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DRAGOS GHIOCA

Abstract. We prove a result (see Theorem 1.1) regarding unlikely intersections of orbits
for a given 1-parameter family of Drinfeld modules. We also advance a couple of general
conjectures regarding unlikely intersections for algebraic families of Drinfeld modules (see
Conjectures 1.3 and 2.3).

1. Introduction

1.1. General setup for Drinfeld modules. Throughout this paper, we let Fq be a finite

field and (unless otherwise noted) we let K := Fq(t) be the rational function field (of tran-

scendence degree 1) over the algebraic closure of Fq; also, we let K be a fixed algebraic closure
of K.

Let L be a field extension of K. A Drinfeld module (of generic characteristic) defined over
L is a ring homomorphism Φ : Fq[T ] −→ EndL(Ga); in particular, each Drinfeld module is
uniquely determined by ΦT := Φ(T ), which is a separable, additive polynomial of degree
larger than 1. Furthermore, our Drinfeld module action is always assumed to be Fq-linear; in
other words, there exists an integer r ≥ 1 and there exist a1, . . . , ar ∈ L such that

ΦT (x) = tx+

r∑
i=1

aix
qi .

For each P ∈ Fq[T ], we write ΦP := Φ(P ). Given finitely many points α1, . . . , αk ∈ L, their
orbit under (the action of) Φ is the set of all

(1.1.1)

k∑
i=1

ΦPi(αi),

as we vary the polynomials Pi ∈ Fq[T ], not all equal to 0. We say that a point α ∈ L is torsion
if 0 lies in its orbit under Φ, i.e., there exists Q ∈ Fq[T ] \ {0} such that ΦQ(α) = 0.

The endomorphism ring End(Φ) of the Drinfeld module Φ consists of all additive polyno-
mials f ∈ L[x] with the property that f ◦ΦT = ΦT ◦f . We say that the points α1, . . . , αk ∈ L
are linearly independent over End(Φ) if whenever

f1(α1) + · · ·+ fk(αk) = 0,

for some f1, . . . , fk ∈ End(Φ), then we must have f1 = · · · = fk = 0; otherwise, we say that
the points α1, . . . , αk are End(Φ)-linearly dependent. For more details on Drinfeld modules,
we refer the reader to [Gos96]; see also [Ghi07a] for a study of the Φ-module structure induced
on L.
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1.2. Our main result. We prove the following.

Theorem 1.1. Let r ≥ 2 be an integer, let Fq be a finite field and let K = Fq(t). Let

Φ(λ) : Fq[T ] −→ EndK(λ)(Ga) be the 1-parameter family of Drinfeld modules (parameterized

by λ ∈ K) for which Φ
(λ)
T (x) = tx+ λxq + xq

r
. We let a,b ∈ K∗ and let c ∈ K. Then there

exist infinitely many λ ∈ K with the property that the orbit of a under Φ(λ) meets the orbit
of b under Φ(λ) at the point c, i.e., there exist nonzero polynomials Pλ, Qλ ∈ Fq[T ] such that

Φ
(λ)
Pλ

(a) = Φ
(λ)
Qλ

(b) = c

if and only if at least one of the following two conditions are met:

(i) there exists v ∈ F∗q such that either v · a = c or v · b = c.
(ii) there exists u ∈ F∗q such that u · a = b. Furthermore, in this case, we have that for

each λ ∈ K and for each P ∈ Fq[T ], then Φ
(λ)
P (b) = c if and only if Φ

(λ)
u·P (a) = c.

Remark 1.2. In Theorem 1.1, it makes sense to exclude the possibility that a = 0 (or b = 0)
since the orbit of 0 under any Drinfeld module action consists only of the point 0 itself, thus
making our question trivial.

On the other hand, the case c = 0 is quite nontrivial because this time we are asking for
which λ ∈ K we have that both a and b are torsion for the same Drinfeld module Φ(λ).
Furthermore, taking c = 0 in Theorem 1.1, we see that conclusion (i) is impossible (because
a,b 6= 0) and so, we are left with conclusion (ii), thus showing that in this special case, we
rediscover the result from [GH13, Theorem 1.5].

1.3. Interpretation of our result. We discuss next our result in the larger context of
unlikely intersections in arithmetic dynamics; for more details on the unlikely intersection
principle in arithmetic geometry, we refer the reader to the excellent book of Zannier [Zan12].

With the notation as in Theorem 1.1, there always exist infinitely many λ ∈ K with the
property that the orbits of a and of b intersect; one simply needs to solve various equations
(in λ):

(1.3.1) Φ
(λ)
P (T )(a) = Φ

(λ)
Q(T )(b)

and a similar argument as in Corollary 4.5 would yield that there exist infinitely many solutions
λ for the equation (1.3.1), as we vary P,Q ∈ Fq[T ]. However, if we impose the extra condition

that the intersection of the two orbits under Φ(λ) occurs precisely at the point c, then this
becomes quite unlikely and so, it is reasonable to expect that in this case, there will be only
finitely many λ ∈ K with the property that the orbits under Φ(λ) of a and of b meet precisely
at c, unless there is a global dynamical relation. Conclusion (i) from Theorem 1.1 says that
c is either always in the orbit of a, or always in the orbit of b. Assuming c is always in the
orbit of a (say), then all one needs is to ensure that for infinitely many λ ∈ K, we would

have that c lies in the orbit under Φ(λ) of b; this is exactly what is proven in Corollary 4.5.
Similarly, if conclusion (ii) in Theorem 1.1 holds, then this means that the orbits of a and b
are identical for all λ and then, once again, all one needs to ensure is that for infinitely many
λ ∈ K, the point c lies in the orbit under Φ(λ) of b.

This principle of unlikely intersections in arithmetic dynamics led to numerous results in
the past 15 years, starting with the work of Masser and Zannier [MZ10, MZ12] regarding
torsion points in families of elliptic curves. A similar outstanding result was later obtained by
Baker-DeMarco [BD11] (see also [BD13, GHT13] for further extensions), who proved that if
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there exist infinitely many λ ∈ C such that the given complex numbers a and b are preperiodic
under the action of z 7→ zd + λ (for a given integer d ≥ 2), then ad = bd. In other words,
if the unlikely event that both a and b have finite orbit under the action of z 7→ zd + λ
occurs infinitely often, then there must be a global dynamical relation, which is (in this case)
that for each λ, both a and b are mapped to the same point after one iteration of our map
z 7→ zd + λ. Despite the large number of unlikely intersection results for dynamical systems
over fields of characteristic 0 proven in the past years, very few results were obtained in
characteristic p > 0. Using [GH13] as a starting point, we propose here a couple of questions
(see Conjectures 1.3 and 2.3) regarding the unlikely intersection principle in the context of
Drinfeld modules.

First of all, it is natural to ask whether the conclusion of Theorem 1.1 holds more generally,
both in terms of an arbitrary family of Drinfeld modules, but also in terms of arbitrary starting
points a and b and target point c; we believe such an extension should hold. However, in this
case, the appropriate conclusions (i) and (ii) will necessarily be more complex since there are
more possibilities for the orbits of a and b (along with the target point c) to be globally related
dynamically. Furthermore, we believe that the principle of unlikely intersections generalizes
to orbits of finitely many points (see (1.1.1)); we formulate the following conjecture.

Conjecture 1.3. Let r ≥ 2 be an integer and let
{

Φ(λ) : Fq[T ] −→ End(Ga)
}
λ

be an algebraic

family of Drinfeld modules parameterized by λ ∈ K, i.e., there exist polynomials f1, . . . , fr−1 ∈
K[u] (not all constant) such that

(1.3.2) Φ
(λ)
T (x) := tx+

r−1∑
i=1

fi(λ) · xqi + xq
r
.

Let L := K(u) be the rational function field in one variable over K, and we denote by Φ :
Fq[T ] −→ EndL(Ga) the generic action of our Drinfeld modules family, i.e.,

ΦT (x) := tx+

r−1∑
i=1

fi(u) · xqi + xq
r
.

We let c ∈ K[u], and for some integers k, ` ≥ 1, we let a1, . . . ,ak ∈ K[u] be EndL(Φ)-linearly

independent points, and also, we let b1, . . . ,b` ∈ K[u] be EndL(Φ)-linearly independent points.

If there exist infinitely many λ ∈ K such that c(λ) lies both in the orbit of a1(λ), . . . ,ak(λ)

under Φ(λ) and in the orbit of b1(λ), . . . ,b`(λ) under Φ(λ) then at least one of the following
two statements must hold:

(i) c lies either in the orbit of a1, . . . ,ak under Φ, or in the orbit of b1, . . . ,b` under Φ.
(ii) the points a1, . . . ,ak,b1, . . . ,b` are End(Φ)-linearly dependent.

1.4. Plan for our paper. In Section 2 we discuss in-depth Conjecture 1.3, especially ex-
plaining the difficulties one would encounter when trying to extend our proof of Theorem 1.1
to the more general setting of Conjecture 1.3. Also, in Section 2, we formulate Conjecture 2.3
which asks for an extension of Theorem 1.1 for 2-parameter families of Drinfeld modules. In
Section 3, we introduce the canonical heights associated to Drinfeld modules; the main goal of
Section 3 is proving Proposition 3.1, which is the key ingredient for Proposition 4.4. Finally,
in Section 4 we gather the remaining necessary technical ingredients for our proofs and then
proceed to proving Theorem 1.1.
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2. Unlikely intersections for Drinfeld modules

We start with a discussion of Conjecture 1.3.

2.1. Collision of orbits generated by multiple points. We note that one can easily
formulate Conjecture 1.3 using families of Drinfeld modules parameterized by K-points on
arbitrary curves (not necessarily A1); however, we prefer a more concrete formulation of this
already very general question. Also, we prefer to normalize our family of Drinfeld modules so

that each Φ
(λ)
T is a monic polynomial (see (1.3.2)) because this allows for cleaner statements

for arithmetic questions regarding Drinfeld modules and also, there is no loss in generality
assuming the Drinfeld modules are normalized as such (see also [Ghi07a, Ghi07b]).

We continue with a discussion of the conditions (i)-(ii) in Conjecture 1.3.

Remark 2.1. We note that the conditions (i)-(ii) are indeed necessary when dealing with
the unlikely intersection problem formulated in Conjecture 1.3. Condition (i) is easily seen
necessary since for general families of Drinfeld modules and general starting points a1, . . . ,ak
and general target point c, it could be that c equals any given Φ(Fq[T ])-linear combination

of a1, . . . ,ak, in which case we would then have that for each λ ∈ K, the target c(λ) lies

in the orbit under Φ(λ) of the starting points a1(λ), . . . ,ak(λ). Then a generalization of
Corollary 4.5 should prove that for infinitely many λ ∈ K, we have that c(λ) lies in the orbit

of b1(λ), . . . ,b`(λ) under Φ(λ).
Condition (ii) from Conjecture 1.3 is more subtle. Indeed, assume f ∈ EndL(Φ) and that

b1 = f(a1) (where k = ` = 1 and a1 is a non-torsion point for Φ). Then working with the

target c = 0, we see that whenever 0 lies in the orbit of a1(λ) under Φ(λ), then it also lies in

the orbit of b1(λ) under Φ(λ). On the other hand, assuming now that there is no P ∈ Fq[T ]
such that the endomorphism f equals ΦP and also assuming the target point c along with a1

are End(Φ)-linearly independent, then working with the starting points a1 and b1 = f(a1)
should produce only finitely many λ ∈ K such that c(λ) lies in both orbits of a1(λ) and of

b1(λ) under the action of Φ(λ). This is the reason why our Conjecture 1.3 does not ask for
an equivalence of two statements.

Remark 2.2. In Conjecture 1.3, the points a1, . . . ,ak, respectively b1, . . . ,b` were assumed to
be EndL(Φ)-linearly independent in order to guarantee that there exist infinitely many λ such

that c(λ) lies in the orbit of both a1(λ), . . . ,ak(λ) and of b1(λ), . . . ,b`(λ) under Φ(λ) (this
is similar to the concept of stability discussed in [DeM16] for complex dynamics). Indeed, if
each ai were torsion for Φ, while c is not Φ-torsion, then there would be only finitely many
λ ∈ K for which c(λ) were in the orbit of a1(λ), . . . ,ak(λ) under Φ(λ).

One could weaken the assumptions on the points a1, . . . ,ak (resp. b1, . . . ,b`) by asking that
at least one ai and at least one bj is not Φ-torsion. But then we would also need to modify
appropriately conclusion (ii) in Conjecture 1.3 by asking that the orbits of a1, . . . ,ak and of
b1, . . . ,b` under End(Φ) meet in a point which is not Φ-torsion. Since very little is earned
in terms of generality for our problem by having the sets of points a1, . . . ,ak, respectively
b1, . . . ,b` be EndL(Φ)-linearly dependent, we prefer to have the cleaner statement from
Conjecture 1.3.

We discuss next the strategy for our proof of Theorem 1.1 and in particular, we will point
out the technical difficulties one would have to overcome in order to extend our current result
to the more general setting from Conjecture 1.3.
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2.2. The strategy for proving Theorem 1.1. We work with the notation as in Theo-
rem 1.1. First, we note that the converse implication from Theorem 1.1 (i.e., assuming either
conclusion (i) or (ii) holds and then prove that there exist infinitely many λ ∈ K with the

property that c is in the orbit under Φ(λ) of both a and b) is the easier of the two implications;
essentially, this is proven in Corollary 4.5.

Now, for the direct implication in Theorem 1.1, there are two main steps in our proof. So,
we assume there exists an infinite sequence {λn} in K such that c is in the orbit of both a

and of b under Φ(λn); also, we assume conclusion (i) from Theorem 1.1 does not hold. Then
using the technical results from Section 3 regarding heights associated to Drinfeld modules
(especially, see Proposition 3.1), we derive the fact that the canonical heights of both a and

of b under Φ(λn) must tend to 0 (see Proposition 4.4). Then we employ [GH13, Theorem 1.5]
(see also our Proposition 4.3) to derive that conclusion (ii) must hold in Theorem 1.1.

The same strategy can be followed in attacking Conjecture 1.3 when k = ` = 1; however,
there are significant technical difficulties to overcome (for example, see the discussion from
Remark 2.1 regarding the alteration of condition (ii)). The main obstacle is the fact that
[GH13, Theorem 1.5] does not have an extension beyond its current hypotheses. For example,
consider just the slight weakening of the hypotheses from Theorem 1.1 in which we assume
a,b ∈ K (instead of asking that a,b ∈ K). Propositions 3.1 and 4.4 would still hold with the

same proof to derive that the corresponding canonical heights ĥλn tend to 0, i.e.,

(2.2.1) lim
n→∞

ĥλn(a) = lim
n→∞

ĥλn(b) = 0

(see Section 3 for the setup regarding the canonical height ĥλ associated to the Drinfeld

module Φ(λ)). Now, the arguments from [GH13] (employing the powerful equidistribution
theorem of Baker-Rumely [BR10] for points of small height) allow one to deduce from (2.2.1)
the fact that

(2.2.2) ĥλ(a) = ĥλ(b) for each λ ∈ K.

However, it is very difficult to go from (2.2.2) to the desired conclusion that a/b ∈ F∗q . Using

[GH13, Theorem 2.6], one obtains only that a/b ∈ Fq
∗
; however, if a/b /∈ Fq, one cannot

expect that there will be infinitely many λ ∈ K such that c lies in the orbits of both a and
b under Φ(λ) because the linear maps x 7→ µ · x do not commute with the Drinfeld module
action when µ /∈ Fq.

It is worth pointing out that the great difficulty in obtaining the precise relation between
a and b comes from the fact that one lacks the complex potential theory that in [BD11] was
used at an archimedean place in order to derive the relation between the starting points a and
b for the aforementioned unlikely intersection problem from Section 1.3 involving the family
of polynomials z 7→ zd + λ. Actually, in all of the unlikely intersection results obtained in
characteristic 0 (see also [BD13, GHT13, GHT15]), the use of complex analysis for studying
the Böttcher’s coordinate for the polynomials in the given algebraic family was essential for
deriving the precise relation between the starting points. Since in positive characteristic we
are lacking this last ingredient from complex analysis and we are also missing the precise
description of invariant plane curves under the coordinatewise action of one-variable polyno-
mials (as established in the seminal paper of Medvedev-Scanlon [MS14], which was then used
in [BD13] for finding the exact relation between starting points sharing an unlikely dynamical
property), then Conjecture 1.3 is significantly difficult.
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When one deals in Conjecture 1.3 with more general families of Drinfeld modules and also
with non-constant starting points a,b and non-constant target point c (which all depend
on λ), then even after establishing a similar conclusion as in (2.2.1), [GH13, Theorem 2.6]

only says that the canonical heights ĥλ(a(λ)) and ĥλ(b(λ)) are proportional; proving a more
precise statement as in conclusion (ii) from Conjecture 1.3 seems very difficult. Finally, when
k, ` > 1 in Conjecture 1.3, even the first part of the above strategy will have to be significantly
altered and perhaps a different relation than equation (2.2.1) needs to be proven.

2.3. Further generalization for our problem of unlikely intersections. It is also natu-
ral to look for a generalization of our Theorem 1.1 in which we consider a 2-parameter family
of Drinfeld modules. Our question could be formulated even more generally (involving fam-
ilies of Drinfeld modules parameterized by points on varieties of arbitrary dimension), but
once again, for the sake of concreteness, we prefer to formulate our conjecture as follows.

Conjecture 2.3. Let K = Fq(t), let 1 < s < r be integers and consider the family of Drinfeld

modules Φ(λ,µ) : Fq[T ] −→ EndK(λ,µ)(Ga) given by

Φ
(λ,µ)
T (x) = tx+ λxq + µxq

s
+ xq

r
,

parameterized by λ, µ ∈ K. Let a,b ∈ K
∗

and let c1, c2 ∈ K. Then the set of points
(λ, µ) ∈ A2(K) for which both c1 and c2 are contained in the orbits of both a under Φ(λ,µ)

and of b under Φ(λ,µ) is Zariski dense in A2 if and only if at least one of the following two
conditions must hold:

(i) there exist v1, v2 ∈ F∗q such that either c1 = v1 · a and c2 = v2 · b, or c1 = v1 · b and
c2 = v2 · a.

(ii) there exists u ∈ F∗q such that either b = u · a, or c2 = u · c1.

Remark 2.4. When dealing with a 2-parameter family of Drinfeld modules as in Conjecture 2.3,
in order to have an unlikely event, one needs to ask that two points lie in the orbits of a and
of b under the action of Φ(λ,µ). Indeed, if we were to ask only that the same point c lies in
the two orbits, then for each nonzero P,Q ∈ Fq[T ], when we solve the two equations

(2.3.1) Φ
(λ,µ)
P (a) = Φ

(λ,µ)
Q (b) = c,

we obtain finitely many solutions (λ, µ) and so, as we vary P,Q ∈ Fq[T ] \ {0}, it is expected
that the ensuing set of solutions is Zariski dense in A2.

As an aside, we note that one could formulate a variant of Conjecture 2.3 involving three
orbits colliding at the same point; once again, having 3 orbits and only 2 parameters would
make this event unlikely and thus, a similar conclusion as in Conjecture 2.3 would be expected.

Remark 2.5. The following example shows the subtlety of the problem raised by Conjec-
ture 2.3. So, consider the case when r = sk for some integer k > 1, c1 = 0, while c2 = u · a
for some u ∈ F∗q , and moreover, b = v · a for some v ∈ Fqs \ Fq. In this setting, actually
conditions (i)-(ii) are not met. However, we will see that there exist infinitely many pairs
(λ, µ) ∈ K ×K such that both c1 and c2 lie in both the orbits of a and of b under the action

of Φ(λ,µ); but all these infinitely many found pairs (λ, µ) would lie on one single line in A2.
We consider the line λ = 0 in our parameter space, which means that we are considering

Drinfeld modules Φ(0,µ) : Fq[T ] −→ End(Ga) given by

(2.3.2) Φ
(0,µ)
T (x) = tx+ µxq

s
+ xq

sk
.
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In particular, Φ
(0,µ)
P (v ·x) = v ·Φ(0,µ)

P (x) for any P ∈ Fq[T ], thus showing that 0 is in the orbit

of a under Φ(0,µ) if and only if 0 is in the orbit of b under Φ(0,µ). Furthermore, we can extend
naturally the action of Φ(0,µ) to a Drinfeld module Φ̃(µ) : Fqs [T ] −→ End(Ga) given by

(2.3.3) Φ̃
(µ)
P = Φ

(0,µ)
P whenever P ∈ Fq[T ].

We let w := u/v; then w ∈ F∗qs and c2 = w · b. An argument almost identical with the one

from Corollary 4.5 would yield that there exists an infinite set S of elements µ ∈ K with the
property that there exists some nonzero polynomial Pµ ∈ Fq[T ] such that

(2.3.4) Φ̃
(µ)
Pµ(T )−w(b) = 0.

Equations (2.3.3) and (2.3.4) yield that w · b = c2 lies in the orbit of b under the action of

Φ(0,µ). Moreover, equation (2.3.4) yields that there exists a nonzero polynomial Qµ ∈ Fq[T ]

such that Φ̃
(µ)
Qµ

(b) = 0 and so, using equation (2.3.3), we get that 0 is in the orbit of b under

the action of Φ(0,µ) (and thus, 0 is also in the orbit of a under the action of Φ(0,µ)).
Finally, our choice of c2 shows that for each µ ∈ K, we have that c2 lies in the orbit of a

under the action of Φ(0,µ). So, indeed, we have that for each µ in the infinite set S, both c1

and c2 lie in the orbits of both a and b under the action of Φ(0,µ).

In order to attack Conjecture 2.3, one would need to prove similar results as in [GH13], but
this time for points of small height with respect to a 2-parameter family of Drinfeld modules.
This is expected to be difficult since the similar problem in characteristic 0 (dealing with
algebraic families of self-maps parameterized by higher dimensional varieties) is already quite
challenging and only few results are known (see [GHT15, Theorem 1.4] and [GHT16]).

Finally, we note that Conjecture 1.3 with k = ` = 1 could be formulated in the context
of unikely intersections of families of polynomials (or even more generally, rational functions)
defined over number fields; the strategy to attack such a question would be similar to the one
we employ in this paper. Also, both Conjectures 1.3 and 2.3 have natural formulations in the
context of families of elliptic curves (or even more generally, abelian varieties) in which we
work with finitely generated groups instead of orbits. However, as we previously stated, our
focus is to introduce and study the questions of unlikely intersections in the context of Drinfeld
modules both for their intrinsic interest, but also because often in the past, conjectures rising
from Drinfeld modules led to deep arithmetic dynamics problems over number fields, as it
was the case of the Dynamical Mordell-Lang Conjecture (see [GT08] which was the precursor
of [BGT16]).

3. Heights for Drinfeld modules

3.1. Our family of Drinfeld modules. Throughout our paper, unless otherwise noted,
we have K := Fq(t) and we work with the 1-parameter family of Drinfeld modules Φ(λ) :
Fq[T ] −→ EndK(Ga) for which

(3.1.1) Φ
(λ)
T (x) = tx+ λxq + xq

r
.

For more details on Drinfeld modules, we refer the reader to [Gos96].
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3.2. The Weil height. We consider the Weil height h(·) on K which is simply given by

(3.2.1) h(A(t)/B(t)) = max{degt(A), degt(B)},

for any two coprime polynomials A,B ∈ Fq[t] (with B 6= 0).
We let ΩK be the set of inequivalent absolute values on K corresponding to the points

of P1(Fq). More precisely, for each α ∈ Fq, we consider the absolute value | · |vα defined as
follows: ∣∣∣∣A(t)

B(t)

∣∣∣∣
vα

= eordα(B)−ordα(A),

for any nonzero polynomials A,B ∈ Fq[t], where ordα(C) is the order of vanishing at the point

α of the nonzero polynomial C ∈ Fq[t]. Also, for the point at infinity of P1(Fq), we have the
absolute value | · |v∞ for which ∣∣∣∣A(t)

B(t)

∣∣∣∣
v∞

= edeg(A)−deg(B),

for any two nonzero polynomials A,B ∈ Fq[t]. We see that with this normalization for the
absolute values from ΩK , we have that for each a ∈ K, we have

h(a) =
∑
v∈ΩK

log+ |a|v,

where for any nonnegative real number x, we have log+(x) := max{0, log(x)}.
Then we extend coherently the Weil height for all elements of K; so, for any finite field

extension L/K and for each place v of K, there exist finitely many places w of L lying over
v (denoted w|v) with the corresponding absolute values | · |w normalized such that for each
nonzero a ∈ K, we have

(3.2.2) log |a|v =
∑
w|v

log |a|w

In particular, each finite extension L of K is a product formula field with respect to the set
ΩL of normalized absolute values on L, i.e., for any nonzero α ∈ L, we have that

(3.2.3)
∏
w∈ΩL

|α|w = 1.

Now, given a finite extension L/K, the Weil height of a point α ∈ L is given by

(3.2.4) h(α) =
∑
w∈ΩL

log+ |α|w.

Due to the coherence of the normalization for the absolute values (see (3.2.2)), the for-
mula (3.2.4) for the Weil height of a point α ∈ K does not depend on the particular choice of
the finite extension L/K containing α.

We also note that in our formulas (3.2.2) and (3.2.4), we do not divide the right-hand side
by [L : K]; this is part of our normalization of the absolute values w ∈ ΩL, which is possible
since for any nonarchimedean absolute value | · | and for any positive real number d, also | · |d
is a nonarchimedean absolute value (see also [GH13, Equation (2.2)]).
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3.3. The canonical height for Drinfeld modules. For each λ ∈ K, we define the canonical

height ĥλ : K −→ Q≥0 corresponding to the Drinfeld module Φ(λ) (see (3.1.1)) as follows:

(3.3.1) ĥλ(α) := lim
n→∞

h
(

Φ
(λ)
Tn (α)

)
qrn

.

The formula from (3.3.1) yields (see [Den92]) that for any nonzero R ∈ Fq[T ], we have

(3.3.2) ĥλ

(
Φ

(λ)
R (α)

)
= qr·degT (R) · ĥλ(α).

In particular, a point α ∈ K is torsion for Φλ (i.e., there exists some nonzero R ∈ Fq[T ] such

that Φ
(λ)
R (α) = 0) if and only if ĥλ(α) = 0; for more properties regarding the canonical height

for arbitrary Drinfeld modules, see [Den92, Ghi07a, Ghi07b].

3.4. Local canonical heights for Drinfeld modules. The canonical height (from (3.3.1))
can also be expressed as a sum of local canonical heights. More precisely, given a finite field
extension L/K and given α, λ ∈ L, then for any w ∈ ΩL, we define the local canonical height
of α with respect to the place w as follows:

(3.4.1) ĥλ,w(α) := lim
n→∞

log+
∣∣∣Φ(λ)

Tn (α)
∣∣∣
w

qrn
.

Then one can prove (see [Den92, Ghi07a, Ghi07b]) that

(3.4.2) ĥλ(α) =
∑
w∈ΩL

ĥλ,w(α),

where only finitely many terms from the right-hand side of equation (3.4.2) are nonzero.

3.5. A technical result. In our proof of Theorem 1.1, we will employ the following result
regarding the variation of the canonical heights in the Drinfeld modules family

{
Φ(λ)

}
λ∈K .

Proposition 3.1. Let a ∈ K. Then there exist positive constants M1 and M2 (depending
only on h(a)) with the property that for each λ ∈ K, we have

(3.5.1) −M1 +
h(λ)

qr
< ĥλ(a) <

h(λ)

qr
+M2.

Proposition 3.1 fits in a long series of results regarding the variation of the canonical height
in an algebraic family of maps. Variants of Proposition 3.1 were proven over number fields
in the case of elliptic curves by Tate [Tat83], and then extended to all abelian varieties by
Silverman [Sil83] (see also [CS93, Ing13, GM13] for similar results for polynomial families and
also certain families of rational functions).

Proof of Proposition 3.1. First, we note that if a = 0, then we could simply take M1 = M2 = 1

and inequalities (3.5.1) would be verified since ĥλ(0) = 0 for each λ ∈ K. So, from now on,
we assume that a 6= 0.

Let λ ∈ K and let L be a finite extension of K containing both a and λ. The right-hand
side inequality from (3.5.1) is easier. Indeed, for each w ∈ ΩL, we have that

(3.5.2) log+
∣∣∣Φ(λ)

T (a)
∣∣∣
w
≤ log+ |λ|w + log+ |t|w + qr · log+ |a|w
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and then letting Mw := log+ |λ|w + log+ |t|w + qr · log+ |a|w, a simple induction yields that for
each n ≥ 1, we have

(3.5.3) log+
∣∣∣Φ(λ)

Tn (a)
∣∣∣
w
≤ qr(n−1) ·Mw.

Therefore, using (3.4.1), we get

(3.5.4) ĥλ,w(a) ≤ Mw

qr
=

log+ |λ|w
qr

+
log+ |t|w + qr log+ |a|w

qr
.

Using inequality (3.5.4) for each w ∈ ΩL and also combining it with (3.4.2) along with the
formula (3.2.4), we obtain that

(3.5.5) ĥλ(a) ≤ h(λ)

qr
+
h(t) + qr · h(a)

qr

and thus, we obtain the right-hand side of our desired inequality (3.5.1) with M2 := 1 +h(a),
for example (note that h(t) = 1 according to (3.2.1)).

In order to establish the left-hand side of the inequality (3.5.1), we pick any w ∈ ΩL; then
there are two cases depending on |λ|w.

Case 1. Assume first that

(3.5.6) log+ |λ|w ≤ qr ·
(
log+ |a|w + log+ |1/a|w + log+ |t|w

)
.

We let

(3.5.7) Nw := log+ |a|w + log+ |1/a|w + log+ |t|w.
Inequality (3.5.6) yields simply that

(3.5.8) ĥλ,w(a) ≥ 0 ≥ log+ |λ|w
qr

−Nw.

Case 2. Assume now that

(3.5.9) log+ |λ|w > qr ·Nw

(see (3.5.7) for the definition of Nw). In particular, we would have that |λ|w > 1 since Nw ≥ 0.
The inequality (3.5.9) yields that

(3.5.10)
∣∣∣Φ(λ)

T (a)
∣∣∣
w

= |λ · aq|w

because |λaq|w > max
{
|ta|w, |a|q

r

w

}
. Furthermore, inequality (3.5.9) combined with for-

mula (3.5.10) yields that

(3.5.11)
∣∣∣Φ(λ)

T (a)
∣∣∣
w

= |λ|w · |a|qw > |λ|
qr−q
qr

w ≥ max

{
1, |t|

1
qr−1
w , |λ|

1
qr−q
w

}
where in the last inequality from (3.5.11), we also use the fact that q, r ≥ 2. Inequality (3.5.11)
yields that

(3.5.12)
∣∣∣Φ(λ)

T 2 (a)
∣∣∣
w

=
∣∣∣Φ(λ)

T (a)q
r
∣∣∣
w
>
∣∣∣Φ(λ)

T (a)
∣∣∣
w
.

Inequality (3.5.12) coupled with an easy induction yields that for each n ∈ N, we have

(3.5.13)
∣∣∣Φ(λ)

Tn (a)
∣∣∣
w

=
∣∣∣Φ(λ)

T (a)
∣∣∣qr(n−1)

w
= |λ · a|q

r(n−1)

w .
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Equation (3.5.13) along with formula (3.4.1) yields that

(3.5.14) ĥλ,w(a) =
log |λ · a|w

qr
≥ log+ |λ|

qr
− log+ |1/a|w

qr
≥ log+ |λ|w

qr
−Nw,

where in the inequality (3.5.14) we also employed the fact that |λ|w > 1, along with the fact
that Nw ≥ log+ |1/a|w (see (3.5.7)).

Now, a simple computation using formula (3.2.4) gives:∑
w∈ΩL

Nw(3.5.15)

=
∑
w∈ΩL

log+ |a|+
∑
w∈ΩL

log+ |1/a|w +
∑
w∈ΩL

log+ |t|w(3.5.16)

= h(a) + h(1/a) + h(t)(3.5.17)

= 2h(a) + 1,(3.5.18)

where for the last equality, we employed both the fact that h(t) = 1 (see (3.2.1)) and also the
fact that h(1/a) = h(a) (since a 6= 0 and (L,ΩL) is a product formula field according to the
formula (3.2.3)). Then employing inequalities (3.5.14) and (3.5.8) for each w ∈ ΩL coupled
with formulas (3.4.2), (3.2.4) and (3.5.18), we get

(3.5.19) ĥλ(a) ≥ h(λ)

qr
− 2h(a)− 1;

hence we may take M1 := 2h(a) + 2 for the left-hand side of our desired inequality (3.5.1).
This concludes our proof of Proposition 3.1. �

4. Proof of our main result

We continue with our previous setup for the 1-parameter family of Drinfeld modules Φ(λ)

given by formula (3.1.1). We also employ the setup for heights associated to Drinfeld modules

from Section 3 (see formula for ĥλ(·) from equation (3.3.1)).

4.1. Technical preliminaries. We start with an easy result.

Lemma 4.1. Let a ∈ K
∗

and let P ∈ Fq[T ] be a polynomial of degree m ≥ 1. Then

λ 7→ Φ
(λ)
P (a) is a polynomial of degree qr(m−1).

Proof. Using the definition of a Drinfeld module, it suffices to prove that λ 7→ Φ
(λ)
Tm(a) is

a polynomial of degree qr(m−1). This follows immediately by induction on m (using the

formula (3.1.1) for Φ
(λ)
T ); a more general result is proven in [GH13, Lemma 4.2]. �

Lemma 4.1 has the following corollary.

Corollary 4.2. Let c ∈ K and let a ∈ K
∗

such that c/a /∈ F∗q. Then for each nonzero

P ∈ Fq[T ], there exist finitely many λ ∈ K such that Φ
(λ)
P (a) = c.

Proof. First of all, we see that if P ∈ Fq[T ] \ {0} is a constant polynomial (equal to some

u ∈ F∗q), then the equation Φ
(λ)
P (a) = c has no solutions λ ∈ K since this equation is equivalent

with asking that u · a = c.

Now, assuming that degT (P ) = n ≥ 1, then Lemma 4.1 yields that degλ(Φ
(λ)
P (a)) = qr(n−1).

Hence there exist finitely many λ ∈ K such that Φ
(λ)
P (a) = c, as claimed. �
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We will also employ in the proof of Theorem 1.1 the following technical consequence of
[GH13, Theorem 1.5].

Proposition 4.3. Let r ≥ 2 be an integer, let K = Fq(t) and let Φ(λ) : Fq[T ] −→ EndK(λ)(Ga)
be the Drinfeld module family given by

Φ
(λ)
T (x) = tx+ λxq + xq

r
.

Let a,b ∈ K∗ with the property that there exist infinitely many λn ∈ K such that ĥλn(a)→ 0

and ĥλn(b)→ 0 as n→∞. Then a/b ∈ F∗q.

Proof. This is essentially proven in [GH13, Theorem 1.5]; there are two differences in the
statement of [GH13, Theorem 1.5] from our Proposition 4.3 which we will explain below.

First, in [GH13, Theorem 1.5], there is the assumption that the λn belong to the separable
closure of K; this is the underlying assumption throughout all the proofs of [GH13]. However,
as explained also in [GS22, Remark 1.1], this is not necessary since throughout the proofs of
[GH13], one could have worked with the perfect closure of a function field (i.e., work with
Kper instead of K), which is still a product formula field and then the main equidistribution
theorem of Baker-Rumely [BR10, Theorem 7.52] would still apply because their results only
require an arbitrary product formula field (see [BR10, Definition 7.51, p. 185]); then the
arguments from [GH13] follow verbatim.

Second, in [GH13, Theorem 1.5], we have the assumption that the parameters λn correspond

to torsion points, i.e., ĥλn(a) = ĥλn(b) = 0. However, in order to apply the equidistribution
theorem of Baker-Rumely [BR10, Theorem 7.52] for proving [GH13, Theorem 2.6] (which is
the main technical result of [GH13] from which [GH13, Theorem 1.5] is derived), it suffices to

assume that ĥλn(a), ĥλn(b)→ 0 as n→∞. �

4.2. A key ingredient for the proof of our main result. The next result is key to proving
Theorem 1.1

Proposition 4.4. Let a ∈ K∗ and c ∈ K. Let {Pn}n≥1 be a sequence of elements in Fq[T ]

and let {λn}n≥1 be a sequence of elements in K such that

(4.2.1) Φ
(λn)
Pn

(a) = c.

If degT (Pn)→∞ as n→∞, then ĥλn(a)→ 0 as n→∞.

Proof. First we prove that h(λn) is bounded above. Indeed, assuming otherwise, then (at the
expense of replacing {λn} with a subsequence) we would have that h(λn) → ∞ as n → ∞.
Proposition 3.1 yields that there exists a positive constant M (depending on h(a) and h(c))
such that

(4.2.2) −M +
h(λn)

qr
< ĥλn(a) <

h(λn)

qr
+M

and also,

(4.2.3) −M +
h(λn)

qr
< ĥλn(c) <

h(λn)

qr
+M.

Pick N ∈ N with the property that h(λn) > 2qrM whenever n ≥ N (since we asumed that
h(λn)→∞ as n→∞). Then the first inequality in equation (4.2.2) yields

(4.2.4)
h(λn)

2qr
< ĥλn(a).
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On the other hand, the second inequality from equation (4.2.3) yields (note also that qr > 2)
that

(4.2.5) ĥλn(c) < h(λn).

Since degT (Pn)→∞ and Φ
(λn)
Pn

(a) = c, while

(4.2.6) ĥλn

(
Φ

(λn)
Pn

(a)
)

= qr·degT (Pn) · ĥλn(a),

then we see that equations (4.2.4) and (4.2.5) are contradictory. So, indeed, we may assume
that the sequence {h(λn)}n is bounded above. Then Proposition 3.1 yields that also the

sequence {ĥλn(c)}n is bounded above. Since c = Φ
(λn)
Pn

(a), then equation (4.2.6) along with

the fact that degT (Pn)→∞ allows us to obtain that ĥλn(a)→ 0, as n→∞.
This concludes our proof of Proposition 4.4. �

The following result is a consequence of our Proposition 4.4 and it will be used in proving
the converse implication from Theorem 1.1.

Corollary 4.5. Let a ∈ K∗ and let c ∈ K. There exist infinitely many λ ∈ K for which there

exists some nonzero Pλ ∈ Fq[T ] such that Φ
(λ)
Pλ

(a) = c.

Proof. First, assume c = 0. We consider an infinite sequence {Pn}n≥1 of monic irreducible
polynomials in Fq[T ] with degT (Pn) = n; in particular, the polynomials from our sequence
are pairwise coprime. For each n, we consider the equation

(4.2.7) Φ
(λ)
Pn

(a) = 0;

then Lemma 4.1 yields that this is a polynomial equation of degree qr(n−1) in λ and so, we
pick a solution λn ∈ K for equation (4.2.7). We claim that the sequence {λn}n≥1 consists
of distinct elements. Indeed, if λm = λn for some m < n, then letting µ := λm = λn, using
(4.2.7) we get

(4.2.8) Φ
(µ)
Pm

(a) = Φ
(µ)
Pn

(a) = 0.

Since Pm and Pn are coprime, then equation (4.2.8) yields that a = 0, contradiction. So,
indeed, the conclusion of Corollary 4.5 holds when c = 0.

Now, assume c 6= 0. For each n ≥ 1, we let

Rn(T ) :=
∏

Q∈Fq [T ]
1≤degT (Q)≤n

Q(T ).

Then for each positive integer n, we pick some λn ∈ K such that Φ
(λn)
Rn

(a) = c (note that

Lemma 4.1 yields that Φ
(λ)
Rn

(a) is a polynomial of degree qr(degT (Rn)−1) in λ). But then
Proposition 4.4 yields that

(4.2.9) ĥλn(a)→ 0.

If there are only finitely many distinct λn in our sequence, then equation (4.2.9) yields that

actually for some λ̃ appearing infinitely often in our sequence {λn}, we would have that

ĥλ̃(a) = 0; hence, a is a torsion point for Φ(λ̃), i.e., there exists some nonzero polynomial

Q ∈ Fq[T ] such that Φ
(λ̃)
Q (a) = 0. Furthermore, Q must be a non-constant polynomial since

a 6= 0. However, since there exist infinitely many λn in our sequence which equal λ̃, then for
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n ≥ degT (Q), we see that Φ
(λ̃)
Rn

(a) = 0 because Rn is divisible by all polynomials (in T ) of
degree at most n (and so, Q divides Rn). But then

c = Φ
(λn)
Rn

(a) = Φ
(λ̃)
Rn

(a) = 0,

contradicting our assumption that c 6= 0. So, indeed, there are infinitely many distinct

elements λn in our sequence for which Φ
(λn)
Rn

(a) = c.
This concludes our proof of Corollary 4.5. �

4.3. Proof of Theorem 1.1. We work with the notation and hypotheses from Theorem 1.1.
We first note that it is immediate to get the “moreover” part in our desired conclusion (ii)

since for any λ, x ∈ K, for any R ∈ Fq[T ] and for any u ∈ Fq, we have that

(4.3.1) Φ
(λ)
R (u · x) = u · Φ(λ)

R (x).

Also, equation (4.3.1) along with Corollary 4.5 immediately delivers the reverse implication
from our desired conclusion in Theorem 1.1. Indeed, if conclusion (ii) in Theorem 1.1 is met,

i.e., if b = u · a for some u ∈ F∗q then whenever Φ
(λ)
Pλ

(b) = c for some Pλ ∈ Fq[T ] yields

that also Φ
(λ)
u·Pλ(a) = c. Furthermore, note that Corollary 4.5 yields the existence of infinitely

many λ ∈ K such that for some Pλ ∈ Fq[T ] we have Φ
(λ)
Pλ

(b) = c. On the other hand, if

conclusion (i) is met, i.e., v · a = c for some v ∈ F∗q , then for each λ ∈ K, we have that

Φ
(λ)
v (a) = c and so, once again invoking Corollary 4.5, we get that there exist infinitely many

λ ∈ K such that there exists some nonzero Qλ ∈ Fq[T ] for which Φ
(λ)
Qλ

(b) = c, as desired.
So, we are left to prove the main implication in Theorem 1.1, i.e., we assume there exists

an infinite sequence {λn}n≥1 of elements in K and there exist two sequences {Pn}n≥1 and
{Qn}n≥1 of elements in Fq[T ] such that

(4.3.2) Φ
(λn)
Pn

(a) = c and Φ
(λn)
Qn

(b) = c.

Furthermore, we may assume that c/a /∈ F∗q and also c/b /∈ F∗q since otherwise condition (i)
is met.

Using Corollary 4.2, we obtain that the degrees (in T ) of the polynomials Pn and Qn must

grow to infinity. By Proposition 4.4, we obtain that ĥλn(a)→ 0 and ĥλn(b)→ 0 as n→∞.
Then Proposition 4.3 yields that b/a ∈ F∗q , as desired.

This concludes our proof of Theorem 1.1.
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