
Math 361 Winter 2001/2002
Assignment 3 - Solutions

1.

L =

0
@

1=3 4 2
2=3 0 0
0 1=2 0

1
A

To determine the long term growth rate and stable age distribution, one
would have to …nd the dominant eigenvalue of L and the corresponding eigen-
vector.

2. a.

xn+2 + xn = 0

Let yn+1 = xn. The system reduces to:

µ
xn+1

yn+1

¶
=

µ
0 ¡1
1 0

¶µ
xn

yn

¶

Eigenvalues:

(¡¸)(¡¸) + 1 = 0

=) ¸1=2 = §i = cos(¼=2) § i sin(¼=2)

This system exhibits sustained oscillations with constant amplitude = 1 and
frequency (¼=2)=(2¼) = 1=4.

b.

xn+2 ¡ xn+1 + xn = 0

Let yn+1 = xn. The system reduces to:

µ
xn+1

yn+1

¶
=

µ
1 ¡1
1 0

¶µ
xn

yn

¶

Eigenvalues:

(1 ¡¸)(¡¸) + 1 = 0

=) ¸1=2 =
1

2
§ i

p
3

2
= cos(¼=3) § i sin(¼=3)

The has oscillatory solutions with constant amplitude = 1 and frequency
1/6.

1



c.

xn+2 ¡ 2xn+1 + 2xn = 0

Let yn+1 = xn. The system reduces to:

µ
xn+1

yn+1

¶
=

µ
2 ¡2
1 0

¶µ
xn

yn

¶

Eigenvalues:

(2 ¡ ¸)(¡¸) + 2 = 0

=) ¸1=2 = 1 § i =
p

2(cos(¼=4) § i sin(¼=4))

This has oscillatory solutions whose amplitude increases with time as j¸1jt =

j¸2jt =
p

2
t

and with frequency 1/8.
d.

xn+2 + 2xn+1 + 3xn = 0

Let yn+1 = xn. The system reduces to:

µ
xn+1

yn+1

¶
=

µ ¡2 ¡3
1 0

¶µ
xn

yn

¶

Eigenvalues:

(¡2 ¡ ¸)(¡¸) + 3 = 0

=) ¸ = ¡1 § i
p

2 =
p

3
³
cos(¼ ¡ tan¡1(

p
2)) § i sin(¼ ¡ tan¡1(

p
2))

´

This has oscillatory solutions whose amplitude increases with time as j¸1jt =

j¸2jt =
p

3
t

and with frequency
³
¼ ¡ tan¡1(

p
2)

´
= (2¼).

3. To calculate the eigenvalues we solve the equation

¹2 ¡ tr(A)¹ + det(A) = ¹2 ¡ 2¸¹ +¸2 = (¹ ¡¸)2 = 0

for ¹, which yields

¹1=2 = ¸

i.e., both eigenvalues are equal to ¸. To …nd the eigenvectors, we solve
µ

¸ 1
0 ¸

¶µ
x
y

¶
= ¸

µ
x
y

¶
;
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hence

¸x + y = ¸x

¸y = ¸y

Clearly, y = 0 because of the …rst of these equation, and we conclude that the
only eigenvectors are multiples of

µ
1
0

¶
:

Thus, there is only one eigenvector.
(Note: this is not a direct consequence of the fact that both eigenvalues are

equal, for if you consider the matrix A =

µ
¸ 0
0 ¸

¶
, then both eigenvalues of A

are equal to ¸, but clearly A has two di¤erent eigenvectors
µ

1
0

¶
and

µ
0
1

¶
.)

4. a.

xn = (1 ¡®)xn¡1 +¯xn

This equation is linear:

xn =

µ
1 ¡ ®

1 ¡ ¯

¶
xn¡1

Solution:

xn =

µ
1 ¡®

1 ¡¯

¶n

x0

b.

xn+1 =
xn

1 +xn

This equation is non-linear.
Steady state:

x¤ =
x¤

1 + x¤

x¤2 = 0

Therefore x¤ = 0 is the only steady state.
c.

xn+1 = xne¡axn

This equation is non-linear.
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Steady states:

x¤ = x¤e¡ax¤

x¤ = 0

d.

(xn+1 ¡®)2 = ®2(x2
n ¡ 2xn + 1)

This equation is non-linear.
Steady states:

x¤(x¤(1 ¡ ®2) + 2®(® ¡ 1)) = 0

x¤ = 0;
2®(1 ¡ ®)

(1 ¡ ®2)

e.

xn+1 =
K

k1 + k2=xn

This equation is non-linear.
Steady states:

k1x
¤ + k2 = K

x¤ =
K ¡ k2

k1

5. a.

A ¢ wi = ¸i ¢ wi; i = 1;2

Therefore:

A(u + iv) = c(cosµ + i sin µ)(u + iv)

A(u ¡ iv) = c(cosµ ¡ i sin µ)(u ¡ iv)

A ¢ u + iA ¢ v = c(cosµ ¢ u ¡ sin µ ¢ v + i(cos µ ¢ v + sin µ ¢ u))

A ¢ u ¡ iA ¢ v = c(cosµ ¢ u ¡ sin µ ¢ v ¡ i(cos µ ¢ v + sin µ ¢ u))

and so

2A ¢ u = c(2 cos µ ¢ u ¡ 2 sin µ ¢ v)

2A ¢ v = c(2 cos µ ¢ v + 2sin µ ¢ u)

b.

A ¢ (A ¢ wi) = A ¢ (¸iwi)

= ¸i(A ¢ wi)

= ¸i( i̧wi)

= ¸2
iwi
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This can be continued to show that

At ¢ wi = ¸t
iwi

So

At ¢ w1 = ct(cosµ + i sin µ)t ¢ w1

At ¢ w2 = ct(cosµ ¡ i sin µ)t ¢ w2

Using trigonometric identities one can show that

ct(cosµ § i sin µ)t = ct(cos(tµ) § i sin(tµ))

(De Moivre’s theorem). Thus:

At ¢ w1 = ct(cos(tµ) + i sin(tµ)) ¢ w1

At ¢ w2 = ct(cos(tµ) ¡ i sin(tµ)) ¢ w2

The result follows from these identities as in part (a).

6. a. The function f(x) is a monotone decreasing function of x, which
attains its maximal value at 0: f(0) = ¸. In general, the function f(x) takes on
larger values for larger ¸ and K.

b. K determines how fast the per capita number of descendants decreases
with population size, e.g. due to competition. ¸ determines the maximal number
of per capita descendants, realized when the population size is 0, i.e. when there
is no competition. (The maximal number of per capita descendants is ¸ ¢ e.)

c.

x(t + 1) = f(x(t)) ¢ x(t) = F (x(t)):

The function F (x) has the following general properties:
F (0) = 0;
F (x) ! 0 for x ! 1;
F (x) has a single maximum, which lies to the left of the single equilibrium

x¤ > 0 for which F (x¤) = x¤. (Such an equilibrium exists is ¸ ¢ e > 1.)
F (x) has a single in‡ection point, which lies to the right of the equilibrium

x¤ for which F(x¤) = x¤.

d. Clearly, x¤ = 0 i a steady state of the dynamical system, because F (0) =
0, and to …nd its stability we have to calculate

dF

dx
(0) = ¸ ¢ e:
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Thus, the steady state x¤ = 0 is locally stable if and only if ¸ ¢ e < 1.
If ¸ ¢e > 1, i.e. if x¤ = 0 is unstable, then there is an additional steady state

x¤ > 0, which we can …nd by solving the equation F (x¤) = x¤, or, equivalently,
the equation

f(x¤) = ¸ exp(1 ¡x¤=K) = 1;

which yields

x¤ = K(1 + ln(¸)):

To determine the stability of x¤, we have to calculate

dF

dx
(x¤) = ¡ ln(¸):

Thus, the second steady state is locally stable if and only if ln(¸) < 1, i.e., if
and only if ¸ < e.

7.a.

xn+1 = rxn(1 ¡xn)

f(x) = rx(1 ¡ x)

df

dx
= r ¡ 2rx

df

dx
jx¤=0 = r

Stable when r < 1.
b.

xn+1 = ¡x2
n(1 ¡ xn)

f(x) = ¡x2(1 ¡x)

df

dx
= ¡2x +3x2

df

dx
j
x¤=1+

p
5

2

=
7 +

p
5

2
> 1:

This equilibrium is unstable.
c.

xn+1 =
1

2 + xn

f(x) =
1

2 + x
df

dx
= ¡ 1

(2 + x)2

df

dx
jx¤=

p
2¡1 = 3 + 2

p
2 > 1
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Figure 1: Cobwebbing in a single species model with predation

This equilibrium is unstable.
d.

xn+1 = xn lnx2
n

f(x) = x lnx2

df

dx
= 2 + lnx2

df

dx
jx=e1=2 = 3 > 1

This equilibrium is unstable.
8. a. The function F (x) has the following properties:
F (0) = 0;
F (x) ! ¸ for x ! 1;
F 0(x) > 0 for all x, i.e.F (x)is monotonically increasing.
b. If ¸ < 1, then 0 is the only equilibrium of the dynamical system de…ned

by F (x).
If ¸ > 1, there is an additional steady state x¤ > 0 for which F (x¤) = x¤.
The steady state x¤ = 0 is locally stable if and only if ¸ < 1. The steady

state x¤ > 0 is always locally stable.

9.
a. Figure 1 shows typical cobwebbing behavior for this model, and we see

some interesting behaviour, in that there are 2 non-zero equilibrium points, i.e.
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two intersection points between the graph of F (x) and the diagonal (assuming
that ¸ > 1, and that h is not too large). In this example, if the population
starts at a density greater than 1, the population will converge to the upper
equilibrium. On the other hand, if the population starts at a density less than
one it will go to negative values, i.e. it will go extinct due to predation. In
particular, the lower equilibrium is unstable.

b. For ¸ < 1, the curve of x(t+1) vs: x(t) is always lower than the y = x line
regardless of the value of h, which tells us that the population will eventually
go extinct (if we assume negative population sizes is extinction). For ¸ > 1,
changing h will cause the curve x(t + 1) vs: x(t) to move up or down. As h
approaches 0, the dynamics are the same as in problem 8. As the predation
pressure h increases from 0, the range of initial population sizes increases for
which the population will go to negative values. For su¢ciently large h, the
curve x(t + 1) vs: x(t) will again always be lower than the y = x which means
that, as with the case when ¸ < 1, the population will always go to negative
values (extinction).

c. The reason why this model is problematic is because it allows for negative
population sizes!

d. A better way to model predation is to multiply the per capita growth
rate in the prey, f(x(t)), by some factor h with 0 < h < 1, resulting in a model
of the form

x(t +1) = h ¢ f(x(t)) ¢ x(t) = h ¢ F (x(t)):

10. We are given that

¯̄
¯̄
µ

df

dx

¯̄
x¤¤

1

¶µ
df

dx

¯̄
x¤¤

2

¶¯̄
¯̄ < 1

where x¤¤
i ; i = 1; 2 are steady states of f(f(x)) = g(x) (i.e. g(x¤¤

i ) = x¤¤
i for

i = 1;2; note that x¤¤
1 = f(x¤¤

2 ) and x¤¤
2 = f( x¤¤

1 ).)
Taking the derivative of g(x) = f(f(x)) at either of the stable states gives:

d

dx
g(x)

¯̄
x¤¤

i
=

d

dx
f(f(x))

¯̄
x¤¤

i
=

df

dx

¯̄
x¤¤

i

df

dx

¯̄
¯x¤¤

j

Thus,
¯̄

d
dxg(x)

¯̄
x¤¤

i

¯̄
< 1 by assumption, hence both steady states of g are

stable, and hence these two steady states give rise to a stable 2-point cycle of
the dynamical system de…ned by the function f .
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