
Discrete time dynamical systems
(Review of …rst part of Math 361, Winter 2001)

Basic problem:

x1(t); :::; xn(t) dynamic variables (e.g. population size of age class i at time
t); dynamics given by a set of n equations

x1(t + 1) = F1 (x1(t); :::; xn(t))
:::

xn(t + 1) = Fn (x1(t); :::; xn(t))
(1)

where F1; :::;Fn are functions of n variables. Starting with some initial condi-
tion x1(0); :::; xn(0), the time series of x1(t); :::; xn(t) (i.e. the dynamics) are
obtained by successively plugging in the present values of these variables into
the functionsF1; :::;Fn to obtain the new values in the next time step, etc.

Example:

x1(t + 1) = ¸x1(t):

Here n = 1, and F1(x1) = ¸x1 is linear. Starting with x1(0), we get

x1(t) = ¸tx1(0):

First case: linear di¤erence equations

If the Fi are linear functions

Fi(x1; :::; xn) = ai1x1 + ::: + ainxn; i = 1; :::; n;

(where we assume the aij to be real numbers), then the dynamics are given by
the matrix multiplication

0
@

x1(t + 1)
:::

xn(t + 1)

1
A = A ¢

0
@

x1(t)
:::

xn(t)

1
A ; (2)

where A is the matrix

A =

0
@

a11 ::: a1n

::: :: :::
an1 :: ann

1
A :
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In ’most’ cases, the matrix A has n eigenvalues ¸1; :::; ¸n with corresponding
eigenvectors w1; :::; wn:

A ¢ wi = ¸iwi; i = 1; :::; n:

The general solution for the dynamical system is:
0
@

x1(t)
:::

xn(t)

1
A = b1¸

t
1w1 + ::: + bn¸t

nwn;

where the initial condition is
0
@

x1(0)
:::

xn(0)

1
A = b1w1 + ::: + bnwn:

In the long term, i.e. for t ¡! 1, there are two qualitatively distinct cases:
Let ¸ be that eigenvalue of A with the largest absolute value, i.e. the dom-

inant eigenvalue, and let w be the corresponding eigenvector. Then, if ¸ is a
real number, the long term behaviour is given by

0
@

x1(t)
:::

xn(t)

1
A = b¸tw for t ! 1

(where bw is the component of the initial condition in the direction of the
eigenvector w). Thus, if ¸ is real, the dynamic variables will eventually grow at
a rate ¸, and the vector of variables will be a multiple of w.

If ¸ is not real, ¸ = r + is = c ¢ (cos ' + i sin') with ' 6= 0 (hence s 6= 0),
then w = u + iv with v 6= 0, and the complex conjugate ¸ = r ¡ is is also an
eigenvalue of A with corresponding eigenvector w = u ¡ iv. The real valued
solution will eventually converge to oscillating behaviour with exponentially
growing (or decreasing) amplitude:
0
@

x1(t)
:::

xn(t)

1
A = ct ¢ [b1 ¢ (cos(t') ¢ u ¡ sin(t') ¢ v) + b2 ¢ (sin(t') ¢ u +cos(t') ¢ v)] for t ! 1

where c =
p

r2 + s2 is the absolute value of ¸, and where b1 and b2 are deter-
mined from the initial condition.

Special cases:

1. In the example given above, x1(t + 1) = ¸x1(t), the matrix A simply
consists of the number ¸, which is its sole eigenvalue (with eigenvector 1).
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2. Leslie matrices: these are matrices describing the dynamics of age-
structured populations. The dynamic variables xi(t) are the population sizes of
age class i at time t. Leslie matrices L are of the form

L =

0
BBBB@

f1 f2 ::: ::: fn

s1 0
s2 0

::: 0
sn¡1 0

1
CCCCA

where f1; :::; fn are fecundities (and hence ¸ 0) and s1; :::; sn are survival prob-
abilities (and hence also ¸ 0). The dominant eigenvalue of such matrices is, in
general, a real number, and hence the …rst of the above scenarios applies. In par-
ticular, whether a population described by a Leslie matrix goes extinct depends
on whether the dominant eigenvalue has absolute value < 1. The eigenvector w
corresponding to the dominant eigenvalue is called the stable age distribution.

3. Linear second order di¤erence equations of the form

x(t +1) = a ¢ x(t) + b ¢ x(t ¡ 1)

can always be translated into a system of two linear …rst-order equations by
de…ning y(t) = x(t ¡ 1):

µ
x(t +1)
y(t + 1)

¶
= L ¢

µ
x(t)
y(t)

¶

with

L =

µ
a b
1 0

¶
:

Example: Rabbit population dynamics and Fibonacci series; dynamics of blood
cells.

Second case: non-linear di¤erence equations.

If the functions Fi in (1) are non-linear, then the general approach is to …rst
look for equilibrium states and then perform a linear stability analysis.

A point (x¤
1; :::; x

¤
n) is called an equilibrium for the dynamical system (1) if

Fi(x
¤
1; :::; x

¤
n) = x¤

i for i = 1; :::; n:

Given an equilibrium state (x¤
1; :::; x

¤
n), the dynamics of a vector of small

deviations di(t) = xi(t) ¡x¤
i from this equilibrium is given by

0
@

d1(t + 1)
:::

dn(t + 1)

1
A = J ¢

0
@

d1(t)
:::

dn(t)

1
A ;
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where J is the Jacobian matrix of partial derivatives evaluated at the equilibrium

J =

0
@

@F1

@x1
(x¤

1; :::; x
¤
n) ::: @F1

@xn
(x¤

1; :::; x
¤
n)

::: :::
@Fn

@x1
(x¤

1; :::; x
¤
n) ::: @Fn

@xn
(x¤

1; :::; x
¤
n)

1
A :

This dynamical equation holds approximately as long as jdi(t)j ¿ 1 are small.

The equilibrium is called locally stable if and only if
0
@

d1(t)
:::

dn(t)

1
A !

0
@

0
:::
0

1
A for t ! 1

for any initial condition (d1(0); :::; dn(0)) with jdi(0)j ¿ 1 for all i. The linear
theory summarized in the …rst case above gives information about the dynamics
of the vector of deviations (d1(t); :::; dn(t)). In particular, the equilibrium is
locally stable if and only if the dominant eigenvalue of the Jacobian matrix J
at this equilibrium has absolute value < 1.

Examples:

1. For linear systems of the form (2) the only equilibrium is (x¤
1; :::; x

¤
n) =

(0; :::;0), and the Jacobian matrix is the original matrix A itself, Thus, the lin-
earized dynamical system is equal to the given system (as it should be, because
the given system is linear), and the stability analysis simply tells us whether
the system will converge to the 0 vector or not.

2. A single non-linear di¤erence equation:

x(t + 1) = F (x(t)) :

The equilibria are given as solutions of

x¤ = F (x¤):

The Jacobian matrix is simply

J =
dF

dx
(x¤);

and hence the equilibrium is locally stable if and only if
¯̄
¯̄dF

dx
(x¤)

¯̄
¯̄ < 1:

For a single non-linear di¤erence equation this stability condition can also be
found graphically using the method of cobwebbing.
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Example:

x(t +1) =
¸x(t)

1 + x(t)b
(3)

with ;̧ b > 0. Then the equilibria are

x¤ = 0

x¤ = (¸ ¡ 1)1=b (for ¸ > 1):

The …rst of these is stable if and only if ¸ < 1, and the second is stable if and
only if

1 ¡ b
¸ ¡ 1

¸
> ¡1:

3. The Nicholson-Bailey predator prey model:

N(t + 1) = ¸N(t) ¢ exp [¡aP (t)]

P (t + 1) = cN(t) (1 ¡ exp [¡aP (t)])

where N(t) = prey population size at time t, P (t) = predator population size
at time t, and where ;̧ a; c > 0 are population parameters (¸ is the maximal
per capita number of o¤spring in the prey, a is the searching e¢ciency of the
predator, and c is the conversion rate, i.e. the number of predators produced,
on average, from a single attacked prey). The equilibria of this model are given
by

N¤ = 0; P¤ = 0

N¤ =
¸ ln¸

ac(¸ ¡ 1)
; P¤ =

ln¸

a
(for ¸ > 1)

The Jacobian matrix at the …rst of these equilibrium states is

J =

µ
¸ 0
0 0

¶
;

hence this equilibrium is stable if and only if ¸ < 1. The Jacobian matrix at
the second equilibrium is

J =

Ã
1 ¡ ¸ ln ¸

c(¸¡1)

c¸¡1
¸

ln¸
¸¡1

!
:

It can be shown that for ¸ > 1 this matrix has a pair of complex conjugate
eigenvalues with absolute value >1. Thus, the second equilibrium is always
unstable when it exists, with a vector of small di¤erence spiraling away from
the equilibrium and exhibiting oscillations with increasing amplitude.
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What happens when equilibria are unstable? In the case of a single non-
linear di¤erence equation such as (3), we observe the period-doubling route to
chaos. First of all, as the equilibrium x¤ > 0 becomes unstable, a new 2-cycle
appears, i.e. an equilibrium of the twice iterated map

x(t + 2) = F (F (x(t))) (4)

= G (x(t)) :

This 2-cycle is initially stable, but becomes unstable itself as jdF=dx(x¤)j in-
creases further. These assertions can be proved by doing a stability analysis
(either graphically or analytically) of the dynamical system (4). Due to simi-
larity of the functions F and G near the respective equilibria considered, the
process repeats itself when applied repeatedly. In particular, when the 2-cycle
becomes unstable, a 4-cycle appears, which is initially stable, but then becomes
itself unstable and gives way to a stable 8-cycle, etc. Hence the period-doubling
route to chaos. The values of jdF=dx(x¤)j for which the transitions from a sta-
ble 2n-cycle to a stable 2n+1-cycle occur are called bifurcation points. These
bifurcation points have a limit point. For values of jdF=dx(x¤)j larger than this
limit value the dynamical system can exhibit chaos. This type of dynamics is
characterized by irregular time series and by sensitive dependence on initial con-
ditions, which means that trajectories (time series) starting at arbitrarily close
initial conditions will eventually diverge. In other words, in chaotic systems
small initial di¤erences will become large over time.

Such complicated dynamics can also be observed in higher dimensional sys-
tems of non-linear di¤erence equations, e.g. in neural networks, or in predator-
prey systems with density dependence in the prey. One of the important ques-
tions in this context is how one can simplify such complexity. For example, in
predator-prey systems simpli…cation is achieved if the driving forces for desta-
bilization are kept in check, e.g. in predator-prey systems by including strongly
stabilizing density dependence in the prey (prevents overshooting in the prey)
or by including predator interference or prey refuges (prevents overexploitation
of the prey). Simpli…cation can also be achieved by applying external pertur-
bations to the dynamical system at regular intervals. Such methods of chaos
control can for example induce periodic dynamics in chaotic neural networks.
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