
αj
v . Thus

qdimFq Wj/Wj+1 ≤ qf + 1 < qf+1,
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so dimFq Wj/Wj+1 ≤ f (note that we used the fact that f > 0 in order to have the

inequality qf +1 < qf+1). Summing over j gives dimFq W0/Wi ≤ if , as desired.

We are ready to prove Theorem 5.1.3.

Proof of Theorem 5.1.3. We know that ĥv(x) > 0. Because φ is a Drinfeld module

of finite characteristic, there exists a non-constant t ∈ A such that φt is inseparable.

First we observe that if v /∈ S then by Lemma 5.2.6 we automatically get the

lower bound ĥv(x) ≥ d(v), because it must be that v(x) < 0, otherwise we would

have ĥv(x) = 0. So, from now on we suppose that the valuation v is from S.

Let z = |P |. Let f be the smallest positive integer such that

f ≥ max
α∈P

logq |Rv(α)|.

So f ≤ r2, as shown by the proof of Lemma 5.2.16 (see Corollary 5.2.17). We also

have the following inequality (see Corollary 5.2.17)

z · f ≤ r(m+ 1) · r2 = r3(m+ 1). (5.45)

Let W = Span({x, φt(x), . . . , φtzf (x)}). Because ĥv(x) > 0 we know that x /∈

φtor and so, dimFq W = 1+ zf . We also get from ĥv(x) > 0 that for all 0 6= w ∈W ,

ĥv(w) > 0. Then by Lemma 5.2.13, we get that for all 0 6= w ∈W , v(w) ≤ Nv − 1.

We apply Lemma 5.2.18 to W with I = P , R = Rv, N = Nv − 1 and conclude

that there exists 0 6= b ∈ Fq[t], of degree at most zf in t such that

(v(φb(x)), acπv(φb(x))) /∈ P × Rv(v(φb(x))). (5.46)
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We know that ĥv(x) > 0 and so ĥv(φb(x)) > 0. Equations (5.46) and (5.44)

yield

ĥv(φb(x)) >
c1d(v)

e(v|v0)
r
r0

−1
.

Thus

ĥv(x) >
c1d(v)

qr deg(b)e(v|v0)
r

r0
−1
.

But, using inequality (5.45), we obtain

qr deg(b) ≤ qrzf ≤ qr
4(m+1) = qr

4

(qrm)r
3

.

We use (5.42) and we get

qr deg(b) < qr
4

(ce(v|v0))
r
r0

·r3
qr

4

.

Thus there exists a constant C > 0 depending only on c1, c, q and r such that

ĥv(x) >
Cd(v)

e(v|v0)
r4+r

r0
−1
. (5.47)

Because c1 and c depend only on φ we get the conclusion of (5.1.3).

Remark 5.2.19. From the above proof we see that the constant C depends only

on q, r and the numbers v0(ai) for r0 ≤ i ≤ r − 1, under the hypothesis that

φt is monic as a polynomial in τ . As we said before, for the general case, when

φt is not neccessarily monic, the constant C from (5.1.3) will be multiplied by

the inverse of the degree of the extension of K that we have to allow in order to
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construct a conjugated Drinfeld module φ(γ) for which φ
(γ)
t is monic. The degree

of this extension is at most (qr − 1) because γq
r−1ar = 1.

Remark 5.2.20. It is interesting to note that (5.47) shows that the original state-

ment of (5.1.1) holds, i.e. k = 1, in the case that e(v|v0) = 1, which is the case

when x belongs to an unramified extension above v0. Also, as observed in the be-

ginning of the proof of (5.1.3), if v and so, equivalently v0 is not a pole for any of

the ai then we automatically get exponent k = 1 in Theorem 5.1.3, as proved in

Lemma 5.2.6.

So, we see that in the course of proving (5.1.3) we got an even stronger result

that allows us to conclude that Conjecture 5.1.1 and so, implicitly Conjecture 1.2.2

hold in the maximal extension unramified above the finitely many places in S0.

Remark 5.2.21. Also, it is interesting to note that the above proof shows that for

every place v associated to L (as in Chapter 2), there exists a number n depending

only on r and e(v|v0) so that there exists b ∈ Fq[t] of degree at most n in t for

which either v(φb(x)) < Mv (in which case ĥv(x) > 0), or v(φb(x)) ≥ Nv (in which

case ĥv(x) = 0).

Example 5.2.22. The result of Theorem 5.1.3 is optimal in the sense that we

cannot hope to get the conjectured Lehmer inequality for the local height, i.e. C
d
.

We can only get, in the general case for the local height, an inequality with some

exponent k > 1, i.e. C
dk .
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For example, take A = Fq[t], K = Fq(t) and define for some r ≥ 2,

φt = τ r − t1−qτ.

Let d = qm − 1, for some m ≥ r. Then let x = tα where α is a root of

αd − α −
1

t
= 0.

Then L = K(x) is totally ramified above t of degree d. Let v be the unique valuation

of L for which v(t) = d. We compute

Pv =

{
−d(q − 1)

qr − q

}

Mv = −
d(q − 1)

qr − q

Nv = d

v(x) = d − 1 = qm − 2.

We compute easily v(φti(x)) = d − qi for every i ∈ {0, . . . , m}. Furthermore,

v(φtm(x)) = d − qm = −1 6= −d(q−1)
qr−q

, because −d(q−1)
qr−q

/∈ Z (since q does not divide

d(q − 1)). Thus v(φtm(x)) is negative and not in Pv and so, (5.2.7) yields

v(φtm+1(x)) < Mv.

Actually, because m ≥ r, an easy computation shows that

v(
φtm(x)q

tq−1
) = −q − d(q − 1) = −qm+1 + qm − 1 < −qr = v((φtm(x))q

r

).
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This shows that v(φtm+1(x)) = −qm+1 + qm − 1 < Mv < 0 and so, by (5.2.5)

ĥv(x) =
ĥv(φtm+1(x))

qr(m+1)
=
qm+1 − qm + 1

qr(m+1)d
<

qm+1

qm+rq(r−1)md
<
q1−r

dr
,

because d = qm − 1 < qm.

This computation shows that for Drinfeld modules of type

φt = τ r − t1−qτ

the exponent k from (5.1.3) should be at least r. The exact same computation will

give us that in the case of a Drinfeld module of the form

φt = τ r − t1−q
r0
τ r0

for some 1 ≤ r0 < r and x of valuation (qr0m − 2) at a place v that is totally

ramified above the place of t with ramification index qr0m − 1, the exponent k

in Theorem 5.1.3 should be at least r
r0

. In Theorem 5.2.24 we will prove that for

non-wildly ramified extensions above places from S0, we get exponent k = r
r0

. But

before doing this, we observe that the present example is just a counter-example

to Statement 5.1.1, not to Conjecture 1.2.2. In other words, the global Lehmer

inequality holds for our example even if the local one fails.

Indeed, because x was chosen to have positive valuation at the only place from

S, then there exists another place, call it v′ which is not in S, for which v′(x) < 0.

But then by lemma (5.2.6), we get that ĥv′(x) ≥
1
d
, which means that also ĥ(x) ≥ 1

d
.

Thus we obtain a lower bound for the global height as conjectured in (1.2.2).
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Now, in order to get to the result of (5.2.24) we prove a lemma.

Lemma 5.2.23. With the notation from the proof of Theorem 5.1.3, let

L = lcmi∈{1,...,r−r0}{q
i − 1}.

If v is not wildly ramified above v0 (i.e., p does not divide e(v|v0)), then e(v|v0)

divides Lα for every α ∈ P .

Proof. Indeed, from its definition (5.4), Pv contains {0} and numbers of the form

v(ai) − v(aj)

qj − qi
=
v(ai) − v(aj)

qi(qj−i − 1)
,

for j > i. Clearly, every number of this form, times L is divisible by e(v|v0), because

we supposed that p 6 |e(v|v0). The set Pv(1) contains numbers of the form

α − v(ai)

qi
(5.48)

where α ∈ Pv = Pv(0) and ai 6= 0. Using again that p does not divide e(v|v0) we get

that e(v|v0) | Lα1 for all α1 ∈ Pv(1). Repeating the process from (5.48) we obtain

all the elements of Pv(n) for every n ≥ 1 and by induction on n, we conclude that

e(v|v0) | Lαn for all αn ∈ Pv(n). Because P =
⋃m
n=0 Pv(n) we get the result of this

lemma.

Theorem 5.2.24. Let K be a field of characteristic p. Let v0 ∈MK be a coherent

valuation and let d(v0) be the degree of v0.
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Let φ : A → K{τ} be a Drinfeld module of finite characteristic. Let t ∈ A

such that φt =
∑r

i=r0
aiτ

i is inseparable and assume ar0 6= 0. Let x ∈ Kalg and let

v ∈MK(x) be a place lying over v0. Assume that ĥv(x) > 0.

There exists a constant C > 0 depending only on φ such that if v is not wildly

ramified above v0, then ĥv(x) ≥
Cd(v)

e(v|v0)
r

r0
−1 .

Proof. Just as we observed in Remark 5.2.19, it suffices to prove (5.2.24) under

the hypothesis that φt is monic in τ .

Let now d = [K(x) : K]. We observe again that from (5.2.6) it follows that if

v /∈ S then ĥv(x) ≥ d(v) ≥ d(v)

e(v|v0)
r
r0

−1 .

So, from now on we consider the case v ∈ S.

Then, using the result of (5.2.23) in (5.18) we see that

v(x) +
v(ai0)

qi0 − 1
≤ −

e(v|v0)
L

qi0 − 1
, (5.49)

if v(x) ∈ P . Then also (5.35) changes into

ym ≤
1

qi0 − 1
(−qi0m

e(v|w)

L
− v(ai0)). (5.50)

So, then we choose m′ minimal such that

qr0m
′

≥ cL (5.51)

where c = cv0 is the same as in (5.36). Thus m′ depends only on φ and K, but the

dependence on K can be considered as part of the dependence on φ. We redo the
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computations from (5.40) to (5.44), this time with m′ in place of m and because

of (5.50) and (5.51), we get that

ĥv(x) >
c1d(v)

e(v|v0)
r
r0

−1
or (v(x), acπv(x)) ∈ P ′ × Rv(v(x)) (5.52)

where P ′ =
⋃m′

i=0 Pv(i). At this moment we can redo the argument from the proof

of (5.1.3) using P ′ instead of P , only that now z′ = |P ′| is independent of x or d.

We conclude once again that there exists b, a polynomial in t of degree at most

z′f such that

ĥv(φb(x)) >
c1d(v)

e(v|v0)
r
r0

−1
.

But because both f and z′ depend only on φ, we conclude that indeed,

ĥ(x) ≥
Cd(v)

e(v|v0)
r
r0

−1

with C > 0 depending only on φ.

Example 5.2.25. We discuss now Statement 5.1.1 for Drinfeld modules of generic

characteristic. Consider the Carlitz module defined on Fp[t] by φt = tτ 0 + τ , where

τ (x) = xp for all x. Take K = Fp(t). Let L be a finite extension of K which is

totally ramified above ∞ and let the ramification index equal d = [L : K]. Also,

let v be the unique valuation of L sitting above ∞.

Let x ∈ L be of valuation nd at v for some n ≥ 1. An easy computation shows

that for all m ∈ {1, . . . , n}, v(φtm(x)) = dn − dm. So, in particular v(φtn(x)) = 0
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and so,

v(φtn+1(x)) = −d < Mv =
−d

p− 1
.

This shows, after using Lemma 5.2.5, that ĥv(φtn+1(x)) = d
d

= 1. This in turn

implies that

ĥv(x) =
1

pn+1
.

But we can take n arbitrarily large, which shows that there is no way to obtain a

result similar to Theorem 5.1.3 for generic characteristic Drinfeld modules.

The reader might recognize in this example the analytic uniformization at the

place ∞ for φ, present in Tamagawa’s proof for the rigidity of Drinfeld modules

of generic characteristic (see the proof of Theorem 4.13.9 from [13]). The idea is

that over any function field, there are points arbitrary close to 0 in the ∞-adic

topology, which have arbitrary small positive local height at ∞.

The next theorem shows that Example 5.2.25 is in some sense the only way

Theorem 5.1.3 fails for Drinfeld modules of generic characteristic.

Theorem 5.2.26. Let K be a field of characteristic p. Let v0 ∈MK be a coherent

valuation and let d(v0) be the degree of v0.

Let φ : A → K{τ} be a Drinfeld module of generic characteristic. Let x ∈ Kalg

and let v be a place of K(x) that lies over v0. Assume ĥv(x) > 0.

If v0 does not lie over the place ∞ from Frac(A), then there exist two positive



74

constants C and k depending only on φ such that ĥv(x) ≥
Cd(v)

e(v|v0)k−1 .

Proof. Let t ∈ A be a non-constant element and φt = tτ 0 +
∑r

i=r0
aiτ

i, where ar0

and ar are nonzero (and 1 ≤ r0 ≤ r).

Again, as we mentioned before, it suffices to prove this theorem under the

hypothesis that φt is monic in τ . Also, if v /∈ S Theorem 5.2.26 holds as shown by

Lemma 5.2.6.

The analysis of local heights from the present Chapter applies to both fi-

nite and generic characteristic until Lemma 5.2.13. So, we still get the conclu-

sion of Lemma 5.2.10. Thus, if v(x) ≤ 0 then either ĥv(x) ≥
−d(v)Mv0e(v|v0)

qr or

(v(x), acπv(x)) ∈ Pv ×Rv(v(x)), with |Pv| and |Rv(v(x))| depending only on q and

r (the upper bounds for their cardinalities are slightly larger than in the case of a

Drinfeld module of finite characteristic, because the maximal number of segments

in the Newton polygon for φt is r and not r − 1).

We know from our hypothesis (v does not lie over ∞) that v(t) ≥ 0 and so,

v(tx) ≥ v(x). (5.53)

Now, if v(x) ≥ Nv (with Nv defined as in Lemma 5.2.13), then v(aix
qi
) ≥ v(x), for

all i ≥ r0 (by the definition of Nv) and using also equation (5.53), we get

v(φt(x)) ≥ v(x) ≥ Nv.

Iterating this computation we get that v(φtn(x)) ≥ Nv, for all n ≥ 1 and so,
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ĥv(x) = 0, contradicting the hypothesis of our theorem. This argument is the

equivalent of Lemma 5.2.13 for Drinfeld modules of generic characteristic under

the hypothesis v(t) ≥ 0.

Thus it must be that v(x) < Nv. Then, Lemma 5.2.14 holds identically. This

yields that either (v(x), acπv(x)) ∈ Pv × Rv(v(x)) or v(φt(x)) < v(x).

From this point on, the proof continues just as for Theorem 5.1.3. We form just

as before the sets Pv(n) and their union will be again denoted by P . We conclude

once again as in (5.43) that either

ĥv(x) ≥
−Mv0d(v)

q2rc
r

r0 e(v|v0)
r

r0
−1

with the same c > 0 depending only on q, r and φ as in the proof of (5.1.3), or

(v(x), acπv(x)) ∈ P ×Rv(v(x))

where |P | is of the order of log e(v|v0). We observe that when we use equations

(5.31), (5.33), (5.34), (5.35) the index i0 is still at least r0 ≥ 1. This is the case

because if v(x) < Nv and (v(x), acπv(x)) /∈ Pv × Rv(v(x)) then there exists i0 ≥ 0

such that

v(φt(x)) = v(ai0) + qi0v(x) = min
i∈{0}∪{r0,...,r}

v(aix
qi

).

But v(x) < Nv means that there exists at least one index i ∈ {r0, . . . , r} such that

v(tx) ≥ v(x) > v(aix
qi
).

Finally, Lemma 5.2.18 finishes the proof of Theorem 5.2.26.
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So, we get the conclusion for Theorem 5.2.26 in the same way as in the proof

of (5.1.3). The difference made by v not lying above ∞ is that for v(x) ≥ 0,

v(φt(x)) can decrease only if v(x) < Nv, i.e. only if there exists i ≥ 1 such that

v(aix
qi
) < v(x). If v lies over ∞, then v(tx) < v(x) and so, v(φt(x)) might decrease

just because of the tτ 0 term from φt. Thus, in that case, as Example 5.2.25 showed,

we can start with x having arbitrarily large valuation and we are able to decrease

it by applying φt to it repeatedly, making the valuation of φtn(x) be less than Mv,

which would mean that ĥv(x) > 0. But in doing this we will need a number n of

steps (of applying φt) that we will not be able to control; so ĥv(x) will be arbitrarily

small.

It is easy to see that Remarks 5.2.20 and 5.2.21 are valid also for Theorem 5.2.26

in the hypothesis that v does not sit over the place ∞ of Frac(A). Also, just as we

were able to derive Theorem 5.2.24 from the proof of (5.1.3), we can do the same

thing in Theorem 5.2.26 and find a specific value of the constant k that will work

in the case that v is not wildly ramified above v0 ∈MK . The result is the following

theorem whose proof goes along the same lines as the proof of (5.2.24).

Theorem 5.2.27. Let K be a field of characteristic p. Let v0 ∈MK be a coherent

valuation and let d(v0) be the degree of v0. Let φ : A → K{τ} be a Drinfeld module

of generic characteristic and let φt = tτ 0 +
∑r

i=r0
aiτ

i, with ar0 6= 0 (of course,

r0 ≥ 1). Assume v0 does not lie over the place ∞ of Frac(A). There exists a
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constant C > 0, depending only on φ such that for every x ∈ Kalg and every place

v ∈ MK(x) such that v|v0 and v is not wildly ramified above v0, if ĥv(x) > 0 then

ĥv(x) ≥
Cd(v)

e(v|v0)
r
r0

−1 .

We can also construct an example similar to (5.2.22) which shows that constant

k = r
r0

in the above theorem is optimal. Indeed, if we take a Drinfeld module φ

defined on Fq[t] by

φt = tτ 0 + t1−q
r0
τ r0 + τ r

and x as in example (5.2.22) then a similar computation will show that we cannot

hope for an exponent k smaller than r
r0

.

The constants C in Theorems 5.2.24, 5.2.26 and 5.2.27 and the constant k in

(5.2.26) have the same dependency on q, r and φ as explained in the proof of

Theorem 5.1.3.
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Chapter 6

The global Lehmer Inequality for

Drinfeld modules

In this Chapter we will prove Theorem 6.0.29, which is a special case of the

Lehmer inequality for Drinfeld modules. We will actually prove a more general

result (Theorem 6.0.32) from which we will be able to infer Theorems 6.0.28 and

6.0.29.

Let K be a field of characteristic p and let φ : A→ K{τ} be a Drinfeld module.

We fix a non-constant element t ∈ A and we let

φt =
r∑

i=0

aiτ
i.

As explained in Chapter 5, the statement of Conjecture 1.2.2 is not affected

if we replace K by a finite extension K ′ since if we find a constant C ′ that works
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for K ′ in Conjecture 1.2.2, then C = C′

[K′:K]
will work for K. Also, as explained in

Chapter 5, if we conjugate φ by γ ∈ Kalg \ {0}, we obtain a new Drinfeld module,

which we denote by φ(γ) and these two Drinfeld modules are isomorphic overK(γ).

As a particular case of Proposition 2 of [22] we get that ĥφ(x) = ĥφ(γ)(γ−1x).

Then, if Conjecture 1.2.2 is proved for φ(γ), it will also hold for φ. So, having

these in mind, we replace φ by one of its conjugates that has the property that

φ
(γ)
t is monic, i.e. with the above notations, γ satisfies the equation γq

r−1ar = 1.

Because [K(γ) : K] ≤ qr − 1, working over K(γ) instead of K, we may introduce

a factor of 1
qr−1

at the worst in the constant C in Conjecture 1.2.2, as explained

in the previous paragraph. Also, the module structure theorems that we will be

proving in the next Chapter will not be affected by replacing φ with an isomorphic

Drinfeld module or by replacing K with a finite extension. We will use throughout

this Chapter the above convention about φt being monic.

For each finite extension L of K, we let as before SL be the set of places v ∈ML

for which there exists a coefficient ai of φt such that v(ai) < 0, i.e. SL is the set of

places of bad reduction for φ (see Lemma 5.2.2).

Theorem 6.0.28. Let K be a finitely generated field of characteristic p. Let φ :

A→ K{τ} be a Drinfeld module and assume that there exists a non-constant t ∈ A

such that φt is monic. Let F be the algebraic closure of Fp in K. We let MK/F be

the coherent good set of valuations on K, constructed as in Chapter 4. Let ĥ and
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ĥv be the global and local heights associated to φ, constructed with respect to the

coherent good set of valuations MK/F . Let x ∈ Kalg and let Fx be the algebraic

closure of Fp in K(x). We construct the good set of valuations MK(x)/Fx which lie

above the valuations from MK/F . Let Sx be the set of places v ∈MK(x)/Fx such that

φ has bad reduction at v.

If x is not a torsion point for φ, then there exists v ∈MK(x)/Fx such that

ĥv(x) > q−r(2+(r2+r)|Sx|)d(v)

where d(v) is as always the degree of the valuation v.

Let {x1, . . . , xn} be the transcendence basis for K/F associated to the con-

struction of MK/F . Let v0 ∈ MK/F be the place lying below the place v from

the conclusion of Theorem 6.0.28. Then d(v) = d(v0)f(v|v0)
[K(x):K]

. Because f(v|v0) ≥ 1,

d(v0) ≥
1

[K:F (x1,...,xn)]
(see (4.9)) and ĥ(x) ≥ ĥv(x), Theorem 6.0.28 has the following

corollary.

Theorem 6.0.29. With the notation from Theorem 6.0.28, if x /∈ φtor, then

ĥ(x) >
q−r(2+(r2+r)|Sx|)

[K(x) : F (x1, . . . , xn)]
.

Remark 6.0.30. Theorem 6.0.29 is a weaker form of Conjecture 1.2.2 because our

constant C for which ĥ(x) ≥ C
[K(x):K]

for x /∈ φtor, is not completely independent

of K(x). For us,

C =
q−r(2+(r2+r)|Sx|)

[K : F (x1, . . . , xn)]
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and Sx depends on K(x).

Fix now a finite extension L of K and let U be a good set of valuations on L.

Let S = SL ∩ U .

For each v ∈ U we recall the definition (5.3)

Mv = min
i∈{0,...,r−1}

v(ai)

qr − qi
(6.1)

where by convention: v(0) = +∞. We observe again that Mv < 0 if and only if

v ∈ S.

Let v ∈ S. We recall the definition (5.4) of Pv as the subset of the negatives of

the slopes of the Newton polygon associated to φt, consisting of those α for which

there exist i 6= j in {r0, . . . , r} such that

α =
v(ai) − v(aj)

qj − qi
≤ 0, (6.2)

and v(ai)+q
iα = v(aj)+q

jα = minr0≤l≤r
(
v(al) + qlα

)
. If φ is the Carlitz module in

characteristic 2, i.e. φ = ψ2, where ψ2 : F2[t] → K{τ} is defined by ψ2(x) = tx+x2

for every x, then we want the set Pv to contain {0}, even if 0 is not in the set from

(6.2) (see Lemma 5.2.9).

Let

Nφ =






1 + r = 2, if φ = ψ2

r, otherwise.
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Clearly, for every φ and v ∈ S, |Pv| ≤ Nφ. We recall the definition (5.5): for

each α ∈ Pv we let l ≥ 1 and let i0 < i1 < · · · < il be all the indices i for which

ai 6= 0, and for j, k ∈ {0, . . . , l} with j 6= k, we have

v(aij) − v(aik)

qik − qij
= α. (6.3)

We recall the definition of Rv(α) as the set containing all the nonzero solutions of

the equation

l∑

j=0

acπv(aij)X
qij

= 0, (6.4)

where the indices ij are the ones associated to α as in (6.3). For α = 0, we want

the set Rv(α) to contain also {1} in addition to the numbers from (6.4). If α = 0

there might be no indices ij and ik satisfying (6.3). In that case, Rv(0) = {1}.

Clearly, for every α ∈ Pv, |Rv(α)| ≤ qr. Then Lemma 5.2.9 reads

Lemma 6.0.31. Assume v ∈ S. If v(x) ≤ 0 then either (v(x), acπv(x)) ∈ Pv ×

Rv(v(x)) or ĥU,v(x) ≥
−Mvd(v)

qr . Moreover, by its definition Mv < − 1
qr and so, if the

above latter case holds for x, then ĥU,v(x) >
d(v)
q2r .

We will deduce Theorem 6.0.28 from the following more general result.

Theorem 6.0.32. Let K be a field extension of Fq and let φ : A → K{τ} be a

Drinfeld module. Let L be a finite field extension of K. Let t be a non-constant

element of A and assume that φt =
∑r

i=0 aiτ
i is monic. Let U be a good set of
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valuations on L and let C(U) be, as always, the field of constants with respect to

U . Let S be the finite set of valuations v ∈ U such that φ has bad reduction at v.

Let x ∈ L.

a) If S is empty, then either x ∈ C(U) or there exists v ∈ U such that ĥU,v(x) ≥

d(v).

b) If S is not empty, then either x ∈ φtor, or there exists v ∈ U such that

ĥU,v(x) > q−2r−r2Nφ|S|d(v) ≥ q−r(2+(r2+r)|S|)d(v). Moreover, if S is not empty and

x ∈ φtor, then there exists a polynomial b(t) ∈ Fq[t] of degree at most rNφ|S| such

that φb(t)(x) = 0.

Proof. a) Assume S is empty.

Then either v(x) ≥ 0 for all v ∈ U or there exists v ∈ U such that v(x) < 0. If

the latter statement is true, then Lemma 5.2.14 shows that for the valuation v ∈ U

for which v(x) < 0, we have

ĥU,v ≥ d(v),

because v /∈ S (S is empty).

Now, if the former statement is true, i.e. x is integral at all places from U , then

by Lemma 4.1.3, x ∈ C(U).

b) Assume S is not empty.

Let v ∈ S. We apply Lemma 5.2.18 with N = 0, I = Pv and R(α) = Rv(α) for

every α ∈ Pv. Because |Pv| ≤ Nφ and
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|Rv(α)| ≤ qr for every α ∈ Pv, we obtain the following result.

Fact 6.0.33. Let v ∈ S. Let W be an Fq-subspace of L with the property that for

all w ∈W , (v(w), acπv(w)) ∈ Pv × Rv(v(w)) whenever v(w) ≤ 0.

Then the Fq-codimension of {w ∈W | v(w) > 0} in W is bounded above by

rNφ.

We apply Fact 6.0.33 for each v ∈ S and we deduce the following two results.

Fact 6.0.34. Let W be an Fq-subspace of L such that (v(w), acπv(w)) ∈ Pv ×

Rv(v(x)) whenever v ∈ S, w ∈W and v(w) ≤ 0. Then the Fq-codimension of

{w ∈W | v(w) > 0 for all v ∈ S}

in W is bounded by rNφ|S|.

Fact 6.0.35. Let notation be as in Corollary 6.0.34. If moreover, dimFq W >

rNφ|S|, then there exists a nonzero w ∈W such that v(w) > 0 for all v ∈ S.

Using the above facts we prove the following claim which is the key for obtaining

the result of Theorem 6.0.32.

Claim 6.0.36. Assume |S| ≥ 1. If W is an Fq-subspace of L and dimFq W >

rNφ|S|, then there exists w ∈W and there exists v ∈ U such that ĥU,v(w) > d(v)
q2r .
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Proof of Claim 6.0.36. If there exists v ∈ U \ S and w ∈ W such that v(w) < 0,

then by Lemma 5.2.14,

ĥv(w) ≥ d(v) >
d(v)

q2r
.

Thus, suppose from now on in the proof of this lemma, that for every v ∈ U \S

and every w ∈W , v(w) ≥ 0.

Because dimFq W > rNφ|S|, Fact 6.0.35 guarantees the existence of a nonzero

w ∈W for which either v(w) > 0 for all v ∈ S, or there exists v ∈ S such that

v(w) ≤ 0 but (v(w), acπv(w)) /∈ Pv × Rv(v(w)). (6.5)

The former case is impossible because we already supposed that v(w) ≥ 0 for all

v ∈ U \ S. Because |S| ≥ 1 there is no nonzero w that has non-negative valuation

at all the places from U and positive valuation at at least one place from U . Its

existence would contradict the sum formula for the valuations from U .

Thus, the latter case holds, i.e. there exists v ∈ S satisfying (6.5). But then,

Lemma 6.0.31 gives ĥU,v(w) > d(v)
q2r .

Using Claim 6.0.36 we can finish the proof of part b) of Theorem 6.0.32.

ConsiderW = SpanFq

({
x, φt(x), . . . , φtrNφ|S|(x)

})
. If there exists no polynomial

b(t) as in the statement of part b) of Theorem 6.0.32, then dimFq W = 1 + rNφ|S|.

Applying Claim 6.0.36 to W , we find some w ∈W and some v ∈ U such that

ĥU,v(w) >
d(v)

q2r
. (6.6)
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By the construction of W , then there exists a nonzero polynomial d(t) ∈ Fq[t] of

degree at most rNφ|S| such that

w = φd(t)(x). (6.7)

Using equation (6.6) and (6.7), we obtain

ĥU,v(x) =
ĥU,v(w)

deg(φd(t))
>

d(v)
q2r

qr·rNφ|S|
,

as desired.

Proof of Theorem 6.0.28. There are two cases.

Case 1. The set Sx is empty.

By Lemma 4.1.3, all the coefficients ai of φt are from Fx. Let Fql be a finite

field containing all these coefficients.

Assume x ∈ Falg
p . Let Fqll′ = Fql(x). Then for every n ≥ 1, φtn(x) ∈ Fqll′ .

Because Fqll′ is finite, there exist distinct positive integers n and n′ such that

φtn(x) = φtn′ (x). Thus φtn′−tn(x) = 0; i.e. x ∈ φtor, which is a contradiction with

our hypothesis that x is not a torsion point.

Thus, in Case 1, x /∈ Falg
p . So, x is not a constant with respect to the valuations

from MK(x)/Fx. Then, by Theorem 6.0.32 a), there exists v ∈MK(x)/Fx such that

ĥv(x) ≥ d(v) > q−2rd(v).

Case 2. The set Sx is not empty.
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Because x /∈ φtor, Theorem 6.0.32 shows that there exists v ∈ MK(x)/Fx such

that

ĥv(x) > q−2r−r2Nφ|Sx|d(v) ≥ q−r(2+(r2+r)|Sx|)d(v).

Remark 6.0.37. Assume that we have a Drinfeld module φ : A → K{τ} and a

non-constant element t ∈ A for which φt is monic. Suppose we are in Case 1 of

the proof of Theorem 6.0.28. Then that proof shows that for every non-torsion

x ∈ Kalg, there exists v ∈ MK(x)/Fx such that ĥv(x) ≥ d(v0)
[K(x):K]

, where v0 is the

place of MK/F that sits below v. Because of inequality (4.9), d(v0) ≥
1

[K:F (x1,...,xn)]
,

where {x1, . . . , xn} is the transcendence basis for K/F with respect to which we

constructed the good set of valuations MK/F . Thus Conjecture 1.2.2 holds in this

case, i.e. when all the coefficients ai are from Falg
p , with C = 1

[K:F (x1,...,xn)]
.

With the help of Theorem 6.0.28 we can get a characterization of the torsion

submodule of a Drinfeld module. Let K be a finitely generated field and let φ :

A → K{τ} be a Drinfeld module. If none of the non-constant a ∈ A has the

property that φa is monic, then just pick some non-constant t ∈ A and conjugate

φ by γ ∈ Kalg \ {0} such that φ
(γ)
t is monic. Then φ and φ(γ) are isomorphic over

K(γ), which is a finite extension of K of degree at most deg(φt)−1. So, describing

φtor (K(γ)) is equivalent with describing φ
(γ)
tor (K(γ)). The following result does

exactly this. Its proof is immediate after the proof of Theorem 6.0.32.
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Corollary 6.0.38. Let K be a finitely generated field and let φ : A → K{τ} be

a Drinfeld module. Let t be a non-constant element of A. Let φt =
∑r

i=0 aiτ
i and

assume that ar = 1. Let L be a finite extension of K and let E be the algebraic

closure of Fp in L.

a) If a0, . . . , ar−1 ∈ E, then φtor(L) = E.

b) If not all of the coefficients a0, . . . , ar−1 are in E, let S = SL ∩ML/E. Let

b(t) ∈ Fq [t] be the least common multiple of all the polynomials of degree at most

rNφ|S|. Then for all x ∈ φtor(L), φb(t)(x) = 0.

Remark 6.0.39. We can bound the size of the torsion of a Drinfeld module φ over

a fixed field K by specializing φ at a place of good reduction. This is the classical

method used to bound torsion for abelian varieties. The bound that we would

obtain by using this more classical method will be much larger than the one from

Corollary 6.0.38 if K contains a large finite field. However, because our bound is

obtained through completely different methods, one can use both methods and

then choose the better bound provided by either one.

The bound from Corollary 6.0.38 b) for the torsion subgroup of φ(L) is sharp

when φ is the Carlitz module, as shown by the following example.

Example 6.0.40. For each prime number p let v∞ : Fp(t)
∗ → Z be the valuation

such that v(b) = − deg(b) for each b ∈ Fp[t] \ {0}. It is the same notation that we

used in Chapter 2. Also, for each prime number p, let ψp be the Carlitz module in
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characteristic p, i.e. ψp : Fp[t] → Fp(t){τ}, given by (ψp)t = tτ 0 + τ .

If p = 2, we let L = F2(t). Then with the notation from Corollary 6.0.38,

S = {v∞}. Also, r = 1, Nψ2 = 2 and so, rNψ2 |S| = 2. It is immediate to see that

ψ2[t] ⊂ L and also ψ2[1 + t] ⊂ L. Thus we need a polynomial b(t) of degree 2, i.e.

b(t) = t2 + t, to kill the torsion of ψ2(L).

If p > 2, we let L = F2

(
(−t)

1
p−1

)
. Then ψp[t] ⊂ L. With the notation from

Corollary 6.0.38, r = 1 and Nψp = 1. Also, S = {w∞}, where w∞ is the unique

place of L sitting above v∞. So, again we see that we need a polynomial b(t) of

degree rNψp|S| = 1 to kill the torsion of ψp(L).
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Chapter 7

The Mordell-Weil theorem for

Drinfeld modules

In this Chapter we will be using Definitions 1.3.1, 1.3.2 and 1.3.3.

Lemma 7.0.41. The field of definition of a Drinfeld module is finitely generated.

Proof. Let φ : A → K{τ}. Let t1, . . . , ts be generators of A as an Fp-algebra. Let

K0 be the field extension of Fq generated by all the coefficients of φt1, . . . , φts. Then

K0 is finitely generated and by construction, K0 is the field of definition for φ.

Lemma 7.0.42. Let φ : A → K{τ} be a Drinfeld module and let E be its field

of definition. Let t ∈ A be a non-constant element and let φt =
∑r

i=0 aiτ
i. Let

E0 = Fp(a0, . . . , ar) and let Ealg
0 be the algebraic closure of E0 inside Kalg. Then

E0 ⊂ E ⊂ Ealg
0 .
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Proof. Let ψ be the restriction of φ to Fp[t]. Clearly, ψ is defined over E0. For

every a ∈ A, φa is an endomorphism of ψ. Thus for every a ∈ A, by Proposition

4.7.4 of [13], the coefficients of φa are algebraic over E0.

Lemma 7.0.43. Let φ : A→ K{τ} be a Drinfeld module. Assume that there exists

a non-constant element t ∈ A for which φt is monic. Let E be the field of definition

for φ. Then the modular transcendence degree of φ is trdeg
Fp
E.

Proof. By the definition of modular transcendence degree of φ, we have to show

that for every γ ∈ Kalg \ {0}, if E(γ) is the field of definition for φ(γ), then

trdeg
Fp
E(γ) ≥ trdeg

Fp
E. (7.1)

Let γ ∈ Kalg \ {0}. If φt =
∑r

i=0 aiτ
i, then φ

(γ)
t =

∑r
i=0 aiγ

qi−1τ i.

By Lemma 7.0.42, trdeg
Fp
E = trdeg

Fp
Fp(a0, . . . , ar−1) and

trdeg
Fp
E(γ) = trdeg

Fp
Fp

(
a0, a1γ

q−1, . . . , ar−1γ
qr−1−1, γq

r−1
)
.

So, in order to prove inequality (7.1), it suffices to show that

trdeg
Fp

Fp

(
a0, a1γ

q−1, . . . , ar−1γ
qr−1−1, γq

r−1
)
≥ trdeg

Fp
Fp(a0, . . . , ar−1). (7.2)

But,

trdeg
Fp

Fp

(
a0, . . . , ar−1γ

qr−1−1, γq
r−1

)
= trdeg

Fp
Fp

(
a0, . . . , ar−1γ

qr−1−1, γ
)
.

(7.3)
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On the other hand,

Fp(a0, . . . , ar−1) ⊂ Fp

(
a0, a1γ

q−1, . . . , ar−1γ
qr−1−1, γ

)
. (7.4)

Equations (7.3) and (7.4) yield (7.2).

Theorem 7.0.44. Let F be a countable field of characteristic p and let K be a

finitely generated field over F . Let φ : A→ K{τ} be a Drinfeld module of positive

relative modular transcendence degree over F . Then φ(K) is a direct sum of a finite

torsion submodule and a free submodule of rank ℵ0.

Proof. We first recall the definition of a tame module. The module M is tame if

every finite rank submodule of M is finitely generated. According to Proposition

10 from [22], in order to prove Theorem 7.0.44, it suffices to show that φ(K) is a

tame module of rank ℵ0.

We first prove the following lemma which will allow us to make certain reduc-

tions during the proof of Theorem 7.0.44.

Lemma 7.0.45. Let K ′ be a field extension of K. Assume that φ(K ′) is a direct

sum of a finite torsion submodule and a free submodule of rank ℵ0. Then also φ(K)

is a direct sum of a finite torsion submodule and a free submodule of rank ℵ0.

Proof of Lemma 7.0.45. Let K0 be the field of definition for φ. By Lemma 7.0.41,

K0 is finitely generated. Because φ has positive modular transcendence degree,
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trdeg
Fp
K0 ≥ 1. Thus, as proved in [32], φ(K0) is a tame module of rank ℵ0. Then

we can apply Lemma 2.0.6 to

φ(K0) ⊂ φ(K) ⊂ φ(K ′)

and conclude that also φ(K) is tame of rank ℵ0.

Let t be a non-constant element of A. Let φt =
∑r

i=0 aiτ
i.

Let γ ∈ Kalg satisfy γq
r−1ar = 1. Assume that φ(γ) (L(γ)) is a direct sum

of a finite torsion submodule and a free submodule of rank ℵ0. Because φ(γ) is

isomorphic to φ over K(γ), it follows that also φ (K(γ)) is a direct sum of a

finite torsion submodule and a free submodule of rank ℵ0. Using Lemma 7.0.45

for K ′ = K(γ), we obtain that φ(K) is a direct sum of a finite torsion submodule

and a free module of rank ℵ0. Thus, it suffices to prove Theorem 7.0.44 under the

hypothesis that φt is monic.

Also, we may assume that F is algebraically closed in K. If not, replace F by

its algebraic closure in K; the field K is not changed by this.

Choose a transcendence basis {x1, . . . , xn} of K/F and construct the good set

of valuations MK/F as in Chapter 3. Let S0 be the set of places in MK/F where

φ has bad reduction. Because we supposed that φt is monic, Lemma 5.2.2 yields

that S0 is the set of places from MK/F where not all of the coefficients a0, . . . , ar−1

are integral.
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Lemma 7.0.46. The set S0 is not empty.

Proof of Lemma 7.0.46. If S0 is empty, then by Lemma 4.1.3, ai ∈ F for all i. Then

by Lemma 7.0.42, we derive that φ is defined over F alg ∩K = F , which is a con-

tradiction with our assumption that φ has positive relative modular transcendence

degree over F .

Because S0 is not empty, we use Theorem 6.0.32 b) and conclude that for every

non-torsion x ∈ K, there exists v ∈MK/F such that

ĥMK/F ,v(x) > q−r(2+(r2+r)|S0|)d(v). (7.5)

Using inequality (4.9), we conclude that

ĥMK/F ,v(x) >
q−r(2+(r2+r)|S0|)

[L : F (x1, . . . , xn)]
=: c > 0. (7.6)

Because ĥMK/F
(x) ≥ ĥMK/F ,v(x) we conclude that for every non-torsion x ∈ K,

ĥMK/F
(x) > c. (7.7)

On the other hand, Theorem 6.0.32 b) shows that φtor(K) is bounded. Moreover,

if b(t) ∈ Fq [t] is the least common multiple of all polynomials in t of degree at most

(r2 + r)|S0|, then for every x ∈ φtor(K), φb(t)(x) = 0.

Let a ∈ A be an element such that deg(φa) ≥ 4 (we will need this assumption

because we will apply next Lemma 2.0.3). Because of the finiteness of φtor(K) and
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because of the equation (7.7), the Dedekind domain A, a ∈ A, φ(K) and ĥMK/F

satisfy the hypothesis of Lemma 2.0.3 (note that A/aA is finite as shown in [22]).

We conclude that φ(K) is a tame module. Because F is countable and K is finitely

generated over F , φ(K) is countable and so, it has at most countable rank. On the

other hand, as shown in the proof of Lemma 7.0.45, φ(K) has at least countable

rank because φ has positive modular transcendence degree. Thus φ(K) has rank

ℵ0. An application of part (a) of Corollary 2.0.5 finishes the proof of Theorem

7.0.44.

Theorem 7.0.47. Let F be a countable, algebraically closed field of characteristic

p and let K be a finitely generated extension of F of positive transcendence degree

over F . We fix an algebraic closure Kalg of K. If φ : A → F{τ} is a Drinfeld

module, then φ(K) is the direct sum of φ(F ) and a free submodule of rank ℵ0.

Proof. Let t be a non-constant element of A. Because φ is defined over F and F

is algebraically closed, we can find γ ∈ F such that φ
(γ)
t is monic. Because φ and

φ(γ) are isomorphic over F , it suffices to prove Theorem 7.0.47 for φ(γ). Thus we

assume from now on that φt is monic.

We will show next that the module φ(K)/φ(F ) is tame.

Let {x1, . . . , xn} be a transcendence basis for K/F . We construct the good set

of valuations MK/F with respect to {x1, . . . , xn}, as described in Chapter 4. Then

we construct the local and global heights associated to φ.
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Lemma 7.0.48. For every x ∈ F , ĥK/F (x) = 0.

Proof of Lemma 7.0.48. For every x ∈ F and for every a ∈ A, because φ is defined

over F , φa(x) ∈ F . Thus for every v ∈MK/F , ĥK/F,v(x) = 0.

We define the following function Ĥ : φ(K)/φ(F ) → R≥0 by

Ĥ (x+ φ(F )) = ĥK/F (x)

for every x ∈ K. We will prove in the next lemma that this newly defined function

is indeed well-defined.

Lemma 7.0.49. The function Ĥ is well-defined.

Proof of Lemma 7.0.49. To show that Ĥ is well-defined, it suffices to show that for

every x, y ∈ K, if x− y = z ∈ F , then ĥK/F (x) = ĥK/F (y).

Using the triangle inequality and using ĥK/F (z) = 0 (see Lemma 7.0.48), we

get

ĥK/F (x) ≤ ĥK/F (y) + ĥK/F (z) = ĥK/F (y). (7.8)

Similarly, using this time ĥK/F (−z) = 0 (also −z ∈ F ), we get

ĥK/F (y) ≤ ĥK/F (x) + ĥK/F (−z) = ĥK/F (x). (7.9)

Inequalities (7.8) and (7.9) show that ĥK/F (x) = ĥK/F (y), as desired.

For each x ∈ K, we denote by x its image in φ(K)/φ(F ).



97

Lemma 7.0.50. The function Ĥ satisfies the properties:

(i) Ĥ (x+ y) ≤ Ĥ (x) + Ĥ (y), for all x, y ∈ K.

(ii) Ĥ (φa(x)) = deg(φa) · Ĥ (x), for all x ∈ K and all a ∈ A \ {0}.

(iii) Ĥ (x) ≥ 1
[K:F (x1,...,xn)]

, for all x /∈ F .

Proof of Lemma 7.0.50. Properties (i) and (ii) follow immediately from the defi-

nition of Ĥ and the fact that φ is defined over F and ĥK/F satisfies the triangle

inequality and ĥK/F (φa(x)) = deg(φa) · ĥK/F (x), for all x ∈ K and all a ∈ A \ {0}.

Using the result of Theorem 6.0.32 part a), we conclude that if x /∈ F , there

exists v ∈MK/F such that

ĥK/F,v(x) ≥ d(v). (7.10)

Using inequality (4.9) in (7.10), we get ĥK/F,v(x) ≥
1

[K:F (x1,...,xn)]
.

Because ĥK/F (x) ≥ ĥK/F,v(x), we conclude that

ĥK/F (x) ≥
1

[K : F (x1, . . . , xn)]
.

Now we can finish the proof of Theorem 7.0.47. The rank of φ(K)/φ(F ) is at

most ℵ0 because K is countable (F is countable and K is a finitely generated

extension of F ). Because Ĥ satisfies the properties (i)-(iii) from Lemma 7.0.50,

Lemma 2.0.3 yields that φ(K)/φ(F ) is tame.

Lemma 7.0.51. The rank of φ(K)/φ(F ) is ℵ0.
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Proof of Lemma 7.0.51. We need to show only that the rank of the above module

is at least ℵ0. Assume the rank is finite and we will derive a contradiction.

Let y1, . . . , yg ∈ K be the generators of (φ(K)/φ(F ))⊗A Frac(A) as a Frac(A)-

vector space. Let v ∈MK/F be a place different from the finitely many places from

MK/F where y1, . . . , yg have poles. Let x ∈ K be an element which has a pole at

v. Then for every a ∈ A \ {0}, φa(x) has a pole at v. On the other hand, for every

a ∈ A and every i ∈ {1, . . . , g}, φa(yi) is integral at v. Thus the equation

φa(x) = z +

g∑

i=1

φai(yi)

has no solutions a, a1, . . . , ag ∈ A and z ∈ F with a 6= 0. This provides a contradic-

tion to our assumption that y1, . . . , yg are generators for (φ(K)/φ(F ))⊗A Frac(A)

as a Frac(A)-vector space.

Hence the rank of φ(K)/φ(F ) is ℵ0. Because φ(K)/φ(F ) is tame, Corollary

2.0.5 yields that φ(K)/φ(F ) is a direct sum of its torsion submodule and a free

submodule of rank ℵ0. We know that φ(K)/φ(F ) is torsion-free (if φa(x) ∈ F for

some a ∈ A \ {0}, then x ∈ F , because φa ∈ F{τ}). Hence φ(K)/φ(F ) is free of

rank ℵ0. We have the exact sequence:

0 → φ(F ) → φ(K) → φ(K)/φ(F ) → 0.

Because φ(K)/φ(F ) is free, the above exact sequence splits. Thus, φ(K) is a direct

sum of φ(F ) and a free submodule of rank ℵ0.
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The following result is an immediate corollary of Theorem 7.0.47.

Theorem 7.0.52. Let K be a finitely generated field of positive transcendence

degree over Fp. If φ : A → K{τ} is a Drinfeld module defined over a finite subfield

of K, then φ(Falg
p K) is a direct sum of an infinite torsion submodule (which is Falg

p ,

the entire torsion submodule of φ) and a free submodule of rank ℵ0.
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Chapter 8

Minimal groups in the theory of

separably closed fields associated

to Drinfeld modules

8.1 General properties of minimal groups in the

theory of separably closed fields

Everywhere in the remaining sections of this thesis, for two sets A and B, the

notation A ⊂ B means that A is a subset, not necessarily proper, of B.

Let K be a finitely generated field of characteristic p > 0. Let τ0 be the usual

Frobenius, i.e. τ0(x) = xp, for every x. We let K{τ0} be the non-commutative ring
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of all polynomials in τ0 with coefficients from K, where the addition is the usual

one while the multiplication is the composition of functions. If f, g ∈ K{τ0}, fg

will represent the composition of f and g.

Fix an algebraic closure Kalg of K. Let Ksep be the separable closure of K

inside Kalg. Let Falg
p be the algebraic closure of Fp inside Ksep.

There exists a non-negative integer ν such that [K : Kp] = [Ksep : Ksepp
] =

pν > 1. The number ν is called the Ersov invariant of K. When K is a finitely

generated field, ν = trdeg
Fp
K.

Notation 8.1.1. Let k be a positive integer. We denote by p(k) the set of functions

f : {1, . . . , k} → {0, . . . , p− 1}.

Definition 8.1.2. A subset B = {b1, . . . , bν} ⊂ K is called a p-basis of K, or

equivalently, of Ksep, if the following set of monomials,

{
mi =

ν∏

j=1

b
i(j)
j | i ∈ p(ν)

}

forms a basis for K/Kp, or equivalently for Ksep/Ksepp
.

For the rest of this paper we fix a p-basis B for K. There exists a unique

collection of functions λi : Ksep → Ksep for i ∈ p(ν), such that for every x ∈ Ksep,

x =
∑

i∈p(ν)

λi(x)
pmi.
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We call these functions λi the λ-functions of level 1. For every k ≥ 2 and for every

choice of i1, . . . , ik ∈ p(ν),

λi1,i2,...,ik = λi1 ◦ λi2 ◦ · · · ◦ λik

is called a λ-function of level k.

Definition 8.1.3. We let SCFp,ν be the theory of separably closed fields of char-

acteristic p and Ersov invariant ν in the language

Lp,ν = {0, 1,+,−, ·} ∪ {b1, . . . , bν} ∪ {λi | i ∈ p(ν)}.

From now on we consider a finitely generated field K of Ersov invariant ν and

so, Ksep is a model of SCFp,ν. We let L be an ℵ1-saturated elementary extension

of Ksep. Because L is an elementary extension of Ksep, L∩Kalg = Ksep. We are in-

terested in studying infinitely definable subgroups G of (L,+), i.e. G is possibly an

infinite intersection of definable subgroups of (L,+). If k ≥ 1 and G is an infinitely

definable subgroup of (L,+), then the relatively definable subsets of Gk (the carte-

sian product of G with itself k times) are the intersections of Gk with definable

subsets of (L,+)k. If there is no risk of ambiguity, we will say a definable subset of

Gk, instead of relatively definable subset of Gk. The structure induced by L on G

over a set S of parameters, is the set G together with all the relatively S-definable

subsets of the cartesian powers of G. We will consider only the case when the set

S of parameters equals Ksep. Thus, when we say a definable subset, we will mean
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a Ksep-definable subset. Also, we call the subgroups of (L,+) additive. Finally, we

observe that because the theory of separably closed fields is a stable theory (see

Messmer’s article from [19]), a definable subgroup of an infinitely definable group

G ⊂ L is the intersection of G with a definable subgroup of L.

Remark 8.1.4. In all of our arguments we will work with infinitely definable sub-

groups G of (L,+). To interpret such a group G from a purely model theoretic

point of view, we could do the following. We associate to G the (partial) type P

with the property that the realizations of P in the model L of separably closed

fields is G, i.e.G = P (L). Thus in our results we will loosely interchange the notion

of G as a subgroup of (L,+) and G as the set of realizations of a (partial) type in

the language of separably closed fields.

Definition 8.1.5. For every infinitely definable subgroup G, the connected com-

ponent of G, denoted G0, is the intersection of all definable subgroups of finite

index in G.

Definition 8.1.6. The group G is connected if G = G0.

The following result will be used in the proof of Theorem 9.0.19.

Lemma 8.1.7. The cartesian product of a finite number of connected groups is

connected.
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Proof. Using induction, it is enough to prove the product of two connected groups

is connected. Therefore, we assume G1 and G2 are connected and H ⊂ G1 × G2

is a definable subgroup of finite index. Let π1 be the projection of G1 × G2 on

the first component. Because [G1 × G2 : H] is finite, [G1 : π1(H)] is also finite.

Because G1 is connected and π1(H) is definable, we conclude π1(H) = G1. Let

π2 be the second projection of G1 × G2. Then H2 := π2(Ker(π1|H)) is a definable

subgroup of G2. Because [G1 × G2 : H] is finite, [G2 : H2] is also finite. Because

G2 is connected, we conclude H2 = G2. Hence H = G1 ×G2, which concludes the

proof of Lemma 8.1.7.

Definition 8.1.8. Let G be an infinitely definable additive subgroup of L. We

denote by EndKsep(G) the set of Ksep-definable endomorphisms f of G.

The endomorphisms f ∈ EndKsep(G) that are both injective and surjective,

form the group of Ksep-automorphisms of G, denoted AutKsep(G).

Remark 8.1.9. If G is a connected group, then the graph of f is a connected

subgroup of G×G.

From now on, “endomorphism of G” means “element of EndKsep(G)” and “au-

tomorphism of G” means “element of AutKsep(G)”.

Definition 8.1.10. Let G and H be infinitely definable connected groups. We call

the subgroup ψ ⊂ G × H a Ksep-quasi-morphism from G to H if the following

three properties are satisfied
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1) ψ is a connected, Ksep-definable subgroup of G×H.

2) the first projection π1(ψ) equals G.

3) the set {x ∈ H | (0, x) ∈ ψ} is finite.

The set of all Ksep-quasi-morphisms from G to H is denoted by QsMKsep(G,H).

When G = H, we call ψ a Ksep-quasi-endomorphism of G. The set of all Ksep-

quasi-endomorphisms of G is denoted by QsEKsep(G).

For every infinitely definable connected subgroup G, a “quasi-endomorphism

of G” will be an element of QsEKsep(G).

Let f be an endomorphism of the connected group G. We interpret f as a

quasi-endomorphism of G by

f = {(x, f(x)) | x ∈ G} ∈ QsEKsep(G).

Definition 8.1.11. Let G be an infinitely definable connected group. We define

the following two operations that will induce a ring structure on QsEKsep(G).

1) Addition. For every ψ1, ψ2 ∈ QsEKsep(G), we let ψ1 + ψ2 be the connected

component of the group

{(x, y) ∈ G×G | ∃y1, y2 ∈ G such that (x, y1) ∈ ψ1 , (x, y2) ∈ ψ2 and y1+y2 = y}.

2) Composition. For every ψ1, ψ2 ∈ QsEKsep(G), we let ψ1ψ2 be the connected

component of the group

{(x, y) ∈ G×G | there exists z ∈ G such that (x, z) ∈ ψ2 and (z, y) ∈ ψ1}.
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See [2] for the proof that the above defined operations endow QsEKsep(G) with

a ring structure.

Definition 8.1.12. Let G be an infinitely definable additive subgroup. Then G is

c-minimal if it is infinite and every definable subgroup of G is either finite or has

finite index.

Lemma 8.1.13. If G is a c-minimal connected group, then for all f ∈ EndKsep(G)\

{0}, f(G) = G.

Proof. Because f ∈ EndKsep(G) and G is connected, f(G) is a definable, connected

subgroup of G. Thus, since f 6= 0, f(G) cannot be finite. Then, because G is c-

minimal, f(G) has finite index in G. Because G is connected, we conclude that f

is surjective.

The next result is proved in a larger generality in Chapter 4.4 of [31]. Because for

the case we are interested in we can give a simpler proof, we present our argument

below.

Proposition 8.1.14. If G is a c-minimal, connected group, then QsEKsep(G) is a

division ring.

Proof. Let ψ ∈ QsEKsep(G) \ {0}. Let π2(ψ) be the projection of ψ ⊂ G × G

on the second component. Then π2(ψ) is a definable subgroup of G. Because ψ
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is connected and ψ 6= 0, π2(ψ) is not finite. Then, because G is a c-minimal,

connected group, π2(ψ) = G.

Because π2(ψ) = G and G is c-minimal and ψ 6= G×G, the set

{x ∈ G | (x, 0) ∈ ψ} (8.1)

is finite. We define φ = {(y, x) ∈ G × G | (x, y) ∈ ψ}. Because ψ is a connected,

Ksep-definable subgroup of G×G, then also φ is a connected, Ksep-definable sub-

group of G×G. By construction, π1(φ) = π2(ψ) = G. By construction of φ,

{x ∈ G | (0, x) ∈ φ} = {x ∈ G | (x, 0) ∈ ψ}.

Using (8.1), we conclude that {x ∈ G | (0, x) ∈ φ} is finite. Thus condition 3) of

Definition 8.1.10 holds and so, φ ∈ QsEKsep(G). By definition of φ, ψφ (as defined

in Definition 8.1.11) is the identity function on G. Thus QsEKsep(G) is a division

ring (1 6= 0 because G is infinite).

Definition 8.1.15. Let f ∈ K{τ0}τ0 \ {0}. We define f ♯ = f ♯(L) =
⋂
n≥1 f

n(L).

In [2] (Lemma 4.23) and [23] the following result is proved.

Theorem 8.1.16. If f ∈ K{τ0}τ0 \ {0}, then f ♯ is c-minimal. In particular, f ♯ is

infinite.

The theory of separably closed fields is stable, as shown in [19]. Because [21]

proves that every stable field is connected as an additive group, the following result

holds.
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Theorem 8.1.17. The groups (Ksep,+) and (L,+) are connected.

Because the image of a connected group through a definable map is also con-

nected, we get the following result.

Corollary 8.1.18. For every f ∈ K{τ0}, f(Ksep) is connected.

Lemma 8.1.19. Let (Hn)n≥1 be a countable collection of descending connected

definable subgroups of (L,+). Then the infinitely definable subgroup H =
⋂
n≥1 Hn

is connected.

Proof. It suffices to show that for every definable additive subgroup G of L, if

G intersects H in a subgroup of finite index, then G contains H. So, let G be a

definable additive subgroup of L such that [H : G ∩H] is finite.

Assume that there exists n ≥ 1 such that [Hn : G ∩Hn] is finite. For such n,

because Hn is connected (see Corollary 8.1.18), we conclude that Hn = G ∩ Hn.

So, Hn ⊂ G. Then, by the definition of H, we get that H ⊂ G.

Suppose that for all n ≥ 1, [Hn : G ∩Hn] is infinite. By compactness and

the fact that the groups Hn form a descending sequence and the fact that L is

ℵ1-saturated, we conclude that also [H : G ∩H] is infinite, which contradicts our

assumption. For reader’s convenience, we provide the compactness argument.

Let the descending sequence of groups Hi be represented by formulas φi. Also,

let the group G be represented by the formula ψ.
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For each positive integer m and for each finite subset of indices n1 < · · · < nk

let Fm,n1,...,nk
(x1, . . . , xm) be the formula which says:

φni(xj) for every 1 ≤ i ≤ k and for every 1 ≤ j ≤ m (i.e. each xj realizes

each formula φni) and for different j and j′ between 1 and m, ¬ψ(xj−xj′) (i.e. for

different j and j′, xj − xj′ /∈ G). So, the xj are in all the groups Hni but they live

in different cosets modulo G.

We know that each individual formula Fm,n1,...,nk
(x1, . . . , xm) has a realization

in the model L (to see this, we recall the φni are descending and so, Fm,n1,...,nk

says that [Hnk
: Hnk

∩ G] is at least m, because nk is the largest index among

n1, . . . , nk).

Then for every finite subset of formulas Fm,n1,...,nk
, let M be the largest among

the numbers m appearing as an index for the formulas F . We prove there exist

x1, . . . , xM realizing simultaneously all of the formulas Fm,n1,...,nk
. Indeed, just re-

place all of the formulas Fm,n1,...,nk
with just one formula FM,l1,...,ls where the indices

l1, . . . , ls form a set containing all the indices n1, . . . , nk from all the formulas F of

the chosen finite subset of formulas. We know that FM,l1,...,ls is realizable and so,

all of the finitely many formulas F from above are also realizable. Then we can

use compactness and ℵ1-saturation to conclude G ∩
⋂
n≥1 Hn has infinite index in

⋂
n≥1Hn.

The following result is an immediate corollary to Lemma 8.1.19.
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Lemma 8.1.20. If f ∈ K{τ0}τ0 \ {0}, then f ♯ is connected.

Proof. Because of Corollary 8.1.18 we can apply Lemma 8.1.19 to the collection of

connected groups fn(L).

Corollary 8.1.21. Let f, g ∈ K{τ0}τ0 \ {0}. If g♯ ⊂ f ♯, then f ♯ = g♯.

Proof. By Theorem 8.1.16 and our hypothesis, g♯ is an infinite subgroup of f ♯.

Thus for every n ≥ 1, gn(L)∩f ♯ is a definable infinite subgroup of f ♯. By Theorem

8.1.16 and Lemma 8.1.20, f ♯ ⊂ gn(L). Because this last inclusion holds for all

n ≥ 1, we conclude that f ♯ ⊂ g♯. Thus f ♯ = g♯.

In [2] (see Proposition 3.1 and the Remark after the proof of Lemma 3.8) the

following result is proved.

Proposition 8.1.22. The following statements hold:

(i) The Frobenius τ0, the λ-functions of level 1 and the elements of Ksep seen as

scalar multiplication functions generate EndKsep(L,+) as a ring (i.e., with re-

spect to the addition and the composition of functions). Each such element of

EndKsep(L,+) will be called an (additive) λ-polynomial. (Because we will only

deal with additive λ-polynomials, we will call them simply λ-polynomials.)

(ii) For every ψ ∈ EndKsep(L,+), there exists n ≥ 1 such that for all g ∈

Ksep{τ0}τ
n
0 , ψg ∈ Ksep{τ0}.



111

(iii) Let G be an infinitely definable subgroup of (L,+). Then each endomorphism

f ∈ EndKsep(G) extends to an element of EndKsep(L,+).

8.2 The ring of quasi-endomorphisms for mini-

mal groups associated to Drinfeld modules

of finite characteristic

Let q be a power of p and let τ be the power of the Frobenius for which τ (x) =

xq, for every x. Let K be a finitely generated field extension of Fq of positive

transcendence degree. We let as before K{τ} be the ring of all polynomials in τ

with coefficients from K. Let

f =
r∑

i=0

aiτ
i ∈ K{τ},

with ar 6= 0. The order ordτ f of f is defined as the smallest i such that ai 6= 0.

Thus, f is inseparable if and only if ordτ f > 0.

As in the previous subsection, let L be an ℵ1-saturated elementary extension

of Ksep. We recall Definition 1.4.5.

Definition 8.2.1 (Definition 1.4.5). Let φ : A → K{τ} be a Drinfeld module
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of finite characteristic. We define

φ♯ = φ♯(L) =
⋂

a∈A\{0}

φa(L).

Lemma 8.2.2. Let φ : A→ K{τ} be a Drinfeld module of finite characteristic p.

Let t ∈ p \ {0}. Then

φ♯ =
⋂

n≥1

φtn(L) = (φt)
♯.

Proof. If a /∈ p, then φa is a separable polynomial and φa(L) = L. Thus

φ♯ =
⋂

a∈p\{0}

φa(L). (8.2)

Let a ∈ p\{0}. Because t ∈ p\{0}, there exist n,m ≥ 1 and there exist u, v ∈ A\p

such that tnv = amu. Then φu and φv are separable and so,

φam(L) = φam(φu(L)) = φamu(L) = φtnv(L) = φtn(φv(L)) = φtn(L). (8.3)

So, φtn(L) ⊂ φa(L). Thus, using (8.2), we conclude that the result of Lemma 8.2.2

holds.

The following result is an immediate consequence of Lemmas 8.2.2 and 8.1.20

and Theorem 8.1.16.

Corollary 8.2.3. The group φ♯ is a c-minimal, connected additive group.

Lemma 8.2.4. Let φ be a Drinfeld module of finite characteristic. Let EndKsep(φ)

be the ring of endomorphisms of φ (defined as in [13]). Then each endomorphism
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of φ induces an endomorphism of φ♯, and this association defines an injective ring

homomorphism, i.e. EndKsep(φ) ⊂ EndKsep(φ♯) ⊂ QsEKsep(φ♯).

Proof. Let t be a uniformizer of the prime ideal of A which is the characteristic

of φ. The inclusion EndKsep(φ♯) ⊂ QsEKsep(φ♯) is clear. Let now f ∈ EndKsep(φ)

and x ∈ φ♯. We need to show that f(x) ∈ φ♯. Because x ∈ φ♯, for all n ≥ 1, there

exists xn ∈ L such that x = φtn(xn). Because f ∈ EndKsep(φ), f(x) = f(φtn(xn)) =

φtn(f(xn)) ∈ φtn(L), for all n ≥ 1. Thus indeed, f(x) ∈ φ♯ (see Lemma 8.2.2).

Finally, the above defined association is injective because φ♯ is an infinite set and

so, there is no nonzero endomorphism of φ which restricted to φ♯ is identically

equal to 0.

Corollary 8.2.5. If φ is a finite characteristic Drinfeld module, then

φ♯ =
⋂

f∈EndKsep(φ♯)\{0}

f(L).

Proof. For every nonzero a ∈ A, φa ∈ EndKsep(φ) ⊂ EndKsep(φ♯). Thus

⋂

f∈EndKsep(φ♯)

f(L) ⊂
⋂

a∈A\{0}

φa(L) = φ♯.

But by Lemma 8.1.13 and Corollary 8.2.3, all the endomorphisms of φ♯ are sur-

jective on φ♯. So, then indeed

φ♯ =
⋂

f∈EndKsep(φ♯)

f(L).
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Using Corollary 8.2.3 and Proposition 8.1.22, we get the following result.

Corollary 8.2.6. Let f ∈ EndKsep(φ♯). Then f is a λ-polynomial. In particular,

there exists m ≥ 1 such that for all h ∈ Ksep{τ}τm, fh ∈ Ksep{τ}.

As before, for every a ∈ A \ {0}, we let φ[a] = {x ∈ Kalg | φa(x) = 0}. Then

for a ∈ A \ {0}, we let φ[a∞] = ∪n≥1φ[an]. If p is any nontrivial prime ideal in A,

then we define

φ[p′] = {x ∈ Kalg | there exists a /∈ p such that φa(x) = 0}.

We define φ♯(Ksep) = φ♯(L)∩Ksep. We claim that this definition for φ♯(Ksep) is

equivalent with φ♯(Ksep) =
⋂
a∈A\{0} φa(K

sep). Indeed, if x ∈ φ♯(L)∩Ksep, then for

every a ∈ A\{0}, there exists xa ∈ L such that x = φa(xa). Because φa ∈ Ksep{τ}

and x ∈ Ksep, xa ∈ Kalg. Because L ∩ Kalg = Ksep, xa ∈ Ksep. Moreover, a

similar proof as in Lemma 8.2.2, shows that φ♯(Ksep) =
⋂
n≥1 φtn(Ksep), if φt is

inseparable.

We will continue to denote by φ♯ the group φ♯(L) and by φ♯(Ksep), its subgroup

contained in Ksep.

Lemma 8.2.7. Let φ : A→ K{τ} be a Drinfeld module of finite characteristic p.

Then φ[p′] ⊂ φ♯(Ksep).

Proof. Let x ∈ φ[p′] and let a /∈ p such that φa(x) = 0. Because φa is separable,
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x ∈ Ksep. Let t be an element of p, coprime with a, i.e. t and a generate the unit

ideal in A.

Let n ≥ 1. Because t and a are coprime, so are tn and a. Thus there exist r, s ∈ A

such that tnr+as = 1. Applying this last equality to x gives φtn(φr(x)) = x, which

shows that x ∈ φtn(Ksep). Because n was arbitrary, we conclude x ∈ φ♯(Ksep).

Theorem 8.2.8. Let φ : A → K{τ} be a Drinfeld module of finite characteristic

p. Assume there exists a non-constant t ∈ A such that φ[t∞]∩Ksep is finite. Then

φ♯(Ksep) = φ[p′]. Moreover, with the above hypothesis on φt, we have that for every

ψ ∈ QsEKsep(φ♯), there exists n ≥ 1 such that ψφtn = φtnψ in QsEKsep(φ♯).

Proof. Clearly, t ∈ p \ {0}, because for all a ∈ A \ p, φa is separable and so,

φ[a∞] ⊂ Ksep. By Lemma 8.2.2, we know that

φ♯ =
⋂

n≥1

φtn(L) (8.4)

and φ♯(Ksep) =
⋂
n≥1 φtn(Ksep).

Because φ[t∞] ∩Ksep is finite, let N0 ≥ 1 satisfy

φ[t∞] ∩Ksep ⊂ φ[tN0]. (8.5)

Thus

φ[t∞] ∩ φ♯ = {0}. (8.6)

We will prove Theorem 8.2.8 through a series of lemmas.
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Lemma 8.2.9. Under the hypothesis of Theorem 8.2.8, φt ∈ AutKsep(φ♯).

Proof of Lemma 8.2.9. By Lemma 8.2.4, we know that φt ∈ EndKsep(φ♯). By the

definition of φ♯, we know that φt is a surjective endomorphism of φ♯. By (8.6), we

know that φt is an injective endomorphism of φ♯.

Lemma 8.2.10. Assume x ∈ φ♯(Ksep). We can find a sequence (xn)n≥0 ⊂ φ♯(Ksep)

such that x0 = x and for all n ≥ 0, φt(xn+1) = xn.

Proof of Lemma 8.2.10. Let x ∈ φ♯(Ksep). Let N be a positive integer. Because

x ∈ φ♯(Ksep), there exists xN ∈ Ksep such that x = φtN (xN ). For each 1 ≤ n ≤ N

we let xN−n = φtn(xN). Thus we constructed the sequence (xn)0≤n≤N ⊂ Ksep

such that x = x0 and for every 0 ≤ n ≤ N − 1, xn = φt(xn+1). We can do

repeat this construction for each positive integer N . By compactness, because L

is ℵ1-saturated, there exists an infinite coherent sequence (xn)n≥0 ⊂ L such that

x = x0 and for every n ≥ 0, xn = φt(xn+1). Because x ∈ Ksep and φt ∈ K{τ},

(xn)n≥0 ⊂ Kalg ∩ L = Ksep (the intersection of the two fields being taken inside a

fixed algebraic closure of L which contains Kalg).

An immediate corollary of the above proof is the following result.

Corollary 8.2.11. For an arbitrary Drinfeld module ψ : A → K{τ} of positive

characteristic and for t ∈ A such that ψt is inseparable, the set ψ[t∞](Ksep) is finite

if and only if ψt ∈ AutKsep(ψ♯).
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Proof of Corollary 8.2.11. If ψ[t∞](Ksep) is finite, then clearly there is no t-power-

torsion of ψ in ψ♯ and so, ψt is injective on ψ♯. Because all the endomorphisms of ψ♯

are surjective (ψ♯ is a c-minimal, connected group), then indeed, ψt ∈ AutKsep(ψ♯).

If ψt ∈ AutKsep(ψ♯), we claim there is finite t-power-torsion of ψ in Ksep. As-

sume this is not the case. Then there are arbitrarily long sequences (xn)0≤n≤m ∈

ψ[t∞](Ksep) such that

xn = ψt(xn+1) , for all n ∈ {0, . . . , m− 1} and x0 6= 0.

Arguing as in the proof of Lemma 8.2.10, we conclude there exists an infinite

coherent sequence (xn)n≥0 ∈ ψ[t∞](Ksep) such that

xn = ψt(xn+1) , for all n ≥ 0 and x0 6= 0.

Hence x0 ∈ ψ♯ ∩ ψ[t∞], which provides a contradiction with our assumption. This

concludes the proof of Corollary 8.2.11.

The result of Lemma 8.2.10 is instrumental in proving that φ♯(Ksep) ⊂ φtor.

Indeed, take x ∈ φ♯(Ksep) and construct the associated sequence (xn)n≥0 as in

(8.2.10).

Let K ′ = K(x). We claim that xn ∈ K ′, for all n ≥ 1.

Fix n ≥ 1 and pick any σ ∈ Gal(Ksep/K ′). Because φt ∈ K{τ} ⊂ K ′{τ},

for every m ≥ 1, σ(xm) = σ(φt(xm+1)) = φt(σ(xm+1)). So, for every m ≥ 1,
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xn − σ(xn) = φtm(xn+m − σ(xn+m)). Thus,

xn − σ(xn) ∈ φ♯. (8.7)

But φtn(xn−σ(xn)) = φtn(xn)−φtn(σ(xn)) = φtn(xn)−σ(φtn(xn)) = x−σ(x) = 0,

because x ∈ K ′. Thus

xn − σ(xn) ∈ φ[tn]. (8.8)

As shown by (8.6), there is no t-power torsion of φ in φ♯. Equations (8.8) and (8.7)

yield

xn − σ(xn) = 0. (8.9)

So, xn = σ(xn), for all n ≥ 1 and for all σ ∈ Gal(Ksep/K ′). Thus, xn ∈ K ′, for all

n ≥ 1 as it was claimed. If x /∈ φtor, then xn /∈ φtor for all n ≥ 1. This will give a

contradiction to the structure theorem for φ(K ′).

In [22] (for fields of transcendence degree 1 over Fp) and in [32] (for fields of

arbitrary positive transcendence degree) it is established that a finitely generated

field (as K ′ in our setting) has the following φ-module structure: a direct sum of a

finite torsion submodule and a free module of rank ℵ0. In particular this means that

there cannot be an infinitely t-divisible non-torsion element x ∈ L. So, x ∈ φtor

and we conclude that φ♯(Ksep) ⊂ φtor.

By Lemma 8.2.7, we know that φ[p′] ⊂ φ♯. We will prove next that under the

hypothesis from Theorem 8.2.8 (see (8.5)), φ♯(Ksep) = φ[p′].
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Suppose that there exists x ∈ φ♯(Ksep) \ φ[p′]. Because we already proved that

φ♯(Ksep) ⊂ φtor, x ∈ φtor. Then there exists a ∈ p \ {0} such that φa(x) = 0.

Because t ∈ p \ {0}, there exist n,m ≥ 1 and u, v ∈ A \ p such that tnv = amu.

Then

φtnv(x) = φamu(x) = φam−1u(φa(x)) = 0.

So, x ∈ φ[tnv]. By our assumption, x /∈ φ[p′] and so, y := φv(x) 6= 0. Thus

y ∈ φ[tn] \ {0}. (8.10)

By Lemma 8.2.4, because x ∈ φ♯(Ksep) and φv ∈ EndKsep(φ),

y = φv(x) ∈ φ♯(Ksep). (8.11)

Equations (8.10) and (8.11) provide a contradiction to (8.6). So, indeed φ♯(Ksep) =

φ[p′].

In order to prove the second part of our Theorem 8.2.8 regarding the quasi-

endomorphisms of φ♯, we split the proof in two cases.

Case 1. The polynomial φt is purely inseparable.

Then φt = ατ r for some α ∈ K and some r ≥ 1. Let γ ∈ Ksep such that

γq
r−1α = 1.

Let φ(γ) be the Drinfeld module defined by φ(γ) = γ−1φγ. We call φ(γ) the

conjugate of φ by γ. Then φ
(γ)
t = τ r. Moreover, because for all a ∈ A, φ(γ) = γ−1φaγ
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and γ ∈ Ksep, we conclude that

φ(γ)♯

= γ−1φ♯ (8.12)

and

QsEKsep(φ♯) = γQsEKsep

(
φ(γ)♯

)
γ−1. (8.13)

Because φ
(γ)
t = τ r, φ(γ)♯

=
⋂
n≥1 L

pn
:= Lp

∞
. By [2] (Proposition 4.10), the ring

QsEKsep

(
Lp

∞)
is the division ring of fractions of the Ore ring Falg

p {τ0, τ
−1
0 }, where

τ0 is the usual Frobenius (see [13] for constructing the division ring of fractions

for an Ore ring). Then clearly, for all ψ ∈ QsEKsep

(
φ(γ)♯

)
, there exists n ≥ 1 such

that

φ
(γ)
tn = τ rn

commutes with ψ in QsEKsep(φ(γ)♯
). By (8.13), we conclude that also for every

ψ ∈ QsEKsep(φ♯), there exists n ≥ 1 such that ψφtn = φtnψ.

Case 2. The polynomial φt is not purely inseparable, i.e. φ[t] 6= {0}.

Lemma 8.2.12. For every ψ ∈ QsEKsep(φ♯) there exists a ∈ A\{0} and n ≥ 1 such

that φaψφtn ∈ EndKsep(φ♯)∩Ksep{τ} (the intersection is taken inside QsEKsep(L)).

Proof. Let ψ ∈ QsEKsep(φ♯) and let S = {x ∈ φ♯|(0, x) ∈ ψ}. Thus, S is a finite,

Ksep-definable subgroup of φ♯. Because L is an elementary extension of Ksep, S ⊂

Ksep. Thus S ⊂ φ♯(Ksep) ⊂ φtor. Hence there exists a ∈ A\{0} such that S ⊂ φ[a].

By Lemma 8.2.4, φaψ ∈ QsEKsep(φ♯) and its cokernel is trivial by our choice for
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a. Thus, φaψ is actually an endomorphism of φ♯. Also, according to Proposition

8.1.22, the endomorphisms of φ♯ are λ-polynomials. Thus, by Corollary 8.2.6,

because φt is inseparable, there exists n ≥ 1 such that φaψφtn ∈ EndKsep(φ♯) ∩

Ksep{τ}.

Proposition 8.2.13. Let R be a domain, i.e. a unital (not necessarily commuta-

tive) ring with no nontrivial zero-divisors.

a) Let y ∈ R be nonzero and suppose that g ∈ R commutes with y and xy for

some x ∈ R. Then g also commutes with x.

b) Let y ∈ R be nonzero and suppose that g ∈ R commutes with y and yx for

some x ∈ R. Then g also commutes with x.

Proof of Proposition 8.2.13. It suffices to prove a), because the proof of b) follows

from a) applied to Rop.

Thus, for the proof of a), we know that

(gx)y = g(xy) = (xy)g = x(yg) = x(gy) = (xg)y. (8.14)

Because y ∈ R \ {0} and R is a domain, equation (8.14) concludes the proof of

Proposition 8.2.13 a).

We use Proposition 8.2.13 with R = QsEKsep(φ♯) because from Proposition

8.1.14, we know that QsEKsep(φ♯) is a division ring. Then by Lemma 8.2.12 and

Proposition 8.2.13, it suffices to prove Theorem 8.2.8 for f ∈ EndKsep(φ♯)∩Ksep{τ}.
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Let f ∈ EndKsep(φ♯) ∩ Ksep{τ}. By Lemma 8.2.9, φ−1
t ∈ EndKsep(φ♯) and so,

φ−1
t f ∈ EndKsep(φ♯). Hence, φ−1

t f is a λ-polynomial. By Proposition 8.2.6, there

exists m ≥ 1 such that for every polynomial h ∈ K{τ}τm,

φ−1
t h ∈ Ksep{τ}. (8.15)

Because φt has inseparable degree at least 1 and f ∈ Ksep{τ}, equation (8.15)

yields that g1 := φ−1
t fφtm ∈ Ksep{τ}. Moreover, by Lemma 8.2.9, g1 ∈ EndKsep(φ♯).

This means that the equation

fφtm = φtg1, (8.16)

which initially was true only on φ♯ is an identity in Ksep{τ}. Indeed, φ♯ is infinite

(see Lemma 8.2.7) and so, (8.16) holds for infinitely many points of L. Thus,

because fφtm and φtg1 are polynomials, (8.16) holds identically in L.

Because in equation (8.16) all the functions are polynomials in τ , we can equate

the order of τ in g1. We obtain

ordτ g1 = ordτ f + (m− 1) ordτ φt ≥ (m− 1) ordτ φt ≥ m− 1. (8.17)

Thus ordτ (g1φt) ≥ m and using (8.15), we get that φ−1
t g1φt ∈ EndKsep(φ♯) ∩

Ksep{τ}. So, denote by g2 = φ−1
t g1φt. This means that the identity

φtg2 = g1φt, (8.18)

which initially was true only on φ♯ is actually true everywhere. It is the same argu-

ment as above when we explained that equation (8.16) is an identity of polynomials
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from Ksep{τ}.

We equate the order of τ of the polynomials from (8.18) and conclude that

ordτ g2 = ordτ g1 ≥ m− 1. (8.19)

So, then again ordτ(g2φt) ≥ m and we can apply (8.15) and find a polynomial

g3 ∈ Ksep{τ} ∩ EndKsep(φ♯) such that φtg3 = g2φt.

Once again ordτ g3 = ordτ g2 and so the above process can continue and we con-

struct an infinite sequence (gn)n≥1 ∈ Ksep{τ} ∩ EndKsep(φ♯) such that for every

n ≥ 1,

φtgn+1 = gnφt. (8.20)

Let g0 = fφtm−1. Then, using (8.16), we conclude that equation (8.20) holds also

for n = 0.

An easy induction will show that for every k ≥ 1 and for all n ≥ 0,

φtkgn+k = gnφtk . (8.21)

Indeed, case k = 1 is equation (8.20). So, we suppose that (8.21) holds for some

k ≥ 1 and for all n ≥ 0 and we will prove it holds for k + 1 and all n ≥ 0. By

equations (8.20) and (8.21) we have that

φtk+1gn+k+1 = φt(φtkgn+1+k) = φtgn+1φtk = gnφtφtk = gnφtk+1 ,
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which proves the inductive step of our assertion.

Equation (8.21) shows that for every k ≥ 1, gn+k maps φ[tk] into itself, for every

n ≥ 0. Equation (8.20) shows that all the polynomials gn have the same degree,

call it d. Because φt is not purely inseparable, we may choose k0 ≥ 1 such that

|φ[tk0]| > d. (8.22)

Because φ[tk0] is a finite set and our sequence of polynomials (gn)n≥0 is infinite, it

means that there exist n2 > n1 ≥ 0 such that

gn1+k0 |φ[tk0 ] = gn2+k0 |φ[tk0 ]. (8.23)

By another application of the fact that all gn are polynomials, equations (8.22)

and (8.23) yield that

gn1+k0 = gn2+k0 . (8.24)

But then, using (8.21) (with k = n2 − n1 and n = n1 + k0) we conclude that

φtn2−n1gn2+k0 = gn1+k0φtn2−n1 . (8.25)

If we denote by g the polynomial represented by both gn2+k0 and gn1+k0 (according

to (8.24)), equation (8.25) shows that g commutes with φtn2−n1 . We let n0 = n2 −

n1 ≥ 1 and so,

gφtn0 = φtn0g. (8.26)
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The definition of g = gn1+k0 and equation (8.21) (with k = n1 +k0 and n = 0) give

φtn1+k0g = g0φtn1+k0 . (8.27)

Equation (8.26) shows that φtn0 commutes with φtn1+k0 g. Thus, by equation (8.27),

φtn0 commutes also with g0φtn1+k0 . We apply now Proposition 8.2.13 a) to conclude

that φtn0 commutes with g0. Because g0 = fφtm−1, another application of the above

mentioned proposition gives us

φtn0f = fφtn0

and ends the proof of Theorem 8.2.8.

Theorem 8.2.14. Let φ be a Drinfeld module of finite characteristic p. Assume

that there exists f ∈ AutKsep(φ♯) ∩ Ksep{τ}τ . Then φ♯(Ksep) ⊂ φtor and for all

ψ ∈ QsEKsep(φ♯), there exists n ≥ 1 such that ψfn = fnψ (the identity being seen

in QsEKsep(φ♯)).

Proof. Construct another Drinfeld module Φ : Fq[t] → Ksep{τ} by Φt = f . By

Lemma 8.2.2, Φ♯ = f ♯. Using Corollary 8.2.5 and f ∈ EndKsep(φ♯), we get that

φ♯ ⊂ Φ♯. (8.28)

Because both φ♯ and Φ♯ are connected, c-minimal groups (see Corollary 8.2.3),

applying Corollary 8.1.21, we conclude that they are equal.
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Because Φt ∈ AutKsep(φ♯) = AutKsep(Φ♯), Φ[t∞]∩Ksep is finite (or otherwise we

would have t-power-torsion of Φ in Φ♯, as shown by Corollary 8.2.11). Hence, we

are in the hypothesis of Theorem 8.2.8 with Φ and t. Thus, we conclude that

Φ♯(Ksep) = Φ[(t)′], (8.29)

where by Φ[(t)′] we denoted the prime-to-t-torsion of Φ.

Because for all a ∈ A, φa ∈ EndKsep(φ) ⊂ EndKsep(φ♯) = EndKsep(Φ♯), there

exists na ≥ 1 such that φaf
na = fnaφa, by Theorem 8.2.8. Because A is finitely

generated as an Fp-algebra, we can find n0 ≥ 1 such that for all a ∈ A, φaf
n0 =

fn0φa, i.e. fn0 ∈ EndKsep(φ).

Claim Let c(t) ∈ Fq [t]\{0} and let m ≥ 1. Then there exists d(t) ∈ Fq[t
m]\{0}

such that c(t) divides d(t).

Proof of Claim. Because Fq [t]/(c(t)) is finite and because Fq [t
m] is infinite, there

exist d1(t) 6= d2(t), both polynomials in Fq [t
m], such that c(t) divides d(t) =

d1(t) − d2(t).

Let x ∈ Φtor and let c(t) ∈ Fq [t] \ {0} such that Φc(t)(x) = 0. By the above

Claim, we may assume that c(t) ∈ Fq[t
n0]. Because Φtn0 = fn0 ∈ EndKsep(φ),

Φc(t) ∈ EndKsep(φ).

Let a be a non-constant element of A. Then for all y ∈ Φ[c(t)],

Φc(t)(φa(y)) = φa(Φc(t)(y)) = 0.
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Thus φa(y) ∈ Φ[c(t)] for all y ∈ Φ[c(t)]. Similarly, φam maps Φ[c(t)] into itself for

everym ≥ 1. Because Φ[c(t)] is a finite set and x ∈ Φ[c(t)], there existm2 > m1 ≥ 1

such that φam2 (x) = φam1 (x). Thus x ∈ φ[am2 − am1] and am2 − am1 6= 0 (a is not

constant). This shows that x ∈ φtor and because x was an arbitrary torsion point

of Φ, then Φtor ⊂ φtor. Actually, because the above argument can be used reversely

by starting with an arbitrary torsion point x of φ and concluding that x ∈ Φtor,

we have φtor = Φtor. In any case, the inclusion Φtor ⊂ φtor is sufficient to conclude

that

φ♯(Ksep) = Φ♯(Ksep) ⊂ Φtor ⊂ φtor.

Also, Theorem 8.2.8 applied to Φ and f = Φt shows that for all

ψ ∈ QsEKsep(Φ♯) = QsEKsep(φ♯),

there exists n ≥ 1 such that ψfn = fnψ (in QsEKsep(φ♯)).

The following example shows that one possible way of strengthening Theorem

8.2.8 does not hold and also shows how Theorem 8.2.14 applies when we do not

have the hypothesis of (8.2.8).

Example 8.2.15. Assume p > 2. Let t be an indeterminate and K = Fq(t). Let

f = tτ + τ 3. Then, for all λ ∈ Fq2 ,

fλ = λqf (8.30)
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where λ is seen as the operator λτ 0.

Define φ : Fq [t] → Fq(t){τ} by φt = f(τ 0 + f). We claim that

φ[t∞] ∩Ksep is infinite. (8.31)

Because for all n ≥ 1, φtn = fn(τ 0 + f)n, Ker((τ 0 + f)n) ⊂ Kerφtn. Because τ 0 + f

is a separable polynomial, all the roots of (τ 0 + f)n are distinct and separable over

K. So, indeed, (8.31) holds.

statement (8.31) shows that the hypothesis of Theorem 8.2.8 fails for φ and t.

We will prove the conclusion of Theorem 8.2.8 regarding the quasi-endomorphisms

of φ♯ fails, i.e. there exists a quasi-endomorphism of φ♯ that does not commute

with any power of φt.

Let λ ∈ Fq2 \ Fq. Applying Lemma 8.2.2, we get that φ♯ = (φt)
♯. Applying

Corollary 8.1.21 to φt and f2 we conclude that φ♯ = (f2)♯ (because f2 is an

endomorphism of φ and so, by Corollary 8.2.5, (φt)
♯ = φ♯ ⊂ (f2)♯). But

f2λ = λf2 (apply equation (8.30) twice). (8.32)

Thus, with the help of Lemma 8.2.4 applied to the Drinfeld module ψ : Fq[t] →

K{τ} given by ψt = f2, we get that

λ ∈ EndKsep(ψ♯) = EndKsep

(
(f2)♯

)
= EndKsep(φ♯).

Suppose that there exists n ≥ 1 such that φtnλ = λφtn on φ♯. Because φ♯

is infinite, φtnλ = λφtn , as polynomials. Then also φt2nλ = λφt2n. But φt2n =
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f2n(τ 0 + f)2n and using (8.32) and Proposition 8.2.13 applied to the domain

K{τ}, we get

(τ 0 + f)2nλ = λ(τ 0 + f)2n. (8.33)

We will prove that (8.33) is impossible. Because of the skew commutation of f

and λ as shown in equation (8.30), the only way for equation (8.33) to hold is if

in the expansion of (τ 0 + f)2n, all the nonzero terms are even powers of f . Let pl

be the largest power of p that is less or equal to 2n. Then
(
2n
pl

)
6= 0 (in Fp) and its

corresponding power of f is odd. This shows that indeed, (8.33) cannot hold when

p > 2.

On the other hand, f ∈ EndKsep(φ) and the hypothesis of Theorem 8.2.14

is verified for φ and f . Indeed, f ∈ EndKsep(φ♯) and Ker(f) ∩ Ksep = {0}; thus

f ∈ AutKsep(φ♯). As we can see from equation (8.32), also the conclusion of (8.2.14)

regarding the commutation of the quasi-endomorphism λ of φ (i.e. the scalar mul-

tiplication function associated to λ) with a power of f holds with the power being

f2.

For the case p = 2 we can construct a similar example by taking f = tτ + τ 4

and defining the Drinfeld module φ : Fq[t] → Fq(t){τ} by φt = f(τ 0 + f). In this

case, λ ∈ Fq3 \ Fq will play the role of the endomorphism of φ♯ that commutes

with a power of an endomorphism of φ, i.e. it commutes with f3, but it does not

commute with any power of φt.
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Chapter 9

The Mordell-Lang Theorem for

Drinfeld modules

In this Chapter, by “subvariety” we understand “closed subvariety”.

Let K be a finitely generated field of characteristic p. As in the previous chapter,

we let L be an ℵ1-saturated elementary extension of Ksep in the theory of separably

closed fields.

Let φ : A → K{τ} be a Drinfeld module. In Chapter 7 we proved that if there

exists a non-constant t ∈ A such that φt =
∑r

i=0 aiτ
i is monic, then the modular

transcendence degree of φ is trdeg
Fp

Fp(a0, . . . , ar−1).

We restate Theorem 1.4.4 here.

Theorem 9.0.16 (Theorem 1.4.4). Let K be a finitely generated field of char-
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acteristic p. Let φ : A → K{τ} be a Drinfeld module of finite characteristic and

modular transcendence degree at least 1. Let Γ be a finitely generated φ-submodule

of Gg
a(K

alg) and X be an algebraic subvariety of Gg
a. Then X(Kalg) ∩ Γ is a finite

union of translates of subgroups of Γ.

Using Theorem 8.2.8, we are able to strengthen the conclusion of (1.4.4) by

showing that one could replace subgroups by φ-submodules. Before stating and

proving our result, we need to prove a technical lemma regarding groups of U -rank

1. For a definition and basic properties of the U -rank (also called, the Lascar rank)

we refer the reader to Delon’s article in [4]. We also mention that Lemma 9.0.18

is true in a larger generality; for example it is true if the U -rank is replaced by

the Morley rank (for the definition of the Morley rank, see Ziegler’s article in [4])

and so, it holds in the context of classical algebraic geometry. We denote by rk the

U -rank. For reader’s convenience we recall here the properties of the U -rank that

we will use in Lemma 9.0.18.

Proposition 9.0.17. Let G be an infinitely definable group for which the U-rank

is defined.

1) The U-rank of G is 0 if and only if G is finite.

2) If H is a definable subgroup of G, then H has U-rank. Moreover, rk(H) ≤

rk(G), with equality if and only if [G : H] is finite.

3) If H is another group for which the U-rank is defined and f : G → H is a
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definable map, then both Im(f) and Ker(f) have U-rank and rk(G) = rk(Im(f)) +

rk(Ker(f)).

4) For each n ≥ 0, the cartesian product Gn is a group for which the U-rank is

defined. (By convention, the zeroth cartesian power of G is the trivial group.)

Lemma 9.0.18. Let G be a connected, infinitely definable subgroup of L of U-rank

1 over Ksep. Let n be a non-negative integer and let H be a definable subgroup of

Gn of U-rank d. There exists a projection π of Gn to some d coordinates of Gn

such that π(H) = π(Gn) = Gd and the fibers of π|H are finite.

Proof. Our proof is by induction on n. If n = 0, then the conclusion of our lemma

holds trivially (the projection being the zero map).

Assume Lemma 9.0.18 holds for n−1, for some n ≥ 1 and we prove it holds also

for n. Let π1 be the projection of Gn on the first (n− 1) coordinates. By property

3) of Proposition 9.0.17, Ker(π1|H) is a subgroup of G of U -rank equal either 0 or

1.

If the former case holds, i.e. rk(Ker(π1|H)) = 0, then Ker(π1|H) is finite, by

property 1) of Proposition 9.0.17. Also, rk(π1(H)) = d, by property 3) of Propo-

sition 9.0.17. We can apply the induction hypothesis to π1(H) ⊂ Gn−1 and con-

clude there exists a suitable projection map π2 such that π2(π1(H)) = Gd and

Ker(π2|π1(H)) is finite. Hence the projection map π2 ◦ π1 satisfies the conclusion of

Lemma 9.0.18 with respect to H ⊂ Gn.
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If the latter case holds, i.e. rk(Ker(π1|H)) = 1, then Ker(π1|H) = G, because

of property 2) of Proposition 9.0.17 and the fact that G is connected. Thus H =

π1(H)×G. We apply the induction hypothesis to π1(H) ⊂ Gn−1 and conclude there

exists a suitable projection map π2 : Gn−1 → Gd−1 such that π2|π1(H) is surjective

and Ker(π2|π1(H)) is finite. Considering the projection map π3 : Gn → Gd−1 × G

defined as (π2◦π1, πn) (where πn is the projection of Gn on the last coordinate) and

using the fact that H = π1(H)×G, we obtain the conclusion of Lemma 9.0.18.

Theorem 9.0.19. Let K be a finitely generated field of characteristic p. If X

is a Kalg-subvariety of Gg
a and φ : A → K{τ} is a Drinfeld module of positive

modular transcendence degree for which there exists a non-constant t ∈ A such that

φ[t∞](Ksep) is finite, then there exists n ≥ 1 such that for every finitely generated

φ-submodule Γ of Gg
a(K

alg), X(Kalg) ∩ Γ is a finite union of translates of Fq[t
n]-

submodules of Γ.

Proof. First we prove the following

Claim 9.0.20. Let K1 be a finite extension of K. Then φ[t∞](Ksep
1 ) is finite.

Proof of Claim 9.0.20. Let pk be the inseparable degree of the finite extension

K1/K. Then Ksep
1 ⊂ Ksep1/pk

.

If we assume the set φ[t∞](Ksep
1 ) is infinite then, as shown in the proof of

Corollary 8.2.11, there exists an infinite coherent sequence (xn)n≥0 ∈ φ[t∞](Ksep
1 )
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such that

xn = φt(xn+1) , for all n ≥ 0 and x0 6= 0.

Thus we know that for every n ≥ 0, xn = φtk(xn+k). Because φtk ∈ K{τ}τ k

and xn+k ∈ Ksep
1 ⊂ Ksep1/pk

, we conclude that xn ∈ Ksep, for every n ≥ 0. This

contradicts our hypothesis that φ[t∞](Ksep) is finite and concludes the proof of

Claim 9.0.20.

Using Claim 9.0.20, it suffices to prove Theorem 9.0.19 under the hypothesis

that both X is defined over K and Γ ⊂ Gg
a(K). Then X(Kalg) ∩ Γ = X(K) ∩ Γ.

As in Theorem 1.4.4, let H be an irreducible algebraic subgroup of Gg
a such

that for some γ ∈ Gg
a(K

alg),

γ +
(
H(Kalg) ∩ Γ

)
⊂ X(Kalg) ∩ Γ.

At the expense of replacing K by a finite extension, we may assume H is defined

over K (note that replacing K by a finite extension does not change X(Kalg) ∩ Γ

because Γ ⊂ Gg
a(K)).

We may assume that H(K) ∩ Γ is dense in H (otherwise we replace H by an

irreducible component of the Zariski closure of H(K) ∩ Γ and again replace K by

a finite extension so that H is defined over K). From this point on in this proof,

the setting is that H is an irreducible algebraic subgroup of Gg
a defined over K,

which appears in the conclusion of Theorem 1.4.4. Also, X is defined over K and
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Γ ⊂ Gg
a(K). In order to prove Theorem 9.0.19, we will prove H is invariant under

a power of φt.

Let L be an ℵ1-saturated elementary extension ofKsep. We apply Lemma 9.0.18

to the definable subgroup H(L) ∩ φ♯(L)g of the infinitely definable group φ♯(L)g

(φ♯(L) is connected by Corollary 8.2.3 and φ♯(L) has U -rank 1 as proved in [23]).

We conclude there exists a projection map π satisfying the conclusions of the

above mentioned lemma. We identify π(φ♯(Lg)) with φ♯(L)d, where d is the U -rank

of H(L) ∩ φ♯(L)g. Thus for every point

(x1, . . . , xd) ∈ φ♯(L)d

there is one and at most finitely many points

(xd+1, . . . , xg) ∈ φ♯(L)g−d

such that

(x1, . . . , xg) ∈ H(L) ∩ φ♯(L)g.

Hence, we may identify π with the corresponding quasi-morphism between φ♯(L)d

and φ♯(L)g−d (the above defined correspondence is additive because H is a group

and φ♯(L)d and φ♯(L)g−d are connected, according to Lemma 8.1.7). More exactly,

the connected component of H(L) ∩ φ♯(L)g is the graph of this quasi-morphism

between φ♯(L)d and φ♯(L)g−d. By Lemme 3.5.3 of [3],

QsMKsep

(
φ♯(L)d, φ♯(L)g−d

) ∼
→ Mg−d,d

(
QsEKsep(φ♯(L))

)
,
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where by Mg−d,d

(
QsEKsep(φ♯(L))

)
we denote the ring of (g − d) × d matrices over

the ring QsEKsep(φ♯(L)). The image of π in QsMKsep

(
φ♯(L)d, φ♯(L)g−d

)
commutes

with a power of φt (by Theorem 8.2.8). Let φtn0 be this power for some n0 ≥ 1.

For each x = (x1, . . . , xd) ∈ φ♯(L)d, let

Hx = {(y1, . . . , yg−d) ∈ φ♯(L)g−d | (x1, . . . , xd, y1, . . . , yg−d) ∈
(
H(L) ∩ φ♯(L)g

)0
}.

Because π commutes with φtn0 , for each x ∈ φ♯(L)d, φtn0Hx ⊂ Hφtn0 (x). Thus

φtn0

(
H(L) ∩ φ♯(L)g

)0
⊂

(
H(L) ∩ φ♯(L)g

)0
.

Because the connected component of H(L) ∩ φ♯(L)g is invariant under φtn0 , the

entire group H(L) ∩ φ♯(L)g is invariant under some power φtn1 of φtn0 . Because L

is ℵ1-saturated, by compactness we conclude there exists m ≥ 1 such that

φtn1 (H(L) ∩ φtm(L)g) ⊂ H(L). (9.1)

We know that H(L)∩Γ is Zariski dense in H. Thus, because Γ/φtm(Γ) is finite,

there exists α ∈ Γ such that H(L) ∩ (α+ φtm(L)g) is Zariski dense in H. But

H(L) ∩ (α + φtm(L)g) = β + (H(L) ∩ φtm(L)g)

for any β ∈ (α+ φtm(L)g) ∩H(L). Because H(L) ∩ (α + φtm(L)g) is Zariski dense

in H, we conclude that H(L)∩φtm(L)g is Zariski dense in H. Thus the set H(L)∩

φtm(L)g is Zariski dense in H and it is mapped by φtn1 inside H(L). Hence H is

invariant under φtn1 , as desired.
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Remark 9.0.21. The result of Theorem 9.0.19 is sharp in the sense that its conclu-

sion can fail for n = 1. For example, let the Drinfeld module φ : Fq[t] → Fq(t){τ}

be defined by φt = τ + tτ 3 and λ ∈ Fq2 \ Fq . Let X ⊂ G2
a be the curve y = λx

and let Γ be the cyclic φ-submodule of G2
a(Fq2(t)) generated by (1, λ). As shown in

Example 8.2.15, φt2λ = λφt2. Thus for every n ≥ 1, (φt2n(1), φt2n(λ)) ∈ X(Fq2(t)).

So, X(Fq(t)
alg) ∩ Γ is Zariski dense in X. But X is not invariant under φt; X

is invariant under φt2. Hence in this example (i.e. for this particular X and φ),

Theorem 9.0.19 holds with n = 2.

Remark 9.0.22. If we drop the hypothesis on φt from Theorem 9.0.19 (i.e. allow

φ[t∞](Ksep) be infinite) we may lose the conclusion, as it is shown by the following

example.

Let p > 2 and let φ, λ, X and Γ be as in Remark 9.0.21. Let u = t + t2. As

shown in Example 8.2.15, φ[u∞]∩Fp(t)
sep is infinite and X is not invariant under

any power of φu. But, as shown in Remark 9.0.21, X(Fp(t)
alg) ∩ Γ is infinite.

The above two remarks 9.0.21 and 9.0.22 show that the result of Theorem 9.0.19

is the most we can hope towards Statement 1.4.3 for Drinfeld modules of finite

characteristic.

Theorem 9.0.23. Let φ : A→ K{τ} be a Drinfeld module of generic characteris-

tic and of relative modular transcendence degree at least 1 over Frac(A). Let g ≥ 0

and X be a Kalg-subvariety of Gg
a. Assume that X does not contain a translate of
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a nontrivial connected algebraic subgroup of Gg
a. Then for every finitely generated

φ-submodule Γ of Gg
a(K

alg), we have that X(Kalg) ∩ Γ is finite.

Proof. First we replace K by a finitely generated field L, which satisfies the fol-

lowing conditions:

1) φ is defined over L;

2) Γ ⊂ Gg
a(L);

3) X is defined over L.

If we prove Theorem 9.0.23 for L, then the result follows automatically for K.

Hence, from now on, we assume that K has the properties 1) − 3).

Let F = Frac(A) and we let F alg be the algebraic closure of F inside Kalg.

For any two subextensions of Kalg, their compositum is taken inside Kalg. We may

replace K by any finite extension and prove the result for the larger field and then

the result will also hold for K. Also, during this proof we will replace F by a finite

extension contained in K.

In the beginning we will prove several reduction steps.

Step 1. It suffices to prove Theorem 9.0.23 for Γ of the form Γg0 where Γ0 is

a finitely generated φ-submodule of Ga(K). Indeed, if we let Γ0 be the finitely

generated φ-submodule of K generated by all the g coordinate projections of Γ

then Γ ⊂ Γg0. So, we suppose that Γ has the form Γg0. To simplify the notation we

work with a finitely generated φ-submodule Γ of Ga(K) and prove that X(K)∩Γg
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is finite.

Step 2. Let t be a non-constant element of A. Let γ ∈ Kalg such that for the

Drinfeld module φ(γ) = γ−1φγ, φ
(γ)
t is monic. We let γ−1X be the variety whose

vanishing ideal is composed of functions of the form f◦γ, where f is in the vanishing

ideal of X and γ is interpreted as the multiplication-by-γ-map on each component

of Gg
a. The conclusion of Theorem 9.0.23 is equivalent with showing that

(γ−1X)(Kalg) ∩ (γ−1Γ)g is finite.

The variety γ−1X has the same property as X: it does not contain a translate

of a non-trivial connected algebraic subgroup of Gg
a. The group γ−1Γ is a finitely

generated φ(γ)-submodule. So, it suffices to prove Theorem 9.0.23 under the extra

hypothesis that φt is monic. From now on, let

φt = τ r + ar−1τ
r−1 + · · · + a0τ

0.

Step 3. Let W be a variety defined over F whose function field is K. At the

expense of replacing K by a finite extension and replacing F by a finite extension

contained in K, we may assume that W is a projective, smooth, geometrically

irreducible F -variety (see Remark 4.2 in [14]). We let C be a smooth projective

curve defined over a finite field, whose function field is F . We spread out W over an

open, dense subset C0 ⊂ C and obtain a projective, smooth C0-variety V0 ⊂ PnC0

(for some n) (we can always do this because there are finitely many polynomials
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defining the variety W and so, there are finitely many places of C that lie below

poles of the coefficients of these polynomials). We let V be the projective closure

of V0 in PnC . We let π : V → C be the natural morphism. The generic fiber of π

is smooth and geometrically irreducible, because this is how we chose W . Finally,

we replace V by its normalization. By doing this last step, the generic fiber of

π remains smooth and geometrically irreducible because V0 is isomorphic to its

preimage in the normalization.

The irreducible divisors P of V are of two types:

(i) vertical, which means that π(P) = p is a closed point of C .

(ii) horizontal, which means that π|P : P → C is surjective.

We call a divisor of V horizontal if it has at least one irreducible component

that is horizontal.

Let S be the set of horizontal divisors of V that are irreducible components of

the poles of the coefficients ai of φt. According to Lemma 5.2.2, the set S is the

set of horizontal irreducible divisors of V that are places of bad reduction for φ.

At the expense of replacing F by a finite extension F ′ and replacing K by F ′K

and replacing V and W by their respective normalizations in F ′K, we may assume

that for each γ ∈ S, the generic fiber of γ → C is geometrically irreducible (we

can do this because for each γ ∈ S, there exists a finite extension of F such that

after the base extension, γ splits into finitely many divisors whose generic fibers are
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geometrically irreducible). Also, the properties of being smooth and geometrically

irreducible (for the generic fiber of π) are unaffected by a base extension. So,

from now on we work under the following assumptions for the projective, normal

varieties V and C :

The generic fiber of the morphism π : V → C (9.2)

is smooth and geometrically irreducible. (9.3)

For each γ ∈ S, the generic fiber of γ is geometrically irreducible. (9.4)

Step 4. We define the division hull of Γ, by

Γ = {γ ∈ Kalg | there exists a ∈ A \ {0} such that φa(γ) ∈ Γ}.

Using the result of Theorem 7.0.44 for F alg, which is countable, and for F algK,

which is finitely generated over F alg, and for φ, which has positive relative modular

transcendence degree over F alg, we conclude that φ(F algK) is the direct sum of a

finite torsion submodule and a free submodule of rank ℵ0. Thus, because Γ has

finite rank, Γ∩F algK is finitely generated. At the expense of replacing F by a finite

extension F ′ and K by F ′K and V and W by their respective normalizations in

F ′K, we may assume that Γ ∩ F algK ⊂ K.

Step 5. We may replace Γ by Γ ∩ K, which is also a finitely generated φ-

submodule that contains Γ. Thus we may assume that Γ = Γ ∩ F algK.

From now on, we assume all of the above reductions made.
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For each irreducible divisor P of V , we let KP be the residue field of K at P.

For any element x in the valuation ring RP of P, we let xP be the reduction of x

at P. Also, we denote by rP the reduction map at P. If all the elements of Γ are

integral at P, we let

ΓP = {xP | x ∈ Γ}.

If φ has good reduction at P, then we denote by φP the corresponding reduction.

The following two results are standard (see Theorem 2.10 (i) of [30], which

proves that for an algebraic variety the property of being geometrically irreducible

is a first order definable property).

Lemma 9.0.24. Because the generic fiber of π : V → C is geometrically ir-

reducible, for all but finitely many closed points p ∈ C, π−1(p) is geometrically

irreducible.

Lemma 9.0.25. Let γ ∈ S. Because the generic fiber of γ → C is geometrically

irreducible, for all but finitely many closed points p ∈ C, γ∩π−1(p) is geometrically

irreducible.

Lemma 9.0.26. Let T be the set of vertical irreducible divisors P of V which

satisfy the following properties:

a) φ has good reduction at P.

b) φP is a finite characteristic Drinfeld module of positive modular transcen-
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dence degree.

c) the projective variety P is smooth and π−1(π(P)) is geometrically irreducible.

d) for each γ ∈ S, γP := γ ∩ β is geometrically irreducible.

e) for all x ∈ Γ, x is integral at P.

Then the set T is cofinite in the set of all vertical irreducible divisors of V .

Proof of Lemma 9.0.26. We will show that each of the conditions a)-e) is verified

by all but finitely many vertical irreducible divisors of V .

a) There are finitely many irreducible divisors of V that are places of bad re-

duction for φ. So, in particular, there are finitely many irreducible vertical divisors

of V that do not satisfy a).

b) By the definition of reduction at P (which is a place sitting above a prime

divisor of A), φP is a finite characteristic Drinfeld module.

Because φ has positive relative modular transcendence degree over F , there

exists a ∈ A and a coefficient c of φa such that c /∈ F alg. We view c as a dominant

rational map from the generic fiberW of V to P1
F . We spread out c to a rational map

c̃ : V → P1
C , whose generic fiber is c. Because c is dominant, c̃ is dominant. For all

but finitely many closed points p ∈ C , the fiber c̃p is not constant. According to the

result of Lemma 9.0.24, for all but finitely many p, π−1(p) = P is geometrically

irreducible. For such P, we identify c̃p with the reduction of c at the place P,

denoted cP. Thus for all but finitely many irreducible vertical divisors P, cP /∈ Falg
p .
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So, for these divisors P, φP has positive modular transcendence degree (remember

that φP
t is still monic because φt is monic).

c) Since V is projective, all the irreducible divisors of V are projective varieties.

Because the generic fiber of π is smooth and geometrically irreducible, for all

but finitely many p ∈ C , π−1(p) is also smooth and geometrically irreducible.

d) This is proved by Lemma 9.0.25.

e) Because Γ is finitely generated as a φ-module and φ has good reduction at

all but finitely many irreducible divisors, the elements of Γ are integral at all but

finitely many irreducible divisors of V .

Lemma 9.0.27. The set S is nonempty.

Proof of Lemma 9.0.27. Assume all poles of all coefficients of φt are vertical. Be-

cause there are infinitely many P ∈ T , we can find P ∈ T such that P is dis-

joint from all the poles of the coefficients of φt (we can achieve this because they

are finitely many and they are all vertical). Then the reduction of φ at P is a

Drinfeld module of modular transcendence degree at least 1 (by condition b) of

Lemma 9.0.26. But on the other hand, because all the poles of the coefficients of

φt are vertical and disjoint from P, the coefficients of φP
t are integral on P. Be-

cause P is a projective variety, then the coefficients of φP
t are constant. This is a

contradiction with the modular transcendence degree of φP.
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For each P ∈ T , we let SP be the set of all the irreducible divisors of P which

are poles of the coefficients of φP
t . As explained in Lemma 5.2.2, the places from

SP are all the places of bad reduction for φP.

Lemma 9.0.28. For each P ∈ T , 1 ≤ |SP| ≤ |S|.

Proof of Lemma 9.0.28. Fix P ∈ T . Let c be a coefficient of φt. We view c as a

rational map from V to P1
F . The divisor of the pole of c is the pullback of ∞ ∈ P1

F .

Thus the poles of cP are the intersections of this divisor of poles with the vertical

divisor P (also remember that P is a place of good reduction for φ and so, P is

not part of the pole of c). Using Lemma 9.0.26 d), the divisors of P which are

irreducible components of the divisor of poles of cP are of the form γP for γ ∈ S.

Thus, because S is nonempty (see Lemma 9.0.27), 1 ≤ |SP| ≤ |S| (the second

inequality might be strict because it is possible for two horizontal divisors from S

have the same intersection with the vertical divisor P).

Lemma 9.0.29. For all but finitely many P ∈ T , the reduction map rP is injective

on Γtor.

Proof of Lemma 9.0.29. Because Γtor is finite (Γ is finitely generated), only finitely

many P from T appear as irreducible components of the divisor of zeros for some

torsion element of Γ.
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Lemma 9.0.30. There exists a non-constant a ∈ A such that for all P ∈ T ,

ΓP ∩ φP[a] = {0}.

Proof of Lemma 9.0.30. Let P ∈ T . We note that P is regular in codimension 1

(according to condition c) of Lemma 9.0.26) and so, the valuations associated to

its irreducible divisors form a good set of valuations on the finitely generated field

KP (see Remark 4.2.2). Hence, using Lemma 9.0.28 and using Corollary 6.0.38

we conclude that for all x ∈ φP
tor(KP), there exists a polynomial b(t) ∈ Fq[t] of

degree at most (r2 + r)|S| such that φP

b(t)(x) = 0. Because ΓP ⊂ KP, Lemma

9.0.30 holds with a ∈ Fq[t] being any irreducible polynomial of degree greater than

(r2 + r)|S|.

Lemma 9.0.31. Let a be a non-constant element of A. For almost all P ∈ T ,

rP : Γ/φa(Γ) → ΓP/φ
P
a (ΓP) is injective.

Proof of Lemma 9.0.31. We know that all the divisors P ∈ T have the property

that if p = π(P), then π−1(p) is geometrically irreducible (this was part of condition

c) from Lemma 9.0.26). Thus, specifying p determines uniquely P and so, just to

simplify the notation in this lemma, we will use the convention that if P is the

only irreducible divisor lying above a closed point p ∈ C , then Kp is the residue

field of K at P and “reducing x ∈ K at p” is “reducing x ∈ K at P”. Also, we

will identify T with the set of closed points p ∈ C lying below the vertical divisors
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P ∈ T .

Suppose there are infinitely many irreducible divisors P for which the map in

(9.0.31) is not injective. Because Γ/φa(Γ) is finite, there exists x ∈ Γ \ φa(Γ) and

there exists an infinite subset U of T ⊂ C such that for every p in this infinite

subset, xp ∈ φp
a(Γp). For each such p, let z(p) ∈ Γp ⊂ Kp be such that

xp = φp
a(z(p)). (9.5)

Let L be the finite extension of K generated by all the roots z1, . . . , zs ∈ Kalg

of the equation (in z) φa(z) = x. For each p ∈ U choose a place p1 of L lying above

p.

Fix now p ∈ U . Because p ∈ T (and so, p1) is a place of good reduction for φ,

z1, . . . , zs are integral at p1 and their reductions at p1, called z1,p1, . . . , zs,p1 are all

the roots of the equation (in z) φp
a(z) = xp. Using (9.5), we conclude there exists

i ∈ {1, . . . , s} such that

zi,p1 = z(p). (9.6)

We apply the above argument for each p ∈ U (and for the corresponding p1) and

so, conclude that for each p ∈ U , there exists some i ∈ {1, . . . , s} such that (9.6)

holds. Because U is infinite, there exists an infinite subset U1 ⊂ U and there exists

z ∈ {z1, . . . , zs} such that for each p ∈ U1,

zp1 = z(p) ∈ Kp, (9.7)
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because z(p) ∈ Kp. Let K ′ = K(z). Because z ∈ Γ and Γ ∩ F algK = Γ, K ′ is not

contained in F algK. So, if we let F ′ be the algebraic closure of F in K ′, then

l := [K ′ : F ′K] > 1. (9.8)

Let C ′ be the normalization of C in F ′. Let V ′ be the normalization of V in F ′K and

let V ′
1 be the normalization of V in K ′. Let π′ : V ′ → C ′ and π′

1 : V ′
1 → C ′ be the

induced morphisms. Thus the generic fibers W ′ and W ′
1 of π′ and π′

1, respectively,

are geometrically irreducible. Let f : V ′
1 → V ′ be the induced finite morphism.

Because φ is a generic characteristic Drinfeld module, φa is a separable poly-

nomial and so, K ′/K is a separable extension. Thus f is ramified for finitely many

irreducible divisors of V ′. Also, let P be the minimal polynomial for z over F ′K.

Let U ′
1 be the set of closed points of C ′ satisfying the following properties:

1) each p′ ∈ U ′
1 lies above some p ∈ U1,

2) for each p′ ∈ U ′
1, the vertical divisor P′

1 := π′−1
1 (p′) of V ′

1 is geometrically

irreducible,

3) for each p′ ∈ U ′
1, f is not ramified at the divisor P′ := π′−1(p′) of V ′ (note

that P′ is geometrically irreducible, once 2) holds),

4) for each p′ ∈ C ′, all the coefficients of P are integral at the corresponding P′

(and implicitly, at P′
1). Moreover, p′ is not an irreducible component of the divisor

of zeros of P ′(z).

In all that will follow next in our argument, “condition i)” for i ∈ {1, . . . , 4} is
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one of the above 4 conditions.

Because U1 is infinite, condition 1) is satisfied by infinitely many p′ ∈ C ′. Con-

dition 2) is satisfied by all but finitely many p′ ∈ C ′ because the generic fiber of π′
1

is geometrically irreducible. Condition 3) is satisfied because f ramifies at finitely

many irreducible divisors of V ′. The first part of condition 4) is satisfied because

there are finitely many divisors of V ′ (or V ′
1) which are irreducible components

for the divisors of poles of the coefficients of P . The second part of condition 4)

is satisfied because P ′(z) 6= 0 (P is a separable polynomial because it divides φa,

which is a separable polynomial). So, we conclude U ′
1 is infinite.

Let p′ ∈ U ′
1 and let P′ and P′

1 be the corresponding vertical divisors of V ′ and

V ′
1 , respectively. Because P′

1 is the only place of K ′ lying above the place p′ of C ′

(see condition 2)), (9.7) yields zP′
1
∈ (F ′K)P′. Also by condition 2), P′

1 is the only

place of K ′ lying above the place P′ of F ′K.

Let R be the valuation ring of F ′K at P′ and let R′ be the integral closure

of R in K ′. Because K ′ is not ramified above P′, the different of R′/R is the

unit ideal in R′ (see Theorem 1, page 53, [26]). By condition 4), P ′(z) is also a

unit in R′. By Corollary 2 (page 56) of [26], R′ = R[z]. Because P is defined

over R (see condition 4)), Lemma 4 (page 18) of [26] yields the relative residue

degree f(P′
1|P

′) between the place P′
1 of K ′ and the place P′ of F ′K is 1. Using

condition 3), we conclude that also the ramification index e(P′
1|P

′) of P′
1 over
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P′ is 1. As explained in Remark 4.2.2, the valuations associated to irreducible

divisors of a projective variety defined over a field, are defectless and so, because

e(P′
1|P

′) = f(P′
1|P

′) = 1 and P′
1 is the only place of K ′ lying above the place

P′ of F ′K, we conclude [K ′ : F ′K] = 1. This contradicts (9.8). This contradiction

comes from our assumption that there are infinitely many primes P for which

Lemma 9.0.31 is false. So, for all but finitely many P ∈ T , the conclusion of

Lemma 9.0.31 holds, as desired.

Using Lemmas 9.0.29, 9.0.30 and 9.0.31 we prove the following key result.

Lemma 9.0.32. For all but finitely many P ∈ T , the reduction Γ → ΓP is injec-

tive.

Proof of Lemma 9.0.32. Shrink T so that all of the three lemmas 9.0.29, 9.0.30

and 9.0.31 hold for P ∈ T . Also, let a be as in Lemma 9.0.30.

If x ∈ Γ ∩ Ker(rP), then by Lemma 9.0.31, x ∈ φa(Γ). This means that there

exists x1 ∈ Γ such that φa(x1) = x. Reducing at P, we get φP
a (x1P

) = 0 which by

Lemma 9.0.30 implies that x1P
= 0. But then applying again 9.0.31, this time to

x1, we conclude x1 ∈ φa(Γ); i.e. there exists x2 ∈ Γ such that x1 = φa(x2).

So, repeating the above process, an easy induction shows that

x ∈
⋂

n≥1

φan(Γ) = Γtor,
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because Γ is finitely generated. But, by Lemma 9.0.29, Γtor injects through the

reduction at P. Thus x = 0 and so the proof of Lemma 9.0.32 ends.

Now, the property P : “X does not contain any translate of a nontrivial con-

nected algebraic subgroup of Gg
a” is a definable property as shown in Lemma 11

(page 203) of [4] (there it is proved that the set of connected algebraic subgroups of

an algebraic group G that are maximal under the property that one of their trans-

lates lies inside a given algebraic variety X ⊂ G is definable). This means that

property P is inherited by all but finitely many of the reductions of X. Coupling

this result with Lemma 9.0.32, we see that for all but finitely many irreducible ver-

tical divisors P of V , the reduction of X, called XP, is also a variety that satisfies

the same hypothesis as X and moreover, Γ injects through such reduction. This

means that

|X(K) ∩ Γg| ≤ |XP(KP) ∩ ΓgP|. (9.9)

According to condition b) of Lemma 9.0.26, for all P ∈ T , φP satisfies the hypoth-

esis of Theorem 1.4.4. Thus, applying Theorem 1.4.4, XP ∩ ΓP is a finite union

of translates of cosets of subgroups of ΓP. Suppose that one of these subgroups

of ΓP is infinite. Then XP contains the Zariski closure of the corresponding coset,

which is a translate of a positive dimension algebraic subgroup of Gg
a. This would

contradict the property inherited by XP from X. Thus XP(KP) ∩ ΓgP is finite.

Using (9.9), we conclude that X(K) ∩ Γg is finite.
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Remark 9.0.33. Theorem 9.0.23 is a special case of Statement 1.4.3 because if we

assume (1.4.3) and we work with the hypothesis on X from Theorem 9.0.23, then,

with the notation from (1.4.3), the intersection of X with any translate of Bi is

finite. Otherwise, the Zariski closure of X ∩ (γi + Bi) would be a translate of a

positive dimension algebraic subgroup of Gg
a, and it would be contained in X.
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