
Math 361 Winter 2001/2002
Assignment 4 - Solutions

1.Steady States, Nt+1 = Nt = N¤:

N¤
h³

1 + eA(N¤¡B)
´

(1 ¡ ¸1) ¡ ¸2

i
= 0

This has the solutions

N¤ = 0

N¤ =
1

A
ln

¸1 + ¸2 ¡ 1

1 ¡ ¸1
+ B

provided

¸1 + ¸2 ¡ 1

1 ¡ ¸1
> 0

and

ln
¸1 + ¸2 ¡ 1

1 ¡ ¸1
> ¡AB:

Computing the derivative of the function

F (N) =

µ
¸1 +

¸2

1 + eA(N¤¡B)

¶
N;

it can be seen that

dF

dN
jN¤=0 = ¸1 +

¸2

1 + e¡AB

dF

dN

¯̄
¯̄
N¤= 1

A ln ¸1+¸2¡1
1¡¸1

+B = 1 ¡ (1 ¡ ¸1)(¸1 + ¸2 ¡ 1)

¸2

µ
ln

¸1 +¸2 ¡ 1

1 ¡¸1
+AB

¶

Thus, if ln ¸1+¸2¡1
1¡¸1

> ¡AB, which is the condition for the second equilibrium

to exist, then dF
dN

jN¤=0 > 1, hence N¤ = 0 is unstable. In this case the other
equilibrium is stable if

¯̄
¯̄1 ¡ (1 ¡ ¸1)(¸1 + ¸2 ¡ 1)

¸2

µ
ln

¸1 +¸2 ¡ 1

1 ¡¸1
+AB

¶¯̄
¯̄ < 1

and unstable otherwise. For example, if ¸1 is very small, then for given A
and B the second equilibrium becomes unstable if ¸2 is large enough. If
ln 1̧+¸2¡1

1¡¸1
< ¡AB then N¤ = 0 is the only equilibrium, and it is stable.

2. a. In a population of size x the per capita number of o¤spring is

f(x) =
¸

(1 + x)b
:
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This function is monotone decreasing with f(0) = ¸ and f(x) ! 0 for x ! 1.
The decrease in per capita number of o¤spring occurs more abruptly for higher
values of b. For b > 1 the function has a single in‡ection point.

b. The case b = 1 was discussed in class. For b > 1 the function

F (x) = f(x) ¢ x =
¸x

(1 +x)b

has a single maximum, with F (0) = 0 and F (x) ! 0 for x ! 1 with a single
in‡ection point.

c. The carrying capacity is that population size x¤ for which the per capita
number of o¤spring is exactly 1, i.e. for which f(x¤) = 1. At the carrying
capacity, the population simply replaces itself in each year, hence the name.
Thus the carrying capacity is simply the positive equilibrium of the function
F (x), i.e. the solution x¤ of

F (x¤) = x¤

with x¤ > 0. This solution is given by

x¤ = ¸1=b ¡ 1:

d. A straightforward calculation shows that

dF

dx
(x¤) = 1 ¡ b(1 ¡ 1

¸1=b
):

e. Cobwebbing illustrates the stability of the carrying capacity depending
on the parameter values.

3.
a. For ¸ = 2, there is a monotonic approach to equilibrium.
b. For ¸ = 5, the population reaches an equilibrium via dampened oscilla-

tions
c. For ¸ = 10, the population enters a two cycle.
d. For ¸ = 20; the population enters a four cycle.
e. For ¸ = 40, the population exhibits chaotic dynamics.

4.

ln
x(t)

xs(t)
= ln

x(t)
x(t)

(1+x(t))b

= ln(1 + x(t))b = b ln(1 +x(t))

For large x(t), 1 +x(t) ¼ x(t); thus ln x(t)
xs (t) = b ln(x(t)) for large x(t). If we

let z = ln(x(t)) and f = ln x(t)
xs(t)

, then
f(z) = bz which is a linear function with slope b.
To measure b in the …eld, take a random sample of x(t), that is the number

of individuals in the population at time t. Then take a corresponding sample
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of the number of individuals that survive to reproduction, xs(t). Regress the
ln(xs(t)) on ln(x(t)): the slope of the regression line will give an estimate of b.

5. All of the data points except one lie below the curve de…ned by ¡2 <
¡b(1 ¡ 1

¸1=b ). This implies that all except one species have demographic pa-
rameters inducing a stable equilibrium. The species that has demographic pa-
rameters leading to instability is the one corresponding to the point (75.0,3.4),
i.e. the Potato Beetle.

6.
a. 2. Note that there is 3rd equilibrium at 0.
b. The larger of the equilibrium refereed to in part a. is stable, the lower one

unstable. (Note that the equilibrium 0 is also stable, due to the Allee e¤ect.)
c. If the perturbation is to smaller values than the equilibrium value, then

the population will converge towards 0, i.e. go extinct. If the perturbation is
to larger values than the equilibrium value, then the population will converge
toward the upper equilibrium, i.e. towards the carrying capacity.

7. a. S is a steady state: F (S) = S. C is an unstable steady state A and
B are two points representing a steady limit cycle. The system will oscillate
between points A and B in the long term.

b. As an ecosystem is enriched F (nk) becomes elevated. This corresponds
to making the y = x on an individual plot shallower and shallower. During this
process, the steady state S moves from its original position to the left of the
maximum of the function F towards positions further to the right, and hence
towards positions at which the derivative of F becomes more and more negative.
Thus, due to enrichment the derivative of F at S eventually becomes smaller
than ¡1, so that the equilibrium S is unstable.

8. a. An additional constraint can be derived by forcing the eigenvalues to
be real. Thus

¯2 > 4°

We already know that ¯2 < 4 so

4 ¡ 4° > ¯2 ¡ 4° > 0

4 > 4°

1 > °

Thus 1 + ° < 2 and so 2 > 1 + ° > j¯j.
b. If ¯

2 < 0, then

¡1 +
¯

2
> ¡

p
¯2 ¡ 4°

2

1 ¡ ¯ +
¯2

4
>

¯2

4
¡ °

1 + ° > ¯
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All other conditions are equivalent.
c. If we have complex eigenvalues ¸1=2 = a § bi then ¯2 ¡ 4° < 0, and

a =
¯

2

b =

p
4° ¡¯2

2

and

j¸1j = j̧ 2j =
¡
a2 + b2

¢1
2 =

Ãµ
¯

2

¶2

+ ° ¡
µ

¯

2

¶2
!1

2

=
p

°

Hence
¯̄
¸1=2

¯̄
< 1 , p

° < 1 () ° < 1 () ° + 1 < 2. Also note that
4° > ¯2 () 2

p
° > j̄ j. Now 2

p
° <

p
° + 1 () p

° < 1, which implies the
claim.

9. a. Steady state p(t + 1) = p(t) = p¤:

p¤ =
p¤wA

p¤wA +(1 ¡ p¤)wB

p¤ (p¤ (wA ¡wB) ¡ (wA ¡ wB)) = 0

Provided wA 6= wB , this equation has p¤ = 0 and p¤ = 1 as the only
solutions. To test for local stability we calculate the derivative of

F (p) =
pwA

pwA + (1 ¡ p)wB
:

dF

dp
=

wAwB

(pwA + (1 ¡ p)wB)2

Thus

dF

dp
jp=0 =

wA

wB

and

dF

dp
jp=1 =

wB

wA

If jwAj > jwBj then p = 0 is unstable and p = 1 is stable. If jwAj < jwBj
then p¤ = 0 is stable and p¤ = 1 is unstable.

b. Even though the conditions for stability derived in part a. are only local
conditions, it can be seen that in this case these conditions are actually global,
in the sense that not only starting conditions close to the stable equilibrium will
converge to the stable equilibrium, but in fact all starting conditions (with the
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exception of the other equilibrium of course!) will converge towards the stable
equilibrium, i.e. towards p¤ = 0 or p¤ = 1 depending on the relative magnitude
of wA and wB (note that only starting conditions in the interval [0; 1] make
biological sense, since the variable p is a frequency and hence must be ¸ 0 and
� 1). The reason is simply that the function F either lies above the diagonal for
all values of p 2 [0;1], or it lies below the diagonal for these values, depending
on the relative magnitude of wA and wB. In the …rst of these cases, p¤ = 0
is unstable, and cobwebbing immediately shows that the system converges to
p¤ = 1 independent of the starting condition (as long as the starting condition
is not p(0) = 0). In the second case, p¤ = 1 is unstable, and cobwebbing
immediately shows that the system converges to p¤ = 0 independent of the
starting condition (as long as the starting condition is not p(0) = 0).
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