
Continuous time dynamical systems
(Review of the second part of Math 361, Winter 2001)

Basic problem:

x1(t); :::; xn(t) dynamic variables (e.g. population size of species i at time
t); dynamics given by a set of n equations

dx1

dt
= F1 (x1(t); :::; xn(t))

:::
dxn

dt
= Fn (x1(t); :::; xn(t))

where F1; :::;Fn are functions of n variables. The general problem is to …nd
solutions x1(t); :::; xn(t) (i.e. the dynamics) satisfying this system of equations,
subject to some initial conditions, e.g. x1(0); :::; xn(0). Usually, the time de-
pendence in the variables xi is suppressed for notational convenience, so that
system becomes

dx1

dt
= F1 (x1; :::; xn)

:::
dxn

dt
= Fn (x1; :::; xn)

This is a generally non-linear system of …rst-order autonomous di¤erential
equations (non-linear: the functions Fi may be non-linear; …rst-order: only the
functions xi and their derivatives occur in these equations; autonomous: there
is no explicit time dependence in the functions Fi, only an implicit time depen-
dence through the time dependence of the xi.)

Example:

dx1

dt
= ¸x1:

Here n = 1, and F1(x1) = ¸x1 is linear. Given the initial condition x1(0) = x0,
the solution is

x1(t) = x0 ¢ exp[̧ t]:

Note that x1(t) ! 0 or x1(t) ! 1 depending on whether ¸ < 0 or ¸ > 0.
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I. Linear di¤erential equations:

If the Fi are linear real-valued functions

Fi(x1; :::; xn) = ai1x1 + ::: + ainxn; i = 1; :::; n;

(where we assume the aij to be real numbers), then the system of di¤erential
equations is given by the matrix multiplication

0
@

dx1
dt
:::

dxn

dt

1
A = A ¢

0
@

x1(t)
:::

xn(t)

1
A ;

where A is the matrix

A =

0
@

a11 ::: a1n

::: :: :::
an1 :: ann

1
A :

In ’most’ cases, the matrix A has n eigenvalues ¸1; :::; ¸n with corresponding
eigenvectors w1; :::; wn:

A ¢ wi = ¸iwi; i = 1; :::; n:

The general solution for the dynamical system is:
0
@

x1(t)
:::

xn(t)

1
A = b1 ¢ exp[¸1t] ¢ w1 + ::: + bn ¢ exp[̧ nt] ¢ wn ;

where the initial condition is
0
@

x1(0)
:::

xn(0)

1
A = b1w1 + ::: + bnwn:

In the long term, i.e. for t ¡! 1, there are two qualitatively distinct cases:
Let ¸ be the eigenvalue of A with the largest real part (i.e., the dominant

eigenvalue), and let w be the corresponding eigenvector.
Then, if ¸ is a real number, (i.e., if the imaginary part Im ¸ = 0), then w

can be chosen to be real-valued, and the long term behaviour is given by
0
@

x1(t)
:::

xn(t)

1
A = b ¢ exp[̧ t] ¢ w for t ! 1

(where bw is the component of the initial condition in the direction of the
eigenvector w). Thus, if ¸ is real, the dynamic variables will eventually grow
exponentially at a rate ,̧ and the vector of variables will be a multiple of w.
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If ¸ is not real, ¸ = r + is = with ' 6= 0 (hence s 6= 0), then w = u + iv with
v 6= 0, and the complex conjugate ¸ = r ¡ is is also an eigenvalue of A with
corresponding eigenvector w = u ¡ iv. The real valued solution will eventually
converge to oscillating behaviour with exponentially growing (or decreasing)

amplitude:

0
@

x1(t)
:::

xn(t)

1
A = b1 ¢ exp[rt] ¢ [(cos(ts) ¢ u ¡ sin(ts) ¢ v)] + b2 ¢ exp[rt] ¢

[(sin(ts) ¢ u + cos(ts) ¢ v)] for t ! 1, where c =
p

r2 + s2 is the absolute value
of ¸, and where b1 and b2 are determined from the initial condition.

In particular, all solutions

0
@

x1(t)
:::

xn(t)

1
A will converge to the 0- vector

0
@

0
:::
0

1
A

if and only if all eigenvalues of A have negative real parts.

Special cases:

1. In the example given above, dx1

dt = ¸x1, the matrix A simply consists of
the number ¸, which is its sole eigenvalue (with eigenvector 1).

2. Consider 2-dimensional systems of linear di¤erential equations
µ

dx
dt
dy
dt

¶
= A ¢

µ
x
y

¶

with

A =

µ
a11 a12

a21 a22

¶
; aij real.

Then either both eigenvalues of A are real, or they are a pair of complex con-
jugate numbers with non-zero imaginary part. In the …rst case, the point
(x;y) = (0; 0) is called an unstable node, a saddle point, or a stable node
depending on whether both eigenvalues are > 0, one eigenvalue is > 0 and one
is < 0, or both eigenvalues are < 0, respectively. In this case, solutions will
converge to (0; 0) as t ! 1 independent of starting conditions if and only if
(0;0) is a stable node.

In the second case, the point (x; y) = (0;0) is an unstable focus or a stable
focus depending on whether the real part of the eigenvalue is positive or negative.
In this case, real -valued solutions will exhibit oscillations, and they will converge
to (0;0) as t ! 1 independent of starting conditions if and only if (0; 0) is a
stable focus.
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II. Non-linear di¤erential equations:

If the functions Fi in (1) are non-linear, then the general approach is to …rst
look for equilibrium states and then perform a linear stability analysis.

A point (x¤
1; :::; x

¤
n) is called an equilibrium for the dynamical system (1) if

Fi(x
¤
1; :::; x

¤
n) = 0 for i = 1; :::; n:

Given an equilibrium state (x¤
1; :::; x

¤
n), the dynamics of a vector of small

deviations Di(t) = xi(t) ¡x¤
i from this equilibrium is given by

0
@

dD1

dt
:::

dDn

dt

1
A = J ¢

0
@

D1(t)
:::

Dn(t)

1
A ;

where J is the Jacobian matrix of partial derivatives evaluated at the equilibrium

J =

0
@

@F1
@x1

(x¤
1; :::; x

¤
n) ::: @F1

@xn
(x¤

1; :::; x
¤
n)

::: :::
@Fn

@x1
(x¤

1; :::; x
¤
n) ::: @Fn

@xn
(x¤

1; :::; x
¤
n)

1
A :

This dynamical equation holds approximately as long as jDi(t)j ¿ 1 are small.

The equilibrium is called locally stable if and only if
0
@

D1(t)
:::

Dn(t)

1
A !

0
@

0
:::
0

1
A for t ! 1

for any initial condition (D1(0); :::;Dn(0)) with jDi(0)j ¿ 1 for all i.
It follows from the linear theory that the equilibrium is locally stable if and

only if all eigenvalues of the Jacobian J have negative real parts.
Examples:
1. The logistic equation for competition in a single species has the form

dx

dt
= rx

³
1 ¡ x

K

´
= F (x):

The equation F (x¤) = 0 has to solutions: x¤ = 0 and x¤ = K. The Jacobian
is simply given by dF=dx, and we have dF=dx(0) > 0 and dF=dx(K) < 0.
Therefore, x¤ = 0 is unstable, and x¤ = K is stable.

Note that the logistic equation can be solved analytically as

x(t) =
K

1 ¡ ( K
x0

¡ 1) exp[¡rt]
;

where x(0) = x0 is the initial condition. Note also that this system exhibits
convergence to x¤ = K from almost all initial conditions. In particular, this
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system always exhibits equilibrium dynamics, and in particular does not exhibit
oscillatory behaviour. This is true for any 1-dimensional di¤erential equation of
the type considered above: all solutions to such equations either converge towards
an equilibrium state, or they diverge towards §1, as t ! 1.

To get oscillatory behaviour in 1-dimensional systems, we need to have an
explicit dependence of the function F on time (e.g. by assuming that parameters
are sinusoidal functions of time), or we need delay density dependence, so that
e.g. in the logistic equation the per capita growth rate at time t does not depend
on the present population size x(t), but on the population size at some time in
the past, i.e. on x(t ¡ T ) (for example, T might be the time it takes an egg to
develop into an adult individual). The delay logistic equation

dx

dt
= rx(t)

µ
1 ¡ x(t ¡ T )

K

¶

typically exhibits oscillations of period approximately 4T .
2. Lotka-Volterra equations for competition between two species are exten-

sions of the logistic equation and have the form

dx1

dt
= r1x1

µ
1 ¡ x1 ¡®12x2

K1

¶

dx2

dt
= r2x2

µ
1 ¡ x2 ¡®21x1

K2

¶

These equations can be studied using direction …elds and phase plane anal-
ysis. To do this, one plots the two isoclines

x1 = 0, x2 =
x1 ¡ K1

®12

for the growth rate in species 1, and

x2 = 0, x2 = K2 ¡®21x1

for the growth rate in species 2, in the phase plane with x1 as the horizontal
axis and x2 as the vertical axis. Equilibrium points are given as intersections of
the isoclines. There is a positive equilibrium (x¤; y¤) with x¤ > 0 and y¤ > 0
if and only if the two isoclines x2 = x1¡K1

®12
and x2 = K2 ¡ ®21x1 intersect

in the positive quadrant of the phase plane. The directions of change in the
various regions delimited by the isoclines can be found by noting that dx1=dt
is negative for points (x;y) lying above the isocline x2 = x1¡K1

®12
, and positive

otherwise. A similar statement hods for dx1=dt with respect to the isocline
x2 = K2 ¡ ®21x1. Depending on the con…guration of the isoclines, one can
then see that either one species outcompetes the other species independently
of the initial conditions (isoclines do not intersect in positive quadrant), or one
species outcompetes the other species but which species wins depends on the
initial conditions (isoclines intersect in positive quadrant, with K2 < K1=®12),
or the two species coexist at a stable equilibrium (isoclines intersect in positive
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quadrant, with K2 > K1=®12). Thus, the dynamical behaviour of the system
can be determined from phase plane analysis, a type of analysis which is also
important for Poincaré-Bendixson theory (s. below). Note that the various
equilibria and their stability can also be found analytically using linear stability
analysis based on Jacobian matrices.

Linear stability analysis can also be used to determine general conditions
under which generalized Lotka-Volterra equations for interactions between n
species have a locally stable equilibrium at which all interacting species coexist.

3. The basic Lotka-Volterra predator-prey equations have the form:

dx

dt
= rx ¡ bxy

dy

dt
= ¡cy + dxy

Here x is prey population size and y is predator population size, and it is
assumed that the attack rate is proportional to the product xy (mass action),
so the rate at which prey is killed is bxy, while the rate at which new predators
are born is dxy, with b > 0 and d > 0 some parameters.

The Jacobian of this system at the equilibrium (c=d; r=b) has two purely
imaginary eigenvalues, and hence the linearized system exhibits neutral oscilla-
tions. It can be shown that the same is true for the full, non-linear system: prey
and predator populations will undergo periodic changes, with the amplitude and
frequency of the oscillations depending on initial conditions.

In class we have seen various examples of how the con…guration of equi-
librium points of a dynamical system and/or their stability can change as pa-
rameters are varied (e.g. model for cell di¤erentiation along a morphogenetic
gradient). One of the most important types of bifurcations is the so-called Hopf
bifurcation, which occurs when a stable focus loses its stability and becomes an
unstable focus as a bifurcation parameter is varied. During a Hopf bifurcation,
the eigenvalues of the Jacobian at the equilibrium under consideration change
from being a pair of complex conjugate numbers with negative real parts and
non-zero imaginary part to being a pair of complex conjugate eigenvalues with
positive real parts and non-zero imaginary parts. At the bifurcation point, the
Jacobian has purely imaginary (non-zero) eigenvalues, and hence the linearized
system exhibits neutral oscillations at the bifurcation point.

The Hopf bifurcation theorem states that when a system exhibits a Hopf
bifurcation, then, for a range of parameter values in the neighborhood of the
bifurcation point, the system admits a unique closed limit cycle as solution (for
a precise statement of the Hopf bifurcation theory see textbook p. 342).

Example: predator-prey system of the form

dx

dt
= x(1 ¡x) ¡ xy

x + d
dy

dt
= r

³
1 ¡ y

x

´
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This system has an interior equilibrium

(x¤; y¤) =

µ
1

2

³
¡d +

p
d2 +4d

´
;
1

2

³
¡d +

p
d2 +4d

´¶
;

and the Jacobian at this equilibrium is

J =

Ã
x¤

h
x¤

(x¤+d)2
¡ 1

i
¡x¤

x¤+d

r ¡r

!

Its determinant is

det(J) =
rx¤

x¤ + d

µ
1 ¡ x¤

x¤ + d

¶
+ rx¤ > 0:

Therefore, for small values of jtr(J)j, the eigenvalues

¸1;2 =
tr(J) §

p
tr(J)2 ¡ 4det(J)

2

will have non-zero-imaginary part, and hence a Hopf bifurcation will occur as
tr(J) increases through 0 (with jtr(J)j being kept small. Since

tr(J) =
³
1 ¡

p
d2 + 4d

´ 2 + d ¡
p

d2 + 4d

2
¡ r;

for a …xed r (0 < r < 1) a Hopf bifurcation will occur as d is increased through
a critical value bd, the bifurcation point. For values of d < bd, the equilibrium is
a stable focus, and for values of d > bd, the equilibrium is an unstable focus.

The Hopf bifurcation theorem then states that for a range of values d in
the neighborhood of bd, the system has a unique limit cycle. However, the Hopf
bifurcation theorem does not tell us whether this range of values lies below or
above bd, and it does not say anything about the local stability of the limit cycle,
i.e. about whether trajectories that are started close by, but not on the limit
cycle, will converge towards the limit cycle.

To get this kind of information it is often possible to apply the Poincaré-
Bendixson theorem, which states that if the phase space of a 2-dimensional
system of di¤erential equations contains a bounded region that traps the ‡ow
of the system and that contains an unstable focus, then the system must have
a limit cycle. Moreover, this limit cycle must be stable if it is unique. (For
a detailed formulation of this theorem see p. 328 in the textbook.) To …nd
a trapping region as in the Poincaré-Bendixson theorem, it is important to
consider the geometry of the 0-isoclines of the di¤erential equations.

Examples:
1. By studying the isoclines of the predator-prey system above, one can

prove that there is a region trapping the ‡ow and containing the positive equi-
librium. If this equilibrium is an unstable focus, we can therefore apply the
Poincaré-Bendixson theorem and conclude that there is a limit cycle. Since the
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equilibrium is an unstable focus for d > bd, we then conclude that the range of d
values for which a limit cycle exists according to the Hopf bifurcation theorem
must lie above the bifurcation point bd. Moreover, since the limit cycle existing
for this range of d-values is unique by the Hopf bifurcation theorem, it is also
stable according to the Poincaré-Bendixson theorem. Overall, we conclude that
as the stable focus loses its stability due to a Hopf bifurcation, the system has
a stable limit cycle for a range of d-values beyond the bifurcation point.

2. Consider the following chemical reactions between reservoir substances A
and B and two reactants (’chemical species’) X and Y :

A ! Y (Y is spontaneously prooduced from A)
2X + Y ! 3X (2X ’prey’ on one Y to form 3 X)

X ¿ B (X decays to B in a reversible reaction)

For simplicity it is assumed that the rate constants for these three reactions are
equal to 1. Therefore, according to the law of mass action, the …rst reaction
occurs at a rate a, where a is the concentration of the substance A (which is
assumed to be constant), the second reaction occurs at a rate x2y, where x and
y are the concentrations of the substances X and Y , and the two reactions cor-
responding to the third step occur at rate x and b, where b is the concentration
of the substance B (which is also assumed to be constant). This leads to the
following system of di¤erential equations:

dx

dt
= ¡2x2y + 3x2y ¡x + b = x2y ¡x + b

dy

dt
= a ¡ x2y

Using similar arguments as in the previous example, one can show that
for small values of b a Hopf bifurcation occurs as a decreases from large to
small values, with the bifurcation point approximately at a = 1. Moreover, by
considering the isoclines x2y ¡x + b = 0 and a ¡ x2y = 0, one can construct a
trapping region around the equilibrium, from which one concludes that as the
stable focus gives way to an unstable focus during the Hopf bifurcation, the
system exhibits a stable limit cycle for a range of a-values below the bifurcation
point.
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